## ANSWERS OF TEST PAPER - 01

(Chapters Covered - Basic Costing, Cost Sheet, Material Cost and Employee Cost)

## COST ACCOUNTING

## SECTION-A

ANS. 1
(i) (b) Sales manager's salary
(ii) (b) Conversion cost
(iii) (b) $\mathbf{3 . 7 5 \%}$
(iv) (b) Functions
(v) (c) 1.943 minutes
(vi) (c) Engineered cost
(vii) (a) Cost allocation
(viii) (b) ₹ 22,25,000
(ix) (d) The ordering cost is equal to the carrying cost
(x) (c) Engineering department
(xi) (a) ₹10,200
(xii) (d) Number of vehicle
(xiii) (b) 2,500 units
(xiv) (c) 500 units 20 orders
(xv) (c) There is no idle time cost

## SECTION-B

ANS. 2 (a)
(i) Annual Demand $=1,00,000$ units

Carrying cost $=10 \times 50 \%=₹ 5$
EOQ $=(2 \times \text { Annual demand } x \text { Ordering cost/Carrying cost })^{1 / 2}$
$\mathrm{EOQ}=(2 \times 1,00,000 \times 500 / 5)^{1 / 2}$
$E O Q=4,472$ units (Approx.)
(ii) Evaluation of Discount offer:

If lot size is $\mathrm{EOQ}=4,472$ units
Carrying cost $=4,472 \times 5 \times 50 \% \quad=₹ 11,180$
Ordering cost $=1,00,000 / 4,472=23$ orders $@$ ₹ $500=₹ 11,500$
Purchase price $=1,00,000 \times 10=\underline{₹ 10,00,000}$
Total Cost $=\underline{\mathbf{₹ 1 0}, \mathbf{2 2 , 6 8 0}}$
If lot size is 4,500 units
Purchase price $=10-3 \% \quad=$ ₹ 9.70
Carrying cost per unit $=9.70 \times 50 \% \quad=$ ₹4.85
Carrying cost $=4,500 \times 4.85 \times 1 / 2 \quad=₹ 10,913$
Ordering cost $=1,00,000 / 4,500=23$ orders @ ₹500 = ₹ 11,500
Purchase price $=1,00,000 \times 9.70$
= ₹9,70,000
Total Cost $=\underline{\mathbf{₹ 9}, 92,413}$
If lot size is $\mathbf{6 , 0 0 0}$ units
Purchase price $=10-3.5 \%$
= ₹9.65
Carrying cost per unit $=9.65 \times 50 \%$
= ₹ 4.825
Carrying cost $6000 \times 4.825 \times 1 / 2$
= ₹ 14,475
Ordering cost $=1,00,000 / 6,000=17$ orders @ ₹500 = ₹8,500
Purchase price $=1,00,000 \times 9.65$
= ₹9,65,000
Total Cost $=\underline{\mathbf{~} 9,87,975}$
Note: Comparison as above shows that at $\mathbf{6 , 0 0 0}$ order quantity, the total inventory cost is the least. Hence, ordering quantity should be $\mathbf{6 , 0 0 0}$ units.

ANS. 2 (b)
Let $X$ be the Material Cost and $Y$ be the Wage Rate.
Earnings of Mohan (Rowan) $=600 \times \mathrm{Y}+(1,000-600) \times 600 / 1,000 \times \mathrm{Y}=840 \mathrm{Y}$
Earnings of Sohan (Halsey) $=800 \times \mathrm{Y}+(1,000-800) \times 50 \% \times \mathrm{Y}=900 \mathrm{Y}$
Total Factory cost $=$ Material + Wages + Overheads
In case of Mohan:

$$
\begin{align*}
& 72,800=X+840 Y+600 \times 10 \\
& 66,800=X+840 Y \quad-------- \tag{1}
\end{align*}
$$

In case of Sohan:

$$
\begin{align*}
& 76,000=X+900 Y+800 \times 10 \\
& 68,000=X+900 Y \quad-------- \tag{2}
\end{align*}
$$

Solving Both the equations, we get

$$
\begin{array}{ll}
1,200 & =60 Y \\
\mathbf{Y} & =₹ \mathbf{2 0}
\end{array}
$$

Putting $\mathrm{Y}=20$ in equation (1), we get

$$
\begin{aligned}
& 66,800=\mathrm{X}+840 \times 20 \\
& \mathbf{X} \quad=\mathbf{₹} \mathbf{5 0 , 0 0 0}
\end{aligned}
$$

(i) Normal Wage Rate $=₹ 20$ per hour
(ii) Material Cost $=₹ 50,000$
(iii)

Statement of Factory Cost

| Particulars | Mohan (₹) | Sohan (₹) |
| :--- | :---: | :---: |
| Material Cost <br> + Wages: | 50,000 | 50,000 |
| $\quad$ Mohan $(840 \times 20)$ | 16,800 |  |
| $\quad$ Sohan $(900 \times 20)$ |  | 18,000 |
| + Factory Overheads: |  |  |
| $\quad$ Mohan $(600 \times 10)$ | 6,000 | 8,000 |
| $\quad$ Sohan $(800 \times 10)$ | $\mathbf{7 2 , 8 0 0}$ | $\mathbf{7 6 , 0 0 0}$ |

ANS. 3 (a) Statement showing computation of total inventory cost at different order size

| Particulars | $\mathbf{2 0 0}$ | $\mathbf{2 5 0}$ | $\mathbf{8 0 0}$ | $\mathbf{2 , 0 0 0}$ | $\mathbf{4 , 0 0 0}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Purchasing cost | $\mathbf{( A )}$ | $\mathbf{2 4 , 0 0 0}$ | $\mathbf{2 3 , 6 0 0}$ | $\mathbf{2 3 , 2 0 0}$ | $\mathbf{2 2 , 8 0 0}$ | $\mathbf{2 2 , 4 0 0}$ |
| No. of orders (4,000/Ordering Quantity) |  | 20 | 16 | 5 | 2 | 1 |
| Ordering cost (No. of order $\times$ ₹ 6$)$ | $(\mathbf{B})$ | $\mathbf{1 2 0}$ | $\mathbf{9 6}$ | $\mathbf{3 0}$ | $\mathbf{1 2}$ | $\mathbf{6}$ |
| Average inventory (Ordering Quantity $\times 1 / 2)$ | 100 | 125 | 400 | 1,000 | 2,000 |  |
| Carrying cost per unit (Price per ton $\times 25 \%$ ) | 1.50 | 1.475 | 1.45 | 1.425 | 1.40 |  |
| Total Carrying cost <br> (Average inventory $\times$ CC per unit) | $(\mathbf{C})$ | $\mathbf{1 5 0}$ | $\mathbf{1 8 4}$ | $\mathbf{5 8 0}$ | $\mathbf{1 , 4 2 5}$ | $\mathbf{2 , 8 0 0}$ |
| Total Cost (A+B+C) | $\mathbf{2 4 , 2 7 0}$ | $\mathbf{2 3 , 8 8 0}$ | $\mathbf{2 3 , 8 1 0}$ | $\mathbf{2 4 , 2 3 7}$ | $\mathbf{2 5 , 2 0 6}$ |  |

For the above computations the best quantity to order is $\mathbf{8 0 0}$ units.
Note: Minimum ordering quantity assumed to be 200 tons; it may be any quantity below 250 tons; but the decision will remain same.

ANS. 3 (b)
STATEMENT OF COST

| Particulars |  | Amount (₹) |
| :---: | :---: | :---: |
| Direct Material Local (20,00,000 $\times \mathbf{1 1 0 \%}$ ) <br> + Import of Raw Material <br> + Direct Labour <br> + Direct Expenses <br> Prime |  | 22,00,000 |
|  |  | 2,00,000 |
|  |  | 17,00,000 |
|  |  | 3,00,000 |
|  |  | 44,00,000 |
| + Factory Overheads: |  |  |
| Indirect labour | 4,00,000 |  |
| Stores and spare parts | 1,40,000 |  |
| Fuel | 3,00,000 |  |
| Depreciation on plant | 2,00,000 |  |
| Excise duty | 4,00,000 |  |
| Salaries of work personnel | 2,00,000 | 16,40,000 |
| Works Cost |  | 60,40,000 |
| + Office Overheads: |  |  |
| Administrative office expenses | 4,00,000 |  |
| Salary of managing director | 2,00,000 |  |
| Fees of directors | 40,000 | 6,40,000 |
| Cost of Production |  | 66,80,000 |
| + Selling \& Distribution Overheads: |  |  |
| Expenses on advertisement | 3,20,000 |  |
| Selling expenses | 5,00,000 |  |
| Packaging and distribution expenses | 3,40,000 | 11,60,000 |
| + Profit (78,40,000 $\times 20 / 80) \quad \begin{array}{r}\text { Cost of Sales } \\ \text { Sales } \\ \hline\end{array}$ |  | 78,40,000 |
|  |  | 19,60,000 |
|  |  | $\mathbf{9 8 , 0 0 , 0 0 0}$ |
| - Subsidy $\quad$ Selling Price per unit (Before Subsidy) ${ }^{\text {Tender Price (After Subsidy) }}$ | 98,00,000/50,000 | 196 |
|  |  | 40 |
|  |  | 156 |

ANS. 4 (a)
(i) Let ₹x per hour be the normal wage rate.

Wages at location A will be ₹ $36 x$ and at location B - it will be ₹ $48 x$ on the basis of actual time taken, as against 60 hours permitted.
For time saved, bonus will be payable as under:

## Location A:

Bonus under Rowan system $=(60-36) \times 36 / 60 \times x=14.4 x$
Total wages $=₹ 36 \mathrm{x}+₹ 14.4 \mathrm{x}=50.4 \mathrm{x}$
Overheads @ ₹ 20 per hour worked $=36$ hrs. $\times$ ₹ $20=₹ 720$
Therefore, Total Conversion Cost is ( $50.4 \mathrm{x}+₹ 720$ ) $=₹ 1,224$
$50.4 \mathrm{x}=₹ 504 \mathrm{x}$
$\mathrm{x}=₹ 504 / 50.4=₹ 10$
So, Bonus $=14.4 \mathrm{x}=14.4 \times ₹ 10=₹ 144$

## Location B:

Bonus under Halsey system $=(60-48) \times 50 \% \times x=6 x$
Total wages $=₹ 48 \mathrm{x}+6 \mathrm{x}=54 \mathrm{x}$
Overheads @ $₹ 20$ per hour worked $=48$ hrs. $\times ₹ 20=₹ 960$
Therefore, Total Conversion Cost is $(54 x+₹ 960)=₹ 1,500$
$54 \mathrm{x}=₹ 540$
$\mathrm{x}=₹ 540 / 54=₹ 10$
So, Bonus $=6 \mathrm{x}=6 \times ₹ 10=₹ \mathbf{6 0}$
(ii)

COMPARATIVE CONVERSION COST

| Particulars | Location A (₹) | Location B (₹) |
| :--- | :---: | :---: |
| Wages @10 per hour | 360 | 480 |
| + Bonus | 144 | 60 |
| + Overheads | 720 | 960 |
| Total | $\mathbf{1 , 2 2 4}$ | $\mathbf{1 , 5 0 0}$ |

ANS. 4 (b) STATEMENT OF COST AND PROFIT FOR SUPER PEN

| Particulars | Amount (₹) | Per Unit (₹) |
| :---: | :---: | :---: |
| Direct material (8,00,000 $\times 2 / 5$ ) | 3,20,000 | 8.00 |
| + Direct labour (4,48,000 $\times 5 / 14$ ) | 1,60,000 | 4.00 |
| Prime Cost | 4,80,000 | 12.00 |
| + Production overheads (1,92,000 $\times 40,000 / 1,60,000)$ | 48,000 | 1.20 |
| Works Cost | 5,28,000 | 13.20 |
| + Administration overheads (1,60,000 $\times 200 \%$ ) | 3,20,000 | 8.00 |
| Cost of Production | 8,48,000 | 21.20 |
| - Closing Stock (8,48,000 $\times 4,000 / 40,000$ ) | 84,800 | - |
| Cost of Goods Sold | 7,63,200 | 21.20 |
| + Selling costs ( $36,000 \times 1)$ | 36,000 | 1.00 |
| Cost of Sales | 7,99,200 | 22.20 |
| + Profit (Balancing figure) | 2,80,800 | 7.80 |
| Sales ( $\mathbf{3 6 , 0 0 0 \times 3 0}$ ) | 10,80,000 | 30.00 |

## SUMIT RASTOGI CLASSES

Working Note:
(i) Direct Material:

Normal Pen = X, Super Pen = 2X
Total Direct Material:
Normal Pen $\quad=1,20,000 \mathrm{X}$
Super Pen $\quad=40,000 \times 2 \mathrm{X}=80,000 \mathrm{X}$
Ratio

$$
=3: 2
$$

(ii) Direct Labour

Super Pen = Y, Normal Pen $=0.60 \mathrm{Y}$
Total Direct labour:
Normal Pen $\quad=1,20,000 \times 0.6 \mathrm{Y}=72,000 \mathrm{X}$
Super Pen $\quad=40,000 \times Y=40,000 \mathrm{Y}$
Ratio $\quad=9: 5$

ANS. 5 (a)
Quantity Sold $=\mathbf{1 , 2 5 , 0 0 0}+\mathbf{1 , 5 0 , 0 0 0}+\mathbf{1 , 0 0 , 0 0 0} \mathbf{- 1 , 3 0 , 0 0 0}=\mathbf{2 , 4 5 , 0 0 0}$ liters.
Calculations using FIFO Method:
(i) Closing stock
$=30,000 \times 7.10+1,00,000 \times 7$
= ₹ $9,13,000$
(ii) Cost of Goods sold $=1,25,000 \times 6.50+1,20,000 \times 7.10+45,000$ (Expenses) $=\mathbf{₹ 1 7 , 0 9 , 5 0 0}$
(iii) Profit/Loss $\quad=19,25,000-17,09,500$
$=\mathfrak{₹} 2,15,500$

Calculations using LIFO Method:
(i) Closing stock $=1,25,000 \times 6.50+5,000 \times 7.10=\mathbf{8 8}, \mathbf{4 8 , 0 0 0}$
(ii) Cost of Goods sold $=1,00,000 \times 7+1,45,000 \times 7.10+45,000$ (Expenses) $=$ ₹17,74,500
(iii) Profit/Loss $\quad=19,25,000-17,74,500$
$=₹ \mathbf{1 , 5 0 , 5 0 0}$

ANS. 5 (b)
Table Showing Labour Cost Per Article

| Method of Payment | Hours worked | Weekly <br> Earnings (₹) | No. of <br> Articles | Labour Cost <br> Per Article (₹) |
| :--- | :---: | :---: | :---: | :---: |
| Existing time rate | 49 | 8,425 | 120 | 70.21 |
| Straight piece rate | 40 | 8,640 | 135 | 64.00 |
| Rowan premium plan | 40 | 9,007 | 135 | 66.72 |
| Halsey premium plan | 40 | 8,600 | 135 | 63.70 |

## Working Notes

(i) Existing Time Rate Weekly Wages
= 40 hours @ 160 per hr. + 9 hours @ ₹ 225 per hr. = ₹ $6,400+₹ 2,025$ = ₹ 8,425
(ii) Piece Rate System Basic

Time 5 hours for 15 articles
Cost of 15 articles at hourly rate of ₹ $160 / \mathrm{hr} .+20 \%=₹ 800+₹ 160=₹ 960$
$\therefore$ Rate per article $=₹ 960 \div 15=₹ 64$.
Earning for the week = $\mathbf{1 3 5}$ articles x ₹ $64 \quad=\mathbf{₹ 8 , 6 4 0}$
(iii) Rowan Premium System

Basic Time $=5$ hours for 15 articles $+50 \%$ of Time
$=7.5$ hours for 15 articles or 30 minutes per article
$\therefore$ Standard Time allowed for 135 articles $\quad=67.50$ hours
Actual time taken for 135 articles $=40$ hours
Earnings $=40 \times 160+(67.50-40) \times 40 / 67.50 \times 160 \quad=₹ 9,007$
(iv) Halsey Premium System

Earnings $=40 \times 160+(67.50-40) \times 50 \% \times 160=₹ 8,600$

ANS. 6 (a)
(i) Minimum stock of A:

Reorder level - (Average rate of consumption $\times$ Average time required)
$=8,000 \mathrm{kgs}$. $-(200 \times 10 \times 2) \mathrm{kgs}$.
$=4,000 \mathrm{kgs}$.
(ii) Maximum stock of B:

Reorder level - (Minimum consumption $\times$ Minimum delivery period) + Reorder quantity $=4,750 \mathrm{kgs} .-(175 \times 4 \times 3) \mathrm{kgs} .+5,000 \mathrm{kgs}=9,750-2,100=\mathbf{7 , 6 5 0} \mathbf{~ k g s}$.
(iii) Reorder level of $\mathbf{C}$ :

Maximum delivery period $\times$ Maximum usage $=4 \times 225 \times 6=\mathbf{5 , 4 0 0} \mathbf{k g s}$.
(iv) Average stock level of A:

Minimum stock level of A $+1 / 2$ Reorder quantity of A
$=4,000 \mathrm{kgs} .+1 / 2 \times 10,000 \mathrm{kgs} .=4,000 \mathrm{kgs} .+5,000 \mathrm{kgs} . \quad=\mathbf{9 , 0 0 0} \mathbf{~ k g s}$.
OR
$1 / 2 \times($ Minimum Stock level of A + Maximum Stock Level of A)
$=1 / 2 \times(4000+16,250)$
= 10,125 Kgs.

## Working note:

Maximum stock level of A:
$=$ ROL + ROQ - (Minimum consumption $x$ Minimum reorder period) $8,000 \mathrm{kgs} .+10,000 \mathrm{kgs}-[(175 \times 10) \times 1] \mathrm{kgs} .=\mathbf{1 6 , 2 5 0} \mathbf{~ k g s}$.

ANS. 6 (b)
Statement of Cost of Sales and Profits for 2018 ( 300 Typewriters)

| Particulars | Working | Amount (₹) | Cost per unit (₹) |
| :---: | :---: | :---: | :---: |
| Direct Material <br> + Direct Wages <br> Prime Cost | 1,20,000 $\times 125 \% \times 300 / 200$ | 2,25,000 | 750 |
|  | $1,80,000 \times 110 \% \times 300 / 200$ | 2,97,000 | 990 |
|  |  | 5,22,000 | 1,740 |
|  | 75,000 $\times 5,22,000 / 3,00,000$ | 1,30,500 | 435 |
| + Factory Overheads <br> Factory Cost <br> + Office Overheads |  | 6,52,500 | 2,175 |
|  | $\mathbf{9 0 , 0 0 0}+\mathbf{3 0 , 0 0 0}+15,000$ | 1,35,000 | 450 |
| + Office Overheads <br> Cost of Production <br> + Selling Expenses |  | 7,87,500 | 2,625 |
|  | 45,000 $\times 300 / 200$ | 67,500 | 225 |
| + Profit Total Cost |  | 8,55,000 | 2,850 |
|  | 8,55,000 $\times 10 / 90$ | 95,000 | 316.67 |
| Selling Price |  | 9,50,000 | 3,166.67 |

ANS. 7 (a)
Statement Showing Relevant Calculations

| Particulars | K | L | M |
| :---: | :---: | :---: | :---: |
| No. of units produced | 10,000 | 8,000 | 14,400 |
| Standard Time (Hours) | $\begin{array}{r} (10,000 \times 156) /(100 \times 60) \\ =260 \end{array}$ | $\begin{aligned} 8,000 \times 3 / 100 & \\ & =240 \end{aligned}$ | $\begin{array}{r} 14,400 \times 1.5 / 100 \\ =216 \end{array}$ |
| Time Taken (Hours) | 200 | 216 | 184 |
| (i) Bonus Hours = Time Saved (Hours) | 60 | 24 | 32 |
| Rate of Bonus per hour (₹) | $25 \times 60 \%=15$ | $40 \times 60 \%=24$ | $30 \quad 60 \%=18$ |
| (ii) Amount of Bonus (₹) | $\mathbf{6 0 \times 1 5}=\mathbf{9 0 0}$ | $\mathbf{2 4 \times 2 4 = 5 7 6}$ | $\mathbf{3 2 \times 1 8}=576$ |
| Overtime (Hours) | $200-176=24$ | $216-176=40$ | $184=176=8$ |
| Overtime wages (₹) | $\begin{array}{r} 20 \times 25 \times 4 / 3+4 \times 25 \times 3 / 2 \\ =\mathbf{8 1 6 . 6 7} \end{array}$ | $\begin{array}{r} 20 \times 40 \times 4 / 3+20 \times 40 \\ \times 3 / 2=\mathbf{2 , 2 6 6 . 6 7} \end{array}$ | $\begin{array}{r} 8 \times 30 \times 4 / 3 \\ =\mathbf{3 2 0} \end{array}$ |
| Basic Wages (₹) | $176 \times 25=4,400$ | $176 \times 40=7,040$ | $17630=5,280$ |
| (iii) Total Wages (₹) | $\begin{array}{r} 4,400+900+816.67 \\ = \\ \mathbf{6}, 116.67 \end{array}$ | $\begin{aligned} 7,040+576 & +2,266.67 \\ & \text { 9,882.67 } \end{aligned}$ | $\begin{array}{r} 5,280+576+320 \\ = \\ \mathbf{6 , 1 7 6} \end{array}$ |
| Saleable units | $10,000-400=9,600$ | $8,000-160=7,840$ | 14,400-1,600 = 12,800 |
| (iv) Direct Wage Cost Per 100 saleable units | $\begin{array}{r} 6,116.67 \times 100 / 9,600 \\ =63.71 \end{array}$ | $\begin{array}{r} 9,882.67 \times 100 / 7,840 \\ =126.05 \end{array}$ | $\begin{array}{r} 6,176 \times 100 / 12,800 \\ =48.25 \\ \hline \end{array}$ |

ANS. 7 (b)
Statement of Cost of Sales and Profit for 2017-18 (30,000 Units)

| Particulars | Working | Amount (₹) | Cost per unit (₹) |
| :---: | :---: | :---: | :---: |
| Direct Material <br> + Direct Wages <br> Prime Cost <br> + Factory Overheads: <br> - Variable <br> - Fixed <br> Factory Cost <br> + Office and Adm. Overheads <br> Cost of Production <br> + Selling \& Distribution overheads <br> Total Cost <br> + Profit | $\begin{gathered} \mathbf{3 0 , 0 0 , 0 0 0} \times \mathbf{1 2 5 \%} \times \mathbf{8 8 \%} \\ \times 30,000 / 20,000 \\ \mathbf{2 2 , 5 0 , 0 0 0} \times \mathbf{1 2 0 \%} \times \\ \mathbf{3 0 , 0 0 0} 20,000 \end{gathered}$ | 49,50,000 | 165 |
|  |  | 40,50,000 | 135 |
|  |  | $\mathbf{9 0 , 0 0 , 0 0 0}$ | 300 |
|  | $(20,62,500-7,50,000) \times$ | 22,50,000 | 75 |
|  | 90,00,000/52,50,000 | 7,50,000 | 25 |
|  |  | 1,20,00,000 | 400 |
|  | $\mathbf{8 , 5 0 , 0 0 0} \times 120 \%$ | 10,20,000 | 34 |
|  |  | 1,30,20,000 | 434 |
|  | $2,50,000 \times 80 \% \times$ <br> $30,000 / 20,000$ | 3,00,000 | 10 |
|  |  | 1,33,20,000 | 444 |
|  | 1,33,20,000 $\times 25 \%$ | 33,30,000 | 111 |
|  |  | 1,66,50,000 | 555 |

## Working note:

Profit percentage on cost for the year 2016-17 $=(16,82,500 / 84,12,500) \times 100=20 \%$
Desired Profit $\%$ for 2017-18 $=20+5=25 \%$ on Cost.

## ANS. 8 (a) Measures to Reduce Labour Turnover:

Labour Turnover may be reduced by removing its avoidable causes and taking preventive remedial measures. The various measures may be as under:
$>$ Efficient, sympathetic and impartial personnel administration.
$>$ Effective communication system to keep the workers informed on matters that affect them.
$>$ Improving working conditions and placing the right man on the right job.
$>$ Job enrichment to reduce boredom and monotony and to provide job satisfaction.
$>$ Introducing fair rates of pay and allowance/s and incentives, pension, gratuity, etc.
$>$ Strengthening welfare measures.
$>$ Augmenting recreational activities and schemes.

## ANS. 8 (b) Difference between Scrap and Spoilage

| SCRAP | SPOILAGE |
| :--- | :--- |
| Incidental material residue in a <br> process in small amounts | Damages due to defective working |
| It has low market value | Market value can range from zero to substantial <br> portion of selling price |
| Normally involves material wastage | It involves wastage of Material, Labour, Direct <br> Expenses and Overheads up to point of spoilage. |
| Scrap should always be physically <br> available | The components/materials are damaged in such a <br> way that they cannot be bought back to normal <br> specifications by repairs or reconditioning |

ANS. 8 (c)
The role of the cost accountants in a manufacturing organisation can be enumerated as follows:
$>$ To analyze various elements of cost of production/services such as material, labour, overhead expenses etc.
$>$ To introduce appropriate costing methods in the organisation so as to facilitate management with the knowledge of cost of production/services for managerial decision making.
To determine the cost of the new product/service in order to facilitate management in arriving at the correct pricing decisions.
$>$ To determine the feasibility and profitability of the various project proposals considered by the management.
$>$ To analyze variances against standard by reason to enable concerned department to initiate corrective action.
$>$ Collection, collation of extraneous information for management to compare the company's performance with that of peers and the industry for better appreciation and decision-making.

