Probability								
Know about Probability	 → First use of Probability was made 300 years back in Europe by a group of mathematicians to enhance their chances of winning in gambling → It is a full-fledged subject and become an integral part of statistics → Theories of Testing Hypothesis and Estimation are based on probability 							
Types	Subjective ProbabilityDependent on personal judgment, useful in decision making. It is out scope of our syllabusObjective ProbabilityThis is based on Mathematical Rules and not judgment 							
Random Experiment	ExperimentA performance that produces certain resultsRandomAn experiment is defined to be random if the results of thExperimentexperiment depend on chance only.ExamplesTossing a coin, throwing a dice, drawing cards from a pack							
Events	The results or outcomes of a random experiment are known as events							
Types of Events	Based on Combination of EventsSimple or ElementaryIf the event cannot be decomposed into further eventsComposite or CompoundAn event that can be decomposed into two or more simple eventsBased on nature of occurrence (applicable for set of events)MutuallyExclusive ncompatible EventsMutuallyExclusive 							
	Equally Likely or Equi- Probable Events or Mutually SymmetricIf it is evident that from the set of events, none of the events is expected to occur more frequently than others.							
Classical Definition of Probability	Also called Prior Definition of Probability, this formula is Event (Result) Based. It is given by Bernoulli and Laplace. $P(A) = \frac{\text{no. of events favorable to A}}{\text{total number of events}}$							

More about Classical Probability	Demerits Limitations \rightarrow Applicable only when events are finite and are equally likely \rightarrow Limited application of this definition like in tossing coin, throwing dice, cards etc.Other Notes \rightarrow 0 \leq P(A) \leq 1, P(A) = 1 means Sure Event, P(A) = 0 means impossible event \rightarrow Probability of non-occurrence of an event A is denoted by P(A') or P(A) is called as complimentary event of A. 						
Special Formula	If an experiment results in p outcomes and if it is repeated q times then Total no. of outcomes $= p^q$						
Terms used in 52 Cards Deck	Suits (four) Spades - A Hearts - Diamond - Clubs - Clubs - Clubs - A Ranks (13) A (Ace), K (King), Q (Queen), J (Jack), 10, 9, 8, 7, 6, 5, 4, 3, 2						
Relative Frequency Definition of Probability	Relative Frequency = $\frac{\text{no.of times the event occured during experimental trials}}{\text{total no.of trials}} = \frac{f_A}{n}$ Probability by this method is defined as $P(A) = \lim_{n \to \infty} \frac{f_A}{n}$ (Relative Frequency on infinite no. of trials is equal to probability)						
Set Based Probability	Sample Space (denoted by S or Ω -omega)a non-empty set containing all the elementary events of a random experiment as sample pointsEvent AEvent which is under consideration for probability calculations is defined as a non empty subset of Set S (Sample Space)Probability Formula $P(A) = \frac{\text{no. of sample points in } A}{\text{no. of sample points in } S} = \frac{n(A)}{n(S)}$						
Axiomatic Or Modern Definition of Probability	This definition is also based on Sets Concepts. Here Probability is not a simple ratio like above, but can be said as function P defined on S known as Probability Measure.P(A) is defined as the probability of A as per this function only if below conditions are satisfied:Condition 1 $P(A) \ge 0$, for every $A \subseteq S$ Condition 2Condition 2 $P(S) = 1$ Condition 3For any sequence of mutually exclusive events A1, A2, A3 $P(A_1 \cup A_2 \cup A_3 \cup) = P(A_1) + P(A_2) + P(A_3) +$						

	Theorem 1	$P(A \cup B) = P(A + B) = P(A \text{ or } B) = P(A) + P(B)$ If A and B are mutually exclusive events				
	Theorem 2	For set of mutually exclusive events $A_1, A_2, A_3,$				
Addition		$P(A_1 \cup A_2 \cup A_3 \cup) = P(A_1) + P(A_2) + P(A_3) +$				
Theorems	Theorem 3	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$				
		If A and B are mutually exclusive eventsFor set of mutually exclusive events A_1, A_2, A_3, \dots $P(A_1 \cup A_2 \cup A_3 \cup \dots) = P(A_1) + P(A_2) + P(A_3) + \dots$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ For any two events A and B $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$ $-P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$ e points $n(S) \times P(A)$ If occurrence of one event is influenced by occurrence of one event, then two events are dependent.ttTwo events are said to be independent if occurrence of one event do not influence the occurrence of other.n caseendentBBendentBConditional Probability of B/A: means probability of event B given that event A has already been occurredB $P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)}$, provided $P(A) > 0$ Similarly, Conditional Probability of A/B:P(ADB) = P(A) × P(BA)ininofconditional Probability of A/B:P(ADB) = P(A) × P(BA)ofP(ADB) = P(A) × P(BA)inofinofofdom for three events, A, B, CP(A \cap B) = P(A) × P(B) × P(C)Also, if A and B are independent, then below are also independent :A and B', A' and B, A' and B'riableIt is a function defined on Sample Space of a random experiment that can take any value (Real Number)andomRV that can take only discrete values. RV on a discrete sample spaceRV that can take only values within an interval. [infini				
	Theorem 4					
Expected Frequency	No. of sample points	$s n(S) \times P(A)$				
	Dependent	-				
	-	•				
		5 , 1 5				
	-					
		$P\left(\frac{1}{A}\right) = \frac{P(A)}{P(A)}$, provided $P(A) > 0$				
Conditional Probability or Compound Theorem		Similarly, Conditional Probability of A/B:				
		$P\left(\frac{A}{A}\right) = \frac{P(B \cap A)}{P(B \cap A)}$ provided $P(B) > 0$				
Conditional	l parn	$P(\overline{B}) = P(B)$, provided $P(B) > 0$				
Expected FrequencyNo. of sample points $n(S) \times P(A)$ Dependent EventsIf occurrence of one event is another event, then two event one event do not influence th Probability in case of Dependent Events A and BIf occurrence of one event is another event, then two event one event do not influence th Probability of B/A: given that event A has already b $P(\frac{B}{A}) = \frac{P(B \cap A)}{P(A)}$, Similarly, Conditional Probabilit $P(\frac{A}{B}) = \frac{P(B \cap A)}{P(B)}$, Compound Theorem: P(AAB) 						
		Since there is no dependency,				
	Conditional Frobability – Normal Frobability					
	-	i.e. $P(B/A) = P(B)$ and $P(A/B) = P(A)$				
	Livenes					
		And for three events, A, B, C				
		$P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$				
		-				
		A and B', A' and B, A' and B'				
	Random Variable	It is a function defined on Sample Space of a random				
		experiment that can take any value (Real Number)				
	Discrete Random	RV that can take only discrete values. RV on a discrete				
Random Variable:						
Probability	Random Variable					
Distribution	Probability					
	Distribution					
	Conditions					
	Probability Dist.					
		$1, 1, 2, 3, \dots, n$ and $n \geq 0$ for every take $\Delta n_i = 1$				

Expected Value	It is defined as the sum of products of different values taken by Random Variable and corresponding probabilities. $E(x) = \sum p_i x_i$ (this formula is similar to AM of frequency distribution)
Mean of Probability Distribution	Since this is mean, we can say that Expected value is equal to arithmetic mean of probability distribution. Here mean is denoted by μ , hence $\mu = E(x) = \sum p_i x_i$
Variance of Probability Distribution	$V(x) = \sigma^2 = E(x - \mu)^2 = E(x)^2 - \mu^2$
Properties of E.V.	$ \rightarrow E.V. of a constant is constant \rightarrow E(x + y) = E(x) + E(y) \rightarrow E(k.x) = E(x).k \rightarrow E(x.y) = E(x).E(y) $
	Value Mean of Probability Distribution Variance of Probability Distribution Properties

E Learn with CA. Pranav Mansforming students to Professionals

Theoretical Distribution

Binomial Distribution (bi-parametric discrete probability distribution)	Bernoulli's Trial Binomial Variable Probability Mass Function Mean Variance	 → Each trial is associated with two mutually exclusive and exhaustive outcomes [one is success and other one is failure] → Trials are independent → Probability of success (p) and failure (q=1-p) will remain unchanged throughout the process → No. of trials is a positive integer It is a discrete random variable X that follows binomial distribution and is denoted by X~B(n, p) f(x) = P(X = x) = ⁿC_x p^xq^{n-x} for x = 0,1,2,3,,n and f(x) = 0 if x is otherwise μ = np σ² = npq, also Variance is always less than mean, maximum value of variance is ⁿ/₄ 					
	Mode	Calculate $(n + 1)p$,if the resulting value is $\mu_0 = (n + 1)p$ andinteger then Bi-modal $[(n + 1)p - 1]$ If the resulting value is non- integer then Uni-modal μ_0 = largest integer contained in $(n + 1)p$					
	Additive Property	If X and Y are two independent variables such that $X \sim B(n_1, p)$ and $Y \sim B(n_2, p)$, then $(X + Y) \sim B(n_1 + n_2, p)$					
	History	Simon Denis Poisson of France introduced this distribution way back in the year 1837					
	Conditions	It is a limiting form of Binomial Distribution, where $n \rightarrow \infty$, $p \rightarrow 0$. It is also a discrete distribution					
	Poisson Variable	It is a discrete random variable that follows Poisson Distribution denoted as $X \sim P(m)$					
Poisson Distribution	Probability Mass Function	$f(x) = P(X = x) = \frac{(e^{-m} \cdot m^x)}{x!}$ for $x = 0, 1, 2, \infty$					
(uni-parametric discrete probability	Mean	$\mu = m$					
distribution)	Variance	$\frac{\mu = m}{\sigma^2 = m}$					
	Mode	Calculate m ,if the resulting value is $\mu_0 = m$ andinteger then Bi-modal $[m-1]$ If the resulting value is non- integer then Uni-modal $\mu_0 = \text{largest integer}$ contained in m					
	Additive Property	If X and Y are two independent variables such that $X \sim P(m_1)$ and $Y \sim P(m_2)$, then $(X + Y) \sim P(m_1 + m_2)$					

Normal Distribution (bi-parametric continuous probability distribution)BasicsVarious Mathematical experiments have proved that no of the continuous random variables will follow no distribution. It is universally accepted distribution.Probability Density FunctionProbability Density Function $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(\frac{x-\mu}{\sigma})^2 \times \frac{1}{2}}$ It is defined for $-\infty < x < \infty$ Normal Distribution PropertiesMean = Median = Mode Standard Deviation μ $\sigma < x < \infty$ Normal Distribution PropertiesMean = Median = Mode Standard Deviation μ $\sigma < \sqrt{2/\pi} = 0.8 \sigma$ Quartile DeviationNormal Distribution PropertiesMean = Median = Mode Standard Deviation μ $\sigma < \sqrt{2/\pi} = 0.8 \sigma$ Quartile DeviationNormal Distribution PropertiesNormal Curve Normal CurveBell Shaped Normal CurveNormal Distribution PropertiesNormal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ $x = \mu$ $y = 0$ $x = 1$ Conditions Mean $\mu = \sigma$ Standard Deviation σ $\mu = \sigma$ $x = \mu$ $y = 0$ $x = 0$ $y = 0$ $x = 0$	ndom two σ_1^2),
Distribution (bi-parametric continuous probability distribution)distribution. It is universally accepted distribution.Probability Density Function $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(\frac{x-\mu}{\sigma})^2 \times \frac{1}{2}}$ It is defined for $-\infty < x < \infty$ Normal 	ndom two $\sigma_1^2),$
(bi-parametric continuous probability distribution)Probability Density Function $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(\frac{x-\mu}{\sigma})^2 \times \frac{1}{2}}$ It is defined for $-\infty < x < \infty$ Normal DistributionMean = Median = Mode 	two σ_1^2),
continuous probability distribution)Density Function $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(\frac{1}{\sigma})^2 \times \frac{1}{2}}$ It is defined for $-\infty < x < \infty$ Normal Distribution PropertiesMean = Median = Mode Standard Deviation μ Standard Deviation $\sigma \times \sqrt{2/\pi} = 0.8 \sigma$ Quartile DeviationNormal Distribution PropertiesMean Deviation Quartile Deviation $\sigma \times \sqrt{2/\pi} = 0.8 \sigma$ Quartile Deviation $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ Shape of Normal Curve Normal Curve Additive PropertyBell Shaped Normal VariableNormal Variable $X \sim N(\mu, \sigma^2)$ Only applicable when two different rar variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ Parameter Value Mean $\mu = 0$	two σ_1^2),
Normal DistributionMean = Median = Mode μ Normal DistributionMean = Median = Mode μ Standard Deviation σ Mean Deviation σ Quartile Deviation $\sigma \times \sqrt{2/\pi} = 0.8 \sigma$ Quartile Deviation $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ Shape of Normal CurveBell ShapedNormal Variable $X \sim N(\mu, \sigma^2)$ Additive PropertyOnly applicable when two different rar variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, Y \sim N(\mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at $x = \mu$ Points of Inflexion $\mu - \sigma \& \mu + \sigma$ Ratio between QD:MD:SD10:12:15ConditionsParameterValueMean μ Mean μ 0	two σ_1^2),
Normal DistributionMean = Median = Mode μ Normal DistributionMean = Median = Mode μ Standard Deviation σ Mean Deviation σ Quartile Deviation $0 \times \sqrt{2/\pi} = 0.8 \sigma$ Quartile Deviation $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ Shape of Normal CurveBell ShapedNormal Variable $X \sim N(\mu, \sigma^2)$ Additive PropertyOnly applicable when two different rar variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, Y \sim N(\mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at $x = \mu$ Points of Inflexion $\mu - \sigma \& \mu + \sigma$ Ratio between QD:MD:SD10:12:15ConditionsParameterValueMean μ Mean μ 0	two σ_1^2),
Normal DistributionMean = Median = Mode μ Normal Distribution σ σ Normal DistributionQuartile Deviation $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ Shape of Normal CurveBell ShapedNormal Variable $X \sim N(\mu, \sigma^2)$ Only applicable when two different rar variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, Y \sim N(\mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion $x = \mu$ Normal Students $\mu - \sigma \& \mu + \sigma$ Ratio between QD:MD:SD10:12:15Conditions $\mu = \sigma$ Value Mean μ 0	two σ_1^2),
Normal DistributionStandard Deviation σ Normal DistributionQuartile Deviation $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ Shape of Normal CurveBell ShapedNormal Variable $X \sim N(\mu, \sigma^2)$ Only applicable when two different ran variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion $x = \mu$ Normal curve is symmetrical at $x = \mu$ Conditions $\mu - \sigma \& \mu + \sigma$ Ratio between QD:MD:SD10:12:15ConditionsParameterValue Mean μ 0	two σ_1^2),
Normal Distribution PropertiesMean Deviation $\sigma \times \sqrt{2/\pi} = 0.8 \sigma$ $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ $Shape of Normal CurveAdditive PropertyBell ShapedX \sim N(\mu, \sigma^2)Additive PropertyOnly applicable when two different ranvariables are independent. Assume we havevariables X and Y such that X \sim N(\mu_1, \Psi \sim N(\mu_2, \sigma_2^2)) then X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)Normal Curve issymmetrical atPoints of Inflexionx = \mu10:12:15Conditions\mu - \sigma \& \mu + \sigma10:12:15$	two σ_1^2),
Normal Distribution PropertiesQuartile Deviation Shape of Normal Curve $Q_1 = \mu - 0.675\sigma$ and $Q_3 = \mu + 0.675\sigma$ Bell Shaped Normal VariableAdditive PropertyOnly applicable when two different ran variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, \mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ $10:12:15$ ConditionsConditionsParameter Mean μ Value 0	two σ_1^2),
Normal Distribution PropertiesShape of Normal CurveBell Shaped $X \sim N(\mu, \sigma^2)$ Additive PropertyOnly applicable when two different ran variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, \mu_2, \sigma_2^2)$ then $X+Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ $10:12:15$ Conditions $y students$ ParameterValue Mean μ Mathematical State $y = 0$	two σ_1^2),
Normal Distribution PropertiesNormal Variable $X \sim N(\mu, \sigma^2)$ Additive PropertyOnly applicable when two different ran variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, Y \sim N(\mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ Conditions $\mu - \sigma \otimes \mu + \sigma$ Ratio between QD:MD:SD10:12:15ConditionsParameterValue Mean μ 0	two σ_1^2),
Normal Distribution PropertiesAdditive PropertyOnly applicable when two different ran variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, Y \sim N(\mu_2, \sigma_2^2) \text{ then } X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $\chi = \mu$ 10:12:15Conditions $\chi = \mu + \sigma$ Normal Curve is S $\chi = \mu$ $\chi = \mu$ $\chi = 0$	two σ_1^2),
Distribution PropertiesAdditive PropertyOnly applicable when two different ran variables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, \mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ $10:12:15$ Conditions $g students$ Parameter Mean μ	two σ_1^2),
PropertiesAdditive Propertyvariables are independent. Assume we have variables X and Y such that $X \sim N(\mu_1, \mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ $10:12:15$ Conditions $g students$ Parameter Mean μ	$\sigma_1^2)_{,}$
Additive Propertyvariables X and Y such that $X \sim N(\mu_1, Y \sim N(\mu_2, \sigma_2^{-2}) \text{ then } X + Y \sim N(\mu_1 + \mu_2, \sigma_1^{-2} + \sigma_2^{-2})$ Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ 10:12:15Conditions $\mu - \sigma \otimes \mu + \sigma$ 10:12:15Conditions $g students$ Parameter Mean μ Value Mean μ	σ_1^2),
Normal Curve is symmetrical at Points of Inflexion Ratio between QD:MD:SD $x = \mu$ $\mu - \sigma \& \mu + \sigma$ $10:12:15$ Conditions Mean μ $\mu - \sigma \& \mu + \sigma$ 0	.)
symmetrical at Points of Inflexion Ratio between QD:MD:SD $\mu - \sigma \otimes \mu + \sigma$ 10:12:15Conditions Mean μ ρ O	
Points of Inflexion $\mu - \sigma \& \mu + \sigma$ Ratio between QD:MD:SD10:12:15ConditionsParameterValueMean μ 0	
Ratio between QD:MD:SD 10:12:15 Conditions Parameter Value Mean µ 0	-
Conditions ing students Parameter Value S Mean µ 0	
Mean µ 0	
I Standard Deviation of	
	-111
as Standard Normal Variate and is denote	a by
Z - [Striked Z]Area from X=-3 σ to X=3 σ 99.73%	
Z Table This table gives us the probability of va	luoc
from $X=\mu=0$ to $X=any$ value up to 3	nues
7 Score $x - \mu$	
Distribution	
Distribution Cumulative Distribution $\phi(x) = P(X \le x)$	
Function	
Probability Function $f(z) = \frac{1}{\sqrt{2\pi}} e^{-(Z)^2 \times \frac{1}{2}}$ for $-\infty < z < \infty$	
Mean, Median, Mode $\mu=0$	
SD, Variance $\sigma=1, \sigma^2=1$	
Points of Inflexion -1, 1	
Mean Deviation 0.8	
Quartile Deviation 0.675	
Probability Function $f(z) = \frac{1}{\sqrt{2\pi}}e^{-(Z)^2 \times \frac{1}{2}}$ for $-\infty < z < \infty$	

E Learn with CA. Pranav Mansforming students to Professionals

A. INTRODUCTION TO STATS

Definition

Singular Sense:

- Scientific method that is used for collecting, analyzing and presenting data •
- Used to draw statistical inferences
- Inferences means conclusion reached on the basis of evidence and reasoning •

Example:

After applying statistical methods we have arrived at a conclusion that in last 5 years crime rate is reduced.

Plural Sense:

Data qualitative or quantitative collected to do statistical analysis

Example: Based on Cricket Match statistic of this stadium, chasing team wins mostly

History of Stats

- Word Origin
 - Latin word Status With CA. Pranav
 - Italian word Statista
 - German word statistic
 - French word statistique g students to Professionals
- Publication:
 - ✓ Koutilya's book Arthashastra
 - ✓ Stat records on Agriculture found in Ain-i-Akbari (author Abu Fezal)
- Census: First ever census done in Egypt (300 years BC to 2000 BC)

Application of Stats

There are various but we will confine to below:

- 1. Economics: Time Series analysis, index, demand analysis, econometrics, regression analysis
- 2. Business Management: business decisions rely upon QT
- 3. Commerce/ Industry: Sales, Purchase, RM, Salary Wages etc. data are analyze for business decisions and policy making

Limitation of Stats:

- 1. Relevant for aggregate data and not individual data
- 2. Quantitative data can only be used, however for qualitative it needs to be converted into quantitative
- 3. Projections are based on conditions/ assumptions and any change in that will change the projection
- 4. Sampling based conclusions are used, improper sampling leads to improper results

B. COLLECTION OF DATA

Data and Variable

- Variable = measurable quantity
 - Discrete variable: when a variable assumes a finite or count ably infinite isolated values. Example: no. of petals in a flower, no. of road accident in locality
 - Continuous variable: when a variable assumes any value from the given interval (can also be in decimals, fractions). Example: height, weight, sale, profit
 - Attribute: qualitative characteristics. Example: Gender of a baby, nationality of a person
- Data = quantitative information shown as number. These are of two types:
 - Primary : first time collected by agency/investigator
 - Secondary: collected data used by different person/ agency

How to collect Primary Data?

1. Interview Method:

- a. Personal Interview: directly from respondents. Example: Natural Calamity, Door to Door Survey
- b. Indirect Interview: when reaching to person difficult, contact associated persons.
- Example: Rail accident
- Example: Rail accident Telephone Interview: over phone, quick and non-responsive

7	Type of Interview/ Parameters	Personal	Indirect	Telephone	ofessionals
	Accuracy	High	Low	Low	
	Coverage	Low	Low	High	
	Non Response	Low	Low	High	

2. Mailed Questionnaire Method:

- a. Mailed means by Post or Email
- b. Well drafted + properly sequenced + with guidelines
- c. Non Response is Maximum

3. Observation Method:

- a. Data collected by direct observation or using instrument
- b. Example: Height check, Weight check,
- c. Although more accurate but it is time consuming, low coverage and laborious

4. Questionnaire filled and sent by Enumerators

- a. Enumerator: Person who directly interact with respondent and fill the questionnaire
- b. Generally used in Surveys

Sources of Secondary Data

- 1. International sources like World Health Organization (WHO), International Monetary Fund (IMF), International Labor Organization (ILO), World Bank
- 2. Government Sources In India Central Statistics Office (CSO), National Sample Survey Office- NSSO, Regulators – RBI, SEBI, RERA, IRDA
- 3. Private or Quasi-government sources like Indian Statistical Institute (ISI), Indian Council of Agriculture, NCERT
- 4. Research Papers and other unpublished sources

Scrutiny of Data

- 1. Scrutiny checking accuracy and consistency of data
- 2. Finding of errors by enumerators while filling or receiving questionnaire
- 3. Internal consistency check: when two or more series of related data are given check each other
- 4. Consider enumerators' bias while using data

PRESENTATION OF DATA

Classification and organization of Data:

- means process of arranging data based on some logic •
- there are four types of classification of data •
 - a. Chronological/Temporal/Time Series Data (ex. Profit YoYi.e year on year)
 - b. Geographical or Spatial Series Data (ex. Weather in North India and South India)
 - c. Qualitative or Ordinal Data (ex. Rating Top 20 songs by Radio Mirchi)
 - d. Quantitative or Cardinal Data (no. of left handed batsmen in cricket teams playing CWC19) n with CA. I

Mode of Presentation

- 1. Textual: where text is used in the form of para or sentence. Example: Height of A,B and C is 160cm, 165cm, 175cm respectively students to Professionals
- 2. Tabular/ Tabulation:
 - Data shown in the form of table .
 - . Some important terms about Table (we will understand by example - next page figure)
 - It is preferred over textual form because
 - Useful in easy comparison
 - Complicated data can be presented
 - > Table is must to create a diagram
 - No analysis possible without diagram

Draduat	12	Pet	trol		Die	sel	Total			
Product	N	X	Total	Ν	X	Total	N	Х	Total	
Unit	KL	KL	KL	KL	KL	KL	KL	KL	KL	
Session Year	(1)	(2)	(3) = (1) + (2)	(4)	(5)	(6) = (4) + (5)	(4)	(5)	(6) = (4) + (5)	
2017-18	80	40	120	25	35	60	105	75	180	
2018-19	70	50	120	20	40	60	90	90	180	
			10							
ļ										
Stub						Body				

3. Diagrammatic representation of data

- Can be helpful for layman (without having much knowledge of numbers)
- Hidden trend can be traced
- Table is more accurate than diagrams
- Types of Diagram below:

Line Diagram/ Histogram:

- plotting points in graph and join them to make a line
- used generally for time series (variable y is plotted against time t)
- for wide fluctuation, log chart or ratio chart is used (log y is plotted against t)
- for two or more series of same unit multiple line chart is used
- for two or more series of distinct unit multiple axes chart is used
- **Refer Material for Diagram**

Bar Diagram

- Bar means rectangle of same width and of varying length drawn horizontally or vertically
- For comparable series multiple or grouped bar diagrams can be used
- For data divided into multiple components subdivided or component bar diagrams
- For relative comparison to whole, percentage bar diagrams or divided bar diagrams Iransforming students to F

YOTESSLONAIS

Pie Chart

- Used for circular presentation of relative data (% of whole)
- Summation of values of all components/segments are equated to 360 Degree (total angle of circle)
- Segment angle = $\frac{\text{segment value x 360}^{\circ}}{1000}$

D. FREQUENCY DISTRIBUTION

What is Frequency Distribution?

Frequency means number of times a particular observation is repeated. This applies to both variable and attribute. It is shown in tabular form with class interval or the observation in one column and its frequency in the other.

These are of two types

- Ungrouped/ Simple Frequency Distribution
- Grouped Frequency Distribution

Important Terms

1. **Mutually exclusive classification or Overlapping Classification**: This is usually applicable for continuous variable. An observation as UCL is excluded from the class interval and taken in the class where it is LCL.

Example: in the below class interval where will the observation 20 fall?

Class	Class where 20 will fall				
10-20	No – excluded				
20-30	Yes		:	CA	
30-40	No	grn	with	LA.	

2. **Mutually inclusive classification or Non Overlapping Classification**: This is usually applicable to discrete variable. All observation including UCL and LCL will be taken in the same class interval as there is no confusion. Example:

Class	Class where 20 will fall
10-19	No
20-29	Yes
30-39	No

3. Class Limit: for a class interval CL is the minimum and maximum value the class interval may contain. Minimum = Lower Class Interval (LCL) and Maximum = Upper Class Interval (UCL) **Example:**

Class	Туре	LCL	UCL	Class	Туре	LCL	UCL
10-19	Mutually Inclusive	10	19	10-20	Mutually Exclusive	10	20
20-29	Mutually Inclusive	20	29	20-30	Mutually Exclusive	20	30
30-39	Mutually Inclusive	30	39	30-40	Mutually Exclusive	30	40

- 4. Class Boundary: These are actual class limits of a class interval
 - **a.** For Mutually Exclusive / Overlapping : Class Boundary = Class Limit LCL = LCB, UCL = UCB
 - **b.** For Mutually Inclusive / Non Overlapping: Mid of the two class limits LCB = LCL D/2, UCB = UCL + D/2

Class	Туре	LCL	UCL	LCB	UCB	Class	Туре	LCL	UCL	LCB	UCB
10-19	Mutually	10	19	9.5	19.5	10-20	Mutually	10	20	10	20
	Inclusive						Exclusive				
20-29	Mutually	20	29	19.5	29.5	20-30	Mutually	20	30	20	30
20 2)	Inclusive	20	2)	17.5	27.5	20 30	Exclusive	20	50	20	50
20.20	Mutually	30	39	29.5	39.5	30-40	Mutually	30	40	30	40
30-39	Inclusive	50	39	27.5	37.5	30-40	Exclusive	50	40	30	40

Example:

5. Mid Point/ Mid Value of Class / Class Mark

 $\frac{\text{LCL+UCL}}{2} \text{ or } \frac{\text{LCB+UCB}}{2}$

6. Width / Size of Class Interval UCB – LCB

7. Cumulative Frequency

Class	Frequency	Less than type CF	More than type CF	
10-20	5	5	18	ranav
20-30		7	13	I DIIDV
30-40	8	15	11	
40-50	NSANN	18 JAN	ats to3Drote	ssinnals
Total	18			JULVIIIIJ

8. Frequency Density

Frequency of class

Class length of that class

9. Relative Frequency or % Frequency

Frequency of class Total Frequency of table

Class	Frequency	Class Length	Frequency Density	Relative Frequency	Percent Frequency
10-20	5	10	0.5	5/18	27.7%
20-30	2	10	0.2	2/18	11.11%
30-40	8	10	0.8	8/18	44.44%
40-50	3	10	0.3	3/18	16.67%
Total	18				

Graphical Presentation of Frequency Distribution

- 1. Histogram/ Area Diagram [refer study material page 14.20 for diagram]
 - a. It is a convenient way to represent FD
 - b. Comparison between frequency of two different classes possible
 - c. It is useful to calculate mode also
 - d. Steps to create
 - Covert CL into CB and plot in x axis

- Form rectangles taking class interval as base (x axis)
- And frequency as length (y axis) | Use frequency density in case of uneven length

2. Frequency Polygon

- a. Usually preferable for ungrouped frequency distribution
- b. Can be used for grouped also but only if class lengths are even
- c. Steps to create
 - Plot (x_i, f_i) where x_i = class value (in case of ungrouped), mid value (in case of grouped) and f_i = frequency
 - Join all plotted points to make line segments which eventually will become a polygon (a shape with multiple number of line segments)

3. Ogives/ Cumulative Frequency Graph

- a. Create a table where cumulative frequency is mapped against each CB (Class Boundary) and make a curve by plotting and joining points by line segments. (curve is called Ogive)
- b. This graph can be made by both type of Cumulative Frequency and called as Less than Ogive or More than Ogive
- c. It can be used for calculating quartiles also
- d. If we plot both ogives in same graph, perpendicular line drawn from their intersection towards x axis is cutting axis at Median

4. Frequency Curve

- a. It is a limiting form of Area Diagram (Histogram) or frequency polygon
- b. It is obtained by drawing smooth and free hand curve though the mid points
- c. These are of below four types:
 - A Bell Shaped ning students to Professionals
 - U-Shaped
 - J-Shaped
 - Combination of Curves as Mixed Curve

Central Tenden	су	
Meaning	single central or	cy is the tendency of a given set of observations to cluster around a middle value and the single value that represents the given set of described as a measure of central tendency or, location, or average.
Arithmetic Mean	Definition Formula for discrete distribution Formula for frequency distribution Deviation Method Properties	the sum of all the observations divided by the number of observations $\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \text{ or } \frac{\Sigma x}{n}$ $\bar{x} = \frac{\Sigma f x}{N}$ $N = \Sigma f, x = \text{mid-point in case of grouped frequency distribution}$ $\bar{x} = A + \frac{\Sigma f d}{N} \times C, \text{ where } d = \frac{(x-A)}{c}$ $A = \text{assumed mean, } C = \text{class length}$ $\rightarrow \text{ If all the observations are constant, AM is also constant}$ $\Rightarrow \text{ the algebraic sum of deviations of a set of observations}$ $from \text{ their AM is zero}$ $\Rightarrow \text{ AM is affected both due to change of origin and scale}$ $\Rightarrow \text{ Combined Mean: } \bar{x}_c = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$
Median (one of the partition values)	Definition For Discrete Distribution For Frequency Distribution (refer example 15.1.6 - Page 15.8 Study Mat)	the middle-most value when the observations are arranged either in an ascending order or a descending order of magnitude Step 1: Arrange data in ascending (or descending) order Step 2: Use the formula $\left[\frac{n+1}{2}\right]^{th}$ term Step 1: Prepare a less than type cumulative frequency distribution with Class boundaries as base. Step 2: Calculate N/2 and check between which class boundaries it falls. Mark LCB as l_1 and l_2 and corresponding cumulative FD as N_l and N_u Step 3: Apply the below formula $Me = l_1 + \left[\frac{\frac{N}{2} - N_l}{N_u - N_l}\right] \times Class length$ \rightarrow Median is affected by both change of origin and scale \rightarrow For a set of observations, the sum of absolute deviations is minimum, when the deviations are taken from the median.

	Meaning	Meaning values dividing a given set of observations into a number of equal parts			
	Median		vides the set of observations into		
	Quartiles	Number of equal parts Number of Quartiles Denoted by	Four (4) Three (3) Q ₁ , Q ₂ , Q ₃		
	Deciles	Number of equal parts Number of Deciles Denoted by	Ten (10) Nine (9) $D_1, D_2, D_3, \dots, D_9$		
Partition Values	Percentiles	Number of equal parts Number of Percentiles Denoted by	Hundred (100) Ninety Nine (99) $P_1, P_2, P_3, \dots, P_{99}$		
	How to	P th Quartile	$(n+1)P^{th}term,$ here $p = \frac{1}{4}, \frac{2}{4}, \frac{3}{4},$		
	calculate A Partition M Values	ing studecile ts to	$(n+1)P^{th}term,$ here $p = \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \dots, \frac{9}{10}$		
		P th Percentile	$(n+1)P^{th}term,$ here $p = \frac{1}{100}, \frac{2}{100}, \frac{3}{100}, \dots, \frac{99}{100}$		
	Definition Type of Mode	Mode is the value that occurs th A distribution can be uni-modal			
Mode	For Frequency Distribution	$Mode = l_1 + \left[\frac{f_0 - f_{-l}}{2f_0 - f_{-l}}\right] \times Class \ length$			
Empirical Relationship		For a moderately skewed of $Mean - Mode = 3 \times (Mean)$			

	Definition		tive observations, the geometric mean is of the product of the observations	
	Formula	$G = (x_1 \times x_2 \times x_3 \dots \times x_n)^{1/n}$		
Geometric Mean	Properties	$ \rightarrow \log G = \frac{1}{n} \sum \log x \rightarrow \text{ If all observations are constant GM is also constant} \rightarrow GM \text{ of } xy = GM \text{ of } x \times GM \text{ of } y \rightarrow GM \text{ of } \frac{x}{y} = \frac{GM \text{ of } x}{GM \text{ of } y} $		
	Definition		-zero observations, harmonic mean is al of the AM of the reciprocals of the	
Harmonic	Formula	$H = \frac{n}{\Sigma(1/\chi)}$		
Mean	Properties	→ If all observations are constant HM is also constant → Combined HM: $\bar{x}_{c} = \frac{n_{1}+n_{2}}{\frac{n_{1}}{H_{1}}+\frac{n_{2}}{H_{2}}}$		
When to use GM and HM	In case of rates day, etc. In case of % an	J	HM is used of essionals	
Relationship between AM, GM and HM		oservations are same oservations are distinct	$AM \ge GM \ge HM$ $AM = GM = HM$ $AM > GM > HM$	
Ideal Measure of Central Tendency	Best Measure – OverallBest Measure for Open End ClassBased on all observationsBased on 50% valuesNot affected by Sampling fluctuationsRigidly defined, easy to comprehendNo Mathematical Property		AM Median AM, GM, HM Median Median AM, Median, GM, HM Mode	

Dispersion

Definition	Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency			
Types of Dispersion	Absolute Measures of Dispersion Relative Measures of Dispersion	s of onvariables with different units. Example: Range, Mean Deviation, Standard Deviation, Quartile DeviationThese are unit free measures and useful for comparison of two variables with different units. Example: Coefficient of		
Range	Definition Formula Relative Measure Properties	Difference between the largest and smallest of observations. Range = L - S Coefficient of Range = $\frac{L-S}{L+S} \times 100$ \rightarrow No effect of change of origin but affected by change of		
Mean Deviation	Lean	scale in the magnitude (ignore sign). Mean deviation is defined as the arithmetic mean of the absolute deviations of the observations from an appropriate measure of central tendency $MD_A = \frac{1}{n}\Sigma x - A $ Here A is mean or median as given in question Coefficient of Mean Deviation $= \frac{\text{Mean Deviation about A}}{A} \times 100$ \rightarrow No effect of change of origin but affected by change of scale in the magnitude (ignore sign).		
Standard Deviation	Definition Formula Relative Measure Standard Result Properties of SD	It is defined as the root mean square deviation when the deviations are taken from the AM of the observations $SD_x \text{ or } \sigma_x = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}} \text{ or } \sqrt{\frac{\Sigma x^2}{n} - (\bar{x})^2}$ Coefficient of Variation $= \frac{\text{SD}}{\text{AM}} \times 100$ For any two numbers, a and b SD of first n natural numbers $\int \frac{(n^2 - 1)}{12}$ $\int \frac{(n^2 - 1)}{12}$ \rightarrow If all the observations are constant, SD is Zero \rightarrow No effect of change of origin but affected by change of scale in the magnitude (ignore sign) \rightarrow Combined SD $= \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$		

CA Foundation – STATISTICS Revision Notes	Important Chapters	Author: CA. Pranav Popat
---	--------------------	--------------------------

	Definition	It is defined as the semi-inter quartile range		
Quartile	Formula	$Q_d = \frac{Q_3 - Q_1}{2}$		
Deviation	Relative Measure	Coefficient of Quartile Deviation = $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$		
	Best Measure – Overall		SD	
	Best Measure for Open End Class		QD	
	Quickest to comp	ute	Range	
Ideal Measure	Not based on all o	bservations	Range	
of Dispersion	Difficult to comprehend and less Mathematical		Mean Deviation	
	Rigidly defined, ea	asy to comprehend	Mean Deviation, SD, QD	
	Not affected by Sampling fluctuation		QD	

E Learn with CA. Pranav Transforming students to Professionals

CORKELATION				
Bi-Variate Data	When data are collected on two discrete variables simultaneously, they are known as Bi-Variate data			
Bi-Variate Distribution	Distribution of Bi-Variate data is called as Bivariate Distribution			
Bi-Variate Frequency Distribution	MeaningFrequency distribution involving two discrete variables.MarginalIf we make a separate distribution from bi-variate frequency distribution where we take aggregate of only one variable at a time. Total no. of marginal distributions = 2ConditionalIf we make a separate distribution from bi-variate frequency distribution where we take one variable related one class interval of another variable. Total no. of conditional distributions = m + n (m = no. of rows, n = no. of columns)			
Correlation	While studying two variables at the same time, if it is found that the change in one variable leads to change in the other variable either directly or inversely, then the two variables are known to be associated or correlated.Positive CorrelationIf two variables move in the same direction If two variables move in the opposite direction If two variables move in the opposite direction If no change due to each other			
Measure of Correlation	A measurement or formula that represents the nature/ direction and/or magnitude of correlation.MethodHelps in obtainingScatter DiagramOnly direction of correlationKarl Pearson's ProductDirection as well as strength of correlation.moment correlation coefficientBest Method – Most accurateSpearman's rank correlationDirection as well as strength of correlation.co-efficientUseful for attributes.Co-efficient of concurrentDirection as well as strength of correlation.deviationsOnly preferred for direction and not magnitude. Quickest method.	or		

CORRELATION

	Use	A very simple and casual method of finding correlation when we are not serious about the magnitude of the two variables
Co-efficient of concurrent deviations	Steps in this method	This method involves in attaching a positive sign for a x-value (except the first) if this value is more than the previous value and assigning a negative value if this value is less than the previous value. Applies to both variable and then these signs are compared. If signs match – pair is counted as concurrent deviation.
	Formula	$r_{c} = \pm \sqrt{\pm \frac{2c - m}{m}}$ Here, m = total no. of deviations (it is one less than total no. of pairs under observation i.e m=n-1), c = no. of concurrent deviations, r _c also lies between -1 and 1 incl.

REGRESSION

Regression			lue of another variable on the basis of an	
Analysis	average mathematical relationship between the two variables			
	Line	Regression line of Y on X		
Estimation of Y	Regression	Regression Coefficient of Y on X denoted by $m{b}_{yx}$		
(when it is	Coefficient			
dependent on X)	Form		$Y - \overline{Y} = \boldsymbol{b}_{yx} (X - \overline{X}),$	
		X and Y are	means of X series and Y series	
		1		
	Line	R	egression line of X on Y	
Estimation of X	Regression	Degracion (a officient of V on V denoted by b	
(when it is	Regression Coefficient of X on Y de		benicient of X on Y denoted by D_{xy}	
dependent on Y)	_		$X - \overline{X} = \boldsymbol{b}_{XY} (Y - \overline{Y}),$	
			means of X series and Y series	
		A dia 1 die means of A series dia 1 series		
	When linear re	elationship exists	The linear equation so arrived can be	
	between two variables (i.e. correlation		used both ways for Y on X and X on Y.	
	is perfect, $r_{xy} = -1 \text{ or } + 1$)		It means regression lines are identical.	
	When no linear relationship exist between two variables		regression lines with the help of	
Important		nes	Method of Least Squares	
Theory Points	To douing no succesion		·	
	To derive regression	n nne or y on x	The minimisation of vertical distances	
	m 1 .		in the scatter diagram is to be done	
	To derive regression	n line of x on y	The minimisation of horizontal	
			distances in the scatter diagram is to	
			be done	

	Defined as the ratio	of	Covariance between two variables Variance of Independent variable	
Regression Coefficient	Regression Coefficient of Y on X		$b_{yx} = r. \frac{\sigma_y}{\sigma_x}$ or $b_{yx} = \frac{Cov(x,y)}{{\sigma_x}^2}$	
obemeiene	Regression Coefficient of	f X on Y	$b_{xy} = r.$	$\frac{\sigma_x}{\sigma_y}$ or $b_{xy} = \frac{Cov(x,y)}{{\sigma_y}^2}$
	r used here is	Karl Pearso	on's Correlation Coefficient	
	Change of origin		The regress unchanged	ion coefficients remain
	Change of scale			pair is X, Y and modified here
Properties of Regression lines			$U = \frac{X-m}{p}$ and $V = \frac{Y-n}{q}$, then	
and coefficient			$b_{vu} = b_{yx} \frac{q}{p}, \ b_{uv} = b_{xy} \frac{p}{q}$	
	Intersection of two regression lines		Two regression (if not identical) will intersect at the point (\bar{x}, \bar{y}) [means]	
	Relation between correlat regression coefficier	nts	$r = b_{xy}, b_{yx}$ and	$\pm \sqrt{\pm b_{xy} \times b_{yx}}$ l r all will have same sign
	Coefficient of Determin	ation	r^2 (square o	of correlation coefficient)
Coefficient of	Interpretation of value of r^2		It explains the percentage of variation in dependent variable due to variation in independent variable	
Determination	Example: if $r_{xy} = 0.8$, then $r^2 = 0.64$		It means 64% of variation in x is due to variation in y and remaining 36% due to other factors. It shows the reliability of correlation coefficient.	
	Formula	Probable	Error [P.E] = $\frac{2}{2}$	/ ₃ × Standard Error [S.E.]
	Standard Error		$\frac{1-r^2}{\sqrt{n}}$	
	Use	Probable		to test the reliability of r
Probable Error	m	significant. Not reli		The value of r is not significant. Not reliable
	Test		eater than six nes of PE	The value of r is significant and there is evidence of correlation