RD Sharma
Solutions
Class 11 Maths
Chapter 23
Ex 23.7

$$P = 5, \alpha = 60^{\circ}$$
  
 $X \cos \alpha + y \sin \alpha = P$ 

Straight lines Ex 23.7 Q1(i)

$$\Rightarrow x \cos 60^{\circ} + y \sin 60^{\circ} = 5$$

$$\Rightarrow x \times \frac{1}{2} + y \times \frac{\sqrt{3}}{2} = 5$$

$$\Rightarrow \qquad x + \sqrt{3}y = 10$$

## Straight lines Ex 23.7 Q1(ii)

$$P = 4, \alpha = 150^{\circ}$$

$$x \cos \alpha + y \sin \alpha = P$$

$$x \cos \alpha + y \sin \alpha = P$$

$$\Rightarrow x \cos 150^{\circ} + y \sin 150^{\circ} = 4$$

$$\Rightarrow -x \times \frac{\sqrt{3}}{2} + y \times \frac{1}{2} = 4$$

$$\Rightarrow -x \times \frac{\sqrt{3}}{2} + y \times \frac{1}{2} = 4$$

Straight lines Ex 23.7 Q1(iii)

 $P = 8, \alpha = 225^{\circ}$ 

 $x \cos \alpha + y \sin \alpha = P$ 

### $\Rightarrow -\sqrt{3}x + y = 8$

$$-\sqrt{3}x + y = 8$$

$$x \times \frac{1}{2} + y \times \frac{1}{2} = 4$$

$$\Rightarrow \qquad -x \times \frac{1}{\sqrt{2}} - y \times \frac{1}{\sqrt{2}} = 8$$

 $\Rightarrow$   $x \cos 225^{\circ} + y \sin 225^{\circ} = 8$ 

 $\Rightarrow x+y+8\sqrt{2}=0$ 

$$P = 8, \alpha = 300^{\circ}$$

$$x \cos \alpha + y \sin \alpha = P$$

$$\Rightarrow x \cos 300^{\circ} + y \sin 300^{\circ} = 8$$

$$\Rightarrow x \times \frac{1}{2} - y \times \frac{\sqrt{3}}{2} = 8$$

$$\Rightarrow x - \sqrt{3}y = 16$$

### Straight lines Ex 23.7 Q2

 $\Rightarrow$  Slope=Tan 30° =  $\frac{1}{\sqrt{2}}$ 

Slope of perpedicular line (M) which is perpendicular to line L is 
$$-\sqrt{3}$$
  
So equation of line M is  $v=-\sqrt{3}x+c$ 

So equation of line M is  $y=-\sqrt{3}x+c$ 

$$4 = \frac{c}{2} \Rightarrow c = 8$$

So equation of line M is 
$$y=-\sqrt{3}x+8$$

Given, Inclination of perpendicular line (L) passing through origin is 30°

Here,  

$$p = 4$$
 and  $\alpha = 15^{\circ}$ 

The equation of line is

 $x \cos \alpha + y \sin \alpha = p$  ---(1)

 $x \cos 15^{\circ} + y \sin 15^{\circ} = 4$ 

 $\cos 15^\circ = \cos (45 - 30) = c \cos 45 \cos 30 + \sin 45 \sin 30$ 

 $=\frac{1}{\sqrt{D}}\times\frac{\sqrt{3}}{2}\times\frac{1}{\sqrt{D}}\times\frac{1}{2}$ 

 $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{1}{2\sqrt{2}} \left( \sqrt{3} - 1 \right)$ 

 $x \times \frac{1}{2\sqrt{2}} (\sqrt{3} + 1) + y \times \frac{1}{2\sqrt{2}} (\sqrt{3} - 1) = 4$ 

 $\times (\sqrt{3} + 1) + y (\sqrt{3} - 1) = 8\sqrt{2}$ 

 $\sin 15^{\circ} = \sin (45 - 30) = \sin 45 \cos 30$   $\cos 45 \sin 30$ 

Straight lines Ex 23.7 Q3

 $(\because \cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi)$ 

 $=\frac{1}{2\sqrt{2}}\left(\sqrt{3}+1\right)$ 

Putting in (1)

and 
$$\alpha = \tan^{-1} \left( \frac{5}{12} \right)$$

$$\Rightarrow \cos \alpha = \frac{12}{13}, \sin \alpha = \frac{5}{13}$$

$$x \cos \alpha + y \sin \alpha = P$$
$$x \left(\frac{12}{13}\right) + y \left(\frac{5}{13}\right) = 3$$

$$x \left( \frac{12}{13} \right) + y \left( \frac{5}{13} \right) = 3$$
$$12x + 5y = 39$$

Here 
$$P = 2$$
,  $\sin \alpha = \frac{1}{3}$ 

$$\Rightarrow \cos \alpha = \frac{2\sqrt{2}}{3}$$

$$\Rightarrow \omega s \alpha = \frac{1}{3}$$
The equation of straight lines

 $2\sqrt{2}x + y = 6$ 

$$\Rightarrow$$
  $\cos \alpha = \frac{2\sqrt{2}}{3}$   
The equation of straight line is

Given:  

$$P = \pm 2$$
  
 $\tan \alpha = \frac{5}{12}$ 

Straight lines Ex 23.7 Q6

The equation of line is 
$$x \cos \alpha + y \sin \alpha = \pm P$$

$$x\frac{12}{13} + y\frac{5}{13} = \pm 2$$

$$12x + 5y \pm 26 = 0$$

### Straight lines Ex 23.7 Q7

# Here,

Angle made with y-axis is 150°,

$$\cos \alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos \alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos\alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos\alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos \alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

The equation of line is  $x \cos \alpha + y \sin \alpha = P$ 

 $x\left(\frac{\sqrt{3}}{2}\right) + y\left(\frac{1}{2}\right) = 7$ 

 $\sqrt{3}x + y = 14$ 

$$\cos \alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
$$\sin \alpha = \sin 30^{\circ} = \frac{1}{2}$$

$$\cos \alpha = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
$$\sin \alpha = \sin 30^{\circ} = \frac{1}{2}$$

### Straight lines Ex 23.7 Q8

We have.

$$\sqrt{3}x + y + 2 = 0$$
$$-\sqrt{3}x - y = 2$$

$$\left(\frac{-\sqrt{3}}{2}\right)x + \left(\frac{-1}{2}\right)y = 1$$

This same as  $x\cos\theta + y\sin\theta = p$ 

This same as 
$$x\cos\theta + y\sin\theta = p$$
  
Therefore,  $\cos\theta = \frac{-\sqrt{3}}{2}$ ,  $\sin\theta = -\frac{1}{2}$  and  $p = 1$ 

 $\theta = 210^{\circ}$  and p = 1

$$\theta = \frac{1}{6}$$
 and  $p = 1$ 

Straight lines Ex 23.7 Q9

 $\frac{1}{2} \times 2P \times \frac{2p}{\sqrt{3}} = 96\sqrt{3}$ 

 $x \cos \alpha + y \sin \alpha = p$  $x \cos 60^{\circ} + y \sin 60^{\circ} = 12$ 

 $x \times \frac{1}{2} + y \frac{\sqrt{3}}{2} = 12$ 

 $x + \sqrt{3}y = 24$ 

p = 12

Area of triangle is = 96√3

 $\theta = \frac{7\pi}{6}$  and p = 1

 $p^2 = \frac{96\sqrt{3} \times \sqrt{3}}{2} = 48 \times 3 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$ 

Perpendicular from origin makes an angle of 30° with y-axis, thus making 60° woth x-axis