CA INTER - FINANCIAL MANAGEMENT

FORMULA SHEET

Financial Planning and Analysis -Ratio Analysis

LIQUIDITY RATIOS

Current Ratio

Current Assets

Current Liabilities

Ouick Ratio

Quick Assets

Current Liabilities

Cash Ratio

Cash & Bank + Marketable securities

Current Liabilities

Cash & Bank + Current investments

Current Liabilities

Net Working Capital

= Current Assets - Current Liabilities

CAPITAL STRUCTURE RATIOS

Equity Ratio

Shareholder's Equity

Net Assets

Debt Ratio

Total Debt

Net Assets

Debt to Equity Ratio

Total Outside Liability

Shareholder's Equity

Total Debt

Shareholder's Equity

Long term Debt

Shareholder's Equity

Debt to Total Assets

Total Outside Liability

Total Assets

Total Debt

Total Assets

Proprietary Ratio

Proprietary Fund

Total Assets

COVERAGE RATIOS

Debt Service Coverage Ratio

Earning available for debt service

Interest + Installments

Interest Coverage Ratio

EBIT

Interest

Preference Dividend Coverage Ratio

Earnings after tax

Preference Dividend

Equity Dividend Coverage Ratio

EAT – Preference dividend

Equity Dividend

Fixed Charges Coverage Ratio

EBIT + Depreciation

Interest + Repayment of Loan

TURNOVER (TO) RATIOS

Total Assets TO Ratio

Sales *

Total Assets

Fixed Assets TO Ratio

Sales *

Fixed Assets

Capital / Net Assets TO Ratio

Sales *

Net Assets

Current Assets TO Ratio

Sales *

Current Assets

Working Capital TO Ratio

Sales *

Working Capital

Inventory TO Ratio

Cost of Goods Sold

Average Inventory

Raw Material Inventory TO Ratio

Raw Material Consumed

Average Raw Material Stock

Receivables TO Ratio

Credit Sales

Average Accounts Receivable

Receivables Velocity

Average Account Receivables

Average Daily Credit Sales

12 months / 52 weeks / 360 days

Receivables TO Ratio

*Use COGS, if Sales not available

Pavable TO Ratio

Annual Net Credit Purchases

Average Accounts Payables

Payable Velocity

Average Account Receivables

Average Daily Credit Sales

12 months / 52 weeks / 360 days

Receivables TO Ratio

PROFITABILITY RATIOS

Gross Profit Ratio

Gross Profit

Net Profit Ratio

Net Profit / EAT x 100

Pre-tax Profit Ratio

 $=\frac{EBT}{Sales} \times 100$

Operating Profit Ratio

= Operating Profit / EBIT x 100

Cost of Goods Sold Ratio (COGS)

Cost of Goods Sold x 100

Operating Expenses Ratio

Admin. exp + Selling & Dist. OH

Operating Ratio

COGS + Operating exp

Sales

Financial Expenses Ratio

Financial exp

OVERALL RETURN ON ASSETS/ INVESTMENTS

Return on Investments

Return / Profit / Earnings x 100

Investment

= Profitability x Investment TO Ratio

Return on Assets

Net Profit after taxes

Average Total Assets[#] x 100

#Alternatively, Average Tangible Assets or Avg Fixed Assets can be used

Basic Defense Interval =

Cash and Bank balances + Net Receivables + Market Securities

Operating Expenses ÷No.of days

Preference Share Capital+Debentures+Other Borrowed funds Capital Gearing Ratio =

Equity Share Capital+Reserves & Surplus-Losses

Return on Assets can also be calculated as:

Net Profit after taxes + Interest x 100 Average Total Assets*

Return on Total Assets

 $\frac{\text{EBIT } (1-t)}{\text{Average Total Assets}} \times 100$

Return on Net Assets

$$= \frac{\text{EBIT } (1 - t)}{\text{Average Net Assets}} \times 100$$

Return on Capital Employed

$$= \frac{\text{Net Profit after taxes} + \text{Interest}}{\text{Capital Employed}} \times 100$$

$$\textbf{Pre-tax} = \frac{\text{EBIT}}{\text{Capital Employed}} \times 100$$

$$\textbf{Post-tax} = \frac{\text{EBIT (1-t)}}{\text{Capital Employed}} \times 100$$

Return on Equity

$$= \frac{PAT - Preference dividend}{Net worth} \times 100$$

Profitability / Net Profit margin

Profit / Net Income Sales / Revenue

Investment TO Ratio

Sales / Reveue

Asset TO Ratio

Sales / Reveue Assets

Capital TO Ratio

Sales / Reveue Capital

Equity Multiplier

Investment / Assets / Capital Shareholder's Equity

RATIOS FROM OWNER'S POINT OF VIEW

Earnings per Share (EPS)

Net profit available to equity holders No. of equity shares outstanding

Dividend per Share (DPS)

Total Dividend paid to equity holders No. of equity shares outstanding

Dividend Pay-out Ratio (DP)

DPS EPS

Price-Earnings Ratio (P/E Ratio)

Market Price per Share (MPS) Earnings per Share (EPS)

Dividend and Earning Yield

$$= \frac{\text{Dividend } \pm \text{Change in share price}}{\text{Initial share price}}$$
$$= \frac{\text{Dividend per Share (DPS)}}{\text{Market Price per Share (MPS)}} \times 100$$

Earnings Yield or EP Ratio

Earnings per Share (EPS) Market Price per Share (MPS) x 100

Market Value / Book Value per Share

Average share price

Net worth ÷ No. of equity shares

Closing share price

Net worth ÷ No. of equity shares

Market Value of equity & liability

Estimated replacement cost of asset

Market Value of a Company

Assets Replacement Cost

Cost of Capital

Cost of Irredeemable Debentures

$$k_{d} = \frac{I}{NP}(1-t)$$

Cost of Redeemable Debentures

$$k_{d} = \frac{I(1-t) + \frac{(RV - NP)}{n}}{\frac{(RV + NP)}{2}}$$

If discount on issue or premium on redemption is also tax deductible then,

$$k_{d} = \frac{I + \frac{(RV - NP)}{n}}{\frac{(RV + NP)}{2}} (1 - t)$$

Internal Rate of Return,

$$IRR = L + \frac{NPV_L}{NPV_I - NPV_H}(H - L)$$

Amortised Value of a Debenture

$$V_{B} = \sum_{t=1}^{n} \frac{C_{t}}{(1 + k_{d})}$$

Where, C = Cash flows K_d = Interest rate

Cost of Irredeemable Preference Shares

$$k_p = \frac{PD}{P_0}$$

Cost of Redeemable Preference Shares

$$k_p = \frac{PD + \frac{(RV - NP)}{n}}{\frac{(RV + NP)}{2}}$$

Cost of Equity,

Dividend Price Approach

$$k_e = \frac{D}{P_0}$$

$\frac{Earnings\ Price\ Approach}{k_e = \frac{E}{p}}$

$$k_e = \frac{E}{P}$$

$\frac{\text{Growth Approach / Gordon's Model}}{k_e = \frac{D_1}{P_0} + g}$

$$k_e = \frac{D_1}{P_0} + \epsilon$$

If floatation cost is incurred

$$k_e = \frac{D_1}{P_0 - F} + g$$

Estimation of Growth rate

(i) Average Method

$$g = \sqrt[n]{\frac{D_0}{D_n}} - 1$$

(ii) Gorden's Growth Model

$$g = b x r$$

Capital Asset Pricing Model Approach

$$K_e = R_f + \beta (R_m - R_f)$$

Cost of Retained Earnings

$$k_r = \frac{D}{P}$$

Earnings Price Approach

$$k_r = \frac{EPS}{P}$$

$$k_r = \frac{D_1}{P_0} + g$$

Also
$$K_r = K_e (1 - t_p)(1 - f)$$

Financing Decisions - Capital Structure

Value of the firm, V = S + D

Where, S = Market value of Equity

D = Market value of Debt

Also,
$$V = \frac{EBIT}{K_O}$$

$$S = \frac{NI}{K_O}$$

Where, $K_0 = Overall cost of capital$

NI = Earnings available for

equity shareholders

K_e= Equity Capitalisation Rate

Modigliani-Miller (MM) Approach

Without tax -

$$V_g = V_u$$

Where, $V_g = Value$ of levered firm Vu = Value of unlevered firm

$$K_e = K_o + (K_o - K_d) \frac{Debt}{Equity}$$

$$V_g = V_u + TB$$

Where, TB = Tax benefit

$$K_{eg} = K_{eu} + (K_{eu} - K_d) \frac{Debt}{Debt + Equity}$$

Where,

 $K_{eg} = Cost of equity in a levered Co.$

K_{eu} = Cost of equity in an unlevered Co

WACC in a levered company

$$K_{og} = K_{eu} (1 - tL)$$

Where,

K_{eu} = Cost of equity in an unlevered Co t = tax rate

Debt

 $L = \frac{1}{\text{Debt} + \text{Equity}}$

Financial Break-even point

= Interest + Prefrence dividend

Indifference point

$$\frac{(EBIT - I_1)(1-t)}{E_1} = \frac{(EBIT - I_2)(1-t)}{E_2}$$

Financial Decisions - Leverages

Degree of Operating Leverages (DOL)

- % change in EBIT $=\frac{7}{\%}$ change in Sales
- Contribution ERIT

Break-even point

in units, = $\frac{\text{Fixed Cost}}{\text{Contribution per unit}}$

Margin of Safety

$$= \frac{\text{Sales} - \text{BEP Sales}}{\text{Sales}} \times 100$$

 $=\frac{}{Contribution}$

Degree of Financial Leverage (DFL)

% change in EPS % change in EBIT

 $=\frac{}{EBT}$

Combined Leverage

 $= DOL \times DFL$

% change in EPS $=\frac{1}{\%}$ change in Sales

Contribution

Investment Decisions

TRADITIONAL CAPITAL BUDGETING **TECHNIQUES**

Payback Period

Total initial capital investment $=\frac{1}{\text{Annual expected after tax NCF}}$

Accounting Rate of Return (ARR)

Average Annual net income Investment

TIME ADJUSTED CAPITAL BUDGETING **TECHNIQUES**

Net Present Value (NPV)

$$= \sum_{t=1}^{n} \frac{C_t}{(1+k)^t} - I$$

Where, C = Cash flows

k = Discount rate

n = Life of the project

I = Investment

Profitability Index (PI)

Sum of discounted cash in flows Intial cash outlay*

*also, total discounted cash outflow

Internal Rate of Return (IRR)

$$= LR + \frac{NPV_L}{NPV_L - NPV_H} \times (HR - LR)$$
$$= LR + \frac{PV_L - CI}{PV_L - PV_H} \times (HR - LR)$$

Management of Working Capital

Where, AF = Adjustment factor

Dividend Decisions

Growth, g = b x r

Where.

b = Retention ratio

r = Rate of return on investment

MM Approach

Market price of Shares

$$P_0 = \frac{P_1 + D_1}{1 + K_e}$$

 P_1 = Price at the end of the period

 D_1 = Dividend at the end of the period

 $K_e = Cost of equity$

$$V_f \text{ or } nP_0 = \frac{(n + \Delta n)P_1 - I + E}{(1 + K_0)}$$

n = No. of shares in the beginning

 $\Delta n = No.$ of shares issued

I = Amount required for investment

E = Earnings during the period

Walter's Model

$$P = \frac{D + \frac{r}{K_e}(E - D)}{K_e}$$

E = Earnings per share

D = Dividend per share

r = Internal rate of return

Gordon's Model

$$P_0 = \frac{E_1(1-b)}{K_e - br} = \frac{D_0(1+g)}{K_e - g}$$

Dividend Discount Model

Intrinsic value of the stock

= Sum of PV of future cash flows

Unit-1: INTRODUCTION

= Sum of PV of Dividends

+ PV of Stock Sale Price

 $= \frac{D_1}{(1 + K_e)^1} + \frac{D_2}{(1 + K_e)^2} + \cdots + \frac{D_n}{(1 + K_e)^n}$

Graham & Dodd Model

Where, m = multiplier

Linter's Model

Market price, $P = m[D + \frac{E}{2}]$

Working Capital

= Current Assets - Current Liabilities

 $D_1 = D_0 + [(E \times Target payout) - D_0] \times$

Operating Cycle

$$= R + W + F + D - C$$

R = Raw material storage period

W = Work-in-progress inventory holding period

F = Finished goods storage period

D = Debtors collection period

C = Credit period allowed bycreditors

Raw Material (RM) Storage Period

 $= \frac{\text{Avg stock of RM}}{\text{Avg cost of RM Consumption per day}}$

Work-in-Progress (WIP) inventory holding period

Avg WIP inventory

 $= \frac{1}{\text{Avg cost of Production per day}}$

Finished Goods (FG) storage period

Avg stock of FG

 $= \frac{3}{\text{Avg cost of Goods Sold per day}}$

Debtors Collection period

Avg Receivables

 $= \frac{C}{\text{Avg Credit Sales per day}}$

Credit period allowed by creditors

Avg Payables

Avg Credit Purchases per day

Estimation of Current Assets

Raw Materials Inventory

Estimated production (units)

12 months / 365 days

x Estimated cost per unit

x Average RM storage period

Work-in-Progress Inventory

Estimated production (units)

12 months / 365 days x Estimated WIP cost per unit x Average WIP holding period

Finished Goods

Estimated production (units)

12 months / 365 days

x Estimated cost of production per unit

x Average FG storage period

Receivables (Debtors)

Estimated credit sales (units)

= 12 months / 365 days
x Estimated cost of sales per unit
x Average debtors collection period

Estimation of Current Liabilities

Direst wages =

Estimated labour hours x Wage rate per hour 12 months/365 days

x Average time lag in payment of wages

Trade Payables

Estimated credit purchases

12 months / 365 days
x Credit period allowed by suppliers

Overheads (OH)

Estimated Overheads

 $\frac{12 \text{ months}}{360 \text{ days}}$

x Average time lag in payment of OH

Unit-2: TREASURY & CASH MANAGEMENT

Optimum Cash Balance

$$=\sqrt{\frac{2U \times P}{S}}$$

Where.

U = Annual cash disbursement

P = Fixed cost per transaction

S = Opportunity cost of one rupee p.a.

Unit-3: MANAGEMENT OF INVENTORY

Economic Order Quantity

$$=\sqrt{\frac{2A \times O}{C}}$$

Where,

A = Annual demand of inventory

O = Cost per Order

C = Carrying cost per unit p.a.

Unit-4: MANAGEMENT OF RECEIVABLES

Total Fixed Cost

= [Average Cost per unit

- Variable Cost per unit]

x No. of units sold on credit under Present Policy

Opportunity Cost

= Total Cost of Credit Sales Collection period (Days)

x 365 (or 360)
Required Rate of Return
x 100

Unit-5: MANAGEMENT OF PAYABLES

Nominal Cost of Payables

$$= \frac{d}{100 - d} \times \frac{365 \text{ days}}{t}$$

Cost of Lost Cash Discount

$$= \left(\frac{100}{100 - d}\right)^{\frac{365}{t}} - 1$$

Where.

d = rate of discount

t = the reduction in the payment period in days

Day-10 Day-10 Day-20 Day-3

Ajith Kumar Good teaching Good Mind mapping Techniques Good Quality Clarity Of Voice Quality Video.

Visnu Prasath

Everything is directly getting into mind easily, very simple ways and easy to get it

66

Suresh Kumar Vishnubhatla

Excellent dwelling explanation with time to time revision of previous teachings and moving forward. Numerous problems seeked from best required sources put together. Good and neat explanation.

Scan the QR Code To **Enroll Now**

https://www.1fin.in support@indigolearn.com +91 9640-11111-0