CA INTER - FINANCIAL MANAGEMENT FORMULA SHEET

Financial Planning and Analysis -
Ratio Analysis

LIQUIDITY RATIOS

Current Ratio

Current Assets
$=\frac{\text { Current Liabilities }}{}$
Quick Ratio
$=\frac{\text { Quick Assets }}{\text { Current Liabilities }}$
Cash Ratio
$=\frac{\text { Cash \& Bank }+ \text { Marketable securities }}{\text { Current Liabilities }}$
$=\frac{\text { Cash \& Bank + Current investments }}{\text { Current Liabilities }}$

Net Working Capital

= Current Assets - Current Liabilities
CAPITAL STRUCTURE RATIOS
Equity Ratio
$=\frac{\text { Shareholder's Equity }}{\text { Net Assets }}$
Debt Ratio
$=\frac{\text { Total Debt }}{\text { Net Asses }}$
$=\overline{\text { Net Assets }}$
Debt to Equity Ratio
$=\frac{\text { Total Outside Liability }}{\text { Shareholder's Equity }}$
$=\frac{\text { Total Debt }}{\text { Shareholder's Equity }}$
Long term Debt
$=\frac{\text { Shareholder's Equity }}{}$
Debt to Total Assets
Total Outside Liability
$=$ Total Assets
$=\frac{\text { Total Debt }}{\text { Total Assets }}$
Proprietary Ratio
$=$ Proprietary Fund

COVERAGE RATIOS

Debt Service Coverage Ratio
Earning available for debt service
$=$ Interest + Installments

Interest Coverage Ratio
$=\frac{\text { EBIT }}{\text { Interest }}$
Preference Dividend Coverage Ratio
$=\frac{\text { Earnings after tax }}{\text { Preference Dividend }}$
Equity Dividend Coverage Ratio
_ EAT - Preference dividend Equity Dividend

Fixed Charges Coverage Ratio
EBIT + Depreciation
$=\overline{\text { Interest }+ \text { Repayment of Loan }}$
TURNOVER (TO) RATIOS
Total Assets TO Ratio
$=\frac{\text { Sales } *}{\text { Total Assets }}$
Fixed Assets TO Ratio
$=\frac{\text { Sales } *}{\text { Fixed Assets }}$
Capital / Net Assets TO Ratio Sales *
$=\overline{\text { Net Assets }}$
Current Assets TO Ratio
Sales *
$=\overline{\text { Current Assets }}$
Working Capital TO Ratio
$=\frac{\text { Sales } *}{\text { Working Capital }}$
Inventory TO Ratio
$=\frac{\text { Cost of Goods Sold }}{\text { Average Inventory }}$
Raw Material Inventory TO Ratio
$=\frac{\text { Raw Material Consumed }}{\text { Average Raw Material Stock }}$
Receivables TO Ratio
Credit Sales
$=\overline{\text { Average Accounts Receivable }}$

Receivables Velocity

$=\frac{\text { Average Account Receivables }}{\text { Average Daily Credit Sales }}$
$=\frac{12 \text { months } / 52 \text { weeks } / 360 \text { days }}{\text { Receivables TO Ratio }}$
*Use COGS, if Sales not available

Payable TO Ratio
$=\frac{\text { Annual Net Credit Purchases }}{\text { Average Accounts Payables }}$
Payable Velocity
$=\frac{\text { Average Account Receivables }}{\text { Average Daily Credit Sales }}$
$=\underline{12 \text { months } / 52 \text { weeks / } 360 \text { days }}$
Receivables TO Ratio
PROFITABILITY RATIOS
Gross Profit Ratio
$=\frac{\text { Gross Profit }}{\text { Sales }} \times 100$
Net Profit Ratio
$=\frac{\text { Net Profit } / \text { EAT }}{\text { Sales }} \times 100$
Pre-tax Profit Ratio
$=\frac{\text { EBT }}{\text { Sales }} \times 100$
Operating Profit Ratio
$=\frac{\text { Operating Profit } / \text { EBIT }}{\text { Sales }} \times 100$
Cost of Goods Sold Ratio (COGS)
Cost of Goods Sold
$=\frac{\text { Sales }}{} \times 100$
Operating Expenses Ratio
$=\frac{\text { Admin. } \exp +\text { Selling \& Dist. OH }}{\text { Sales }} \times 100$
Operating Ratio
$=\frac{\text { COGS }+ \text { Operating exp }}{\text { Sales }} \times 100$
Financial Expenses Ratio
$=\frac{\text { Financial exp }}{\text { Sales }} \times 100$

OVERALL RETURN ON ASSETS/ INVESTMENTS

Return on Investments
$=\frac{\text { Return } / \text { Profit } / \text { Earnings }}{\text { Investment }} \times 100$
$=$ Profitability x Investment TO Ratio
Return on Assets
$=\frac{\text { Net Profit after taxes }}{\text { Average Total Assets\# }} \times 100$
\#Alternatively, Average Tangible Assets or Avg Fixed Assets can be used

Basic Defense Interval $=\frac{\text { Cash and Bank balances }+ \text { Net Receivables }+ \text { Market Securities }}{\text { Operating Expenses } \div \text { No.of days }}$
Capital Gearing Ratio $=\frac{\text { Preference Share Capital+Debentures+Other Borrowed funds }}{\text { Equity Share Capital+Reserves \& Surplus-Losses }}$

Return on Assets can also be calculated as:
$=\frac{\text { Net Profit after taxes }+ \text { Interest }}{\text { Average Total Assets* }} \times 100$

Return on Total Assets

$=\frac{\text { EBIT }(1-t)}{\text { Average Total Assets }} \times 100$

Return on Net Assets

$=\frac{\text { EBIT }(1-t)}{\text { Average Net Assets }} \times 100$
Return on Capital Employed
$=\frac{\text { Net Profit after taxes }+ \text { Interest }}{\text { Capital Employed }} \times 100$
Pre-tax $=\frac{\text { EBIT }}{\text { Capital Employed }} \times 100$
Post-tax $=\frac{\text { EBIT }(1-t)}{\text { Capital Employed }} \times 100$

Return on Equity

$=\frac{\text { PAT }- \text { Preference dividend }}{\text { Net worth }} \times 100$
Profitability / Net Profit margin
$=\frac{\text { Profit / Net Income }}{\text { Sales / Revenue }}$
Investment TO Ratio
$=\frac{\text { Sales } / \text { Reveue }}{\text { Investment }}$
Asset TO Ratio
$=\frac{\text { Sales / Reveue }}{\text { Assets }}$
Capital TO Ratio
$=\frac{\text { Sales } / \text { Reveue }}{\text { Capital }}$
Equity Multiplier
$=\frac{\text { Investment / Assets / Capital }}{\text { Shareholder's Equity }}$

RATIOS FROM OWNER's POINT OF VIEW

Earnings per Share (EPS)
$=\frac{\text { Net profit available to equity holders }}{\text { No. of }}$
$=\frac{\text { No. of equity shares outstanding }}{}$
Dividend per Share (DPS)
$=\frac{\text { Total Dividend paid to equity holders }}{\text { No. of equity shares outstanding }}$
Dividend Pay-out Ratio (DP)
$=\frac{\text { DPS }}{\text { EPS }}$
Price-Earnings Ratio (P/E Ratio)
$=\underline{\text { Market Price per Share (MPS) }}$
Earnings per Share (EPS)
Dividend and Earning Yield
$=\frac{\text { Dividend } \pm \text { Change in share price }}{\text { Initial share price }}$
$=\frac{\text { Dividend per Share (DPS) }}{\text { Market Price per Share (MPS) }} \times 100$

Earnings Yield or EP Ratio
$=\frac{\text { Earnings per Share (EPS) }}{\text { Market Price per Share (MPS) }} \times 100$
Market Value / Book Value per Share Average share price
$=\overline{\text { Net worth } \div \text { No. of equity shares }}$
$=\frac{\text { Closing share price }}{\text { Net worth } \div \text { No. of equity shares }}$
Q Ratio
$=\frac{\text { Market Value of equity \& liability }}{\text { Estimated replacement cost of asset }}$
$=\frac{\text { Market Value of a Company }}{\text { Assets Replacement Cost }}$

Cost of Capital

Cost of Irredeemable Debentures
$\mathrm{k}_{\mathrm{d}}=\frac{\mathrm{I}}{\mathrm{NP}}(1-\mathrm{t})$
Cost of Redeemable Debentures
$\mathrm{k}_{\mathrm{d}}=\frac{\mathrm{I}(1-\mathrm{t})+\frac{(\mathrm{RV}-\mathrm{NP})}{\mathrm{n}}}{\frac{(R V+\mathrm{NP})}{2}}$
If discount on issue or premium on
redemption is also tax deductible then,
$\mathrm{k}_{\mathrm{d}}=\frac{\mathrm{I}+\frac{(\mathrm{RV}-\mathrm{NP})}{\mathrm{n}}}{\frac{(\mathrm{RV}+\mathrm{NP})}{2}}(1-\mathrm{t})$
Internal Rate of Return,
$I R R=L+\frac{N P V_{L}}{N P V_{L}-N P V_{H}}(H-L)$
Amortised Value of a Debenture
$V_{B}=\sum_{t=1}^{n} \frac{C_{t}}{\left(1+k_{d}\right)}$
Where, $\mathrm{C}=$ Cash flows
$K_{d}=$ Interest rate
Cost of Irredeemable Preference Shares
$\mathrm{k}_{\mathrm{p}}=\frac{\mathrm{PD}}{\mathrm{P}_{0}}$

Cost of Redeemable Preference Shares

$\mathrm{k}_{\mathrm{p}}=\frac{\mathrm{PD}+\frac{(\mathrm{RV}-\mathrm{NP})}{\mathrm{n}}}{\frac{(\mathrm{RV}+\mathrm{NP})}{2}}$

Cost of Equity,

Dividend Price Approach
$\mathrm{k}_{\mathrm{e}}=\frac{\mathrm{D}}{\mathrm{P}_{0}}$
Earnings Price Approach
$k_{e}=\frac{E}{P}$
Growth Approach / Gordon's Model

$$
\mathrm{k}_{\mathrm{e}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g}
$$

If floatation cost is incurred
$k_{e}=\frac{D_{1}}{P_{0}-F}+g$
Estimation of Growth rate
(i) Average Method

$$
g=\sqrt[n]{\frac{D_{0}}{D_{n}}}-1
$$

(ii) Gorden's Growth Model

$$
\mathrm{g}=\mathrm{b} \times \mathrm{r}
$$

Capital Asset Pricing Model Approach
$K_{e}=R_{f}+\beta\left(R_{m}-R_{f}\right)$

Cost of Retained Earnings

Dividend Price Approach
$\mathrm{k}_{\mathrm{r}}=\frac{\mathrm{D}}{\mathrm{P}}$
Earnings Price Approach
$k_{r}=\frac{E P S}{P}$
Growth Approach
$\mathrm{k}_{\mathrm{r}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g}$
Also $K_{r}=K_{e}\left(1-t_{p}\right)(1-f)$

Financing Decisions - Capital

Structure
Value of the firm, $V=S+D$
Where, $\mathrm{S}=$ Market value of Equity

$$
D=\text { Market value of Debt }
$$

Also, $\mathrm{V}=\frac{\text { EBIT }}{\mathrm{K}_{\mathrm{O}}}$

$$
\mathrm{S}=\frac{\mathrm{NI}}{\mathrm{~K}_{\mathrm{e}}}
$$

Where, $\mathrm{K}_{0}=$ Overall cost of capital
$\mathrm{NI}=$ Earnings available for equity shareholders
$\mathrm{K}_{\mathrm{e}}=$ Equity Capitalisation Rate

Modigliani-Miller (MM) Approach

Without tax -

$$
\mathrm{V}_{\mathrm{g}}=\mathrm{V}_{\mathrm{u}}
$$

Where, $\mathrm{V}_{\mathrm{g}}=$ Value of levered firm
$\mathrm{V}_{\mathrm{u}}=$ Value of unlevered firm

$$
\mathrm{K}_{\mathrm{e}}=\mathrm{K}_{\mathrm{o}}+\left(\mathrm{K}_{\mathrm{o}}-\mathrm{K}_{\mathrm{d}}\right) \frac{\text { Debt }}{\text { Equity }}
$$

With tax -

$$
V_{g}=V_{u}+T B
$$

Where, $\mathrm{TB}=$ Tax benefit
$K_{e g}=K_{e u}+\left(K_{e u}-K_{d}\right) \frac{\text { Debt }}{\text { Debt }+ \text { Equity }}$
Where,
$\mathrm{K}_{\mathrm{eg}}=$ Cost of equity in a levered Co.
$K_{\text {eu }}=$ Cost of equity in an unlevered Co
WACC in a levered company
$K_{\text {og }}=K_{\text {eu }}(1-t L)$

Where,
$\mathrm{K}_{\mathrm{eu}}=$ Cost of equity in an unlevered Co
$\mathrm{t}=$ tax rate

$$
L=\frac{\text { Debt }}{\text { Debt }+ \text { Equity }}
$$

Financial Break-even point
$=$ Interest $+\frac{\text { Prefrence dividend }}{1-\text { tax rate }}$

Indifference point

$\frac{\left(E B I T-I_{1}\right)(1-t)}{E_{1}}=\frac{\left(E B I T-I_{2}\right)(1-t)}{E_{2}}$

Financial Decisions - Leverages
Degree of Operating Leverages (DOL)
$=\frac{\% \text { change in EBIT }}{\% \text { change in Sales }}$
$=\frac{\text { Contribution }}{\text { EBIT }}$

Break-even point

in units, $=\frac{\text { Fixed Cost }}{\text { Contribution per unit }}$
Margin of Safety
$=\frac{\text { Sales }- \text { BEP Sales }}{\text { Sales }} \times 100$
$=\frac{\text { EBIT }}{\text { Contribution }}$
Degree of Financial Leverage (DFL)
$=\frac{\text { \% change in EPS }}{\% \text { change in EBIT }}$
$=\frac{\text { EBIT }}{\text { EBT }}$

Combined Leverage

$=$ DOL x DFL
$=\frac{\% \text { change in EPS }}{\% \text { change in Sales }}$
$=\frac{\text { Contribution }}{\text { EBT }}$

Investment Decisions
 TRADITIONAL CAPITAL BUDGETING TECHNIQUES

Payback Period

$=\frac{\text { Total initial capital investment }}{\text { Annual expected after tax NCF }}$
Accounting Rate of Return (ARR)
$=\frac{\text { Average Annual net income }}{\text { Investment }}$

TIME ADJUSTED CAPITAL BUDGETING TECHNIQUES

Net Present Value (NPV)
$=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{C}_{\mathrm{t}}}{(1+\mathrm{k})^{\mathrm{t}}}-\mathrm{I}$
Where, $\mathrm{C}=$ Cash flows
$\mathrm{k}=$ Discount rate
$\mathrm{n}=$ Life of the project
I = Investment

Profitability Index (PI)

$=\frac{\text { Sum of discounted cash in flows }}{\text { Intial cash outlay**}}$
*also, total discounted cash outflow
Internal Rate of Return (IRR)
$=L R+\frac{N P V_{L}}{N P V_{L}-N P V_{H}} \times(H R-L R)$
$=L R+\frac{P V_{L}-C I}{P V_{L}-P V_{H}} x(H R-L R)$
$=$ Sum of PV of Dividends + PV of Stock Sale Price

$$
\begin{aligned}
= & \frac{D_{1}}{\left(1+K_{e}\right)^{1}}+\frac{D_{2}}{\left(1+K_{e}\right)^{2}}+\cdots \\
& +\frac{D_{n}}{\left(1+K_{e}\right)^{n}} \\
& +\frac{R V_{n}}{\left(1+K_{e}\right)^{n}}
\end{aligned}
$$

Graham \& Dodd Model

Market price, $P=m\left[D+\frac{E}{3}\right]$
Where, $\mathrm{m}=$ multiplier

Linter's Model

$\mathrm{D}_{1}=\mathrm{D}_{0}+\left[(\mathrm{E} \times\right.$ Target payout $\left.)-\mathrm{D}_{0}\right] \mathrm{x}$ Af
Where, $\mathrm{AF}=$ Adjustment factor

Management of Working Capital

Dividend Decisions

Growth, $\mathrm{g}=\mathrm{bx} \mathbf{r}$
Where,
$\mathrm{b}=$ Retention ratio
$\mathrm{r}=$ Rate of return on investment

MM Approach

Market price of Shares
$\mathrm{P}_{0}=\frac{\mathrm{P}_{1}+\mathrm{D}_{1}}{1+\mathrm{K}_{\mathrm{e}}}$
Where,
$\mathrm{P}_{1}=$ Price at the end of the period
$\mathrm{D}_{1}=$ Dividend at the end of the period
$\mathrm{K}_{\mathrm{e}}=$ Cost of equity

Value of the firm

V_{f} or $\mathrm{nP}_{0}=\frac{(\mathrm{n}+\Delta \mathrm{n}) \mathrm{P}_{1}-\mathrm{I}+\mathrm{E}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)}$
Where,
$\mathrm{n}=$ No. of shares in the beginning
$\Delta n=$ No. of shares issued
$\mathrm{I}=$ Amount required for investment
$\mathrm{E}=$ Earnings during the period

Walter's Model

Market price of Shares
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}$
Where,
$\mathrm{E}=$ Earnings per share
D = Dividend per share
$r=$ Internal rate of return

Gordon's Model

Market price
$P_{0}=\frac{E_{1}(1-b)}{K_{e}-b r}=\frac{D_{0}(1+g)}{K_{e}-g}$

Dividend Discount Model

Intrinsic value of the stock
$=$ Sum of PV of future cash flows

Unit-1: INTRODUCTION

Working Capital
= Current Assets - Current Liabilities

Operating Cycle

$=\mathrm{R}+\mathrm{W}+\mathrm{F}+\mathrm{D}-\mathrm{C}$

Where,

$\mathrm{R}=$ Raw material storage period
W = Work-in-progress inventory holding period
$\mathrm{F}=$ Finished goods storage period
D = Debtors collection period
C $=$ Credit period allowed by creditors

Raw Material (RM) Storage Period
Avg stock of RM
$=\overline{\text { Avg cost of RM Consumption per day }}$
Work-in-Progress (WIP) inventory
holding period
Avg WIP inventory
$\overline{\text { Avg cost of Production per day }}$
Finished Goods (FG) storage period
$=\frac{\text { Avg stock of FG }}{\text { Avg cost of Goods Sold per day }}$
Debtors Collection period
$=\frac{\text { Avg Receivables }}{\text { Avg Credit Sales per day }}$
Credit period allowed by creditors
Avg Payables
$\overline{\text { Avg Credit Purchases per day }}$

Estimation of Current Assets

Raw Materials Inventory
$=\frac{\text { Estimated production (units) }}{12 \text { months } / 365 \text { days }}$ x Estimated cost per unit x Average RM storage period

Estimation of Current Liabilities
Direst wages $=$
Estimated labour hours x Wage rate per hour 12 months/365 days
x Average time lag in payment of wages

Trade Payables
$=\frac{\text { Estimated credit purchases }}{12 \text { months } / 365 \text { days }}$
x Credit period allowed by suppliers
Overheads (OH)
$=\frac{\text { Estimated Overheads }}{12 \text { months } / 360 \text { days }}$
x Average time lag in payment of OH
Unit-2: TREASURY \& CASH MANAGEMENT

Optimum Cash Balance
$=\sqrt{\frac{2 U \times P}{S}}$

Where,

$\mathrm{U}=$ Annual cash disbursement
P = Fixed cost per transaction
$S=$ Opportunity cost of one rupee p.a.

Unit-3: MANAGEMENT OF INVENTORY
Economic Order Quantity
$=\sqrt{\frac{2 \mathrm{AxO}}{\mathrm{C}}}$
Where,
A = Annual demand of inventory
O $=$ Cost per Order
$\mathrm{C}=$ Carrying cost per unit p.a.

Unit-4: MANAGEMENT OF RECEIVABLES

Total Fixed Cost
$=$ [Average Cost per unit

- Variable Cost per unit]
x No. of units sold on credit under Present Policy

Opportunity Cost

= Total Cost of Credit Sales
$x \frac{\text { Collection period (Days) }}{365 \text { (or } 360 \text {) }}$
$\mathrm{x} \underline{\text { Required Rate of Return }}$
100
Unit-5: MANAGEMENT OF PAYABLES
Nominal Cost of Payables
$=\frac{\mathrm{d}}{100-\mathrm{d}} \times \frac{365 \text { days }}{\mathrm{t}}$
Cost of Lost Cash Discount
$=\left(\frac{100}{100-\mathrm{d}}\right)^{\frac{365}{\mathrm{t}}}-1$
Where,
$\mathrm{d}=$ rate of discount
$\mathrm{t}=$ the reduction in the payment period in days

66

Suresh Kumar Vishnubhatla
Excellent dwelling explanation with time to time revision of previous teachings and moving forward.Numerous problems seeked from best required sources put together.Good and neat explanation. 99

