### NORMAL OR GAUSSIAN DISTRIBUTION

#### <u>Basics:</u>

- In case of continuous random variable probability distribution, if there exist a function that defines probability, that function is called as Probability Density Function.
- Various Mathematical experiments have proved that most of the continuous random variables will follow normal distribution. It is universally accepted distribution.
- Probability Density function is also defined on Normal Distribution and is given by below:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(\frac{x-\mu}{\sigma})^2 \times \frac{1}{2}}$$

It is defined for  $-\infty < x < \infty$ 

• The function can be used if we have two values of 2 parameters x and  $\sigma^2$ , hence it is called as bi-parametric distribution.

## Properties of Normal Distribution

- **1.** Curve of Normal Distribution is Bell Shaped. (it shows less frequency/ probability at the extremes and max frequency/ probability at the center)
- **2.** Here, Mean = Median = Mode =  $\mu$
- **3.** Standard Deviation =  $\sigma$ , Mean Deviation =  $\sigma \times \sqrt{2/\pi} = 0.8 \sigma$
- **4.** Quartile Deviation,  $Q_3 = \mu 0.675\sigma$  and  $Q_1 = \mu + 0.675\sigma$
- **5.** Normal Distribution is denoted by  $X \sim N(\mu, \sigma^2)$  [X is a random variable]
- 6. Additive property only applicable when two different random variables are independent. Assume we have two variables X and Y such that  $X \sim N(\mu_1, \sigma_1^2)$ ,  $Y \sim N(\mu_2, \sigma_2^2)$  then  $X+Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- **7.** Normal Curve is symmetrical at  $x = \mu$ , skewness is zero
- **8.** Points of Inflexion (where convex becomes concave and concave becomes convex) are  $\mu \sigma \& \mu + \sigma$

# <u>Draw a Normal Curve</u>

Normal Distribution | Statistics | CA Pranav

## Area of a Normal Curve (Probability Curve)

Total Area of Normal Probability Curve = 1 (because total probability is 1)

Total Area can be further composed as shown in diagram:

| From | То  | Area/Probability |
|------|-----|------------------|
| μ    | +σ  | 34.135%          |
| +σ   | +2σ | 13.59%           |
| +2σ  | +3σ | 2.14%            |
| +3σ  | 8   | 0.135%           |

| From | То  | Area/Probability |
|------|-----|------------------|
| -σ   | +σ  | 68.3%            |
| -2σ  | +2σ | 95.5%            |
| -3σ  | +3σ | 99.7%            |

**Conclusion:** 99.7% values of normal distribution lies within  $-3\sigma$  to  $+3\sigma$ 



### Other important Terms

• **Standard Normal Distribution** – A normal distribution with following conditions is said to be a Standard Normal Distribution.

| Parameter                   | Value |
|-----------------------------|-------|
| Mean µ                      | 0     |
| Standard Deviation $\sigma$ | 1     |

The variable used in this distribution is called as Standard Normal Variate and is denoted by *Z*- *[Striked Z]* 

As we know that **99.73%** values are lying under **X=-3** $\sigma$  to **X=+3** $\sigma$  under a normal distribution, so for standard normal distribution 99.73% values will be lie between X=-3 to X=+3 (as  $\sigma$  is 1).

#### Normal Distribution | Statistics | CA Pranav

- Z Table / Biometrika Table For a standard normal distribution, it is possible to calculate probability for interval of random variable (which mainly ranges from -3 to +3). This can be done using Z Table. This table gives us the probability of values from X=μ=0 to X=any value up to 3
- **Z** score Probability for normal variable (other than Standard Normal Variate) cannot be calculated directly using Z table. In that case, we need to convert normal variable X into standard normal variable Z.

Formula:  $Z = \frac{x-\mu}{\sigma}$ 

• **Cumulative Distribution Function** - Probability of Standard Normal Variate from negative  $-\infty$  to a particular value within distribution or in others words probability that variable takes value less than or equal to a particular value. It is denoted by  $\phi(x) = P(X \le x)$ 

*Example:*  $\phi(1.5) =$  The probability from  $-\infty$  *to* Z=1.5 in a standard normal distribution.

## • Formulas for Standard Normal Distribution

| Probability Function | $f(z) = \frac{1}{\sqrt{2\pi}} e^{-(z)^2 \times \frac{1}{2}} \text{ for } -\infty < z < \infty$ |
|----------------------|------------------------------------------------------------------------------------------------|
| Mean, Median, Mode   | μ=0                                                                                            |
| SD, Variance         | $\sigma=1, \sigma^2=1$                                                                         |
| Points of Inflexion  | -1, 1                                                                                          |
| Mean Deviation       | 0.8                                                                                            |
| Quartile Deviation   | 0.675                                                                                          |