5

CHAPTER

COST OF CAPITAL

Q. 1

Effective Cost of Capital

```
MTP May 19(2)
```

Annova Ltd is considering raising funds of about Rs. 250 lakhs by any of two alternative methods, viz., 14% institutional term loan and 13% non-convertible debentures. The term loan option would attract no major incidental cost and can be ignored. The debentures would have to be issued at a discount of 2.5% and would involve cost of issue of 2% on face value.
ADVISE the company as to the better option based on the effective cost of capital in each case. Assume a tax rate of 50%.

Ans.
Calculation of Effective Cost of Capital:

Particulars	Option 1 14\% institutional Term loan (Rs. in Lakhs)	Option 2 13\% Non-convertible Debentures (Rs. in lakhs)
(A) Effective capital to be raised Face value	250.00	250.00
Less: Discount	Nil	(6.25)
	250.00	243.75
Less: Cost of issue	Nil	5.00
Effective amount of capital	250.00	238.75
(B) Annual interest charges on face value of Rs. 250 lakhs	35.0	32.50
Less: Tax benefit on interest @ 50\%	17.5	16.25
	17.5	16.25
(C) Effective cost of capital after tax	$\begin{aligned} & \frac{B}{A} \times 100 \\ & =7.0 \% \end{aligned}$	$\begin{aligned} & \frac{16.25}{238.75} \times 100 \\ = & 6.81 \% \text { (approx) } \end{aligned}$

So, the better option is raising of funds of Rs. 250 lakhs by issue of 13% Non-convertible Debenture

PRI Ltd. and SHA Ltd. are identical, however, their capital structure (in market-value terms) differs as follows:

Company	Debt	Equity
PRI Ltd.	60%	40%
SHA Ltd.	20%	80%

The borrowing rate for both companies is 8% in a no-tax world and capital markets are assumed to be perfect.
(a) (i) If Mr. Rhi, owns 6% of the equity shares of PRI Ltd., DETERMINE his return if the Company has net operating income of ₹ $9,00,000$ and the overall capitalization rate of the company (K_{0}) is 18%.

Cost of Capital
(ii) CALCULATE the implied required rate of return on equity of PRI Ltd.
(b) SHA Ltd. has the same net operating income as PRI Ltd.
(i) CALCULATE the implied required equity return of SHA LTd.
(ii) ANALYSE why does it differ from that of PRI Ltd.

Ans.
Value of PRI Ltd. $=$ NOI 9,00,000 $=50,00,000$
Ko
18\%
(a) (i) Return on Shares of Mr. Rhi on PRI Ltd.

Particulars	Amount (₹)
Value of the company	$50,00,000$
Market value of debt $(60 \% \times ₹ 50,00,000)$	$30,00,000$
Market value of shares $(40 \% \times ₹ 50,00,000)$	$20,00,000$
Particulars	Amount (₹)
Net operating income	$9,00,000$
Interest on debt $(8 \% \times ₹ 30,00,000)$	$2,40,000$
Earnings available to shareholders	$6,60,000$
Return on 6% shares $(6 \% \times ₹ 6,60,000)$	39,600

(ii) Implied required rate of return on equity of PRI Ltd. $=\frac{660000}{2000000}=33 \%$
(b) (i) Calculation of Implied rate of return of SHA Ltd.

Particulars	Amount (₹)
Total value of company	$50,00,000$
Market value of debt (20\% \times ₹ $50,00,000)$	$10,00,000$
Market value of equity $(80 \% \times ₹ 50,00,000)$	$40,00,000$
Particulars	Amount (₹)
Net operating income	$9,00,000$
Interest on debt (8\% \times ₹ $10,00,000)$	80,000
Earnings available to shareholders	$8,20,000$

Implied required rate of return on equity $=\frac{820000}{4000000}=20.5 \%$
(ii) Implied required rate of return on equity of SHA Ltd. is lower than that of PRI Ltd. because SHA Ltd. uses less debt in its capital structure. As the equity capitalisation is a linear function of the debt-to-equity ratio when we use the net operating income approach, the decline in required equity return offsets exactly the disadvantage of not employing so much in the way of "cheaper" debt funds.

Q. 3

Cost of Debt (Kd)
RTP Nov 22
Bounce Ltd. evaluates all its capital projects using discounting rate of 15%. Its capital structure consists of equity share capital, retained earnings, bank term loan and debentures redeemable at par. Rate of interest on bank term loan is 1.5 times that of debenture. Remaining tenure of debenture and bank loan is 3 years and 5

CA Amit Sharma \qquad
years respectively. Book value of equity share capital, retained earnings and bank loan is ₹ $10,00,000$, ₹ $15,00,000$ and ₹ $10,00,000$ respectively. Debentures which are having book value of ₹ $15,00,000$ are currently trading at ₹ 97 per debenture. The ongoing P/E multiple for the shares of the company stands at 5 . You are required to CALCULATE the rate of interest on bank loan and debentures if tax rate applicable is 25%.

Let the rate of Interest on debenture be x
\therefore Rate of Interest on loan $=1.5 x$
$\therefore K d$ on debentures $=\frac{\operatorname{Int}(1-t)+\frac{R V-N P}{n}}{\frac{R V+N P}{2}}$

$$
=\frac{100 x(1-25)+\frac{100-97}{3}}{\frac{100+97}{2}}=\frac{75 x+1}{98.5}
$$

$\therefore K d$ on bank loan $=1.5 x(1-0.25)=1.125 x$
$K e=\frac{F P S}{M P S}=\frac{1}{M P S / E P S}=\frac{1}{P / E}=\frac{1}{5}=0.2$
$K Y=K e=0.2$
Computation of WACC

Capital	Amount (₹)	Weights	Cost	Product
Equity	$10,00,000$	0.2	0.2	0.04
Reserves	$15,00,000$	0.3	0.2	0.06
Debentures	$15,00,000$	0.3	$(75 x+1) / 98.5$	$(22.5 x+0.3) / 98.5$
Bank Loan	$10,00,000$	0.2	$1.125 x$	$0.225 x$
	$50,00,000$	1		$0.1+0.225 x+$
				$22.5 x+0.3$
				98.5

$W A C C=15 \%$
$\therefore 0.1+0.225 x+\frac{22.5 x}{98.5}+\frac{0.3}{98.5}=0.15$
$\therefore 9.85+22.1625 x+22.5 x+0.3=(0.15)(98.5)$
$\therefore 44.6625 x=14.775-9.85-0.3$
$\therefore 44.625 x-4.625$
$\therefore x=\frac{4.625}{44.6625}$
$\therefore x=10.36 \%$
\therefore Rate of interest on debenture $=x \quad=10.36 \%$
Rate of interest on Bank loan=1.5x $=(1.5)(10.36 \%)=15.54 \%$

Q. 4

Cost of Debt (Kd)
PY Nov 20

TT Ltd. issued $20,000,10 \%$ convertible debenture of $₹ 100$ each with a maturity period of 5 years. At maturity the debenture holders will have the option to convert debentures into equity shares of the company in ratio of $1: 5$ (5 shares for each debenture). The current market price of the equity share is ₹ 20 each and historically the growth rate of the share is 4% per annum. Assuming tax rate is 25%. Compute the cost of 10% convertible debenture using Approximation Method and Internal Rate of Return Method.PV Factor are as under:

Year	1	2	3	4	5
PV Factor @ 15\%	0.870	0.756	0.658	0.572	0.497

Ans. Determination of Redemption value:
Higher of-
(i) The cash value of debentures $=₹ 100$
(ii) Value of equity shares $=5$ shares $\times ₹ 20(1+0.04)^{5}$
$=5$ shares $\times ₹ 24.333$
= ₹121.665 rounded to ₹121.67
$₹ 121.67$ will be taken as redemption value as it is higher than the cash option and attractive to the investors.

Calculation of Cost of 10% Convertible debenture

(i) Using Approximation Method:

$$
K_{d}=\frac{I(1-t)+\frac{(R V-N P)}{n}}{\frac{(R V+N P)}{2}}=\frac{\frac{10(1-0.25)+(121.67-100)}{5}}{\frac{(121.67+100)}{2}}=\frac{7.5+4.334}{110.835}=10.676 \%
$$

(ii) Using Internal Rate of Return Method

Year	Cash flows $(₹)$	Discount factor @ 10\%	Present Value	Discount factor @ 15%	Present Value $(₹)$
0	100	1.000	(100.00)	1.000	(100.00) 1 to 5
5	121.67	3.790	28.425	3.353	25.148
NPV		0.621	75.557	0.497	60.470

IRR $=L+\frac{N P V_{L}}{N P V_{L}-N P V_{L}}(H-L)=10 \%+\frac{3.982}{3.982-(-14.382)}(15 \%-10 \%)$
$=0.11084$ or 11.084% (approx.)

Q. 5

Cost of Debt / Equity / WACC RTP May 18

Navya Limited wishes to raise additional capital of ₹10 lakhs for meeting its modernisation plan. It has ₹ $3,00,000$ in the form of retained earnings available for investments purposes. The following are the further details:

Debt/ equity mix	$40 \% / 60 \%$
Cost of debt (before tax)	
Upto ₹ $1,80,000$	10%
Beyond ₹ $1,80,000$	16%
Earnings per share	$₹ 4$
Dividend pay out	$₹ 2$
Expected growth rate in dividend	10%

Current market price per share	$₹ 44$
Tax rate	50%

Required:

(i) To DETERMINE the pattern for raising the additional finance.
(ii) To CALCULATE the post-tax average cost of additional debt.
(iii) To CALCULATE the cost of retained earnings and cost of equity, and
(iv) To DETERMINE the overall weighted average cost of capital (after tax).

Ans.
(i) Pattern of Raising Additional Finance

Equity $=10,00,000 \times 60 / 100=₹ 6,00,000$
Debt $=10,00,000 \times 40 / 100=₹ 4,00,000$

Capital structure after Raising Additional Finance

Sources of fund	Amount(₹)
Shareholder's funds	
Equity capital $(6,00,000-3,00,000)$	$3,00,000$
Retained earnings	$3,00,000$
Debt at 10\% p.a.	$1,80,000$
Debt at 16\% p.a. $(4,00,000-1,80,000)$	$2,20,000$
Total funds	$10,00,000$

(ii) Post-tax Average Cost of Additional Debt
$K d=I(1-t)$, where 'Kd' is cost of debt, ' l ' is interest and ' t ' is tax rate.
On ' $1,80,000=10 \%(1-0.5)=5 \%$ or 0.05
On ' $2,20,000=16 \%(1-0.5)=8 \%$ or 0.08
Average Cost of Debt (Post tax) i.e.
$K d=\frac{(1,80,000 \times 0.05)+(2,20,000 \times 0.08)}{4,00,000} \times 100=6.65 \%$
(iii) Cost of Retained Earnings and Cost of Equity applying Dividend Growth Model
$K e=\frac{D_{1}}{P_{0}}+a$ or $\frac{D(1+g)+g}{1}$
Then, $\mathrm{Ke}=\frac{2(1.1)}{4}+0.10=\frac{2.2}{44}+0.10=0.15$ or 15%
(iv) Overall Weighted Average Cost of Capital (WACC) (After Tax)

Particulars	Amount (₹)	Weights	Cost of Capital	WACC
Equity (including retained earnings)	$6,00,000$	0.60	15%	9.00
Debt	$4,00,000$	0.40	6.65%	2.66
Total	$10,00,000$	1.00		11.66

Q. 6

Cost of Debt / Equity / Marginal RTP Jul 21
Indel Ltd. has the following capital structure, which is considered to be optimum as on 31st March, 2021:

Particulars	(₹)
14% Debentures	60,000
11% Preference shares	20,000
Equity Shares (10,000 shares)	$3,20,000$
	$4,00,00$

The company share has a market price of ₹ 47.20. Next year dividend per share is 50% of year 2020 EPS. The following is the uniform trend of EPS for the preceding 10 years which is expected to continue in future.

Year	EPS (₹)	Year	EPS (₹)
2011	2.00	2016	3.22
2012	2.20	2017	3.54
2013	2.42	2018	3.90
2014	2.66	2019	4.29
2015	2.93	2020	4.72

The company issued new debentures carrying 16% rate of interest and the current market price of debenture is ₹ 96 . Preference shares of $₹ 18.50$ (with annual dividend of $₹ 2.22$ per share) were also issued. The company is in 30\% tax bracket.

The company is in 30\% tax bracket.
(A) CALCULATE after tax:
(i) Cost of new debt
(ii) Cost of new preference shares
(iii) New equity share (assuming new equity from retained earnings)
(B) CALCULATE marginal cost of capital when no new shares are issued.
(C) DETERMINE the amount that can be spent for capital investment before new ordinary shares must be sold, assuming that the retained earnings for next year's investment is 50 percent of earnings of 2020.
(D) COMPUTE marginal cost of capital when the fund exceeds the amount calculated in assuming new equity is issued at ₹ 40 per share?
(A) (i) Cost of new debt

$$
K_{d}=\frac{I(1-t)}{P_{0}} \quad=\frac{16(1-0.3)}{96}=0.11667
$$

(ii) Cost of new preference shares

$$
K_{p}=\frac{2.22}{18.5}=0.12
$$

(iii) Cost of new equity shares

$$
\begin{aligned}
& K_{e}=\frac{D_{1}}{P_{0}}+g=\frac{2.36}{47.20}+0.10 \\
& K_{e}=0.05+0.10=0.15
\end{aligned}
$$

CA Amit Sharma
Calculation of g when there is a uniform trend (on the basis of EPS)

$$
\frac{E P S(2012)-E P S(2011)}{E P S(2011)}=\frac{2.20-2.00}{2.00}=0.10 \text { or } 10 \%
$$

Calculation of D1

$$
\text { D1 = 50\% of } 2020 \text { EPS = 50\% of ₹ } 4.72 \text { = ₹ } 2.36
$$

(B) Calculation of marginal cost of capital

Type of Capital	Proportion	Specific Cost	Product
(1)	(2)	(3)	(2) $\times(3)=(4)$
Debentures	0.15	0.11667	0.0175
Preference Share	0.05	0.1200	0.0060
Equity Share	0.80	0.1500	0.1200
Marginal cost of capital			0.1435

(C) The company can spend the following amount without increasing marginal cost of capital and without selling the new shares:

Retained earnings $=50 \%$ of EPS of $2020 \times$ outstanding equity shares

$$
=50 \% \text { of } ₹ 4.72 \times 10,000 \text { shares }=₹ 23,600
$$

The ordinary equity (Retained earnings in this case) is 80% of total capital So, ₹ $23,600=80 \%$ of Total Capital
(D) If the company spends in excess of ₹ 29,500 , it will have to issue new equity shares at $₹ 40$ per share.
\therefore The cost of new issue of equity shares will be:
$\mathrm{K}_{\mathrm{e}}=\frac{D_{1}}{P_{0}}+g=\frac{{ }^{2} .36}{{ }^{2} 40}+0.10=0.159$
The marginal cost of capital will be:

Type of Capital	Proportion	Specific Cost	Product
(1)	(2)	(3)	(2) $\times(3)=$
Debentures	0.15	0.11667	0.0175
Preference Shares	0.05	0.1200	0.0060
Equity Shares (New)	0.80	0.1590	0.1272
Marginal cost of			

Cost of Debt / Preference
PY May 22
A company issues:

- 15% convertible debentures of ₹ 100 each at par with a maturity period of 6 years. On maturity, each debenture will be converted into 2 equity shares of the company. The risk - free rate of return is 10%, market risk premium is 18% and beta of the company is 1.25 . The company has paid dividend of $₹ 12.76$ per share. Five year ago, it paid dividend of 10 per share. Flotation cost is 5% of issue amount.
5% preference shares of ₹ 100 each at premium of 10%. These shares are redeemable after 10 years at par. Flotation cost is 6% of issue amount.

Cost of Capital

Assuming corporate tax rate is 40%.

(i) Calculate the cost of convertible debentures using the approximation method.
(ii) Use YTM method to calculate cost of preference shares.

Year	1	2	3	4	5	6	7	8	9	10
PVIF 0.03,	0.97	0.94	0.91	0.88	0.86	0.83	0.81	0.78	0.76	0.74
PVIF 0.05,	0.95	0.90	0.86	0.82	0.78	0.74	0.711	0.67	0.64	0.61
PVIFA	0.97	1.913	2.82	3.71	4.58	5.41	6.23	7.02	7.78	8.53
PVIFA	0.95	1.85	2.72	3.54	4.32	5.07	5.78	6.46	7.10	7.72

Interest rate	1%	2%	3%	4%	5%	6%	7%	8%	9%
FVIF i, 5	1.051	1.104	1.159	1.217	1.27	1.33	1.40	1.46	1.53
FVIF i, 6	1.06	1.126	1.194	1.26	1.34	1.419	1.501	1.58	1.67
FVIF i, 7	1.07	1.149	1.23	1.316	1.40	1.50	1.60	1.714	1.82

Ans. (i) Calculation of Cost of Convertible Debentures:
Given that,
$R_{F}=10 \%$
$R_{m}-R_{+}=18 \%$
$B=\quad 1.25 \%$
$D_{0}=12.76$
$D_{-5}=10$
Flotation Cost $=5 \%$
Using CAPM,
$K_{e}=R_{+}+\beta\left(R_{m}-R_{f}\right) \quad=10 \%+1.25(18 \%)$
$=32.50 \%$

Calculation of growth rate in dividend
$12.76=10(1+g)^{5}$
$1.276=(1+g)^{5}$
$(1+5 \%)=1.276$......... from FV Table
$g=5 \%$
Price of share after 6 years $=\frac{D_{7}}{k_{e-g}}=\frac{12.76(1.05)^{7}}{0.325-0.5}$
$P 6=\frac{12.75 \times 1.407}{0.275}=65.28$
Redemption Value of Debenture (RV) $=65.28 \times 2=130.56(R V)$
$N P=95 \quad n=6$
$K_{d}=\frac{I N T(1-t)+\frac{(R V-N P)}{n}}{\frac{[R V-N P]}{2}} \times 100=\frac{9+5.93}{112.78} \times 100$
$K_{d}=\quad 13.24 \%$
(ii) Calculation of Cost of Preference Shares:

Net Proceeds	$=100(1.1)-6 \%$ of $100(1.1)$
	$=110-6.60$
	$=103.40$
Redemption Value	$=100$

Year	Cash Flows (₹)	PVF @ 3\%	PV (₹)	PVF @ 5\%	PV (₹)
0	103.40	1	103.40	1	103.40
$1-10$	-5	8.530	-42.65	7.722	-38.61
10	-100	0.744	-74.40	0.614	-61.40
			-		3.39

$$
K_{p}=3 \%+\frac{5 \%-3 \%}{[3.39-(-13.65)]} \times 13.65=4.6 \%
$$

Cost of Debt / Equity / WACC PY Nov 19
A Company wants to raise additional finance of ₹ 5 crore in the next year. The company expects to retain ₹ 1 crore earning next year. Further details are as follows:
(i) The amount will be raised by equity and debt in the ratio of 3:1.
(ii) The additional issue of equity shares will result in price per share being fixed at ₹ 25 .
(iii) The debt capital raised by way of term loan will cost 10% for the first ₹ 75 lakh and 12% for the next ₹50 lakh.
(iv) The net expected dividend on equity shares is ₹ 2.00 per share. The dividend is expected to grow at the rate of 5%.
(v) Income tax rate is 25%.

You are required:
(a) To determine the amount of equity and debt for raising additional finance.
(b) To determine the post-tax average cost of additional debt.
(c) To determine the cost of retained earnings and cost of equity.
(d) To compute the overall weighted average cost of additional finance after tax.
(a) Determination of the amount of equity and debt for raising additional finance:

Pattern of raising additional finance
Equity $\quad 3 / 4$ of ₹ 5 Crore $=₹ 3.75$ Crore
Debt $1 / 4$ of ₹ 5 Crore $=$ ₹ 1.25 Crore

The capital structure after raising additional finance:

Particulars	(₹ Incrore)	
Shareholders' Funds		
Equity Capital	$(3.75-1.00)$	2.75

Cost of Capital

Retained earnings		1.00
Debt (Interest at 10% p.a.)	$(1.25-0.75)$	0.75
(Interest at 12% p.a.)		0.50
Total Funds	5.00	

(b) Determination of post-tax average cost of additional deb \dagger
$K_{d}=I(1-t)$
Where,
I= Interest Rate
$t=$ Corporate tax-rate
On ₹ $75,00,000=10 \%(1-0.25)=7.5 \%$ or 0.075
On ₹ $50,00,000=12 \%(1-0.25)=9 \%$ or 0.09
Average Cost of Debt

$$
\begin{aligned}
& =\frac{(75,00,000 \times 0.75)+(50,00,000 \times 0.09)}{1,25,00,000} \times 100 \\
& =\frac{5,62,500+4,50,000}{1,25,00,000} \times 100=8.10 \%
\end{aligned}
$$

(c) Determination of cost of retained earnings and cost of equity (Applying Dividend growth model):
$\mathrm{K}_{\mathrm{e}}=\frac{\mathrm{D}_{1}}{P_{0}}+g$
Where,
$\mathrm{K}_{\mathrm{e}}=$ Cost of equity
$D_{1}=D_{0}(1+g)$
$\mathrm{D}_{0}=$ Dividend paid (ie=Rs2)
g = Growth rate
$P_{0}=$ Current market price per share
Then, $K_{e}=\frac{2(1.05)}{25}+0.05=\frac{2.1}{25}+0.05=0.084+0.05=0.134=13.4 \%$
Cost of retained earnings equals to cost of Equity i.e. 13.4\%
(d) Computation of overall weighted average after tax cost of additional finance

Particular	(₹)	Weights	Cost of funds	Weighted Cost (\%)
Equity (including retained earnings)	$3,75,00,000$	$3 / 4$	13.4%	10.05
Debt	$1,25,00,000$	$1 / 4$	8.1%	2.025
WACC	$5,00,00,000$			12.075

$A B C$ Company's equity share is quoted in the market at ₹ 30 per share currently. The company pays a dividend of $₹$ 3 per share and the investor's market expects a growth rate of 7% per year.

You are required to:

(i) CALCULATE the company's cost of equity capital.
(ii) If the company issues 10% debentures of face value of ₹ 100 each and realises ₹ 95 per debenture while the debentures are redeemable after 10 years at a premium of 10%, CALCULATE cost of debenture using YTM?
Assume Tax Rate to be 50\%.
(i) Cost of Equity Capital (Ke):
$\mathrm{K}_{e}=\frac{\text { Expected dividend per share }\left(\mathrm{D}_{1}\right)}{\text { Market price per share }\left(\mathrm{P}_{0}\right)}+$ Growth rate (g)
$=\frac{3 \times 1.07}{30}+0.07=0.177$ or 17.7%
(ii) Cost of Debenture (Kd):

Using Present Value method (YTM)
Identification of relevant cash flows

Year	Cash flows
0	Current market price (P0) = ₹ 95
1 to 10	Interest net of $\operatorname{tax}[I(1-t)]=10 \%$ of ₹ $100(1-0.5)=₹ 5$

Calculation of Net Present Values (NPV) at two discount rates

Year	Cash flows	Discount factor @ 5\% (L)	Present Value (₹)	Discount factor @ 10\% (H)	Present Value (₹)
0	(95)	1.000	(95.00)	1.000	(95.00)
1 to 10	5	7.722	38.61	6.145	30.725
10	110	0.614	67.54	0.386	42.46
NPV			+11.15		-21.815

Calculation of IRR

$$
\begin{aligned}
& I R R=L+\frac{N P V_{L}}{N P V_{L}-N P V_{H}}(H-L) \\
& 5 \%+\frac{` 11.15}{11.15-(-21.815)}(10 \%-5 \%)=5 \%+\frac{` 55.75}{32.965}=6.69 \%
\end{aligned}
$$

Therefore, $K_{d}=6.69 \%$

Q. 10

Cost of Equity
MTP May 22(1)
Following information is given for WN Ltd.:

Earnings
Rs 30 per share
Dividend
Rs 9 per share
Cost of capital
15\%
Internal Rate of Return on investment 20\%
You are required to CALCULATE the market price per share using-
(i) Gordon's formula
(ii) Walter's formula
(i) As per Gordon's Model, Price per share is computed using the formula:

$$
\begin{aligned}
& P_{0}=\frac{E_{1(1-b)}}{K_{e-b r}} \\
& \text { Where, } \\
& P_{0}=\text { Price per share } \\
& E 1=\text { Earnings per share } \\
& b=\text { Retention ratio; (1-b= Pay-out ratio) } \\
& K_{e}=\text { Cost of capital } \\
& r=\text { IRR } \\
& b r=\text { Growth rate }(g)
\end{aligned}
$$

Applying the above formula, price per share

$$
P_{0}=\frac{30 \times 0.3^{*}}{0.15-0.70 \times 0.2}=\frac{9}{0.01}=900
$$

*Dividend pay-out ratio $=\frac{9}{30}=0.3$ or 0.3
(ii) As per Walter's Model, Price per share is computed using the formula:

Where,
$P=$ Market Price of the share
$E=$ Earnings per share
$D=$ Dividend per share
$K_{e}=$ Cost of equity/ rate of capitalization/ discount rate
$r=$ Internal rate of return/ return on investment
Applying the above formula, price per share

$$
P=\frac{9+\frac{0.20}{0.15}(30-9)}{0.15}=\frac{37}{0.15}=246.67
$$

Q. 11

Cost of Debt / Equity

MTP Dec 21(2)
XYZ Company's equity share is quoted in the market at ₹ 25 per share currently. The company pays a dividend of ₹ 5 per share and the investor's market expects a growth rate of 5% per year.

You are required to:
(i) CALCULATE the company's cost of equity capital.
(ii) If the company issues 12% debentures of face value of ₹ 100 each and realises $₹ 95$ per debenture while the debentures are redeemable after 10 years at a premium of 12%, CALCULATE cost of debenture using YTM?

Ans.
(i) Cost of Equity Capital (Ke):
$\mathrm{K}_{e}=\frac{\text { Expected dividend per share }\left(\mathrm{D}_{1}\right)}{\text { Marketpricepershare }\left(P_{0}\right)}+\operatorname{Growthrate}(g)$
$=\frac{5 \times 1.05}{25}+0.05=26 \%$
(iii) Cost of Debenture (Kd): Using Present Value method (or YTM)

Identification of relevant cash flows

Year	Cash flows
0	Current market price (PO) = ₹ 95
1 to 10	Interest net of tax $[I(1-t)]=12 \%$ of ₹ $100(1-0.30)=₹$ 8.40
10	Redemption value (RV) =₹ $100(1.12)=₹ 112$

Calculation of Net Present Values (NPV) at two discount rates

Year	Cash flows	Discount factor @ 9\% (L)	Present Value	Discount factor @ 10\% (H)	Present Value
0	(95)	1.0000	(95.00)	1.0000	(95.00)
1 to 10	8.40	6.4176	53.91	6.1445	51.61
10	112	0.4224	47.31	0.3855	43.18
NPV			+6.22		-0.21

Calculation of IRR

IRR $=L+\frac{N P V_{L}}{N P V_{L-} N P V_{H}}(H-L)$
$9 \%+\frac{6.22}{6.22-(-0.21)}(10 \%-9 \%)=9 \%+\frac{6.22}{6.43}=9.97 \%$
Therefore, $K_{d}=9.97 \%$

Cost of Capital
CA Amit Sharma
Q. 12

Cost of Debt / Equity
MTP May 21(2)
In March 2021 Tiruv Ltd.'s share was sold for Rs. 219 per share. A long-term earnings growth rate of 11.25% is anticipated. Tiruv Ltd. is expected to pay a dividend of Rs. 5.04 per share.
(i) DETERMINE the rate of return an investor can expect to earn assuming that dividends are expected to grow along with earnings at 11.25% per year in perpetuity?
(ii) It is expected that Tiruv Ltd. will earn about 15% on book equity and shall retain 60% of earnings. In this case, whether there would be any change in growth rate and cost of equity? ANALYSE.

Ans. (i) According to Dividend Discount Model approach the firm's expected or required return on equity is computed as follows:

$$
K_{e}=\frac{D_{1}}{P_{0}}+g
$$

Where,
$K_{e}=$ Cost of equity share capital
$D_{1}=$ Expected dividend at the end of year 1
$P_{0}=$ Current market price of the share.
$g=$ Expected growth rate of dividend.
Therefore, $K_{e}=\frac{5.04}{219}+0.1125=13.55 \%$
(ii) With rate of return on retained earnings (r) of 15% and retention ratio (b) of 60%, new growth rate will be as follows:

$$
g=b r=0.60 \times 0.15=0.09 \text { or } 9 \%
$$

Accordingly, dividend will also get changed and to calculate this, first we shall calculate previous
retention ratio (b1) and then EPS assuming that rate of return on retained earning (r) is same.
With previous Growth Rate of 11.25% and $r=15 \%$, the retention ratio comes out to be:
$0.1125=b 1 \times 0.15$
b1= 0.75 and payout ratio $=0.25$
With 0.25 payout ratio, the EPS will be as follows:
EPS $=\frac{5.04}{0.25}=R s 20.16$
With new payout ratio of 40\% (1-0.60) the new dividend will be:
$D_{1}=$ Rs $20.16 \times 0.40=$ Rs. 8.064
Accordingly new K_{e} will be:
$K_{e}=\frac{8.064}{219}+0.09=12.68 \%$

MR Ltd. is having the following capital structure, which is considered to be optimum as on 31.03.2022.

Equity share capital (50,000 shares)
12% Pref. share capital
15% Debentures
₹ $8,00,000$
₹ 50,000
₹ $1,50,000$
₹ $10,00,000$

The earnings per share (EPS) of the company were ₹ 2.50 in 2021 and the expected growth in equity dividend is 10% per year. The next year's dividend per share (DPS) is 50% of EPS of the year 202I. The current market price per share (MPS) is ₹ 25.00 . The 15% new debentures can be issued by the company. The company's debentures are currently selling at ₹ 96 per debenture. The new 12% Pref. share can be sold at a net price of ₹ 91.50 (face value ₹ 100 each). The applicable tax rate is 30%.

You are required to calculate
(a) After tax cost of
(i) New debt,
(ii) New pref. share capital and
(iii) Equity shares assuming that new equity shares come from retained earnings. (b) Marginal cost of capital, How much can be spent for capital investment before sale of new equity shares assuming that retained earnings for next year investment is 50% of 2021 ?
(a) (i) After tax cost of new Debt:

$$
\begin{aligned}
& K_{d}=\frac{I(1-t)}{P_{1}}=\frac{15(1-0.3)}{96} \\
& \quad=0.1094 \text { (or) } 10.94 \%
\end{aligned}
$$

(ii) After tax cost of New Preference share capital:

$$
K_{p}=\frac{P_{D}}{P_{0}}=\left(\frac{12}{91.5}\right)=0.1311 \text { (or) } 13.11 \%
$$

(iii) After tax cost of Equity shares:

$$
\begin{aligned}
& K_{e}=\left(\frac{D_{1}}{p_{0}}\right)+g=\left[\frac{(2.50 \times 50 \%)}{25}\right]+0.10 \\
& =0.15 \text { (or) } 15 \%
\end{aligned}
$$

(b) Marginal Cost of Capital

Type of capital	Proportions	Specific cost	Product
Equity Shares	0.80	0.15	0.12
Preference Shares	0.05	0.1311	0.0066
Debentures	0.15	0.1094	0.0164
IMarginal cost of capital			0.1430

(c) Amount that can be spend for capital investment

Retained earnings $=50 \%$ of EPS \times No. of outstanding Equity shares

$$
=1.25 \times 50,000
$$

Proportion of equity (Retained earnings here) capital is 80% of total capital.
Therefore, ₹ 62,500 is 80% of total capital.

Amount of Capital Investment $=\frac{62,500}{0.80}={ }^{\prime} 78,125$

Following are the information of TT Ltd.:

Particulars	
Earnings per share	₹ 10
Dividend per share	$₹ 6$
Expected growth rate in Dividend	6%
Current market price per share	₹ 120
Tax Rate	30%
Requirement of Additional Finance	₹ 30 lakhs
Debt Equity Ratio (For additional finance)	$2: 1$
Cost of Debt	10%
$0-5,00,000$	9%
$5,00,001-10,00,000$	8%
Above 10,00,000	

Assuming that there is no Reserve and Surplus available in TT Ltd.
You are required to:
(a) Find the pattern of finance for additional requirement
(b) Calculate post tax average cost of additional debt \dagger
(c) Calculate cost of equity
(d) Calculate the overall weighted average after tax cost of additional finance.

Ans. (a) Pattern of raising additional finance

| Equity $1 / 3$ of $₹ 30,00,000$ | $=₹ 10,00,000$ |
| :--- | :--- | :--- |
| Debt $2 / 3$ of $₹ 30,00,000$ | $=₹ 20,00,000$ |

The capital structure after raising additional finance:

Particulars	(₹)
Shareholder's Funds	
Equity Capital	$10,00,000$
Debt (Interest at 10\% p.a.)	$5,00,000$
(Interest at 9\% p.a.)	$5,00,000$
\quad (Interest at 8\% p.a.)	$10,00,000$
Total Funds	$30,00,00$

(b) Determination of post-tax average cost of additional debt
$K_{d}=I(1-t)$
Where, I = Interest Rate
$t=$ Corporate tax-rate
On First ₹ $5,00,000=10 \%(1-0.3)=7 \%$ or 0.07
On Next ₹ $5,00,000=9 \%(1-0.3)=6.3 \%$ or 0.063
On Next ₹ $10,00,000=8 \%(1-0.3)=5.6 \%$ or 0.056

$$
\text { Average Cost of Debt }=\frac{(5,00,000 \times 0.07)+(5,00,000 \times 0.63)+(10,00,000 \times 0.056)}{20,00,000} \times 100=6.125 \%
$$

(c) Determination of cost of equity applying Dividend growth model:
$\mathrm{K}_{\mathrm{e}}=\frac{\mathrm{D}_{1}}{P_{0}}+g$
Where,
$K_{e}=$ Cost of equity
$D_{1}=D 0(1+g)$
Do = Dividend paid
$g=$ Growth rate $=6 \%$
Po = Current market price per share $=₹ 120$

$$
K_{e}=\frac{6(1+0.06)}{120}+0.06=\frac{6.36}{120}+0.06=0.113 \text { or } 11.3 \%
$$

(d) Computation of overall weighted average after tax cost of additional finance

Particulars	(₹)	Weights	Cost of funds	Weighted Cost (\%)
Equity	$10,00,000$	$1 / 3$	11.3%	3.767
Debt	$20,00,000$	$2 / 3$	6.125%	4.083
WACC	$30,00,000$			7.85

Alternative Solution

(a) Pattern of raising additional finance
Equity $\quad 1 / 3$ of $₹ 30,00,000 \quad=₹ 10,00,000$
Debt $2 / 3$ of ₹ $30,00,000=$ ₹ $20,00,000$

The capital structure after raising additional finance:

Particulars	(₹)
Shareholders' Funds	
Equity Capital	$10,00,000$
Debt (Interest at 8\% p.a.)	$20,00,000$
Total Funds	$30,00,000$

(b) Determination of post-tax average cost of additional debt
$K_{d}=I(1-t)$

Where,
I= Interest Rate
$T=$ Corporate tax-rate
$K_{d}=8 \%(1-0.3)=5.6 \%$
(c) Determination of cost of equity applying Dividend growth model:

$$
K_{e}=\frac{D_{1}}{P_{0}}+g
$$

Where,
$\mathrm{K}_{\mathrm{e}}=$ Cost of equity
$D_{1}=D_{0}(1+g)$
$D_{0}=$ Dividend paid
$g=$ Growth rate $=6 \%$
Po $=$ Current market price per share $=₹ 120$

Then, $\mathrm{Ke}=\frac{6(1+0.06)}{120}+0.06=\frac{6.36}{120}+0.06=0.113$ or 11.3%
(d) Computation of overall weighted average after tax cost of additional finance

Particulars	(₹)	Weights	Cost of funds	Weighted Cost (\%)
Equity	$10,00,000$	$1 / 3$	11.3%	3.767
Debt	$20,00,000$	$2 / 3$	5.6%	3.733
WACC	$30,00,000$			7.50

Q. 15

Cost of Retained Earn / WACC RTP Nov 23
Jason Limited is planning to raise additional finance of ₹ 20 lakhs for meeting its new project plans. It has ₹ $4,20,000$ in the form of retained earnings available for investment purposes. Further details are as following:

Debt / Equity Mix	$30 / 70$
Cost of Debt	8% (before tax)
Upto ₹ $3,60,000$	12% (before
Beyond ₹ $3,60,000$	tax)
Earnings per share	$₹ 4$
Dividend pay-out	50% of earnings
Current Market Price per share	$₹ 44$
Expected Growth rate in Dividend	10%
Tax	40%

You are required:
(a) To determine the cost of retained earnings and cost of equity.
(b) To determine the post-tax average cost of additional debt.
(c) To determine the pattern for raising the additional finance, and
(d) Compute the overall weighted average after tax cost of additional finance.

Ans.
(a) Cost of Equity / Retained Earnings (using dividend growth model)

$$
\begin{aligned}
& K_{e}=\frac{D_{1}}{P_{0}} \\
& \text { Where } D_{1}=D_{0}(1+g)=2(1+.10)=2.2 \\
& K_{e}=\frac{2.2}{44}+0.10=0.15 \text { or } 15 \%
\end{aligned}
$$

(b) Cost of Debt (Post Tax)
$K d=I(1-t)$
Upto $3,60,000 \mathrm{Kd}=.08(1-0.4)=0.048$
Beyond 3,60,000 =. $12(1-0.4)=0.072$
Thus, post-tax cost of additional debt $=0.048 \times 3,60,000 / 6,00,000+0.072 \times$
$2,40,000 / 6,00,000=0.0288+0.0288=0.0576$ or 5.76%
(c) Pattern for Raising Additional Finance

Debt $=20,00,000 \times 30 \%=6,00,000$
Equity $=20,00,000 \times 70 \%=14,00,000$
Out of this total equity amount of ₹ $14,00,000$
Equity Shares $=14,00,000-4,20,000=9,80,000$
And Retained Earnings $=4,20,000$
(d) Overall Weighted Average after tax cost of additional finance

WACC $=$ Kd \times Debt Mix + Ke \times Equity Mix $=0.0576 \times 30 \%+0.15 \times 70 \%=0.01728+0.105=0.1223$ or 12.23\% (approx.

Q. 16

WACC

PY May 19
Alpha Ltd. has furnished the following information:

- Earning Per Share (EPS)	$₹ 4$
- Dividend payout ratio	25%
- Market price per share	$₹ 50$
- Rate of tax	30%
- Growth rate of dividend	10%

The company wants to raise additional capital of ₹ 10 lakhs including debt of ₹ 4 lakhs. The cost of debt (before tax) is 10% up to ₹ 2 lakhs and 15% beyond that. Compute the after tax cost of equity and debt and also weighted average cost of capital
(i) Cost of Equity Share Capital (Ke)

$$
K_{e}=\frac{D_{0(1+g)}}{P_{0}}+g=\frac{25 \% \text { of } 4(1+0.10)}{50}+0.10=\frac{1.10}{50}+0.10=0.122 \text { or } 12.2 \%
$$

(ii) Cost of Debt (Kd)

$$
K_{d}=\frac{\text { Interest }}{\text { Net Proceeds }} \times 100 \times(1-t)
$$

Interest on first 2,00,000 @ 10\%=20,000
Interest on next $2,00,000$ @ 15\%=30,000
$K_{d}=\frac{50,000}{4,00,000} \times(1-0.3)=0.0875$ or 8.75%
(iii) Weighted average cost of capital (WACC)

Source of capital	Amount (₹)	Weights	Cost of Capital $(\%)$	WACC (\%)
Equity shares	$6,00,000$	0.60	12.20	7.32

Debt	$4,00,000$	0.40	8.75	3.50
Total	$10,00,000$	1.00		10.82

Alternatively Cost of Equity Share Capital (Ke) can be calculated as

$$
K_{e}=\frac{D}{P_{0}}+g=\frac{25 \% \text { of } 4}{50}+0.10=\frac{1.00}{50}+0.10=0.120 \text { or } 12.00 \%
$$

Accordingly
Weighted Average Cost of Capital (WACC)

Source of capital	Amount (₹)	Weights	Cost of Capital (\%)	WACC (\%)
Equity shares	$6,00,000$	0.60	12.00	7.20
Debt	$4,00,000$	0.40	8.75	3.50
Total	$10,00,000$	1.00		10.70

WACC
RTP Nov 18
M / s. Navya Corporation has a capital structure of 40% debt and 60% equity. The company is presently considering several alternative investment proposals costing less than ₹ 20 lakhs. The corporation always raises the required funds without disturbing its present debt equity ratio.

The cost of raising the debt and equity are as under:

Project cost	Cost of debt	Cost of equity
Upto ₹ 2 lakhs	10%	12%
Above ₹ 2 lakhs \& upto to ₹ 5 lakhs	11%	13%
Above ₹ 5 lakhs \& upto ₹10 lakhs	12%	14%
Above ₹10 lakhs \& upto ₹ 20 lakhs	13%	14.5%

Assuming the tax rate at 50\%, CALCULATE:
(i) Cost of capital of two projects X and Y whose fund requirements are $₹ 6.5$ lakhs and ₹ 14 lakhs respectively.
(ii) If a project is expected to give after tax return of 10%, DETERMINE under what conditions it would be acceptable?
(i) Statement of Weighted Average Cost of Capital

\begin{tabular}{|l|c|c|l|l|}
\hline Project cost \& Financing \& \begin{tabular}{c}
Proportion of \\
capital \\
Structure
\end{tabular} \& \begin{tabular}{l}
After tax \\
cost \\
\((1-\) Tax 50\%)
\end{tabular} \& \begin{tabular}{l}
Weighted \\
average cost (\%)
\end{tabular} \\
\hline Upto` 2 Lakhs \& Debt \& 0.4 \& \begin{tabular}{r}
\(10 \%(1-0.5)\) \\
\(=5 \%\)
\end{tabular} \& \(0.4 \times 5=2.0\) \\
\& Equity \& 0.6 \& \(12 \%\) \& \(0.6 \times 12=\underline{7.2}\) \\
\& \& \& \& \(\underline{9.2 \%}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|r|r|}
\hline \begin{tabular}{l}
Above` 2 lakhs \\
\& upto to`5
\end{tabular} \& Debt \& 0.4 \& \begin{tabular}{r}
\(11 \%(1-0.5)\) \\
\(=5.5 \%\)
\end{tabular} \& \(0.4 \times 5.5=2.2\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \& Equity \& 0.6 \& 13\% \& \(0.6 \times 13=\underline{7.8}\) \\
\hline \& \& \& \& 10.0\% \\
\hline \begin{tabular}{l}
Above` 5 lakhs \\
\& upto` 10 lakhs
\end{tabular} \& \begin{tabular}{l}
Deb \(\dagger\) \\
Equity
\end{tabular} \& \[
\begin{aligned}
\& 0.4 \\
\& 0.6
\end{aligned}
\] \& \[
\begin{array}{r}
12 \%(1-0.5) \\
=6 \% \\
14 \%
\end{array}
\] \& \[
\begin{aligned}
\& 0.4 \times 6=2.4 \\
\& 0.6 \times 14=8.4
\end{aligned}
\] \\
\hline \& \& \& \& 10.8\% \\
\hline \begin{tabular}{l}
Above` 10 lakhs \\
\& upto` 20 lakhs
\end{tabular} \& \begin{tabular}{l}
Deb \(\dagger\) \\
Equity
\end{tabular} \& \[
\begin{aligned}
\& 0.4 \\
\& 0.6
\end{aligned}
\] \& \[
\begin{array}{r}
13 \%(1-0.5) \\
=6.5 \% \\
14.5 \%
\end{array}
\] \& \[
\begin{aligned}
\& 0.4 \times 6.5=2.6 \\
\& 0.6 \times 14.5=8.7
\end{aligned}
\] \\
\hline \& \& \& \& 11.3\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Project \& Fund requirement \& Cost of capital \\
\hline\(X\) \& ₹ 6.5 lakhs \& \(10.8 \%\) (from the above table) \\
\hline\(y\) \& ₹14 lakhs \& \(11.3 \%\) (from the above table) \\
\hline
\end{tabular}
(ii) If a Project is expected to give after tax return of \(10 \%\), it would be acceptable provided its project cost does not exceed ₹ 5 lakhs or, after tax return should be more than or at least equal to the weighted average cost of capital.

Q Ltd. has the following capital structure at book-value as on 31st March 2022:

Particulars	(₹)
Equity share capital $(10,00,000$ shares $)$	$4,00,00,00$
12% Preference shares	0
11% Debentures	$80,00,000$
	$6,80,00,000$

The equity shares of the company are sold for ₹ 400 . It is expected that the company will pay next year a dividend of ₹ 20 per equity share, which is expected to grow by 5% p.a. forever. Assume a 30% corporate tax rate.
Required:
(i) COMPUTE weighted average cost of capital (WACC) of the company based on the existing capital structure.
(ii) COMPUTE the new WACC, if the company raises an additional ₹ 50 lakhs debt by issuing 12% debentures.

This would result in increasing the expected equity dividend to $₹ 25$ and leave the growth rate unchanged, but the price of equity share will fall to $₹ 300$ per share.

Ans. (i) Computation of Weighted Average Cost of Capital based on existing capital structure

Source of Capital	Existing Capital structure	Weights	After tax cost of (a)	WACC (\%)
Equital (\%) share capital (W.N.1)	$4,00,00,000$	0.588	10.00	5.88
12% (a) $\times(b)$				

11% Debentures (W.N.2)	$2,00,00,000$	0.294	7.70	2.26
Total	$6,80,00,000$	1.000		9.56

Working Notes:

1. Cost of Equity Capital:

$$
\begin{aligned}
\mathrm{K}_{e} & =\frac{\text { Expected dividend }\left(\mathrm{D}_{1)}\right.}{\text { Current Market } \operatorname{Price}\left(P_{0}\right)}+\operatorname{Growth}(g) \\
& =\frac{20}{400}+0.05 \\
& =10 \%
\end{aligned}
$$

2. Cost of 10% Debentures

$$
\begin{aligned}
\mathrm{K}_{d} & =\frac{\text { Interest }(1-t)}{\text { Net Proceeds }} \\
& =\frac{22,00,000(1-0.30)}{2,00,00,000} \\
& =0.077 \text { or } 7.7 \%
\end{aligned}
$$

(ii) Computation of Weighted Average Cost of Capital based on new capital structure

Source of Capital	New Capital structure (₹)	Weights (a)	After tax cost of capital (\%)	WACC (\%) $\text { (a) } \times(b)$
Equity share capital (W.N.3)	4,00,00,000	0.548	13.33	7.30
12\% Preference share capital	80,00,000	0.110	12.00	1.32
11\% Debentures (W.N.2)	2,00,00,000	0.274	7.70	2.11
12\% Debentures (W.N.4)	50,00,000	0.068	8.40	0.57
Total	7,30,00,000	1.000		11.30

Working Notes:

3. Cost of Equity Capital:

$$
\begin{aligned}
K_{e} & =\frac{25}{300}+0.05 \\
& =13.33 \%
\end{aligned}
$$

4. Cost of 12% Debentures

$$
\begin{aligned}
K_{d} & =\frac{6,00,000(1-0.30)}{50,00,000} \\
& =0.084 \text { or } 8.4 \%
\end{aligned}
$$

Q. 19

WACC
MTP May 22(1)
\cdots
The capital structure of a Company is given below:

Source of capital	Book Value
Equity shares @ ₹ 100 each	$24,00,000$

9% Cumulative preference shares @ ₹ 100 each	$4,00,000$
11% Debentures	$12,00,000$
	$40,00,000$

The company had paid equity dividend @ 25% for the last year which is likely to grow @ 5% every year. The current market price of the company's equity share is ₹ 200 .
Considering corporate tax @ 30%, you are required to CALCULATE:
(i) Cost of capital for each source of capital.
(ii) Weighted average cost of capital.

Ans. (i) Calculation of Cost of Capital for each source of capital:
(a) Cost of Equity share capital:
K_{a}

$$
\begin{aligned}
& =\frac{D_{0}(1+g)}{\text { MarketPr icepershare }\left(P_{0}\right)}+g=\frac{25 \% \times 100(1+0.05)}{200}+0.05 \\
& =\frac{26.26}{200}+0.05=0.18125 \text { or } 18.125 \%
\end{aligned}
$$

(b) Cost of Preference share capital $\left(K_{\mathrm{p}}\right)=9 \%$
(c) Cost of Debentures (K_{d}) $=r(1-t)$

$$
=11 \%(1-0.3)=7.7 \%
$$

(ii) Weighted Average Cost of Capital

Source	Amount (₹)	Weights	After tax Cost of Capital	WACC (\%)
Equity share	$24,00,000$	0.60	18.125	10.875
9% Preference share	$4,00,000$	0.10	9.000	0.900
11% Debentures	$12,00,000$	0.30	7.700	2.310
	$40,00,000$	1.00		14.08

The following is the capital structure of Sharda Ltd. as on 31.12.2020:

	(₹)
Equity shares: 2,00,000 shares (of ₹ 100 each)	$2,00,00,000$
9% Preference Shares (of ₹ 100 each)	$60,00,000$
8% Debentures	$\underline{90,00,000}$

The market price of the company's share is ₹ 120 and it is expected that a dividend of ₹ 12 per share would be declared for the year 2021. The dividend growth rate is 5% and the company is in the 30% tax bracket.
(i) CALCULATE the company's weighted average cost of capital.
(ii) Further, in order to finance an expansion plan, the company intends to borrow a fund of ₹ 2 crores bearing 12% rate of interest. In this situation, WHAT will be the company's revised weighted average cost of capital? This financing decision is expected to increase dividend from ₹ 12 to ₹ 14 per share. However, the market price of equity share is expected to decline from ₹ 120 to ₹ 115 per share.

In case of both (i) and (ii) above, use market value weight while calculating weighted average cost of capital

Ans.
(i) Computation of the weighted average cost of capital

Source of finance	Market Value of capital (₹)	Weight (b)	After tax Cost of capital (\%)	WACC (\%) $(d)=(b) \times(c)$
Equity share (Working note 1) [₹120 $\times 2,00,000$ shares]	2,40,00,000	0.6154	15	9.231
9\% Preference share	60,00,000	0.1538	9	1.3842
8\% Debentures	90,00,000	0.2308	5.60	1.2925
	3,90,00,000	1.0000		11.9077

(ii) Computation of Revised Weighted Average Cost of Capital

Source of finance	Market Value of capital	Weight	After tax Cost of capital (\%)	WACC (\%)
Equity shares (Working note 2) [₹ $115 \times 2,00,000$ shares]	$2,30,00,000$	0.3966	17.17	6.8096
9\% Preference shares	$60,00,000$	0.1034	9.00	0.9306
8\% Debentures	$90,00,000$	0.1552	5.60	0.8691
12\% Loan	$2,00,00,000$	0.3448	8.40	2.8963
	$5,80,00,000$	1.0000		11.5056

Working Notes:

(1) Cost of Equity Shares

Ke $\quad=\{$ Dividend Per Share (D1)/Market Price Share (PO) $\}+$ Growth Rate
$=12 / 120+0.05$
$=0.15$ or 15%
(2) Revised cost of equity shares (Ke) Revised Ke

$$
\begin{aligned}
& =14 / 115+0.05 \\
& =0.1717 \text { or } 17.17 \%
\end{aligned}
$$

WACC
MTP May 20
ABC Limited has the following book value capital structure:

Equity Share Capital (1 crore shares @ Rs.10 each)	Rs. 1,000 lakh
Reserves and Surplus	Rs.2,250 lakh
9% Preference Share Capital (5 lakh shares @ Rs. 100 each)	Rs. 500 lakh
8.5% Debentures (1.5 lakh debentures @ Rs.1,000 each)	Rs.1,500 lakh
12% Term Loans from Financial Institutions	Rs. 500 lakh

The debentures of ABC Limited are redeemable at par after five years and are quoting at Rs. 985 per debenture. The current market price per equity share is Rs. 60 . The prevailing default-risk free interest rate on 10 -year $G O I$ Treasury Bonds is 5.5%. The average market risk premium is 7%. The beta of the company is 1.85

The preference shares of the company are redeemable at 10% premium after 5 years is currently selling at Rs. 102 per share. The applicable income tax rate for the company is 35%.
Required: CALCULATE weighted average cost of capital of the company using market value weights.

Working Notes:
(1) Computation of cost of debentures (Kd) :

$$
K_{d}=\frac{85(1-0.35)+\frac{(1,000-985)}{5}}{\frac{(1,000+985)}{2}}=\frac{55.25+3}{992.5}=0.0586 \text { or } 5.86 \%
$$

(2) Computation of cost of term loans (KT) :
$=r(1-t)$
$0.12(1-0.35)=0.078$ or 7.8%
(3) Computation of cost of preference capital (KP) :

$$
\begin{aligned}
& K_{p}=\frac{\text { Preference Dividend }+(R V-N P) / n}{(R V+N P) / 2} \\
& \frac{9+\frac{(110-102)}{5}}{\frac{(110+102)}{2}}=\frac{9+1.6}{106}=0.1 \text { or } 10 \%
\end{aligned}
$$

(4) Computation of cost of equity (Ke):

$$
\begin{aligned}
& =R f+\beta(R m-R f) \\
\text { Or. } \quad & =\text { Risk free rate }+(\text { Beta } \times \text { Risk premium }) \\
& =0.055+(1.85-0.07)=0.1845 \text { or } 18.45 \%
\end{aligned}
$$

Calculation of Weighted Average cost of capital Using market value weights

Source of Capital	Market value of capital structure	Weights	After tax cost of	WACC (\%)
Equity share capital $(1$ crore shares \times Rs.60)	6,000	0.71	18.45	13.09
9% Preference share capital (5 lakh shares [Rs.102)	510	0.06	10.00	0.60
8.5% Debentures $(1.5$ lakh [Rs.985)	$1,477.5$	0.17	5.86	0.99
12% Term loans	500	0.06	7.80	0.47

WACC MTP Nov 18(2) \quad

PQR Ltd. has the following capital structure on October 31, 20X8:

Sources of capital	(Rs.)
Equity Share Capital (2,00,000 Shares of Rs. 10 each)	$20,00,000$
Reserves \& Surplus	$20,00,000$

12% Preference Shares	$10,00,000$
9% Debentures	$30,00,000$
	$80,00,000$

The market price of equity share is Rs. 30. It is expected that the company will pay next year a dividend of Rs. 3 per share, which will grow at 7\% forever. Assume 40\% income tax rate.
You are required to COMPUTE weighted average cost of capital using market value weights.

Ans. (i) Cost of Equity $(\mathrm{Ke})=\frac{D_{1}}{P_{0}}+g=\frac{3}{30}+0.07=0.1+0.07=0.17=17 \%$
(ii) Cost of Debentures $(K d)=9 \%(1-0.4)=5.6 \%$

Computation of Weighted Average Cost of Capital (WACC using market value weights)

Source of capital	Market Value of	Weight	Cost of capital $(\%)$	WACC (\%)
9% Debentures	$30,00,000$	0.30	5.40	1.62
12% Preference Shares	$10,00,000$	0.10	12.00	1.20
Equity Share Capital (Rs.30 $\times 2,00,000$ shares)	$60,00,000$	0.60	17.00	10.20
Total	$1,00,00,000$	1.00		13.02

Q. 23 WACC MTP Nov 18(1)

PQR Ltd. has the following capital structure on October 31, 20X8:

Sources of capital	(Rs.)
Equity share capital (2,00,000 shares of Rs.10 each)	$20,00,000$
Reserves \& surplus	$20,00,000$
12% Preference share capital	$10,00,000$
9% Debentures	$30,00,000$
	$80,00,000$

The market price of equity share is Rs. 30. It is expected that the company will pay next year a dividend of Rs.
3 per share, which will grow at 7\% forever. Assume 40\% income tax rate.
You are required to COMPUTE weighted average cost of capital using market value weights.

Ans. Workings:
(i) Cost of Equity $(\mathrm{Ke})=\frac{D_{1}}{P_{0}}+g=\frac{3}{30}+0.07=0.1+0.07=0.17=17 \%$
(ii) Cost of Debentures $(K d)=I(1-t)=0.09(1-0.4)=0.054$ or 5.4%

Computation of Weighted Average Cost of Capital (WACC using market value weights)

Source of capital	Market Value of capital	Weight	Cost of capital $(\%)$	WACC (\%)

9% Debentures	$30,00,000$	0.30	5.40	1.62
12% Preference Shares	$10,00,000$	0.10	12.00	1.20
Equity Share Capital (Rs. $30 \times 2,00,000$ shares)	$60,00,000$	0.60	17.00	10.20
Total	$1,00,00,000$	1.00		13.02

JKL Ltd. has the following book-value capital structure as on March 31, 20×8.

	(Rs.)
Equity share capital (2,00,000 shares)	$40,00,000$
11.5% Preference shares	$10,00,000$
10% Debentures	$30,00,000$

The equity shares of the company are sold at Rs. 20. It is expected that the company will pay next year a dividend of Rs. 2 per equity share, which is expected to grow by 5% p.a. forever. Assume a 35% corporate tax rate.

Required:
(i) COMPUTE weighted average cost of capital (WACC) of the company based on the existing capital structure.
(ii) COMPUTE the new WACC, if the company raises an additional Rs. 20 lakhs debt by issuing 12% debentures. This would result in increasing the expected equity dividend to Rs. 2.40 and leave the growth rate unchanged, but the price of equity share will fall to Rs. 16 per share.
(i) Computation of Weighted Average Cost of Capital based on existing capital structure

Source of Capital	Existing Capital structure (Rs.)	Weights	After tax cost of capital (\%)	WACC (\%)
Equity share capital (W.N.1)	$40,00,000$	0.500	15.00	7.500
11.5\% Preference share capital (W.N.2)	$10,00,000$	0.125	11.50	1.437
10\% Debentures (W.N.3)	$30,00,000$	0.375	6.50	2.438
	$80,00,000$	1.000		11.375

Working Notes (W.N.)

1. Cost of equity capital:

$$
\begin{aligned}
& \mathrm{K}_{e}=\frac{\text { ExpectedDividend }\left(\mathrm{D}_{1}\right)}{\text { CurrentMarketPriceperShare }\left(P_{0}\right)}+\text { Growth }(g) \\
& \frac{2}{20}+0.05=0.15 \text { or } 15 \%
\end{aligned}
$$

2. Cost of preference share capital:
$=\frac{\text { Annual preference share dividend(PD) }}{\text { Netproceed sintheissueofpreferenceshare(NP) }}$

$$
\frac{1,15,000}{10,00,000}=0.115 \text { or } 11.5 \%
$$

3. Cost of 10% Debentures:

$$
=\frac{I(1-t)}{N P}=\frac{3,00,000(1-0.35)}{30,00,000}=0.065 \text { or } 6.5 \%
$$

(ii) Computation of Weighted Average Cost of Capital based on new capital structure

Source of Capital	New Capital structure (Rs.)	Weights	After tax cost of capital (\%)	WACC (\%)
Equity share capital (W.N. 4)	$40,00,000$	0.40	20.00	8.00
Preference share (W.N. 2)	$10,00,000$	0.10	11.50	1.15
10% Debentures (W.N. 3)	$30,00,000$	0.30	6.50	1.95
12% Debentures (W.N.5)	$20,00,000$	0.20	7.80	1.56
	$1,00,00,000$	1.00		12.66

Working Notes (W.N.):
4. Cost of equity capital:

$$
K_{e}=\frac{\text { ExpectedDividend }\left(D_{1}\right)}{\text { CurrentMarketPricepershare }\left(P_{0}\right)}+G r o w t h(g)=\frac{2.40}{16}+5 \%=20 \%
$$

5. Cost of 12% Debentures

$$
K_{d}=\frac{2,40,000(1-0.35)}{20,00,000}=0.078 \text { or } 7.8 \%
$$

WACC
MTP May 18
G Limited has the following capital structure, which it considers to be optimal

Capital Structure	Weightage (in \%)
Debt	25
Preference Shares	15
Equity Shares	60
	100

G Limited's expected net income this year is ₹ $34,285.72$, its established dividend payout ratio is 30 per cent, its tax rate is 40 per cent, and investors expect earnings and dividends to grow at a constant rate of 9 per cent in the future. It paid a dividend of ₹ 3.60 per share last year, and its shares currently sells at a price of ₹ 54 per share.G Limited requires additional funds which it can obtain in the following ways:

- Preference Shares: New preference shares with a dividend of $₹ 11$ can be sold to the public at a price of ₹95 per share.
- Debt: Debt can be sold at an interest rate of 12 per cent. You are required to:
(i) DETERMINE the cost of each capital structure component; and
(ii) COMPUTE the weighted average cost of capital (WACC) of G Limited.

Ans. (i) Computation of Costs of Different Components of Capital:
(a) Equity Shares:

$$
\begin{aligned}
& K_{e}=\frac{D_{1}}{P O}+g=\frac{D_{0}(1+g)}{P_{0}}+g \\
& =\frac{3.60(1.09)}{54}+0.09=0.0727+0.09=16.27 \%
\end{aligned}
$$

(b) Preference Shares:
$K_{p}=\frac{\text { Preference Share Dividend }}{P_{0}}=\frac{11}{95}=11.58 \%$
(c) Debt at 12%
$K_{d}(1-t)=12 \%(1-0.4)=12 \% \times 0.6=7.20 \%$.
(ii) Weighted Average Cost of Capital (WACC)
$W A C C=W d K d+W p K p+W e K e$
$W A C C=0.25(7.2 \%)+0.15(11.58 \%)+0.60(16.27 \%)$
$=1.8+1.737+9.762=13.30 \%$.

The following is the extract of the Balance Sheet of M / s KD Ltd.:

Particulars	Amount (₹)
Ordinary shares (Face Value ₹ 10/- per share)	$5,00,000$
Share Premium	$1,00,000$
Retained Profits	$6,00,000$
8\% Preference Shares (Face Value ₹25/-per share)	$4,00,000$
12% Debentures (Face value ₹100/- each)	$6,00,000$
	$22,00,000$

The ordinary shares are currently priced at ₹ 39 ex-dividend and preference share is priced at ₹ 18 cum-dividend. The debentures are selling at 120 percent ex-interest. The applicable tax rate to KD Ltd. is 30 percent. KD Ltd. 's cost of equity has been estimated at 19 percent. Calculate the WACC (weighted average cost of capital) of KD Ltd. on the basis of market value.
W.N. 1

Cum-dividend price of Preference shares $=₹ 18$
Less: Dividend $(8 / 100) \times 25=$ ₹ 2
\therefore Market Price of Preference shares $=₹ 16$
$K_{p}=\frac{2}{16}=0.125$ (or) 12.5%
No. of Preference shares $=\left(\frac{4,00,000}{25}\right)=16,000$
W.N. 2

Market price of Debentures $=\left(\frac{120}{100}\right) \times 100=$ Rs 120
$K_{d}=\left[\frac{12(1-0.3)}{120}\right]=0.07$ (or) 7%
No. of Debentures $=\left(\frac{6,00,000}{100}\right)=6,000$
W.N. 3

Market Price of Equity shares = Rs 39
Ke (given) $\quad=19 \%$ or 0.19
No. of Equity shares $\quad=5,00,000=50,000$

Sources	Marke t	Nos.	Total Market value (₹)	Weight	Cost of Capital	Product
Equity Shares	39	50,000	$19,50,000$	0.6664	0.19	0.1266
Preference Shares	16	16,000	$2,56,000$	0.0875	0.125	0.0109
Debentures	120	6,000	$7,20,000$	0.2461	0.07	0.0172
					WACC $=$	0.1547

WACC $=0.1547$ or 15.47%

The financial advisor of Sun Ltd is confronted with following two alternative financing plans for raising ₹ 10 lakhs that is needed for plant expansion and modernization
Alternative I: Issue 80% of funds with 14% Debenture [Face value (FV) ₹ 100] at par and redeem at a premium of 10% after 10 years and balance by issuing equity shares at $33 \frac{1}{3} \%$ premium.
Alternative II: Raise 10% of funds required by issuing 8% Irredeemable Debentures [Face value (FV)
₹ 100] at par and the remaining by issuing equity shares at current market price of ₹125. Currently, the firm has an Earnings per share (EPS) of ₹ 21
The modernization and expansion programme is expected to increase the firm's Earnings before Interest and Taxation (EBIT) by ₹ 200,000 annually.
The firm's condensed Balance Sheet for the current year is given below:
Balance Sheet as on 31.3.2022

Liabilities	Amount (₹)	Assets	Amount (₹)
Current Liabilities	$5,00,000$	Current Assets	$16,00,000$
10\% Long Term Loan	$15,00,000$	Plant \& Equipment (Net)	$34,00,000$
Reserves \& Surplus	$10,00,000$		
Equity Share Capital (FV: ₹ 100 each)	$20,00,000$		$50,00,000$
TOTAL	$50,00,000$	TOTAL	

However, the finance advisor is concerned about the effect that issuing of debt might have on the firm. The average debt ratio for firms in industry is 35%. He believes if this ratio is exceeded, the P / E ratio of the company will be 7 because of the potentially greater risk.
If the firm increases its equity capital by more than 10%, he expects the P/E ratio of the company will increase to 8.5 irrespective of the debt ratio.

Assume Tax Rate of 25%. Assume target dividend pay-out under each alternative to be 60% for the next year and growth rate to be 10% for the purpose of calculating Cost of Equity

SUGGEST with reason which alternative is better on the basis of each of the below given criteria:
I. Earnings per share (EPS) \& Market Price per share (MPS)
II. Financial Leverage
III. Weighted Average Cost of Capital \& Marginal Cost of Capital (using Book Value weights)

Calculation of Equity Share capital and Reserves and surplus: Alternative 1:
Equity Share capital $=₹ 20,00,000+\frac{2,00,000 \times 100}{133.3333}=21,50,000$
Reserves $=₹ 10,00,000+\frac{2,00,000 \times 33.3333}{133.3333}=₹ 10,50,000$
Alternative 2:
Equity Share capital $=₹ 20,00,000+\frac{9,00,000 \times 100}{125}=₹ 27,20,000$
Reserves $=₹ 10,00,000+\frac{9,00,000 \times 100}{125}=₹ 11,80,000$
Capital Structure Plans

Capital	Alternative 1	Alternative 2
Equity Share capital	$21,50,000$	$27,20,000$
Reserves and surplus	$10,50,000$	$11,80,000$
10% long term debt	$15,00,000$	$15,00,000$
14% Debentures	$8,00,000$	-
8% Irredeemable Debentures	-	$1,00,000$
Total Capital Employed	$55,00,000$	$55,00,000$

Computation of Present Earnings before interest and tax (EBIT)

EPS (₹)	21
No. of equity shares	20,000
Earnings for equity shareholders (I \times II) $(₹)$	$4,20,000$
Profit Before $\operatorname{Tax}(\mathrm{III} / 75 \%)(₹)$	$5,60,000$
Interest on long term loan $(1500000 \times 10 \%)(₹)$	$1,50,000$
EBIT $(I V+V)(₹)$	$7,10,000$

EBIT after expansion $=₹ 7,10,000+₹ 2,00,000=₹ 9,10,000$
Evaluation of Financial Plans on the basis of EPS, MPS and Financial Leverage

Particulars	Alternative I	
Alternate II		
EBIT	$9,10,000$	$9,10,000$
Less: Interest: 10% on long term loan	$(1,50,000)$	$(1,50,000)$
14% on Debentures	$(1,12,000)$	Nil
8% on Irredeemable Debentures	Nil.	(8000)
PBT	$6,48,000$	$7,52,000$
Less: Tax @25\%	$(1,62,000)$	$(1,88,000)$
PAT	$4,86,000$	$5,64,000$
No. of equity shares	21,500	27,200
EPS	22.60	20.74
Applicable P/E ratio (Working Note 1)	7	8.5
MPS (EPS X P/E ratio)	158.2	176.29
Financial Leverage EBIT/PBT	1.40	1.21

Cost of Capital

Working Note 1

	Alternative I	Alternative II
Debt:		
₹15,00,000 +₹8,00,000	23,00,000	-
₹15,00,000 +₹ 1,00,000	-	16,00,000
Total capital Employed ($₹$)	55,00,000	55,00,000
Debt Ratio (Debt/Capital employed)	=0.4182	=0.2909
	=41.82\%	=29.09\%
Change in Equity: ₹ $21,50,000$-₹ $20,00,000$	1,50,000	
₹27,20,000-₹20,00,000		7,20,000
Percentage change in equity	7.5\%	36\%
Applicable P/E ratio	7	8.5

Calculation of Cost of equity and various type of debt

Calculation of Cost of equity and various type of debt		
A) Cost of equity	Alternative I	Alternative II
EPS		
DPS (EPS X 60\%)	22.60	20.74
Growth (g)	13.56	12.44
Po (MPS)	10%	10%
Ke Do (1 + g)/ Po	158.2	176.29
	$\frac{13.56(1.1)}{158.2}$	$\frac{12.44(1.1)}{176.29}$
B) Cost of Debt:	$=9.43 \%$	$=7.76 \%$
10% long term debt	$10 \%+(1-0.25)$	
	$=7.5 \%$	$10 \%+(1-0.25)$
14% redeemable debentures	$\frac{14(1-0.25)+(110-100 / 10)}{}$	$110+100 / 2$
	$=10.5+1 / 10.5$	nil
	$=10.95 \%$	
8% irredeemable debenture	NA	

Calculation of Weighted Average cost of capital (WACC)

	Alternative 1			Alternative 2		
Capital	Weights	Cost (\%)	WACC	Weights	Cost (\%)	WACC
Equity Share Capital	0.3909	9.43	3.69%	0.4945	7.76	3.84%
Reserves and Surplus	0.1909	9.43	1.80%	0.2145	7.76	1.66%
10% Long term Debt	0.2727	7.50	2.05%	0.2727	7.50	2.05%
14% Debenture	0.1455	10.95	1.59%			
8% Irredeemable Debentures	-			0.0182	6	0.11%
			9.12%			$\mathbf{7 . 6 6 \%}$

Calculation Marginal Cost of Capital (MACC)
Alternative 1
Alternative 2

Capital	Amount(weight)	Cost $(\%)$	MACC	Amount (weight)	Cost $(\%)$	MACC
Equity Share Capital	$₹ 1,50,000(0.15)$	9.43	1.41%	$₹ 7,20,000(0.72)$	7.76	5.59%
Reserves and Surplus	$₹ 50,000(0.05)$	9.43	0.47%	$₹ 1,80,000(0.18)$	7.76	1.40%
14% Debenture	$₹ 8,00,000(0.80)$	10.95	8.76%			0.00%
8% Irredeemable Debentures						
Total Capital Employed	$₹ 10,00,000$		10.65%	$₹ 10,00,000$		$\mathbf{7 . 5 8 \%}$

Summary of solution:

	Alternate I	Alternate II
Earning per share (EPS)	22.60	20.74
Market price per share (MPS)	158.20	176.29
Financial leverage	1.4043	1.2101
Weighted Average cost of capital (WACC)	9.12%	7.66%
Marginal cost of capital (MACC)	10.65%	7.58%

Alternative 1 of financing will be preferred under the criteria of EPS, whereas Alternative II of financing will be preferred under the criteria of MPS, Financial leverage, WACC and marginal cost of capital.

WACC / Marginal

MTP Nov 19

ABC Ltd. has the following capital structure which is considered to be optimum as on 31st March, 2019

	(Rs.)
14% Debentures	$30,00,000$
11% Preference shares	$10,00,000$
Equity Shares (10,000 shares)	$1,60,00,000$
	$2,00,00,000$

The company share has a market price of Rs. 236. Next year dividend per share is 50\% of year 2019 EPS. The following is the trend of EPS for the preceding 10 years which is expected to continue in future.

Year	EPS (Rs.)	Year	EPS Rs.)
2010	10.00	2015	16.10
2011	11.00	2016	17.70
2012	12.10	2017	19.50
2013	13.30	2018	21.50
2014	14.60	2019	23.60

The company issued new debentures carrying 16% rate of interest and the current market price of debenture is Rs. 96.
Preference share Rs. 9.20 (with annual dividend of Rs. 1.1 per share) were also issued. The company is in $50 \% \operatorname{tax}$ bracket.
(A) CALCULATE after tax:
(i) Cost of new debt
(ii) Cost of new preference shares
(iii) New equity share (consuming new equity from retained earnings)
(B) CALCULATE marginal cost of capital when no new shares are issued.
(C) COMPUTE the amount that can be spent for capital investment before new ordinary shares must
be sold. Assuming that retained earnings for next year's investment are 50 percent of 2019.
(D) COMPUTE marginal cost of capital when the funds exceeds the amount calculated in (C), assuming new equity is issued at Rs. 200 per share?
(A) (i) Cost of new debt
$K_{d}=\frac{I(1-t)}{p \circ}$

$$
=\frac{16(1-0.5)}{96}=0.0833
$$

(ii) Cost of new preference shares
$K_{p}=\frac{P D}{p \circ}=\frac{1.1}{9.2}=0.12$
(iii) Cost of new equity shares
$K_{e}=\frac{D_{1}}{P_{\circ}}+g$
$=\frac{11.80}{236}+0.10+0.05+0.10=0.15$

Calculation of D1
$D_{1}=50 \%$ of 2019 EPS $=50 \%$ of $23.60=$ Rs. 11.80.
(B) Calculation of marginal cost of capital

Type of Capital	Proportion	Specific Cost	Product
(1)	(2)	(3)	(2) $\times(3)=$ (4)
Debenture	0.15	0.0833	0.0125
Preference Share	0.05	0.12	0.0060
Equity Share	0.80	0.15	0.1200
Marginal cost of capital			0.1385

(C) The company can spend the following amount without increasing marginal cost of capital and without selling the new shares:
Retained earnings $=(0.50)(236 \times 10,000)=$ Rs. $11,80,000$
The ordinary equity (Retained earnings in this case) is 80% of total capital $=80 \%$ of Total Capital
Capital investment before issuing equity $=\frac{11,80,000}{0.80}=$ Rs.14,75,000
(D) If the company spends in excess of Rs. $14,75,000$ it will have to issue new shares.

The cost of new issue will be $=\frac{11.80}{200}+0.10=0.159$
The marginal cost of capital will be:

Type of Capital	Proportion	Specific Cost	Product
(1)	(2)	(3)	$(2) \times(3)=(4)$
Debentures	0.15	0.0833	0.0125
Preference Shares	0.05	0.1200	0.0060
Equity Shares (New)	0.80	0.1590	0.1272
0.1457			

first attempt success tutorials

WACC

RTP Dec 21

Kalyanam Ltd. has an operating profit of $₹ 34,50,000$ and has employed Debt which gives total Interest Charge of ₹ $7,50,000$. The firm has an existing Cost of Equity and Cost of Debt as 16% and 8% respectively. The firm has a new proposal before it, which requires funds of ₹ 75 Lakhs and is expected to bring an additional profit of $₹ 14,25,000$. To finance the proposal, the firm is expecting to issue an additional debt at 8% and will not be issuing any new equity shares in the market. Assume no tax culture.
You are required to CALCULATE the Weighted Average Cost of Capital (WACC) of Kalyanam Ltd.:
(i) Before the new Proposal
(ii) After the new Proposal

Ans.
Workings:
(a) Value of Debt

$$
\begin{aligned}
& =\frac{\text { Interest }}{\text { cost of debt }\left(k_{d}\right)} \\
& =\frac{7,50,000}{0.08}=₹ 93,75,000
\end{aligned}
$$

(b) Value of equity capital $=\frac{\text { Operating profit - Interest }}{\text { Cost of equity }\left(\mathrm{K}_{e}\right)}$

$$
=\frac{34,50,000-7,50,000}{0.16}=₹ 1,68,75,000
$$

(c) New Cost of equity $\left(K_{e}\right)$ after proposal

$$
\begin{aligned}
& =\frac{\text { Increased Operating profit - Interest on Increased debt }}{\text { Equity capital }} \\
& =\frac{(34,50,000+14,25,000)-(7,50,000+6,00,000)}{1,68,75,000} \\
& =\frac{48,75,000-13,50,000}{1,68,7500}=\frac{35,25,000}{1,68,75000}=0.209 \text { or } 20.9 \%
\end{aligned}
$$

(i) Calculation of Weighted Average Cost of Capital (WACC) before the new proposal

Sources	Amount (₹)	Weight	Cost of Capital	WACC
Equity	$1,68,75,000$	0.6429	0.160	0.1029
Debt	$93,75,000$	0.3571	0.080	0.0286
Total	$\mathbf{2 , 6 2 , 5 0 , 0 0 0}$	$\mathbf{1}$		$\mathbf{0 . 1 3 1 5}$ or $\mathbf{1 3 . 1 5} \%$

(ii) Calculation of Weighted Average Cost of Capital (WACC) after the new proposal

Sources	Amount (₹)	Weight	Cost of Capital	WACC
Equity	$1,68,75,000$	0.5000	0.209	0.1045
Debt	$1,68,75,000$	0.5000	0.080	0.0400
Total	$3,37,50,000$	1		$\mathbf{0 . 1 4 4 5}$ or 14.45%

Cost of Capital
Q. 30

WACC before \& after Proposal RTP Maay 20
PK Ltd. has the following book-value capital structure as on March 31, 2020.

	(₹)
Equity share capital $(10,00,000$ shares $)$	$2,00,00,000$
11.5% Preference shares	$60,00,000$
10% Debentures	$1,00,00,000$
	$3,60,00,000$

The equity shares of the company are sold for ₹ 200 . It is expected that the company will pay next year a dividend of ₹ 10 per equity share, which is expected to grow by 5% p.a. forever. Assume a 35% corporate tax rate.
Required:
(i) COMPUTE weighted average cost of capital (WACC) of the company based on the existing capital structure.
(ii) COMPUTE the new WACC, if the company raises an additional ₹50 lakhs debt by issuing 12% debentures. This would result in increasing the expected equity dividend to ₹ 12.40 and leave the growth rate unchanged, but the price of equity share will fall to ₹ 160 per share.
(i) Computation of Weighted Average Cost of Capital based on existing capital structure

Source of Capital	Existing Capital structure (₹)	Weights (a)	After tax cost of capital (\%) (b)	WACC (\%) (a) X(b)
Equity share capital (W.N.1)	$2,00,00,000$	0.555	10.00	5.55
11.5\% Preference share capital	$60,00,000$	0.167	11.50	1.92
10% Debentures (W.N.2)	$1,00,00,000$	0.278	6.50	1.81
	$3,60,00,000$	1.000		9.28

Working Notes (W.N.):

1. Cost of equity capital:

$$
\begin{aligned}
\mathrm{K}_{e} & =\frac{\text { Expected Dividend }\left(\mathrm{D}_{1}\right)}{\text { Current Market Priceper share (po) }}+\text { Growth (g) } \\
& =\frac{10}{200}+0.05 \\
& =10 \%
\end{aligned}
$$

2. Cost of 10% Debentures:

$$
=\frac{I(1-t)}{N P}=\frac{10,00,000(1-0.35)}{100,00,000}=0.065 \text { or } 6.5 \%
$$

(ii) Computation of Weighted Average Cost of Capital based on new capital structure

Source of Capital	New Capital structure (₹)	Weights (b)	After tax cost of capital (\%)(a)	WACC (\%) (a) $\times(b)$
Equity share capital (W.N. 3)	$2,00,00,000$	0.488	12.75	6.10
Preference share	$60,00,000$	0.146	11.50	1.68
10\% Debentures (W.N. 2)	$1,00,00,000$	0.244	6.50	1.59
12% Debentures (W.N.4)	$50,00,000$	0.122	7.80	0.95
	$4,10,00,000$	1.00		10.32

Working Notes (W.N.):

3. Cost of equity capital:

$$
\begin{aligned}
& K_{e}=\frac{\text { ExpectedDividend }\left(\mathrm{D}_{1}\right)}{\text { Current MarketPriceper share }\left(\mathrm{P}_{0}\right)}+\text { Growth }(\mathrm{g}) \\
& \frac{12.4}{160}+0.05=0.1275 \text { or } 12.75 \%
\end{aligned}
$$

4. Cost of 12% Debentures

$$
\begin{aligned}
& =\frac{6,00,000(1-0.35)}{50,00,000}=0.078 \text { or } 7.8 \% \\
K_{d} & =\frac{24,0000(1-0.35)}{20,00,000}=0.078 \text { or } 7.8 \%
\end{aligned}
$$

Genzy Ltd. is planning to introduce a new product with a project life of 10 years. The initial equipment cost will be ₹ 2.5 crores. At the end of 10 years, the equipment will have a resale value of 50 lakhs. A working capital of $₹$ $30,00,000$ will be needed and it will be released at the end of the tenth year. The project will be financed with the following capital sources.

Particulars	Amount (₹)	Issue Price (Market price)
Equity Share Capital of Face value ₹ 10 each	$1,50,00,000$	$₹ 30$
Debentures of face value ₹ 100 each with a maturity of 10 years	$90,00,000$	$₹ 90$
Preference shares of ₹ 100 each with a maturity of 10 years	$60,00,000$	$₹ 96$

The existing yield on T-bills is averaging 8% p.a. The systematic risk measure for the proposed project is 1.6. NSE NIFTY is expected to yield 14% p.a. on average for the foreseeable future. Debenture holders have been promised a coupon of 12% and preference shareholders have been committed a dividend of 15%.

The sales volumes over 10 years have been estimated as follows:

Year	1	2	$3-5$	$6-8$	$9-10$
Units per year	70,000	98,000	$2,10,000$	$2,50,000$	$1,20,000$

A sales price of ₹ 300 per unit is expected and variable expenses will amount to 60% of sales revenue. Fixed cash operating costs will amount to ₹ $40,00,000$ per year. The loss of any year will be set off from the profits of subsequent years.
The company is subject to a 30 per cent tax rate. The company follows straight line method of depreciation which is to be assumed to be admissible for tax purpose also.
CALCULATE the net present value of the project for the company and advise the management to take appropriate decision.
The PV factors are to be taken as rounded figures upto 2 decimals. Use market value weights to COMPUTE overall cost of capital.

Cost of Equity
$K_{e}=R f+\operatorname{Beta}$ * (Rm-Rf) $K_{e}=8 \%+1.6$ * (14\% - 8%)
$K_{e}=8 \%+(1.6 * 6 \%)$
$K_{e}=17.6 \%$

1. Cost of Redeemable Debentures (Post-Tax) $K_{d}=\frac{\operatorname{lnt}(1-t)+\frac{(R V-N P)}{n}}{\frac{(R V+N P)}{2}}$
$K_{d}=\frac{12,00,000 *(1-30 \%)+((1,00,00,000-90,00,000) / 10)}{(1,00,00,000+90,00,000) / 2}$
$K_{d}=8,40,000+1,00,000$

$$
95,00,000
$$

$K_{d}=9.89 \%$
2. Cost of Redeemable Preference Shares $K_{p}=\frac{P D+\frac{(R V-N P)}{n}}{\frac{(R V+N P)}{2}}$
$K_{p}=9,37,500+25,000$
61,25,000
$K_{p}=15.71 \%$
3. Weighted Average Cost of Capital (WACC) - Book Value Method

Source of Capital	Market Value	Weights	After Tax Cost of Capital	WACC
Equity Share Capital	$1,50,00,000$	0.5	17.6%	0.088
Debentures	$90,00,000$	0.3	9.89%	0.030
Preference Share Capital	$60,00,000$	0.2	15.71%	0.031
	$3,00,00,000$	1.000		0.149

WACC = 14.9%
4. Computation of CFAT

	(year 1 to year 4)					
Sr. No.	Particulars / Year	1	2		$3-5$	$6-8$
A	Sale Price p.u.	300	300	300	300	300
	Sale units	70,000	98,000	$2,10,000$	$2,50,000$	$1,20,000$
C	Sales (A x B)	$2,10,00,000$	$2,94,00,000$	$6,30,00,000$	$7,50,00,000$	$3,60,00,000$
D	Variable Cost p.u.	180	180	180	180	180
E	Variable Cost (B x D)	$1,26,00,000$	$1,76,40,000$	$3,78,00,000$	$4,50,00,000$	$2,16,00,000$
F	Contribution (C-E)	$84,00,000$	$1,17,60,000$	$2,52,00,000$	$3,00,00,000$	$1,44,00,000$
G	Less: Fixed Cost	$40,00,000$	$40,00,000$	$40,00,000$	$40,00,000$	$40,00,000$
H	PBDT (F-G)	$44,00,000$	$77,60,000$	$2,12,00,000$	$2,60,00,000$	$1,04,00,000$
I	Less: Depreciation	$20,00,000$	$20,00,000$	$20,00,000$	$20,00,000$	$20,00,000$
	$(2,50,00,000-$					
J	PBT					
K	Less: Taxes @ 30\%	$7,20,000$	$17,28,000$	$57,60,000$	$72,00,000$	$25,20,000$
L	PAT	$16,80,000$	$40,32,000$	$1,34,40,000$	$1,68,00,000$	$58,80,000$
M	Add: Depreciation	$20,00,000$	$20,00,000$	$20,00,000$	$20,00,000$	$20,00,000$
N	CFAT	$36,80,000$	$60,32,000$	$1,54,40,000$	$1,88,00,000$	$78,80,000$

5. Computation of NPV

Sr. No.	Particulars / Year	1	2	$3-5$	$6-8$	$9-10$

I	CFAT	$36,80,000$	$60,32,000$	$1,54,40,000$	$1,88,00,000$	$78,80,000$
II	PVAF @ 14.9\%	0.87	0.76	$(0.66+0.57+$ $0.50)=1.73$	$(0.43+0.38+0.33)$ $=1.14$	$(0.29+0.25)$ $=0.54$
III	PV of CFATs (I x II)	$32,01,600$	$45,84,320$	$2,67,11,200$	$2,14,32,000$	$42,55,200$
IV	Salvage + Release of WC					$80,00,000$
V	PVF @ 14.9\%					0.25
VI	PV of Salvage (IV \times V)					$20,00,000$

PV of Inflows $=32,01,600+45,84,320+2,67,11,200+2,14,32,000+42,55,200+20,00,000$
PV of Inflows $=6,21,84,320$
PV of Outflows = Investment + Introduction of Working Capital PV of
Outflows $=2,50,00,000+30,00,000$
PV of Outflows $=2,80,00,000$
NPV = PV of Inflows - PV of Outflows
NPV $=6,21,84,320-2,80,00,000$
NPV $=3,41,84,320$
The management should consider taking up the project as the Net Present Value of the Project is Positive.

WACC with Market Weights
PY May 23
Capital structure of D Ltd. as on 31stMarch, 2023 is given below:

Particulars	$₹$
Equity share capital (₹ 10 each)	$30,00,000$
8\% Preference share capital (₹ 100 each)	$10,00,000$
12% Debentures (₹ 100 each)	$10,00,000$

- Current market price of equity share is ₹ 80 per share. The company has paid dividend of
₹ 14.07 per share. Seven years ago, it paid dividend of ₹ 10 per share. Expected dividend is ₹ 16 per share.
- 8% Preference shares are redeemable at 6% premium after five years. Current market price per preference share is ₹ 104 .
- 12% debentures are redeemable at 20% premium after 10 years. Flotation cost is ₹ 5 per debenture.
- The company is in 40% tax bracket.
- In order to finance an expansion plan, the company intends to borrow 15% Long-term loan of ₹ $30,00,000$ from bank. This financial decision is expected to increase dividend on equity share from ₹ 16 per share to ₹ 18 per share. However, the market price of equity share is expected to decline from ₹ 80 to ₹ 72 per share, because investors' required rate of return is based on current market conditions.
Required:
(i) Determine the existing Weighted Average Cost of Capital (WACC) taking book value weights.
(ii) Compute Weighted Average Cost of Capital (WACC) after the expansion plan taking book value weights.

Interest Rate	1%	2%	3%	4%	5%	6%	7%
FVIF $_{i}, 5$	1.051	1.104	1.159	1.217	1.276	1.338	1.403
FVIF $_{\mathrm{i}}, 6$	1.062	1.126	1.194	1.265	1.340	1.419	1.501
FVIF $_{\mathrm{i}}, 7$	1.072	1.149	1.230	1.316	1.407	1.504	1.606

(i) (a) Growth rate in Dividends
$14.07=10 \times$ FVIF ($i, 7$ years)
FVIF ($\mathrm{i}, 7$ years) $=1.407$
FVIF ($5 \%, 7$ years) $=1.407$
$i=5 \% \quad$ So, Growth rate in dividend= 5%
(b) Cost of Equity
$K_{e}=\frac{\mathrm{D}_{1}}{\mathrm{p}_{\mathrm{o}}}+9 \quad=\frac{16}{80}+0.05$
(c) Cost of Preference Shares
$K_{p}=\frac{P D+\frac{(R V-N P)}{n}}{\frac{(R V+N P)}{2}}=\frac{8+\frac{(106-104)}{5}}{\frac{(106+104)}{2}}$
$K_{p}=8.4 / 105 \quad=8 \%$
(d) Cost of Debt
$K_{d}=\frac{I(1-t)+\frac{(R V-N P)}{n}}{\frac{(R V+N P)}{2}}=\frac{12\left(1-0.4+\frac{(120-95)}{5}\right.}{\frac{(120+95)}{2}}$
$K_{d}=(7.2+2.5) / 107.5=9.02 \%=9.02 \%$
Calculation of existing Weighted Average Cost of Capital (WACC)

Capital	Amount (₹)	Weights	Cost	WACC
Equity Share Capital	$30,00,000$	0.6	25%	15.00%
Preference Share Capital	$10,00,000$	0.2	8%	1.60%
Debenture	$10,00,000$	0.2	9.02%	1.80%
	$50,00,000$	1		18.40%

Alternative presentation
(i) Computation of existing WACC on book value weights

Source (1)	Book value $(₹)(2)$	Weight (3)	Cost of capital $(\%)(4)$	Product $(2) \times(4)$
Equity share capital	$30,00,000$	0.60	25	$7,50,000$
Preference share capital	$10,00,000$	0.20	8	80,000
Debentures	$10,00,000$	0.20	9.02	90,200
Total	$50,00,000$	1.00		$9,20,200$

WACC $=($ Product $/$ Total book value $) \times 100=(9,20,200 / 50,00,000) \times 100=18.4 \%$
(ii) Cost of Long Term Debt $=15 \%(1-0.4)=9 \%$

$$
\text { Revised } K_{e}=\frac{18}{72}+0.05=30 \%
$$

Calculation of WACC after expansion taking book value weights

Capital	Amount	Weights	Cost	W.C
Equity Share Capital	$30,00,000$	0.3750	30%	11.25%
Preference Share Capital	$10,00,000$	0.1250	8%	1.00%
Debenture	$10,00,000$	0.1250	9.02%	1.13%
Long Term Debt	$30,00,000$	0.3750	9.00%	3.38%
	$80,00,000$	1.0000		$\mathbf{1 6 . 7 6 \%}$

Alternative presentation

(i) Computation of WACC on book value weights after expansion

Source (1)	Book value (₹) (2)	Weight (3)	Cost of capital (\%) (4)	Product $(2) \times(4)$
Equity share capital	$30,00,000$	0.375	30	$9,00,000$
Preference share capital	$10,00,000$	0.125	8	80,000
Debentures	$10,00,000$	0.125	9.02	90,200
Long term loan	$30,00,000$	0.375	9	$2,70,000$
Total	$80,00,000$	1.00		$13,40,200$

WACC $=($ Product $/$ Total book value $) \times 100=(13,40,200 / 80,00,000) \times 100=16.76 \%$

Q. 33

WACC
PY Dec 21
Book value of capital structure of $B L+d$. is as follows:

Sources	Amount
$12 \%, 6,000$ Debentures @ ₹ 100 each	₹ $6,00,000$
Retained earnings	₹ $4,50,000$
4,500 Equity shares @ ₹ 100 each	$\frac{\text { ₹ } 4,50,000}{15,00,000}$

Currently, the market value of debenture is ₹ 110 per debenture and equity share is ₹ 180 per share. The expected rate of return to equity shareholder is 24% p.a. Company is paying tax @ 30%.

Calculation of Cost of Capital of debentures ignoring market value:
Cost of Debentures $\left(K_{d}\right)=12(1-.30)=8.40 \%$
Computation of Weighted Average Cost of Capital based on Market Value Weights

Source of Capital	Market Value (₹)	Weights to Total Capital	After tax Cost of capital (\%)	WACC $(\%)$
Debentures (6,000 nos. $\times ₹ 110)$	$6,60,000$	0.45 (approx.)	8.40	3.78
Equity Shares (4,500 nos. $\times ₹ 180)$	$8,10,000$	0.55 (approx.)	24.00	13.20
	$14,70,000$	1.00		16.98

Note: Cost of Debenture and Cost of equity considered as given without considering market value. Cost of sources of capital can be computed based on the Market price and accordingly Weighted Average Cost of Capital can be calculated as below:
Calculation of Cost of Capital for each source of capital considering market value of capital:
(1) Cost of Equity share capital:

$$
K_{e}=\frac{\text { Earnings }}{\text { Market Price per share }}=\frac{24 \% \times 100}{180}=13.333 \%
$$

(2) Cost of Debentures

$$
\left(K_{d}\right)=\frac{l(1-t)}{N P}=\frac{12(1-0.3)}{110}=7.636 \%
$$

Computation of Weighted Average Cost of Capital based on Market Value Weights

Source of Capital	Market Value $(₹)$	Weights to Total Capital	After taxCost of capital (\%)	WACC (\%)
Debentures (6,000 nos. $\times ₹ 110$)	$6,60,000$	0.45 (approx.)	7.636	3.44 (approx.)
Equity Shares (4,500 nos. $\times ₹ 180)$	$8,10,000$	0.55 (approx.)	13.333	$\mathbf{7 . 3 3}$ (approx.)

	$14,70,000$	1.00
10.77(approx.)		

Q. 34

WACC
PY Jan 21
The Capital structure of PQR Ltd. is as follows:

	₹
10% Debenture	$3,00,000$
12% Preference Shares	$2,50,000$
Equity Share (face value ₹ 10 per share)	$5,00,000$
	$10,50,000$

Additional Information:

(i) ₹ 100 per debenture redeemable at par has 2% floatation cost \& 10 years of maturity. The market price per debenture is ₹ 110 .
(ii) ₹ 100 per preference share redeemable at par has 3% floatation cost \& 10 years of maturity. The market price per preference share is $₹ 108$.
(iii) Equity share has ₹ 4 floatation cost and market price per share of ₹ 25 . The next year expected dividend is ₹ 2 per share with annual growth of 5%. The firm has a practice of paying all earnings in the form of dividends.
(iv) Corporate Income Tax rate is 30\%.

Required:
Calculate Weighted Average Cost of Capital (WACC) using market value weights.

Workings:

1. Cost of Equity $\left(K_{e}\right) \quad=\frac{D 1}{P_{0}-F}+g=\frac{2}{25-4}+0.05=0.145$ (approx.)
2. Cost of Debt $\left(\mathrm{K}_{\mathrm{d}}\right)$

$$
=\frac{1(1-t)+\frac{(R V-N P)}{n}}{\frac{(R V-N P)}{2}}
$$

$$
=\frac{10(1-0.3)+\frac{(100-98)}{10}}{\frac{(100-98)}{2}}=\frac{7+0.2}{99}=0.073 \text { (approx.) }
$$

3. Cost of Preference Shares (Kp) $=\frac{P D+\frac{(R V-N P)}{n}}{\frac{(R V-N P)}{2}}$

$$
=\frac{12+\frac{(100-97)}{10}}{\frac{(100-97)}{2}}=\frac{12+0.3}{98.5}=0.125 \text { (approx.) }
$$

Calculation of WACC using market value weights

Source of capital	Market Value	Weights	After tax cost of capital	WACC (Ko)
	(₹)	(a)	(b)	(c) $=(a) \times(b)$

10\% Debentures (₹ $110 \times 3,000$)	3,30,000	0.178	0.073	0.013
12% Preference shares (₹ $108 \times$ 2,500)	2,70,000	0.146	0.125	0.018
Equity shares (₹ $25 \times 50,000$)	12,50,000	0.676	0.145	0.098
	18,50,000	1.00		0.129

WACC (Ko) $=0.129$ or 12.9% (approx.)

KM Ltd. has the following capital structure on September 30, 2019:

Sources of capital	(₹)
Equity Share Capital $(40,00,000$ Shares of ₹ 10 each $)$	$4,00,00,000$
Reserves \& Surplus	$4,00,00,000$
12% Preference Shares	$2,00,00,000$
9% Debentures	$6,00,00,000$
	$16,00,00,000$

The market price of equity share is ₹ 60 . It is expected that the company will pay next year a dividend of ₹ 6 per share, which will grow at 10% forever. Assume 40% income tax rate.

You are required to COMPUTE weighted average cost of capital using market value weights.
(i) Cost of Equity $\left(K_{e}\right)=\frac{D 1}{P_{0}}+g=\frac{6}{60}+0.10=0.20=20 \%$
(ii) Cost of Debentures $\left(K_{d}\right)=I(1-t)=0.09(1-0.4)=0.054$ or 5.4%

Computation of Weighted Average Cost of Capital (WACC using market value weights)

Source of capital	Market Value of capital $(₹)$	Weight	Cost of capital (\%)	WACC (\%)
9% Debentures	$6,00,00,000$	0.1875	5.40	1.01
12% Preference Shares	$2,00,00,000$	0.0625	12.00	0.75
Equity Share Capital (₹60 $\times 40,00,000$ shares)	$24,00,00,000$	0.7500	20.00	15.00
Total	$32,00,00,000$	1.00		16.76

CALCULATE the WACC by using Market value weights.
The capital structure of the company is as under:

	(₹)
Debentures (Rs.100 per debenture)	$10,00,000$
Preference shares (Rs.100 per share)	$10,00,000$
Equity shares (Rs.10 per share)	$20,00,000$
	$40,00,000$

The market prices of these securities are:

Debentures	Rs. 115 per debenture
Preference shares	Rs. 120 per preference share
Equity shares	Rs. 265 each.
Additional information:	

(1) Rs. 100 per debenture redeemable at par, 10% coupon rate, 2% floatation cost, 10 -year maturity.
(2) Rs. 100 per preference share redeemable at par, 5% coupon rate, 2% floatation cost and 10 - year maturity.
(3) Equity shares have a floatation cost of Rs. 1 per share.

The next year expected dividend is Rs. 5 with an annual growth of 15%. The firm has the practice of paying all earnings in the form of dividend.
Corporate tax rate is 30%. Use YTM method to calculate cost of debentures and preference shares.
(i) Cost of Equity (K_{e})
$=\frac{\mathrm{D} 1}{\mathrm{P}_{0}-\mathrm{F}}+\mathrm{g}=\frac{\mathrm{Rs} .5}{\text { Rs. } 265-\operatorname{Re} .1}+0.15=0.1689$ or 16.89%
(ii) Cost of Debt (Kd)

Calculation of NPV at discount rate of 5% and 7%

Year	Cash flows (Rs.)	Discount factor @ 5\%	Present Value	Discount factor @ 7\%	Present Value (Rs.)
0	112.7	1.000	(112.7)	1.000	(112.7)
1 to 10	7	7.722	54.05	7.024	49.17
10	100	0.614	61.40	0.508	50.80
NPV			+2.75		-12.73

Calculation of IRR
IRR $=5 \%+\frac{2.75}{2.75-(-12.73)}(7 \%-5 \%)=5 \%+\frac{2.75}{15.48}(7 \%-5 \%)=5.36 \%$
Cost of Debt $\left(K_{d}\right)=5.36 \%$
(i) Cost of Preference shares (K_{p})

Calculation of NPV at discount rate of 2% and 5\%

Year	Cashflow (Rs.)	Discount factor@ 2\%	Present Value	Discount factor @ 5\%	Present Value (Rs.)
0	117.6	1.000	(117.6)	1.000	(117.6)
1 to 10	5	8.983	44.92	7.722	38.61
10	100	0.820	82.00	0.614	61.40
NPV			+9.32		-17.59

Calculation of IRR 2\%
$\frac{9.32}{9.32-(-17.59)}(5 \%-2 \%)=2 \%+\frac{9.32}{26.91}=(5 \%-2 \%)=3.04 \%$
Cost of Preference $S \frac{9.32}{9.32-(-17.59)}$ hares $\left(K_{p}\right)=3.04 \%$
Calculation of WACC using market value weights

Source of capital	Market Value	Weights	After tax cost of capital	WACC (Ko)
	(Rs.)	(a)	(b)	(c) $=$ (a) $\times(b)$
10% Debentures (Rs.115x $10,000)$ 5% Preference shares (Rs.120x $10,000)$	$11,50,000$	0.021	0.0536	0.00113
$12,00,000$	0.022	0.0304	0.00067	

Equity shares (Rs. $265 \times$ 2,00,000)

$5,30,00,000$	0.957	0.1689	0.16164
$5,53,50,000$	1.000		0.16344

WACC (Ko) $=0.16344$ or 16.344%

Q. 37

WACC
RTP May 22
The information relating to book value (BV) and market value (MV) weights of Ex Limited is given below:

Sources	Book Value $(₹)$	Market Value (₹)
Equity shares	$2,40,00,000$	$4,00,00,000$
Retained earnings	$60,00,000$	-
Preference shares	$72,00,000$	$67,50,000$
Debentures	$18,00,000$	$20,80,000$

Additional information:
I. Equity shares are quoted at $₹ 130$ per share and a new issue priced at $₹ 125$ per share will be fully subscribed; flotation costs will be ₹ 5 per share on face value.
II. During the previous 5 years, dividends have steadily increased from ₹ 10 to ₹ 16.105 per share. Dividend at the end of the current year is expected to be ₹ 17.716 per share.
III. 15% Preference shares with face value of $₹ 100$ would realise $₹ 105$ per share.
IV. The company proposes to issue 11 -year 15% debentures but the yield on debentures of similar maturity and risk class is 16%; flotation cost is 2% on face value.
V. Corporate tax rate is 30%.

You are required to DETERMINE the weighted average cost of capital of Ex Limited using both the weights.

Ans.
(i) Cost of Equity $\left(K_{e}\right)=\frac{D 1}{P_{0}-F}+g=\frac{17.716}{125-5}+0.10^{*}$

$$
K_{e}=0.2476
$$

*Calculation of g :
$10(1+g)^{5}=10(1+g)^{5} \quad=16.105$
Or, $(1+g)^{5}=\frac{16.105}{10} \quad=1.6105$
Table (FVIF) suggests that ₹ 1 compounds to ₹ 1.6105 in 5 years at the compound rate of 10 percent. Therefore, g is 10 per cent.
(ii) Cost of Retained Earnings $(K r)=\frac{D_{1}}{P_{0}}+g=\frac{17.716}{130}+0.10=0.2363$
(iii) Cost of Preference Shares $\left(K_{p}\right)=\frac{P D}{P_{0}}=\frac{15}{105}=0.1429$
(iv) Cost of Debentures $\begin{aligned}\left(K_{d}\right)=\frac{I(1-t)\left(\frac{R v-N P}{n}\right)}{\frac{R V+N P}{2}} & =\frac{15(1-0.30)\left(\frac{100-91.75}{11 \text { years })}\right.}{\frac{100+91.75}{2}} \\ & =\frac{15 \times 0.70+0.75}{95.875}=\frac{11.25}{95.875}=0.1173\end{aligned}$
*Since yield on similar type of debentures is 16 per cent, the company would be required to offer debentures at discount.

Market price of debentures (approximation method) = ₹ $15 \div 0.16=₹ 93.75$
Sale proceeds from debentures = ₹ 93.75 - ₹ 2 (i.e., floatation cost) $=₹ 91.75$
Market value (PO) of debentures can also be found out using the present value method:
PO = Annual Interest \times PVIFA (16\%, 11 years) + Redemption value \times PVIF ($16 \%, 11$ years)
$P O=₹ 15 \times 5.0287+₹ 100 \times 0.1954$
PO = ₹ $75.4305+₹ 19.54=₹ 94.9705$
Net Proceeds = ₹ $94.9705-2 \%$ of ₹ $100=₹ 92.9705$
Accordingly, the cost of debt can be calculated
Total Cost of capital [BV weights and MV weights]
(Amount in ($₹$) lakh)

Source of capital	Weights		Specific Cost (K)	Total cost	
	BV	MV		$(B V \times K)$	$(M V \times K)$
Equity Shares	240	320**	0.2476	59.4240	79.2320
Retained Earnings	60	80**	0.2363	14.1780	18.9040
Preference Shares	72	67.50	0.1429	10.2888	9.6458
Debentures	18	20.80	0.1173	2.1114	2.4398
Total	390	488.30		86.0022	110.2216

**Market Value of equity has been apportioned in the ratio of Book Value of equity and retained earnings i.e., 240:60 or 4:1.

Weighted Average Cost of Capital (WACC):
$\begin{array}{ll}\text { Using Book Value } & =\frac{86.0022}{390}=0.2205 \text { or } 22.05 \% \\ \text { Using Market Value } & =\frac{110.2216}{488.30}=0.2257 \text { or } 22.57 \%\end{array}$

Q. 38

WACC
RTP May 19
As a financial analyst of a large electronics company, you are required to DETERMINE the weighted average cost of capital of the company using (a) book value weights and (b) market value weights. The following information is available for your perusal.

The Company's present book value capital structure is:

	$(₹)$
Debentures (₹100 per debenture)	$8,00,000$
Preference shares (₹100 per share)	$2,00,000$
Equity shares (₹10 per share)	$10,00,000$
	$\underline{20,00,000}$

All these securities are traded in the capital markets. Recent prices are:
Debentures, ₹110 per debenture, Preference shares, ₹120 per share, and Equity shares, ₹ 22 per share
Anticipated external financing opportunities are:
(i) ₹ 100 per debenture redeemable at par; 10 year maturity, 11 per cent coupon rate, 4 per cent flotation costs, sale price, ₹ 100
(ii) ₹ 100 preference share redeemable at par; 10 year maturity, 12 per cent dividend rate, 5 per cent flotation costs, sale price, ₹100.
(iii) Equity shares: ₹ 2 per share flotation costs, sale price $=₹ 22$.

In addition, the dividend expected on the equity share at the end of the year is ₹ 2 per share, the anticipated growth rate in dividends is 7 per cent and the firm has the practice of paying all its earnings in the form of dividends. The corporate tax rate is 35 per cent.
(i) Cost Debt $\left(K_{d}\right)=\frac{\text { Interest }(1-t)+\frac{(R V-N P)}{N}}{\frac{R V-N P}{2}}=\frac{11(1-0.35)+\frac{(100-96)}{10 y e a r s}}{\frac{100-96}{2}}$

$$
=\frac{7.15+0.4}{98}=0.077 \text { or } 7.70 \%
$$

(ii) Cost of Preference Shares $\left(K_{p}\right)=\frac{P D+\frac{(R V-N P)}{N}}{\frac{R V-N P}{2}}=\frac{12+\frac{(100-95)}{10 y e a r s}}{\frac{100-95}{2}}$

$$
=\frac{12+0.5}{97.5}=0.1282 \text { or } 12.82 \%
$$

(iii) Cost of Equity shares $\left(K_{e}\right) \quad \frac{D_{1}}{P_{0}}+G=\frac{2}{22-2}+0.07=0.17$ or 17%

I-Interest, t-Tax, RV-Redeemable value, NP-Net proceeds, N-No. of years, PD-Preference dividend, D1-Expected Dividend, PO-Price of share (net)
Using these specific costs we can calculate WACC on the basis of book value and market value weights as follows:
(a) Weighted Average Cost of Capital (KO) based on Book value weights

Source of capital	Book value(₹)	Weights	Specific cost (\%)	WACC (\%)
Debentures	$8,00,000$	0.40	7.70	3.08
Preferences shares	$2,00,000$	0.10	12.82	1.28
Equity shares	$10,00,000$	0.50	17.00	8.50
	$20,00,000$	1.00		12.86

(b) Weighted Average Cost of Capital (Ko) based on market value weights:

Source of capital	Market value(₹)	Weights	Specific cost (\%)	WACC (\%)
Debenture $\frac{8,00,000}{100} \times 110$	$8,80,000$	0.265	7.70	2.04
Preferences shares $\frac{2,00,000}{100} \times 120$	$2,40,000$	0.072	12.82	0.92
Equity shares	$22,00,000$	0.663	17.00	11.27

$\frac{10,00,000}{10} \times 22$				
	$33,20,000$	1.000		14.23

Q. 39

WACC
MTP May 22(2)

The capital structure of RV Limited as on 31st March, 2022 as per its Balance Sheet is as follows:

Particulars	₹
Equity shares of ₹ 10 each	$25,00,000$
10% Preference shares of ₹ 100 each	$5,00,000$
Retained earnings	$5,00,000$
13\% debentures of ₹ 100 each	$20,00,000$

The market price of equity shares is ₹ 50 per share. Expected dividend on equity shares is ₹ 3 per share. The dividend per share is expected to grow at the rate of 8%.
Preference shares are redeemable after eight years and the current market price is ₹ 80 per share.
Debentures are redeemable after five years and are currently selling at ₹ 90 per debenture.
The tax rate applicable to the company is 35%.
CALCULATE weighted average cost of capital using:
(i) Book value proportions
(ii) Market value proportions

Ans.
(i) Cost of Equity (K_{e})

$$
\frac{D 1}{P}+g=\frac{3}{50}+0.08=0.14 \text { i.e. } 14 \%
$$

(ii) Cost of preference shares (K_{p})

$$
\frac{D+\frac{R V-N P}{n}}{\frac{R V+N P}{2}}=\frac{10+\frac{(100-80)}{8}}{\frac{100+80}{2}}=\frac{12.5}{90}=0.1389=13.89 \%
$$

(iii) Cost of debenture $\left(\mathrm{K}_{\mathrm{d}}\right)$

$$
\frac{I(1-t)+\frac{R V-N P}{n}}{\frac{R V+N P}{2}}=\frac{13(1-0.35)+\frac{(100-90)}{5}}{\frac{100+90}{2}}=\frac{8.45+2}{95}=0.11 \text { i.e. } 11 \%
$$

Or

$$
\left[\frac{1+\frac{R V-N P}{n}}{\frac{R V+N P}{2}}\right](1-t)=\left[\frac{13+\frac{(100-90)}{5}}{\frac{100+90}{2}}\right](1-0.35)=0.1026 \text { i.e. } 10.26 \%
$$

Weighted Average cost of capital (Book Value)

	Amount (₹)	Weight (W)	Cost (K)	W \times K
Equity shares	$25,00,000$	0.4546	0.14	0.0636

Preference shares	$5,00,000$	0.0909	0.1389	0.0126
Retained Earnings	$5,00,000$	0.0909	0.14	0.0127
Debentures	$20,00,000$	0.3636	0.1026	0.0373
	$55,00,000$			0.1262

Or (if K_{d} is 11%) the $W A C C=0.1289$
Thus, WACC (Book value based) $=12.62 \%$ or 12.89%
Weighted Average cost of capital (Market Value)

	Amount (₹)	Weight (W)	Cost (K)	W \times K
Equity shares	$1,25,00,000$	0.85	0.14	0.119
Preference shares	$4,00,000$	0.028	0.1389	0.0039
Debentures	$18,00,000$	0.122	0.1026	0.0125
	$1,47,00,000$			0.1354

Or (if K_{d} is 11%) the WACC $=0.1363$
Thus, WACC (Market value based) $=13.54 \%$ or 13.63%

Amrit Corporation has the following book value capital structure:

Equity Capital (50 lakh shares of ₹ 10 each).	₹ $5,00,00000$
15% Preference share (50,000 shares ₹ 100 each)	₹ $50,00,000$
Retained earnings	₹ $4,00,00,000$
Debentures 14% (2,50,000 debentures ₹ 100 each)	$₹ 2,50,00,000$
Term loan 13\%	$₹ 4,00,00000$

The companies last year earnings per share was ₹ 5 , and it maintains a dividend pay-out ratio of 60% and returns on equity is 10%. The market price per share is ₹ 20.8 . Preference share redeemable after 10 years is currently selling for ₹ 90 per share. Debentures redeemable after 6 years are currently selling for ₹ 75 per debenture. The income tax rate is 40%.
(a) CALCULATE the Weighted Average Cost of Capital (WACC) using market value proportions.
(b) DETERMINE the Marginal Cost of Capital (MACC) if it needs ₹ $5,00,00000$ next year assuming the amount will be raised by 60% equity, 20% debt and 20% retained earnings. Equity issues will fetch a net price of ₹ 14 and cost of debt will be 13% before tax up to ₹ $40,00,000$ and beyond ₹ $40,00,000$ it will be 15% before tax.

Ans. (a) Calculation of Cost of Equity
(i) $D_{0}=₹ 5 \times 60 \%$
$D_{0}=₹ 3$
$g=b \times r$
$=(1-0.6) \times 10 \%=4 \%$
$D 1=D 0 \times(1+9)$
$=3 \times(1+4 \%)$
$=3 \times 1.04=3.12$
$K_{e}=\frac{D_{1}}{p_{0}}+9$
$K_{e}=\frac{3.12}{20.8}+0.04$
(ii) Calculation of Cost of Preference Shares

$$
\begin{aligned}
& N=10 \text { years } \\
& N P=₹ 90 \\
& P D=₹ 15 \\
& R V=₹ 100 \\
& K_{p}=\frac{=P D+(R V-N P) / N}{(R V+N P)} \times 100 \\
& K_{p}=\frac{15+(100-90) / 10}{(100+90) / 2} \times 100 \\
& K_{p}=16 / 95 \times 100 \\
& K_{p}=16.84 \%
\end{aligned}
$$

(iii) Calculation of Cost of Debentures

$$
N=6 \text { years }
$$

$$
N P=₹ 75
$$

Interest = ₹ 14
RV = ₹ 100
$T=40 \%$
$K_{d}=\frac{\operatorname{int}(1-t)+(R V-N P) / N}{(R V+N P) / 2} \times 100$
$K_{d}=\frac{14 \times(1-0.4)+(100-75) / 6}{(100+75) / 2} \times 100$
$K_{d}=\frac{8.4-4.17}{87.5} \times 100$
$K_{d}=14.37 \%$
(iv) Cost of Term Loan
$\mathrm{K}_{\mathrm{d}}=$ Interest rate (1-t)
$K_{d}=13 \%(1-40 \%)$
$K_{d}=7.8 \%$
Calculation of Weighted Average Cost of Capital (WACC) (using market weights)

Capital	Cost of Capital	Market Value		Market Value Weights	Product (Cost \times weights)
Equity	19.00%	$20.8 \times 50,00,000$	$₹ 10,40,00,000$	0.6218	11.81%
Preference Shares	16.84%	$90 \times 50,000$	$₹ 45,00,000$	0.0269	0.45%
Debentures	14.37%	$75 \times 2,50,000$	$₹ 1,87,50,000$	0.1121	1.61%
Term Loan	7.80%		$₹ 4,00,00,000$	0.2392	1.87%
Total			$₹ 16,72,50,000$	1	15.74%

WACC= 15.74\%
(b) Calculation of Marginal Cost of Capital (MACC)

The required capital of ₹ $50,000,000$ will be raised as follows:
Equity $=60 \%$ of $₹ 50,000,000=₹ 30,000,000$

Deby $=20 \%$ of $₹ 50,000,000=₹ 10,000,000$
Retained Earnings=20\% of ₹ $50,000,000=₹ 10,000,000$
Marginal Cost of Equity $=\frac{3.12}{1.4}+0.04$
= 26.28\%

Marginal Cost of Debt \dagger
Cost of Debt (before tax) $=\frac{13 \% \text { of } 40,00,000+15 \% \text { of } 60,00,000}{1,00,00,000}$

$$
=\frac{5,20,000+9,00,000}{1,00,00,000}=14.2
$$

Cost of Debt (after tax). $=14.2 \%(1-t)$

$$
=14.2 \%(1-0.4)
$$

$$
=8.52 \%
$$

Calculation of marginal cost of capital

Capital	Cost of Capital	Value	Weights	Product (Cost x weights)
Equity	26.28%	$₹ 3,00,00,000$	0.6	15.77%
Reserves	26.28%	$₹ 1,00,00,000$	0.2	5.26%
Debt	8.52%	$₹ 1,00,00,000$	0.2	1.70%
Total		$₹ 5,00,00,000$	1	$\mathbf{2 2 . 7 3 \%}$

Marginal Cost of Capital (MACC) $=22.73 \%$
CALCULATE the WACC using the following data by using:
(a) Book value weights
(b) Market value weights

Q. 41

WACC
RTP Nov 20
\bullet

The capital structure of the company is as under:
(a) Book value weights
(b) Market value weights

The capital structure of the company is as under:

Particulars	(₹)
Debentures (₹ 100 per debenture)	$5,00,000$
Preference shares (₹ 100 per share)	$5,00,000$
Equity shares (₹ 10 per share)	$10,00,000$
	$20,00,000$

The market prices of these securities are:
Debentures ₹ 105 per debenture
Preference shares ₹ 110 per preference share
Equity shares ₹ 24 each.
Additional information:
(i) ₹ 100 per debenture redeemable at par, 10% coupon rate, 4% floatation costs, 10-year maturity.
(ii) ₹ 100 per preference share redeemable at par, 5% coupon rate, 2% floatation cost and 10-year maturity.
(iii) Equity shares has ₹ 4 floatation cost and market price ₹ 24 per share.

The next year expected dividend is ₹ 1 with annual growth of 5%. The firm has practice of paying all earnings in the form of dividend.

Corporate tax rate is 30%. Use YTM method to calculate cost of debentures and preference shares.
Ans.
(i) Cost of Equity (K_{e})
$=\frac{D_{1}}{\text { PO-F }}+g=v+0.05=0.1$ or 10%
(ii) Cost of Debt $\left(K_{d}\right)$

Current market price (PO) - floatation cost $=I(1-t) \times \operatorname{PVAF}(r, 10)+R V \times \operatorname{PVIF}(r, 10)$
₹ $105-4 \%$ of ₹ 105 = ₹ $10(1-0.3) \times \operatorname{PVAF}(r, 10)+₹ 100 \times \operatorname{PVIF}(r, 10)$
Calculation of NPV at discount rate of 5% and 7%

Year	Cash flows (₹)	Discount factor @5\%	Present Value	Discount factor @7\%	Present Value (₹)
0	100.8	1.000	(100.8)	1.000	(100.8)
1 1 o 10	7	7.722	54.05	7.024	49.17
10	100	0.614	61.40	0.508	50.80
			+14.65		-0.83

IRR $=5 \%+\frac{14.65}{14.65-(-0.83)}(7 \%-5 \%)=5 \%+\frac{14.65}{15.48}(7 \%-5 \%)=6.89 \%$
Cost of Debt (K_{d}) $=6.89 \%$
(iii) Cost of Preference shares (K_{p})

Current market price (PO) - floatation cost $=\operatorname{PD} \times \operatorname{PVAF}(r, 10)+\operatorname{RV} \times \operatorname{PVIF}(r, 10)$
₹ $110-2 \%$ of ₹ $110=₹ 5 \times \operatorname{PVAF}(r, 10)+₹ 100 \times \operatorname{PVIF}(r, 10)$
Calculation of NPV at discount rate of 3% and 5%

Year	Cash flows	Discount factor @	Present Value	Discount factor @	Present Value (₹)
0	107.8	1.000	(107.8)	1.000	(107.8)
1 to 10	5	8.530	42.65	7.722	38.61
10	100	0.744	74.40	0.614	61.40
NPV			+9.25		-7.79

Calculation of IRR
$=3 \%+\frac{9.25}{9.25-(-7.79)}(5 \%-3 \%)=3 \% \frac{9.25}{17.04}(5 \%-3 \%)=4.08 \%$
Cost of Preference Shares $\left(K_{p}\right)=4.08 \%$
(a) Calculation of WACC using book value weights

Source of	Book Value	Weights	After tax cost	WACC (Ko)
capital	(₹)	(a)	(b)	(c) $=(a) \times(b)$
10% Debentures	$5,00,000$	0.25	0.0689	0.01723
5% Preference shares	$5,00,000$	0.25	0.0408	0.0102
Equity shares	$10,00,000$	0.50	0.10	0.05000
	$20,00,000$	1.00		0.07743

WACC $\left(K_{0}\right)=0.07743$ or 7.74%.
(c) Calculation of WACC using market value weights

Source of capital	Market Value	Weights	After tax cost of capital	WACC (K ${ }_{0}$)
	(₹)	(a)	(b)	(c) $=(a) \times(b)$
10% Debentures (₹ $105 \times 5,000)$	$5,25,000$	0.151	0.0689	0.0104
5% Preference shares	$5,50,000$	0.158	0.0408	0.0064
(₹ $110 \times 5,000)$ Equity shares (₹ $24 \times 1,00,000)$	$24,00,000$	0.691	0.10	0.0691
	$34,75,000$	1.000		

WACC (K_{0}) $=0.0859$ or 8.59%

Q. 42

Gamma Limited has $5,00,000, ₹ 1$ ordinary shares whose current ex-dividend market price is $₹ 1.50$ per share. The company has just paid a dividend of 27 paise per share, and dividends are expected to continue at this level for some time. If the company has no debt capital, COMPUTE the weighted average cost of capital?

Ans. Market value of equity, $E=5,00,000$ shares $\times ₹ 1.50=₹ 7,50,000$
Market value of debt, $D=$ Nil
Cost of equity capital, $K_{e}=\frac{D_{1}}{P_{0}}=\frac{0.27}{1.50}=0.18$
Since there is no debt capital, WACC $=K_{e}=18$ per cent.

Q. 43

WACC

ICAI MAT

The following details are provided by the GPS Limited:

	(₹)
Equity Share Capital	$65,00,000$
12% Preference Share Capital	$12,00,000$
15% Redeemable Debentures	$20,00,000$
10% Convertible Debentures	$8,00,000$

The cost of equity capital for the company is 16.30% and income tax rate for the company is 30%.
You are required to CALCULATE the Weighted Average Cost of Capital (WACC) of the company.

Calculation of Weighted Average Cost of Capital (WACC)

Source	(₹)	Weight	Cost of Capital after tax	WACC
Equity Capital	$65,00,000$	0.619	0.163	0.1009
12% Preference Capital	$12,00,000$	0.114	0.120	0.0137
15% RedeemableDebentures	$20,00,000$	0.190	0.105^{\star}	0.020
10% ConvertibleDebentures	$8,00,000$	0.076	$0.070 \star *$	0.0053
Total	$1,05,00,000$	1.0000		0.1399

* Cost of 15% Redeemable Debentures (after tax) $=15(1-0.30)$
$=10.5 \%$ or0.105
** Cost of 10% Convertible Debentures (after tax) $=10(1-0.30)=7 \%$ or 0.070 Weighted Average Cost of Capital $($ WACC $)=0.1399=13.99 \%$
(Note: In the above solution, the Cost of Debentures has been computed without considering the impact of special features i.e. redeemability and convertibility in absence of requisite information.)

Q. 44

Cost of Equity

ICAI MAT

ABC Company's equity share is quoted in the market at ₹ 25 per share currently. The company pays a dividend of ₹ 2 per share and the investor's market expects a growth rate of 6% per year.
You are required to:
(i) CALCULATE the company's cost of equity capital.
(ii) If the company issues 10% debentures of face value of $₹ 100$ each and realises ₹ 96 per debenture while the debentures are redeemable after 12 years at a premium of 12%, CALCULATE cost of debenture using YTM?
Assume Tax Rate to be 50\%.

Ans

(i) Cost of Equity Capital (K_{e}):
$K_{e}=\frac{\text { Expected dividend pershare }\left(D_{1}\right)}{\text { Marketprice pershare }\left(P_{0}\right)}+$ Growth rate (g)

$$
=\frac{2-1.06}{25}+0.06=0.1448 \text { or } 14.48 \%
$$

(ii) Cost of Debenture $\left(\mathrm{K}_{\mathrm{d}}\right)$:

Using Present Value method (YTM)
Identification of relevant cash flows

Year	Cash flows
0	Current market price (PO) = ₹96
1 to 12	Interest net of $\operatorname{tax}[I(1-\dagger)]=10 \%$ of ₹100 (1-0.5) = ₹5
12	Redemption value (RV) = ₹100 (1.12) = ₹112

Calculation of Net Present Values (NPV) at two discount rates

Year	Cash flows(₹)	Discount factor @ 5\%(L)	Present Value(₹)	Discount factor @ $10 \%(H)$	Present Value(₹)
0	(96)	1.000	(96.00)	1.000	(96.00)
1 to 12	5	8.863	44.32	6.814	34.07
12	112	0.557	62.38	0.319	35.73
NPV			+10.7		-26.2

Calculation of IRR

$\operatorname{IRR}=L+\frac{N P V_{L}}{N P V_{L}-N P V_{H}}(H-L)$
$=5 \%+\frac{10.7}{10.7-(-26.2)}(10 \%-5 \%)=5 \%+\frac{53.5}{36.9}=6.45 \%$
Therefore, $K_{d}=6.45 \%$

CA Amit Sharma
Cost of Debt / Equity
ICAI MAT
Masco Limited wishes to raise additional finance of ₹ 10 lakhs for meeting its investment plans. It has ₹ $2,10,000$ in the form of retained earnings available for investment purposes. Further details are as following:
You are required to:

(1)	Debt / Equity mix	3:7
(2)	Cost of debt:	
	Upto`1,80,000 & 10\% (before tax) \\ \hline & Beyond` 1,80,000	16\% (before tax)
(3)	Earnings per share	4
(4)	Dividend pay out	50\% of earnings
(5)	Expected growth rate of dividend	10\%
(6)	Current market price per share	44
(7)	Tax rate	50\%

(a) DETERMINE the pattern for raising the additional finance.
(b) DETERMINE the post-tax average cost of additional debt.
(c) DETERMINE the cost of retained earnings and cost of equity.
(d) COMPUTE the overall weighted average after tax cost of additional finance.
(a) Pattern for raising the additional finance:

Equity	70% of $₹ 10,00,000$	$=₹ 7,00,000$
Debt	30% of $₹ 10,00,000$	$=₹ 3,00,000$

The capital structure after raising additional finance:

		(₹)
Shareholders' funds		
Equity Capital	$(₹ 7,00,000-₹ 2,10,000)$	$4,90,000$
Retained earnings		$2,10,000$
Debt (Interest at 10% p.a.)		$1,80,000$
\quad (Interest at 16% p.a.)	(₹3,00,000-₹1,80,000)	$1,20,000$
Total Funds		$10,00,000$

(b) Determination of post-tax average cost of additional debt: $\mathrm{Kd}=\mathrm{I}(1-\dagger)$

Where,
I = Interest Rate
$t=$ Corporate tax-rate
On ₹ $1,80,000 \quad=10 \%(1-0.5)=5 \%$ or 0.05
On ₹ $1,20,000 \quad=16 \%(1-0.5)=8 \%$ or 0.08
Average Cost of Debt
$=\frac{(1,80,000 \times 0.05)+(1,20,000 \times 0.08)}{3,00,000} \times 100=6.2 \%$
(c) Determination of cost of retained earnings and cost of equity by applying Dividend growth model:
K_{e} or $K_{r}=\frac{D_{1}}{P_{0}}+g=\frac{D_{0}(1+g)}{P_{0}}+g$
Where,

Do $=$ Dividend paid $=50 \%$ of EPS $=50 \% \times ₹ 4=₹ 2$
$g=$ Growth rate $=10 \%$
$P_{0}=$ Current market price per share $=₹ 44$
So, K_{e} or $K_{r}=\frac{2(1+0.10)}{44}+0.10=\frac{2.2}{44}+0.10=0.05+0.10=0.15$ or 15%
(d) Computation of overall weighted average after tax cost of additional finance:

Particulars	Amount (₹)	Weights	Cost of funds	Weighted Cost (\%)
Equity(including retained earnings) Debt WACC	$7,00,000$	0.70	15%	10.5
	$3,00,000$	0.30	6.2%	1.86
	$10,00,000$			12.36

Cost of Capital

ICAI MAT

DETERMINE the cost of capital of Best Luck Limited using the book value (BV) and market value (MV) weights from the following information:

Sources	Book Value $(₹)$	Market Value (₹)
Equity shares	$1,20,00,000$	$2,00,00,000$
Retained earnings	$30,00,000$	-
Preference shares	$36,00,000$	$33,75,000$
Debentures	$9,00,000$	$10,40,000$

Additional information:
I. Equity: Equity shares are quoted at ₹130 per share and a new issue priced at ₹125 per share will be fully subscribed; flotation costs will be ₹ 5 per share.
II. Dividend: During the previous 5 years, dividends have steadily increased from $₹ 10.60$ to $₹ 14.19$ per share. Dividend at the end of the current year is expected to be $₹ 15$ per share.
III. Preference shares: 15% Preference shares with face value of ₹ 100 would realise $₹ 105$ per share.
IV. Debentures: The company proposes to issue 11-year 15% debentures but the yield on debentures of similar maturity and risk class is 16%; flotation cost is 2%.
V. Tax: Corporate tax rate is 35%. Ignore dividend tax.

Floatation cost would be calculated on face value.

Ans
(i) Cost of Equity $\left(\mathrm{K}_{e}\right)=\frac{\mathrm{D}_{1}}{\mathrm{P}_{\mathrm{O}}-\mathrm{F}}+9 \frac{15}{125-5}+0.06$ *
$K_{e}=0.125+0.06=0.185$
*Calculation of g :
₹ $10.6(1+g)^{5}=₹ 14.19$
Or, $(1+g)^{5}=\frac{14.19}{10.6}=1.338$
Table (FVIF) suggests that ₹1 compounds to ₹1.338 in 5 years at the compound rate of 6 percent. Therefore, g is 6 per cent.
(ii) Cost of Retained Earnings $\left(K_{r}\right)=\frac{D_{1}}{\mathrm{P}_{\mathrm{O}}}+g=\frac{15}{125}+0.06=0.18$
(iii) Cost of Preference Shares $\left(K_{p}\right)=\frac{P D}{P_{O}}=\frac{15}{105}=0.1429$
(iv) Cost of Debentures $\left(K_{d}\right)=\frac{I(1-t)+\frac{R V-N P}{n}}{\frac{R V+N P}{n}}=\frac{15(1-0.35)+\frac{100-91.75}{11 \text { years }}}{\frac{100+91.75}{2}}$

$$
=\frac{15 \times 0.65+0.75}{95.875}=\frac{10.5}{95.875}=0.1095
$$

*Since yield on similar type of debentures is 16 per cent, the company would be required to offer debentures at discount.
Market price of debentures (approximation method)
= ₹ $15 \div 0.16$ = ₹ 93.75
Sale proceeds from debentures = ₹93.75-₹ 2 (i.e., floatation cost) $=$ ₹ 91.75
Market value (PO) of debentures can also be found out using the present value method:
Po $=$ Annual Interest \times PVIFA (16\%, 11 years) + Redemption value \times PVIF ($16 \%, 11$ years)
$P_{0}=₹ 15 \times 5.029+₹ 100 \times 0.195 P_{0}=₹ 75.435+₹ 19.5=₹ 94.935$
Net Proceeds = ₹ $94.935-2 \%$ of ₹100 = ₹ 92.935 Accordingly, the cost of debt can be calculated
Total Cost of capital [BV weights and MV weights]
(Amount in ($₹$) lakh)

Source of capital	Weights		Specific Cost (K)	Total cost	
	BV	MV		$(B V \times K)$	$(M V \times K)$
Equity Shares	120	160*	0.1850	22.2	29.6
Retained Earnings	30	40*	0.1800	5.4	7.2
Preference Shares	36	33.75	0.1429	5.14	4.82
Debentures	9	10.4	0.1095	0.986	1.139
Total	195	244.15		33.73	42.76

*Market Value of equity has been apportioned in the ratio of Book Value of equity and retained earnings i.e., 120:30 or 4:1.
Weighted Average Cost of Capital (WACC):
Using Book Value $=\frac{33.73}{195}=0.1729$ or 17.29%
Using Market Value $=\frac{42.76}{244.15}=0.1751$ or 17.51%

Q. 47

Cost of Debt / Preference
ICAI MAT
A company issues:

- 15% convertible debentures of $₹ 100$ each at par with a maturity period of 6 years. On maturity, each debenture will be converted into 2 equity shares of the company. The risk-free rate of return is 10%, market risk premium is 18% and beta of the company is 1.25 . The company has paid dividend of $₹ 12.76$ per share. Five years ago, it paid dividend of₹10 per share. Flotation cost is 5% of issue amount.
- 5% preference shares of $₹ 100$ each at premium of 10%. These shares are redeemable after 10 years at par. Flotation cost is 6% of issue amount.

Assuming corporate tax rate is 40%.
(i) CALCULATE the cost of convertible debentures using the approximation method.
(ii) Use YTM method to CALCULATE cost of preference shares.

Year	1	2	3	4	5	6	7	8	9	10
PVIF 0.03, \dagger	0.971	0.943	0.915	0.888	0.863	0.837	0.813	0.789	0.766	0.744
PVIF 0.05, \dagger	0.952	0.907	0.864	0.823	0.784	0.746	0.711	0.677	0.645	0.614
PVIFA 0.03, \dagger	0.971	1.913	2.829	3.717	4.580	5.417	6.230	7.020	7.786	8.530
PVIFA 0.05, \dagger	0.952	1.859	2.723	3.546	4.329	5.076	5.786	6.463	7.108	7.722

Interest rate	1%	2%	3%	4%	5%	6%	7%	8%	9%
FVIF i, 5	1.051	1.104	1.159	1.217	1.276	1.338	1.403	1.469	1.539
FVIF i, 6	1.062	1.126	1.194	1.265	1.340	1.419	1.501	1.587	1.677
FVIF i, 7	1.072	1.149	1.230	1.316	1.407	1.504	1.606	1.714	1.828

(i) Calculation of Cost of Convertible Debentures:

Given that,
$R_{F}=10 \%$
$R_{m}-R_{f}=18 \%$
$B=1.25$
$D_{0}=12.76$
$D_{5}=₹ 10$
Flotation Cost =5\%
Using CAPM,
$K_{e}=R_{f}+\beta\left(R_{m}-R_{f}\right)$
$=10 \%+1.25$ (18%)
= 32.50\%
Calculation of growth rate in dividend
$12.76=10(1+g)^{5}$
$1.276=(1+g)^{5}$
$(1+5 \%)^{5}=1.276$ from FV Table
$9=5 \%$
Price of share after 6 years $=\frac{D_{7}}{k-9}=\frac{12.76(1.05)^{7}}{0.325-0.05}$
$P_{6}=\frac{12.76 \times 1.407}{0.275}$
$P_{6}=65.28$
Redemption Value of Debenture (RV) $=65.28 \times 2=130.56($ RV $)$
$N P=95$
$n=6$
$K_{d}=\frac{\operatorname{INT}(1-\dagger)+\frac{R V-N P}{n}}{\frac{R V-N P}{2}} \times 100$
$=\frac{15(1-0.4)+\frac{(130.56-95)}{6}}{\frac{(130.56-95)}{2}} \times 100$
$=\frac{9+5.93}{112.78} \times 100$
$K_{d}=13.24 \%$
first attempt success tutorials
(ii) Calculation of Cost of Preference Shares:
$\begin{aligned} \text { Net Proceeds } & =100(1.1)-6 \% \text { of } 100(1.1) \\ & =110-6.60 \\ & =103.40\end{aligned}$
Redemption Value $=100$

Year	Cash Flows (₹)	PVF @ 3\%	PV (₹)	PVF @ 5\%	PV (₹)
0	103.40	1	103.40	1	103.40
$1-10$	-5	8.530	-42.65	7.722	-38.61
10	-100	0.744	-74.40	0.614	-61.40
			-13.65		3.39

$$
\begin{aligned}
K_{p} & =3 \%+\frac{5 \%-3 \%}{[3.39-(-13.65)]} \\
& =3 \%+\frac{2 \%}{17.04} \times 13.65 \\
K_{p} & =4.6021 \%
\end{aligned}
$$

CA Amit Sharma

DIVIDEND DECISIONS

CHAPTER

Q. 1

Dividend Payout

Py May 23

Following information are given for a company: Earnings per share ₹ 10
P/E ratio 12.5

Rate of return on investment 12\%
Market price per share as per Walter's Model
You are required to calculate: (i)
Dividend payout ratio.
(ii) Market price of share at optimum dividend payout ratio.
(iii) P/E ratio, at which the dividend policy will have no effect on the price of share.
(iv) Market price of share at this P/E ratio.
(v) Market price of share using Dividend growth model.
(i) The EPS of the firm is ₹ $10, r=12 \%$. The P/E Ratio is given at 12.5 and the cost of capital (Ke) may be taken as the inverse of P / E ratio. Therefore, Ke is 8% (i.e., $1 / 12.5$). The value of the share is $₹ 130$ which may be equated with Walter Model as follows:
$P=\frac{D+\frac{r}{k_{e}}(E-D)}{K_{e}}$ or $\mathrm{p}=\frac{D+\frac{12 \%}{8 \%}(10 \%-D)}{8 \%}$
or [D+1.5(10-D)]/0.08=130 or
$D+15-1.5 D=10.4$
or $-0.5 \mathrm{D}=-4.6$
So, $D=₹ 9.2$
The firm has a dividend pay-out of 92% (i.e., $9.2 / 10$).
(ii) Since the rate of return of the firm (r) is 12% and it is more than the Ke of 8%, therefore, by distributing 92% of earnings, the firm is not following an optimal dividend policy. The optimal dividend policy for the firm would be to pay zero dividend and in
such a situation, the market price would be:
$P=\frac{D+\frac{12 \%}{8 \%}(10 \%-0)}{8 \%}$
$\mathrm{P}=₹ 187.5$
So, theoretically the market price of the share can be increased by adopting a zero pay-out.
(iii) The P/E ratio at which the dividend policy will have no effect on the value of the share is such at which the Ke would be equal to the rate of return (r) of the firm. The Ke would be $12 \%(=r)$ at the P/E ratio of $1 / 12 \%=8.33$. Therefore, at the P/E ratio of 8.33 , the dividend policy would have no effect on the value of the share.
(iv) If the P/E is 8.33 instead of 12.5, then the Ke which is the inverse of P / E ratio, would be 12% and in such a situation ke= r and the market price, as per Walter's model would be:

$$
P=\frac{D+\frac{r}{k_{e}}(E-D)}{k_{e}}=\frac{9.2+\frac{12 \%}{0.12}(10 \%-9.2)}{0.12}=₹ 83.33
$$

Dividend Growth Model applying growth on dividend
$\mathrm{Ke}=8 \%, r=12 \%, D 0=9.2, b=0.08$
$g=b . r$
$g=0.08 \times 0.12=0.96 \%$
$D 1=D 0(1+g)=9.2(1+0.0096)=₹ 9.2883$
$P=\frac{D_{1}}{(K e-g)}=9.2883 /(0.08-0.0096)=9.2883 / 0.0704=₹ 131.936$

Alternative

Alternatively, without applying growth on dividend
$P=\frac{E(1-b)}{K e-b r}=\frac{10(1-0.08)}{0.08-\left(0.08^{\prime} 0.12\right)}=₹ 130.68$
(a) LIST the factors determining the dividend policy of a company.
(a) Factors Determining the Dividend Policy of a Company
(i) Liquidity: In order to pay dividends, a company will require access to cash. Even very profitable companies might sometimes have difficulty in paying dividends if resources are tied up in other forms of assets.
(ii) Repayment of debt: Dividend payout may be made difficult if debt is scheduled for repayment
(iii) Stability of Profits: Other things being equal, a company with stable profits is more likely to pay out a higher percentage of earnings than a company with fluctuating profits.
(iv) Control: The use of retained earnings to finance new projects preserves the company's ownership and control. This can be advantageous in firms where the present disposition of shareholding is of importance.
(v) Legal consideration: The legal provisions lay down boundaries within which a company can declare dividends.
(vi) Likely effect of the declaration and quantum of dividend on market prices. (vii) Tax considerations and
(viii) Others such as dividend policies adopted by units similarly placed in the industry, management attitude on dilution of existing control over the shares, fear of being branded as incompetent or inefficient, conservative policy Vs non-aggressive one.
(ix) Inflation: Inflation must be taken into account when a firm establishes its dividend policy.

Q. 3

Growth Model

MTP May 18

A company had paid dividend of ₹ 2 per share last year. The estimated growth of the dividends from the company is estimated to be 5% p.a. DETERMINE the estimated market price of the equity share if the estimated growth rate of dividends (i) rises to 8%, and (ii) falls to 3%. Also COMPUTE the present market price of the share, given that the required rate of return of the equity investors is 15.5%.

In this case the company has paid dividend of ₹2 per share during the last year. The growth rate
(g) is 5%. Then, the current year dividend (D1) with the expected growth rate of 5% will be ₹ 2.10

The share price is $=P_{o}=\frac{D_{1}}{K e-g}$

CA Amit Sharma

$$
\begin{aligned}
& =\frac{2.10}{0.155-0.05} \\
& =₹ 20
\end{aligned}
$$

(i) In case the growth rate rises to 8% then the dividend for the current year (D1) would be ₹ 2.16 and marke \dagger price would be-

$$
\begin{aligned}
& =\frac{2.16}{0.155-0.08} \\
& =₹ 28.80
\end{aligned}
$$

(ii) In case growth rate falls to 3% then the dividend for the current year (D1) would be ₹2.06 and market price would be-

$$
\begin{aligned}
& =\frac{2.16}{0.155-0.03} \\
& =₹ 16.48
\end{aligned}
$$

So, the market price of the share is expected to vary in response to change in expected growth rate is dividends.

MM Approach
RTP May 23
Rambo Limited Has 1,00,000 equity shares outstanding for the year 2022. The current market price of the shares is ₹ 100 each. Company is planning to pay dividend of ₹ 10 per share. Required rate of return is 15%. Based on Modigliani-Miller approach, calculate the market price of the share of the company when the recommended dividend is 1) declared and 2) not declared.

How many new shares are to be issued by the company at the end of the year on the assumption that net income for the year is ₹ 40 Lac and the investment budget is ₹ $50,00,000$ when dividend is declared, or dividend is not declared.

PROOF that the market value of the company at the end of the accounting year will remain same whether dividends are distributed or not distributed.

CASE 1: Value of the firm when dividends are not paid.

Step 1: Calculate price at the end of the period
$K e=15 \%, \quad P_{0}=₹ 100, \quad D_{1}=0$
$P_{o}=\frac{P_{1}+D_{1}}{1+K e}$
$₹ 100=\frac{P_{1}+0}{1+0.15}$
$P_{1}=₹ 115$

Step 2: Calculation of funds required for investment

Earning	₹ $40,00,000$
Dividend distributed	Nil
Fund available for investment	₹ $40,00,000$
Total Investment	₹ $50,00,000$
Balance Funds required	₹ $50,00,000-₹ 40,00,000=$
₹ $10,00,000$	

Step 3: Calculation of No. of shares required to be issued for balance funds
No. of shares = Funds required/P1
$\Delta n=$ ₹ $10,00,000 / ₹ 115$
http://tiny.cc/yoursamitbhai

Step 4: Calculation of value of firm $n P_{o}=[(n+\Delta n) P 1-I+E] /(1+K e)$
$n P_{0}=[(100000+1000000 / ₹ 115) ₹ 115-₹ 5000000+₹ 4000000] /(1.15)$
= ₹1,00,00,000
CASE 2: Value of the firm when dividends are paid.
Step 1: Calculate price at the end of the period

$$
K e=15 \%, \quad P_{0}=₹ 100, \quad D_{1}=₹ 10
$$

$P_{o}=\frac{P 1+D 1}{1+K e}$
$₹ 100=\frac{P 1+10}{1+0.15}$
$P_{1}=₹ 105$
Step 2: Calculation of funds required for investment

Dividend distributed	$10,00,000$
Fund available for investment	$₹ 30,00,000$
Total Investment	$₹ 50,00,000$
Balance Funds required	$₹ 50,00,000-₹ 30,00,000=$

Step 3: Calculation of No. of shares required to be issued for balance fund

No. of shares	$=$ Funds Required/P1
Δn	$=₹ 2000000 / ₹ 105$

Step 4: Calculation of value of firm
$n P_{o}=[(n+\Delta n) P 1-I+E] /(1+K e)$
$n P_{0}=[(100000+2000000 / ₹ 105) ₹ 105-₹ 5000000+₹ 4000000] /(1.15)=₹ 1,00,00,000$
Thus, it can be seen from the above calculations that the value of the firm remains the same in either case.

Q. 5

MM Approach
RTP Nov 22
Ordinary shares of a listed company are currently trading at ₹ 10 per share with two lakh shares outstanding.
The company anticipates that its earnings for next year will be ₹ $5,00,000$. Existing cost of capital for equity shares is 15%. The company has certain investment proposals under discussion which will cause an additional 26,089 ordinary shares to be issued if no dividend is paid or an additional 47,619 ordinary shares to be issued if dividend is paid.

Applying the MM hypothesis on dividend decisions, CALCULATE the amount of investment and dividend that is under consideration by the company.

Ans

$P O=₹ 10 n=2,00,000, E=₹ 5,00,000$

$$
K e=15 \%, \Delta n=26,089, I=?
$$

$$
P_{0}=\frac{P_{1}}{1+K e}
$$

$$
10=\frac{P_{1}}{1.5}
$$

$P 1=11.5$
$\Delta n=\frac{I-E+n D 1}{P 1}$
$26,089=\frac{I-5,00,000}{11.5}$
$I=8,00,024$
Now,
$P O=₹ 10, n=₹ 2,00,000$,
$E=₹ 5,00,000, I=8,00,024, \mathrm{Ke}=15 \%, \Delta n 47,619, D 1=$?
$P=\frac{P_{1}+D_{1}}{1+K e}$
$10=\frac{P_{1}+D_{1}}{1.15}$
$\mathrm{P} 1=11.5$
$\Delta n=\frac{I-E+n D 1}{p_{1}}$
$26,089=\frac{I-5,00,000}{11.5}$
$I=8,00,024$
Now,
PO = ₹ $10, n=₹ 2,00,000$,
$E=₹ 5,00,000, I=8,00,024, \mathrm{Ke}=15 \%, \Delta n 47,619, D 1=$?
$P=\frac{P_{1}+D_{1}}{1+k e}$
$10=\frac{P_{1}+D_{1}}{1.5}$
$P 1+D 1=11.5$
$P 1=11.5-D 1$ 1
$\Delta n=\frac{I-E+n D_{1}}{P_{1}}$
$47,619=\frac{8,00,024-5,00,000+2,00,000 \mathrm{D}_{1}}{P_{1}}$
$47,619 P 1=2,00,000$ D1 $+3,00,024$
From 1,

$47619\left(11.5-D_{1}\right)$	$=2,00,000 D_{1}+3,00,024$
$5,47,618.5-47,619 D_{1}$	$=2,00,000 D_{1}+3,00,024$

64

$$
\begin{array}{ll}
\begin{array}{ll}
2,47,594.5 & =2,00,000 D_{1}+47,619 D_{1} \\
2,47,594.5 & =2,47,619 D_{1} \\
D 1 & =\frac{2,47,594.5}{2,47,619}=0.99=₹ 1 \\
P 1 & =11.5-D_{1} \\
P 1 & =10.5-1 \\
P 1
\end{array} \\
\text { n. } P_{0}=\frac{\left(n+\text { Dn) } P_{1}-I+E\right.}{1+\text { Ke }} \\
\begin{array}{ll}
(2,00,000+47,619)(10.5)-8,00,024+5,00,000 \\
1.15
\end{array} \\
\text { n. } P_{0}=₹ 19,99,979=₹ 20,00,000 \\
\text { Using direct calculation, } \\
\text { n. } P_{0}=2,00,000 \times 10=₹ 20,00,000
\end{array}
$$

Aakash Ltd. has 10 lakh equity shares outstanding at the start of the accounting year 2021.
The existing market price per share is ₹ 150 . Expected dividend is ₹ 8 per share. The rate of capitalization appropriate to the risk class to which the company belo ngs is 10%.
(i) CALCULATE the market price per share when expected dividends are: (a) declared, and (b) not declared, based on the Miller - Modigliani approach.
(ii) CALCULATE number of shares to be issued by the company at the end of the accounting year on the assumption that the net income for the year is ₹ 3 crore, investment budget is ₹ 6 crores, when (a) Dividends are declared, and (b) Dividends are not declared.
(iii) PROOF that the market value of the shares at the end of the accounting year will remain unchanged irrespective of whether (a) Dividends are declared, or (ii) Dividends are not declared.
(i) Project N .

Calculation of market price per share
According to Miller - Modigliani (MM) Approach:
$P_{O}=\frac{P_{1}+D_{1}}{1+K e}$
Where,
Existing market price (Po) = ₹ 150
Expected dividend per share (D1) = ₹ 8
first attempt success tutorials

Capitalization rate (ke)
Market price at year end (P1)
$=0.10$
= to be determined
(a) If expected dividends are declared, then

$$
\begin{aligned}
₹ 150 & =\frac{P 1+8}{1+0.10} \\
P 1 & =₹ 157
\end{aligned}
$$

(b) If expected dividends are not declared, then

$$
\begin{aligned}
₹ 150 & =\frac{P_{1}+0}{1+0.10} \\
P 1 & =₹ 165
\end{aligned}
$$

(ii) Calculation of number of shares to be issued

	(a)	(b)
	Dividends an declared lakh)	Dividends are not Declared (₹ lakh)
Retained earnings (80)	300 Investment budget Amount to be raised by new issues	220
Relevant market price (₹ per share)	157	300
No. of new shares to be issued (in lakh) (₹ $380 \div 157$; ₹ $300 \div 165$)	2.42	600

(iii) Calculation of market value of the shares

	(a)	(b) Dividends are declared
Existing shares (in lakhs)	10.00	Dividends are not Declared
New shares (in lakhs)	2.42	10.00
Total shares (in lakhs)	12.42	1.82
Market price per share (₹)	157	11.82
Total market value of shares at the end of the year (₹ in lakh)	12.42×157 $=1,950$ (approx.)	11.82×165 $=1,950$ (approx.)

Hence, it is proved that the total market value of shares remains unchanged irrespective of whether dividends are declared, or not declared.

ZX L+d. has a paid-up share capital of ₹ $2,00,00,000$, face value of ₹ 100 each. The current market price of the shares is ₹ 100 each. The Board of Directors of the company has an agenda of meeting to pay a dividend of 50% to its shareholders. The company expects a net income of ₹ $1,50,00,000$ at the end of the current financial year. Company also plans for a capital expenditure for the next financial year for a cost of ₹ $1,90,00,000$, which can be financed through retained earnings and issue of new equity shares.
Company's desired rate of investment is 15%.
Required:
Following the Modigliani-Miller (MM) Hypothesis, DETERMINE value of the company when:
(i) It does not pay dividend and
(ii) It does pay dividend

Ans
V_{1} or $n P_{0}=\frac{(n+\Delta n) P_{1}-I+E}{(1+K e)}$
Where,
Vf $=\quad$ Value of firm in the beginning of the period
$n=$ number of shares in the beginning of the period
$\Delta n=\quad$ number of shares issued to raise the funds required
I = Amount required for investment
$E=$ total earnings during the period
(i) Value of the ZX Ltd. when dividends are not paid.

$$
\begin{aligned}
n P_{0} & =\frac{(n+\Delta n) P_{1}-I+E}{(1+K e)} \\
n P_{0} & =\frac{2,00,000\left(\frac{40,00,000}{115}\right) \times 115-R s .1,90,00,000+1,50,00,000}{(1+0.15)} \\
& =\frac{2,70,00,000-1,90,00,000+1,50,00,000}{1+0.5}=₹ 2,00,00,000
\end{aligned}
$$

Working notes:

1. Price of share at the end of the period (P1)
$P_{0}=\frac{P_{1}+D_{1}}{1+K e}$
$100=\frac{P_{1}+0}{1+0.15}$ or, $P_{1}=115$
2. Calculation of funds required for investment

Earnings	$₹ 1,50,00,000$
Dividend distributed	Nil
Fund available for investment	$₹ 1,50,00,000$
Total Investment	$₹ 1,90,00,000$
Balance Funds required	$₹ 40,00,000$

3. Calculation of no. of shares required to be issued for balance fund

CA Amit Sharma
No. of shares $(\Delta n)=\frac{\text { Funds required }}{\text { Price at end }\left(P_{1}\right)}=\frac{40,00,000}{115}$ shares
(ii) Value of the $Z \times$ Ltd. when dividends are paid.

$$
\begin{aligned}
n P_{o} & =\frac{(n+\Delta n) P-I+E}{1+K_{e}} \\
n P_{o} & =\frac{2,00,000\left(\frac{140,00,000}{65}\right) \times 65-1,90,00,000+1,50,00,000}{(1+0.15)} \\
& =\frac{2,70,00,000-1,90,00,000+1,50,00,000}{(1+0.15)}=₹ 2,00,00,000
\end{aligned}
$$

Working notes:
4. Price of share at the end of the period (P1)

$$
\begin{aligned}
& P_{0}=\frac{P_{1}+D_{1}}{1+K e} \\
& 100=\frac{P_{2}+50}{1+0.15} \text { or, } \quad P_{1}=₹ 65
\end{aligned}
$$

5. Calculation of funds required for investment

Earnings	₹ $1,50,00,000$
Dividend distributed	₹ $1,00,00,000$
Fund available for investment	₹ $50,00,000$
Total Investment	₹ $1,90,00,000$
Balance Funds required	₹ $1,40,00,000$

6. Calculation of no. of shares required to be issued for balance fund

No. of shares $(\Delta n)=\frac{\text { Funds required }}{\text { Priceat end }\left(P_{1}\right)}=\frac{1,40,00,000}{65}=2,15,385$ shares(approx.)
Note- As per MM-hypothesis of dividend irrelevance, value of firm remains same irrespective of dividend paid. In the solution, there may be variation in value, which is due to rounding off error.

MM Approach MTP May 23 (1)
Roma Nov Ltd. has a capital of ₹ $25,00,000$ in equity shares of ₹100 each. The shares are currently quoted at ₹120. The company proposes to declare a dividend of ₹15 per share at the end of the current financial year. The capitalization rate for the risk class of which the company belongs is
15%. COMPUTE market price of the share at the end of the year, if
(i) Dividend is not declared.
(ii) Dividend is declared.

Assuming that the company pays the dividend and has net profits of ₹9,00,000 and makes new investments of $₹ 15,00,000$ during the period, CALCULATE number of new shares to be issued? Use the MM model.

Cost of Equity (Ke)	15%
Number of shares in the beginning (n)	25,000
Current Market Price (PO)	120

Net Profit (E)	$9,00,000$
Expected Dividend (D1)	15
Investment (I)	$15,00,000$

Computation of market price per share, when:
(i) No dividend is declared:

$$
\begin{aligned}
& P_{0}=P_{1}+D_{1} \frac{P_{1}+D_{1}}{1+k e} \\
& ₹ 120=\frac{P 1+0}{1+0.15} \\
& P_{1}=₹ 138-0=₹ 138 \text { (ii) Dividend is declared: } \\
& ₹ 120=\frac{P_{1}+15}{1+0.15} \\
& P 1=₹ 138-₹ 15=₹ 123
\end{aligned}
$$

Calculation of number of shares required for investment.

	$₹$
Earnings	$9,00,000$
Dividend distributed	$3,75,000$
Fund available for investment	$12,75,000$
Total Investment	$15,00,000$
Balance Funds required	$15,00,000-12,75,000=2,25,000$

No. of shares $=\frac{\text { Funds required }}{\text { Price at end }\left(P_{1}\right)}$

$$
=\frac{2,25,000}{123}=1,830 \text { Shares(approx.) }
$$

M Ltd. belongs to a risk class for which the capitalization rate is 12%. It has 40,000 outstanding shares and the current market price is ₹ 200 . It expects a net profit of ₹ $5,00,000$ for the year and the Board is considering dividend of ₹ 10 per share.

M Ltd. requires to raise ₹ $10,00,000$ for an approved investment expenditure. ILLUSTRATE, how the MM approach affects the value of $M \operatorname{Ltd}$. if dividends are paid or not paid.

Cost of Equity (Ke)	12%
Number of shares in the beginning (n)	40,000
Current Market Price (PO)	$₹ 200$
Net Profit (E)	$₹ 5,00,000$
Expected Dividend (D1)	$₹ 10$ per share
Investment (I)	$₹ 10,00,000$

Situation 1 - When dividends are paid
(i) $\mathrm{PO}=\frac{\mathrm{P} 1+\mathrm{D} 1}{1+\mathrm{ke}}$
(i) $\mathrm{PO}=\frac{\mathrm{P} 1+\mathrm{D} 1}{1+\mathrm{ke}}$

CA Amit Sharma

$$
200=\frac{P 1+0}{1+0.12}
$$

$P 1+10=200 \times 1.12$
$P 1=224-10=214$
(ii) Calculation of funds required
= Total Investment - (Net profit - Dividend)
$=10,00,000-(5,00,000-4,00,000)$ = 9,00,000
(iii) No. of shares required to be issued for balance fund balance fund
No. of shares $=\frac{\text { FundsRe quired }}{\text { Price at end }\left(P_{1}\right)}$
$\Delta n=\frac{9,00,000}{214}=4205.61$
(iv) Calculation of value of firm
$V_{1}=\frac{(n+n) P 1-I+E}{1+K e}$
$=\frac{\left(40,000+\frac{9,00,000}{214}\right) 214-10,00,000+5,00,000}{1+0.12}$
$=\frac{94,60,000-5,00,000}{1.12}=80,00,000$

$$
200=\frac{P 1+0}{1+0.12}
$$

$$
P_{1}+0=200 \times 1.12
$$

$$
P 1=224-10=214
$$

(ii) Calculation of funds required
$=$ Total Investment - (Net profit - Dividend)
$=10,00,000-(5,00,000-0)$
= 5,00,000
(iii) No. of shares required to be issued for

No. of shares $=\frac{\text { FundsRe quired }}{\text { Price at end }\left(P_{1}\right)}$
$\Delta n=\frac{5,00,000}{214}=2232.14$
(iv) Calculation of value of firm

$$
\begin{gathered}
V_{1}=\frac{(n+n) P 1-I+E}{1+K e} \\
=\frac{\left(40,000+\frac{5,00,000}{224}\right) 224-10,00,000+5,00,000}{1+0.12} \\
=\frac{94,60,000-5,00,000}{1.12}=80,00,000
\end{gathered}
$$

MM Approach

MTP May 20
ZX Ltd. has a paid-up share capital of Rs. $1,00,00,000$, face value of Rs. 100 each. The current market price of the shares is Rs. 100 each. The Board of Directors of the company has an agenda of meeting to pay a dividend of 50% to its shareholders. The company expects a net income of Rs.75,00,000 at the end of the current financial year. Company also plans for a capital expenditure for the next financial year for a cost of Rs. $95,00,000$, which can be financed through retained earnings and issue of new equity shares.
Company's desired rate of investment is 15%.
Required:
Following the Modigliani- Miller (MM) Hypothesis, DETERMINE value of the company when:
(i) It does not pay dividend and
(ii) It does pay dividend

Ans $\quad V$ or $n P_{o}=\frac{(n+\Delta n) P_{1}-I+E}{(1+K e)}$
Where,

$V f$	$=\quad$ Value of firm in the beginning of the period
n	$=\quad$ number of shares in the beginning of the period
Δn	$=\quad$ number of shares issued to raise the funds required
I	\quad Amount required for investment

CA Amit Shama
E
$=\quad$ total earnings during the period
(i) Value of the $Z X$ Ltd. when dividends are not paid.

$$
\begin{aligned}
n P_{o} & =\frac{(n+\Delta n) P_{1}-I+E}{(1+K e)} \\
n P_{o} & =\frac{\left(1,00,000+\frac{20,00,000}{115}\right) \times 115-95,00,000+75,00,000}{1+0.15} \\
& =\frac{R s .1,35,00,000-\text { Rs. } 95,00,000+\text { Rs. } 75,00,000}{(1+0.15)}=\text { Rs. } 1,00,00,000
\end{aligned}
$$

Working notes:

1. Price of share at the end of the period (P1)

$$
\begin{aligned}
& P_{o}=\frac{P_{1}+D_{1}}{1+K e} \\
& 100=\frac{P_{1}+0}{1+0.15} \\
& \text { or, } P_{1}=115
\end{aligned}
$$

2. Calculation of funds required for investment

Earnings	Rs.75,00,000
Dividend distributed	Nil
Fund available for investment	Rs.75,00,000
Total Investment	Rs.95,00,000
Balance Funds required	Rs.20,00,000

3. Calculation of no. of shares required to be issued for balance fund

No. of shares $(\Delta n)=\frac{\text { Funds Re quired }}{\text { Price at end }\left(P_{1}\right)}=\frac{20,00,000}{115}$ shares
(ii) Value of the ZX Ltd. when dividends are paid.

$$
\begin{aligned}
n P_{o} & =\frac{(n+\Delta n) P_{1}-I+E}{(1+K e)} \\
n P_{o} & =\frac{\left(1,00,000+\frac{70,00,000}{65}\right) \times 65-95,00,000+75,00,000}{1+0.15} \\
& =\frac{\text { Rs. } 1,35,00,000-\text { Rs.95,00,000 }+ \text { Rs. } 75,00,000}{(1+0.15)}=\text { Rs. } 1,00,00,000
\end{aligned}
$$

Working notes:

4. Price of share at the end of the period (P1)

$$
\begin{aligned}
& P_{0}=\frac{P_{1}+D_{1}}{1+K e} \\
& 100=\frac{P_{1}+50}{1+0.15} \text { or, } \quad P_{1}=\text { Rs } .65
\end{aligned}
$$

5. Calculation of funds required for investment

CA Amit Sharma

Earnings	Rs. $75,00,000$
Dividend distributed	Rs.50,00,000
Fund available for investment	Rs.25,00,000
Total Investment	Rs. $95,00,000$
Balance Funds required	Rs.70,00,000

6. Calculation of no. of shares required to be issued for balance fund No. of shares $(\Delta n)=\frac{\text { FundsRe quired }}{\text { Price at end }\left(P_{1}\right)}=\frac{70,00,000}{65}=1,07,693$ shares(approx.)
Note- As per MM-hypothesis of dividend irrelevance, value of firm remains same irrespective of dividend paid. In the solution, there may be variation in value, which is due to rounding off error.

MM Approach

MTP Nov 18(2)
M Ltd. belongs to a risk class for which the capitalization rate is 10%. It has 25,000 outstanding shares and the current market price is Rs. 100. It expects a net profit of Rs. $2,50,000$ for the year and the Board is considering dividend of Rs. 5 per share.
M Ltd. requires to raise Rs. 5,00,000 for an approved investment expenditure. ANALYSE, how the MM approach affects the value of M Ltd. if dividends are paid or not paid.

A When dividend is paid

(a) Price per share at the end of year 1

$$
\begin{aligned}
& 100=\frac{1}{1.10} \quad\left(\text { Rs. } 5+P_{1}\right) \\
& 110=\text { Rs. } 5+P 1 \\
& P 1=105
\end{aligned}
$$

(b) Amount required to be raised from issue of new shares

Rs.5,00,000 - (Rs.2,50,000 - Rs.1,25,000)
Rs.5,00,000 - Rs.1,25,000 = Rs.3,75,000
(c) Number of additional shares to be issued

$$
\frac{3,75,000}{105}=\frac{75,000}{21} \text { shares or say } 3,572 \text { shares }
$$

(d) Value of M Ltd.
(Number of shares \times Expected Price per share)
i.e., $(25,000+3,572) \times$ Rs. $105=$ Rs. $30,00,060$

B When dividend is not paid
(a) Price per share at the end of year 1
$100=\frac{P_{1}}{1.10}$
P1 $=110$
(b) Amount required to be raised from issue of new shares

Rs.5,00,000-2,50,000 $=2,50,000$
(c) Number of additional shares to be issued

$$
\frac{2,50,000}{110}=\frac{2,50,000}{11} \text { shares or say } 2,273 \text { shares. }
$$

(d) Value of M Ltd.,
$(25,000+2273) \times$ Rs. 110
= Rs.30,00,030
Whether dividend is paid or not, the value remains the same.

MM Approach

MTP Nov 18(1)
RST Ltd. has a capital of Rs. 10,00,000 in equity shares of Rs. 100 each. The shares are currently quoted at par. The company proposes to declare a dividend of Rs. 10 per share at the end of the current financial year. The capitalization rate for the risk class of which the company belongs is
12%. COMPUTE the market price of the share at the end of the year, if
(i) a dividend is not declared?
(ii) a dividend is declared?
(iii) assuming that the company pays the dividend and has net profits of Rs.5,00,000 and makes new investments of Rs.10,00,000 during the period, how many new shares must be issued? Use the MM model.

As per $M M$ model, the current market price of equity share is:
$P_{0}=\frac{1}{1+k e} \times\left(D_{1}+P_{1}\right)$
(i) If the dividend is not declared:
$100=\frac{1}{1+0.12} \times\left(0+P_{1}\right)$
$100=\frac{P_{1}}{1.12}$
P1 = Rs. 112

The Market price of the equity share at the end of the year would be Rs.112.
(ii) If the dividend is declared:
$100=\frac{1}{1+0.12} \times\left(10+P_{1}\right)$
$100=\frac{P_{1}}{1.12}=$
$112=10+P 1$
P1 $=112-10=$ Rs. 102
The market price of the equity share at the end of the year would be Rs.102.
(iii) In case the firm pays dividend of Rs. 10 per share out of total profits of Rs. 5,00,000 and plans to make new investment of Rs. 10,00,000, the number of shares to be issued may be found as follows:

Total Earnings Rs.5,00,000

- Dividends paid (1,00,000)

Retained earnings 4,00,000
Total funds required
10,00,000

CA Amit Sharma

$$
\text { Fresh funds to be raised } \quad \underline{6,00,000}
$$

Market price of the share
102
Number of shares to be issued (Rs.6,00,000 / 102) 5,882.35 or, the
firm would issue 5,883 shares at the rate of Rs. 102

MMP Approach \& Gordan
MTP May 23(2)
Rex Ltd has 20 lakh equity shares outstanding at the start of the accounting year 202 3. The existing market price per share is ₹ 300 . Expected dividend is ₹ 20 per share. The rate of capitalization appropriate to the risk class to which the company belongs is 20%.

CALCULATE the market price per share when expected dividends are: (a) declared, and (b) not declared, based on the Miller - Modigliani approach.

CALCULATE number of shares to be issued by the company at the end of the accounting year on the assumption that the net income for the year is ₹ 5 crore; investment budget is ₹ 8 crores, when (a) Dividends are declared, and (b) Dividends are not declared.

PROVE that the market value of the shares at the end of the accounting year will remain unchanged irrespective of whether (a) Dividends are declared, or (ii) Dividends are not declared.

WHAT is the implied growth rate in dividends as per Gordon's model, if expected dividend payment is considered imminent?
(i) Calculation of market price per share

According to Miller - Modigliani (MM) Approach:
$P_{0}=\frac{P_{1}+D 1}{1+k e}$
Where,
Existing market price (Po) = ₹ 300
Expected dividend per share (D_{1}) = ₹ 20
Capitalization rate (ke) $\quad=0.20$ Market price at year end $(P 1)=$?
a. If expected dividends are declared, then
$300=(\mathrm{P} 1+20) /(1+0.2)$
$300 \times 1.2=\mathrm{P} 1+20$
P1 $=340$
b. If expected dividends are not declared, then
$300=(\mathrm{P} 1+0) /(1+0.2)$
$300 \times 1.2=P 1$
P1 $=360$
(ii) Calculation of number of shares to be issued

	(a)	(b)
	Dividends are declared. (₹ lakh)	Dividends are not Declared (₹ lakh)
Net income	500	500

Total dividends	(400)	-
Retained earnings	100	500
Investment budget	800	800
Amount to be raised by new issues	700	300
Relevant market price (₹ per share)	340	360
No. of new shares to be issued (in lakh) (₹ $700 \div 340 ; ~ ₹ ~ 300 \div 360)$	2.0588	0.8333

(iii) Calculation of market value of the shares

	(a)	(b)
Particulars	Dividends are declared	Dividends are not Declared
Existing shares (in lakhs)	20.00	20.00
New shares (in lakhs)	2.0588	0.8333
Total shares (in lakhs)	22.0588	20.8333
Market price per share $(₹)$	340	360
Total market value of shares at the end of the year $(₹$ in lakh)	22.0588×340 $=7,500$ (approx.)	20.8333×360 $=7,500$ (approx.)

Hence, it is proved that the total market value of shares remains unchanged irrespective of whether dividends are declared, or not declared.
(iv) $\mathrm{PO}=\mathrm{D} 1 /(\mathrm{Ke}-\mathrm{g})$
$300=20 /(0.2-g)$
$0.2-g=20 / 300$
$0.2-\mathrm{g}=0.0667$
$G=0.133333$
$g=13.3333 \%$

HM Ltd. is listed on Bombay Stock Exchange which is currently been evaluated by Mr. A on certain parameters.Mr. A collated following information:
(a) The company generally gives a quarterly interim dividend. ₹ 2.5 per share is the last dividend declared.
(b) The company's sales are growing by 20% on a 5 -year Compounded Annual Growth Rate (CAGR) basis, however the company expects following retention amounts against probabilities mentioned as contention is dependent upon cash requirements for the company. Rate of return is 10% generated by the company.

Situation	Prob.	Retention Ratio
A	30%	50%
B	40%	60%
C	30%	50%

(c) The current risk-free rate is 3.75% and with a beta of 1.2 company is having a risk premium of 4.25%. You are required to help Mr. A in calculating the current market price using Gordon's formula.

Market price using Gordon's formula
DO (1+g)
$P_{0}=\frac{D_{0}(1+g)}{k e-g}$

CA Amit Sharma
$D 0=2.5 \times 4=10$ per share (annual)
$g=b r$ or retention ratio \times rate of return
Calculation of expected retention ratio

Situation	Prob.	Retention Ratio	Expected Retention Ratio
A	30%	50%	0.15
B	40%	60%	0.24
C	30%	50%	0.15
Total			0.54

$g=0.54 \times 0.10=0.054$ or 5.4% Po
$P_{0}=\frac{D_{0}(1+g)}{k e-g}$

$$
\mathrm{Ke}-\mathrm{g}
$$

$P_{0}=\frac{10(1+0.054)}{0.0885-0.054}=\frac{10.54}{0.0345}=305.51$
Ke $=$ Risk free rate $+($ Beta \times Risk Premium $)$

$$
=3.75 \%+(1.2 \times 4.25 \%)=8.85 \%
$$

MPS Using Gordon's Model
PY Dec 21
$X L t d$. is a multinational company. Current market price per share is ₹ 2,185 . During the F.Y. 2020-21, the company paid ₹ 140 as dividend per share. The company is expected to grow @ 12% p.a. for next four years, then 5% p.a. for an indefinite period. Expected rate of return of shareholders is 18% p.a.
(i) Find out intrinsic value per share.
(ii) State whether shares are overpriced or under priced.

Year	1	2	3	4	5
Discounting Factor @ 18\%	0.847	0.718	0.608	0.515	0.436

As per Dividend discount model, the price of share is calculated as follows:
$P=\frac{D_{1}}{(1+K e)^{1}}+\frac{D_{2}}{(1+K e)^{2}}+\frac{D_{3}}{(1+K e)^{3}}+\frac{D_{4}}{(1+K e)^{4}}+\frac{D_{4}(1+g)}{(K e-g)} \times \frac{1}{(1+K e)^{4}}$

Where,
$P=$ Price per share
$\mathrm{K}_{e}=$ Required rate of return on equity
$g=$ Growth rate
$P=\frac{140 \times 1.12}{(1+0.18)^{1}}+\frac{156.80 \times 1.12}{(1+0.18)^{2}}+\frac{175.62 \times 1.12}{(1+0.18)^{3}}+\frac{196 \times 1.12}{(1+0.18)^{4}}+\frac{220.29(1+0.05)}{(0.18-0.05)} \times \frac{1}{(1+0.18)^{4}}$
$P=132.81+126.10+119.59+113.45+916.34=₹ 1,408.29$

Intrinsic value of share is $₹ 1,408.29$ as compared to latest market price of ₹2,185. Market price of share is over-priced by ₹ 776.71.

Hirst attempt success tutorial
MPS usina Gordon's Model
RTP May 19
The following figures are collected from the annual report of XYZ L+d.:

Net Profit	₹30 lakhs
Outstanding 12\% preference shares	₹100 lakhs
No. of equity shares	3 lakhs
Return on Investment	20%
Cost of capital i.e. (Ke)	16%

CALCULATE price per share using Gordon's Model when dividend pay-out is (i) 25%; (ii) 50% and (iii) 100%.

	$₹$ in lakhs
Net Profit	30
Less: Preference dividend	12
Earning for equity shareholders	18
Therefore earning per share	$18 / 3=₹ 6.00$

Price per share according to Gordon's Model is calculated as follows:
$P_{0}=\frac{E_{1}(1-b)}{K e-b r}$
Here, E1 $=6, K_{e}=16 \%$
(i) When dividend pay-out is 25%

$$
P_{0}=\frac{6 \times 0.25}{0.16-(0.75 \times 0.2)}=\frac{1.5}{0.16-0.15}=150
$$

(ii) When dividend pay-out is 50%

$$
P_{0}=\frac{6 \times 0.25}{0.16-(0.5 \times 0.2)}=\frac{3}{0.16-0.10}=50
$$

(iv) When dividend pay-out is 100%

$$
P_{0}=\frac{6 \times 1}{0.16-(0 \times 0.2)}=\frac{6}{0.16}=37.50
$$

MPS using Gordon's Model

MTP Nov 22(2)

The annual report of XYZ Ltd. provides the following information for the Financial Year 2019-20:

Particulars	Amount (₹)
Net Profit	78 lakhs
Outstanding 15\% preference shares	120 lakhs
No. of equity shares	6 lakhs
Return on Investment	20%
Cost of capital i.e. (Ke)	16%

CALCULATE price per share using Gordon's Model when dividend pay-out is-
(i) 30%;
(ii) 50%;
(iii) 100%.

Price per share according to Gordon's Model is calculated as follows:

Particulars	Amount in ₹
Net Profit	78 lakhs

Less:Preference dividend(120 lakhs@15\%)	18 lakhs
Earnings for equity shareholders	60 lakhs
Earnings Per Share	60 lakhs/6 lakhs = ₹ 10.00

Price per share according to Gordon's Model is calculated as follows:
$P_{0}=\frac{E_{1}(1-b)}{K e-b r}$
Here, E1 = 10, $K_{e}=16 \%$
(i) When dividend pay-out is 30\%

$$
P_{0}=\frac{10 \times 0.30}{0.16-(0.70 \times 0.2)}=\frac{3}{0.16-0.14}=₹ 150
$$

(ii) When dividend pay-out is 50%

$$
P_{0}=\frac{10 \times 0.5}{0.16-(0.5 \times 0.2)}=\frac{5}{0.16-0.10}=₹ 83.33
$$

(iii) When dividend pay-out is 100%
$P_{0}=\frac{10 \times 1}{0.16-(0 \times 0.2)}=\frac{10}{0.16}=₹ 62.5$

Q. 18

MPS using Gordon's Model
MTP Nov 19
The following figures are collected from the annual report of XYZ Ltd.:

Net Profit	Rs. 60 lakhs
Outstanding 10\% preference shares	Rs. 100 lakhs
No. of equity shares	5 lakhs
Return on Investment	20%
Cost of capital i.e. (Ke)	14%

CALCULATE price per share using Gordon's Model when dividend pay-out is (i) 25%; (ii) 50% and (iii) 100%.

	Rs. in lakhs
Net Profit	60
Less: Preference dividend	10
Earning for equity shareholders	50
Therefore earning per share	$50 / 5=$ Rs. 10.00

$P_{0}=\frac{E_{1}(1-b)}{K e-b r}$
Here, $E 1=10, K_{e}=14 \%, r=20 \%$
(i) When dividend pay-out is 25%
$P_{0}=\frac{10 \times 0.25}{0.14-(0.75 \times 0.2)}=\frac{25}{0.14-0.15}=250$
As per the Gordon's Dividend relevance model, the Cost of equity (K_{e}) should be greater than the growth rate i.e. br. In this case K_{e} is 14% and $b r=15 \%$, hence, the equity investors would prefer capital appreciation than dividend.
(ii) When dividend pay-out is 50

When dividend pay-out is 50\%

$$
P_{0}=\frac{10 \times 0.5}{0.14-(0.5 \times 0.2)}=\frac{25}{0.14-0.10}=125
$$

(iii) When dividend pay-out is 100%

$$
P_{0}=\frac{10 \times 1}{0.14-(0 \times 0.2)}=\frac{10}{0.14}=71.43
$$

Q. 19

Walter Model
RTP Nov 18
The earnings per share of a company is ₹ 10 and the rate of capitalisation applicable to it is 10 per cent. The company has three options of paying dividend i.e. (i) 50%, (ii) 75% and (iii) 100%.
CALCULATE the market price of the share as per Walter's model if it can earn a return of
(a) 15, (b) 10 and (c) 5 per cent on its retained earnings.

Market Price (P) per share as per Walter's Model is:
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}$
Where,
$P=$ Price of Share
$r=$ Return on investment or rate of earning
$\mathrm{K}_{e}=$ Rate of Capitalisation or Cost of Equity
Calculation of Market Price (P) under the following dividend payout ratio and earning rates:

		(i)	(ii)	(iii)
	Rate of Earning (r)	DP ratio 50\%	DP ratio 75\%	DP ratio 100\%
(a)	15\%	$\begin{gathered} \frac{5+\left(\frac{0.15}{0.10}\right)(10-5)}{0.10} \\ =\frac{12.5}{0.10}=₹ 125 \end{gathered}$	$\begin{gathered} \frac{7.5+\left(\frac{0.15}{0.10}\right)(10-7.5)}{0.10} \\ =\frac{11.25}{0.10}=₹ 112.5 \end{gathered}$	$\begin{gathered} \frac{10+\left(\frac{0.15}{0.10}\right)(10-10)}{0.10} \\ =\frac{10}{0.10}=₹ 100 \end{gathered}$
(b)	10\%	$\begin{gathered} \frac{5+\left(\frac{0.10}{0.10}\right)(10-5)}{0.10} \\ =\frac{10}{0.10}=₹ 100 \end{gathered}$	$\begin{gathered} \frac{7.5+\left(\frac{0.10}{0.10}\right)(10-7.5)}{0.10} \\ =\frac{10}{0.10}=₹ 100 \end{gathered}$	$\begin{gathered} \frac{10+\left(\frac{0.10}{0.10}\right)(10-10)}{0.10} \\ =\frac{10}{0.10}=₹ 100 \end{gathered}$
(c)	5\%	$\begin{gathered} \frac{5+\left(\frac{0.05}{0.10}\right)(10-5)}{0.10} \\ =\frac{7.5}{0.10}=₹ 75 \end{gathered}$	$\begin{gathered} \frac{7.5+\left(\frac{0.05}{0.10}\right)(10-7.5)}{0.10} \\ =\frac{8.75}{0.10}=₹ 87.5 \end{gathered}$	$\begin{gathered} \frac{10+\left(\frac{0.05}{0.10}\right)(10-10)}{0.10} \\ =\frac{10}{0.10}=₹ 100 \end{gathered}$

Walter \& Gordon Model
PY May 19
The following information is supplied to you:

Total Earning	₹ 40 Lakhs
No. of Equity Shares (of ₹ 100 each)	$4,00,000$

Dividend Per Share	₹ 4
Cost of Capital	16%
Internal rate of return on investment	20%
Retention ratio	60%

Calculate the market price of a share of a company by using :
(i) WaIter's Formula
(ii) Gordon's Formula

Ans Earning Per share $(E)=\frac{40 \text { Lakhs }}{4,00,000}=₹ 10$
Calculation of Market price per share by
(i) Walter's formula: Market Price (P)

Where,
P $=$ Market Price of the share.
$\mathrm{E}=$ Earnings per share.
D = Dividend per share.
$\mathrm{Ke}=$ Cost of equity/ rate of capitalization/ discount
$R=$ Internal rate of return/ return on investment
$P=\frac{4+\frac{0.20}{0.16}(10-4)}{0.16}=\frac{4+7.5}{0.16}=₹ 71.88$
(ii) Gordon's formula: When the growth is incorporated in earnings and dividend, the present value of market price per share (Po) is determined as follows
Gordon's theory: Po $\frac{E(1-b)}{k-b r}$
Where,
Po = Present market price per
share. $E=$ Earnings per share
$b=$ Retention ratio (i.e. \% of earnings retained)
$r=$ Internal rate of return
(IRR) Growth rate (g) = br
Now Po $=\frac{10(1-.60)}{16-(.60 \times .20)}=\frac{4}{.04}=₹ 100$

The following information is given for QB Ltd.
Earnings per share ₹ 120
Dividend per share ₹ 36
Cost of capital 15\%
Internal Rate of Return on investment 20\% CALCULATE the market price per share using
(a) Gordon's formula
(b) Walter's formula

Ans
(a) As per Gordon's Model, Price per share is computed using the formula:
$P_{o}=\frac{E_{1}(1-b)}{K e-b r}$
Where,
Po = Price per share
$E_{1}=$ Earnings per share
b = Retention ratio; (1-b = Pay-out ratio)
$\mathrm{K}_{\mathrm{e}}=$ Cost of capital
$r=I R R$
$\mathrm{br}=$ Growth rate (g)
Applying the above formula, price per share
Po $=\frac{120(1-0.7)}{0.15-0.70 \times 0.2}=\frac{36}{0.01}=₹ 3,600$
(b) As per Walter's Model, Price per share is computed using the formula:

Price (P)
Where,
$P=$ Market Price of the share.
$E=$ Earnings per share. $D=$ Dividend per share.
Ke = Cost of equity/ rate of capitalization/ discount rate.
$r=$ Internal rate of return/ return on investment
Applying the above formula, price per share
$P=\frac{36+\frac{0.20}{0.15}(120-36)}{0.15}$
Or, $P=\frac{36+112}{0.15}=₹ 986.67$
Q. 22 Walter \& Gordon model

MTP Nov 22(1)
Following information is given for WN Ltd.:
Earnings ₹ 30 per share
Dividend ₹ 9 per share
Cost of capital 15\%
Internal Rate of Return on investment 20\%
You are required to CALCULATE the market price per share using-
(i) Gordon's formula
(ii) Walter's formula
(i) As per Gordon's Model, Price per share is computed using the formula:
$P_{0}=\frac{E_{1}(1-b)}{K e-b r}$
Where,
Po = Price per share
$E_{1}=$ Earnings per share
$b=$ Retention ratio; (1-b = Pay-out ratio) Ke = Cost of capital
$r=I R R$
$\mathrm{br}=$ Growth rate (g)
Applying the above formula, price per share

$$
P_{0}=\frac{30 \times 0.3}{0.15-0.70 \times 0.2}=\frac{9}{0.01}=₹ 900
$$

*Dividend pay-out ratio $=\frac{9}{30}=0.3$ or 30%
(ii) As per Walter's Model, Price per share is computed using the formula:
$\operatorname{Price}(P)=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}$
$P=$ Market Price of the share
$E=$ Earnings per share
$D=$ Dividend per share
Ke = Cost of equity/ rate of capitalization/ discount rate
$r=$ Internal rate of return/ return on investment
Applying the above formula, price per share
$P=\frac{9+\frac{0.20}{0.15}(30-9)}{0.15}=\frac{37}{0.15}=₹ 246.67$

Walter \& Gordon model
MTP May 21(1)
The following information is given:

Dividend per share (DPS)	Rs. 9
Cost of capital (Ke)	19%
Internal rate of return on investment	24%
Retention Ratio	25%

CALCULATE the market price per share by using:
(i) Walter's formula
(ii) Gordon's formula (Dividend Growth model)

Calculation of Earnings per share (EPS):

EPS $=\frac{\text { DPS }}{\text { Dividend Payout Ratio }}$
EPS $=\frac{9}{1-0.25}=$ Rs. 12
Market price per share by
(i) Walter's model:

$$
=\frac{9+\frac{0.24}{0.19}(12-9)}{0.19}
$$

= Rs. 67.31
(ii) Gordon's model (Dividend Growth model):
$P_{0}=\frac{D_{1}(1-g)}{K e-g}$
Where,
Po $=$ Present market price per share .
$g=$ Growth rate $(b r)=0.25 \times 0.24=0.06$
$b=$ Retention ratio
k = Cost of Capital
$r=$ Internal rate of return (IRR)
$D_{0}=$ Dividend per share
$E=$ Earnings per share
$=\frac{9(1+0.06)}{0.19-0.06}$
$=\frac{9.54}{0.13}=$ Rs. 73.38
Alternatively,
$P_{0}=\frac{E_{1}(1-b)}{K e-b r}$
$P_{0}=\frac{12(1-0.25)}{0.19-0.06}=\frac{9}{0.13}=$ Rs. 69.23
Q. 24

Walter \& Gordon Model
MTP May 19(1)
With the help of following figures CALCULATE the market price of a share of a company by using:
(i) Walter's formula
(ii) Dividend growth model (Gordon's formula)

Earnings per share (EPS)	Rs. 10
Dividend per share (DPS)	Rs. 6
Cost of capital (k)	20%
Internal rate of return on investment	25%
Retention Ratio	60%

Market price per share by
(i) Walter's formula:
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}$
$P=\frac{6+\frac{0.25}{0.20}(10-6)}{0.20}$
$P=R s .55$
(ii) Gordon's formula (Dividend Growth model): When the growth is incorporated in earnings and dividend, the present value of market price per share (Po) is determined as follows:
Gordon's theory:
$P_{0}=\frac{E_{1}(1-b)}{K e-b r}$
Where,
Po = Price per share
$E_{1}=$ Earnings per share
$b=$ Retention ratio; (1-b = Payout ratio)
Ke $=$ Cost of capital
$r=I R R$
$\mathrm{br}=$ Growth rate (g)
$P_{o}=\frac{10(1-0.60)}{0.20-(0.60 \times 0.25)}=\frac{4}{0.05}=$ Rs. 80

Q. 25

Optimum Payout using Walter Model RTP July 21
The following information is supplied to you:

	$(₹)$
Total Earnings	$2,00,000$
No. of equity shares (of ₹ 100 each)	20,000
Dividend paid	$1,50,000$
Price/ Earnings ratio	12.5

Applying Walter's Model:

(i) ANALYSE whether the company is following an optimal dividend policy.
(ii) COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share.
(iii) Will your decision change if the P/E ratio is 8 instead of 12.5? ANALYSE.
(i) The EPS of the firm is ₹ 10 (i.e., ₹ $2,00,000 / 20,000$) and $r=2,00,000 /(20,000$ sharesx $₹ 100)=10 \%$. The P/E Ratio is given at 12.5 and the cost of capital, K e , may betaken at the inverse of P/E ratio. Therefore, Ke is 8 (i.e., 1/12.5). The firm is distributing total dividends of ₹ $1,50,000$ among 20,000 shares, giving a dividend per share of $₹ 7.50$. the value of the share as per Walter's model may be found as follows:
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}=\frac{7.5+\frac{0.1}{0.08}(10-7.5)}{0.08}=₹ 132.81$

The firm has a dividend payout of 75% (i.e., ₹ $1,50,000$) out of total earnings of₹ $2,00,000$. Since, the rate of return of the firm, r, is 10% and it is more than the K e of 8%, therefore, by distributing 75% of earnings, the firm is not following an optimal dividend policy. The optimal dividend policy for the firm would be to pay zero dividend and in such a situation, the market price would be-

So, theoretically the market price of the share can be increased by adopting a zero payout.
(ii) The P/E ratio at which the dividend policy will have no effect on the value of the share is such at which the Ke would be equal to the rate of return, r, of the firm. The Ke would be $10 \%(=r)$ at the P/E ratio of 10 . Therefore, at the P/E ratio of 10 , the dividend policy would have no effect on the value of the share.
(iii) If the P / E is 8 instead of 12.5 , then the Ke which is the inverse of P / E ratio, would be12.5 and in such a situation ke> r and the market price, as per Walter's model would be:
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}=\frac{7.5+\frac{0.1}{0.125}(10-7.5)}{0.125}=₹ 76$
Q. 26 Optimum Payout using Walter Model

RTP May 20
Following information relating to Jee L+d. is given:

Particulars

Profit after tax ₹ $10,00,000$
Dividend pay-out ratio 50\%
Number of Equity Shares $\quad 50,000$
Cost of Equity 10%
Rate of Return on Investment 12%
(i) CALCULATE market value per share as per Walter's Model?
(ii) What is the optimum dividend pay-out ratio according to Walter's Model and Market value of equity share at that pay-out ratio?

Ans
(i) Walter's model is given by -
$P=\frac{D+(E-D)(r / K e)}{K e}$
Where,
$P=$ Marke \dagger price per share,
$E=$ Earnings per share $=₹ 10,00,000 \div 50,000=₹ 20$
$D=$ Dividend per share $=50 \%$ of $20=₹ 10 r=$ Return earned on investment $=12 \%$
$\mathrm{Ke}=$ Cost of equity capital $=10 \%$
$\mathrm{P}=\frac{10+(20-10) \times \frac{22}{0.10}}{0.10}=\frac{22}{0.10}=₹ 220$
(ii) According to Walter's model when the return on investment is more than the cost of equity capital, the price per share increases as the dividend pay-out ratio decreases. Hence, the optimum dividend pay-out ratio in this case is Nil. So, at a pay-out ratio of zero, the market value of the company's share will be:
$=\frac{0+(20-0) \times \frac{0.12}{0.10}}{0.10}=\frac{24}{0.10}=₹ 240$

Q. 27

Optimum Payout using Walter Model
RTP Nov 19
The following information pertains to SD Ltd.

Earnings of the Company	₹ $50,00,000$
Dividend Payout ratio	60%
No. of shares outstanding	$10,00,000$
Equity capitalization rate	12%
Rate of return on investment	15%

(i) COMPUTE the market value per share as per Walter's model?
(ii) COMPUTE the optimum dividend payout ratio according to Walter's model and the market value of Company's share at that payout ratio?
(i) Walter's model is given by

Where
$P=$ Market price per share．
$E=$ Earnings per share $=₹ 5$
$D=$ Dividend per share $=₹ 3$
$R=$ Return earned on investment $=15 \% \mathrm{Ke}=$ Cost of equity capital $=12 \%$
$P=\frac{3+\frac{0.15}{0.12}(5-3)}{0.12}=₹ 45.83$
（ii）According to Walter＇s model when the return on investment is more than the cost of equity capital，the price per share increases as the dividend pay－out ratio decreases．Hence，the optimum dividend pay－out ratio in this case is nil．
So，at a pay－out ratio of zero，the market value of the company＇s share will be：

Q． 28

Optimum Payout using Walter Model RTP May 18
The following information relates to Navya Ltd：

Earnings of the company	$₹ 20,00,000$
Dividend pay－out ratio	60%
No．of Shares outstanding	$4,00,000$
Rate of return on investment	15%
Equity capitalization rate	12%

Required：

（i）DETERMINE what would be the market value per share as per Walter＇s model．
（ii）COMPUTE optimum dividend pay－out ratio according to Walter＇s model and the market value of company＇s share at that pay－out ratio．

Navya Ltd．
（i）Walter＇s model is given by－
$P=\frac{D+(E-D)(r / K e)}{K e}$

Where，
$P=$ Market price per share，
$E=$ Earnings per share $=₹ 20,00,000 \div 4,00,000=₹ 5$
$D=$ Dividend per share $=60 \%$ of $5=₹ 3$
$r=$ Return earned on investment $=15 \%$
Ke $=$ Cost of equity capital $=12 \%$
$P=\frac{3+(5-3) \times \frac{0.15}{0.12}}{0.12}=\frac{3+2 \times \frac{0.15}{0.12}}{0.12}=₹ 45.83$
（ii）According to Walter＇s model when the return on investment is more than the cost of equity capital，the price per share increases as the dividend pay－out ratio decreases．Hence，the optimum dividend pay－out ratio in this case is Nil．So，at a payout ratio of zero，the market value of the company＇s share will be：－

$$
=\frac{0+(5-0) \times \frac{0.15}{0.12}}{0.12}=₹ 52.08
$$

The following figures have been extracted from the annual report of Xee Ltd.:

Net Profit	₹ 75 lakhs
Outstanding 12\% preference shares	₹ 250 lakhs
No. of equity shares	3 lakhs
Return on Investment	20%
Cost of capital i.e. (Ke)	16%

COMPUTE the approximate dividend pay-out ratio so as to keep the share price at ₹ 105 by using Walter's model?

Particulars	(₹' in lakhs)
Net Profit	75
Less: Preference dividend	30
Earnings for equity shareholders	45
Earnings per share	$45 / 3=₹ 15$

Let, the dividend per share be D to get share price of ₹ 105

So, the required dividend pay-out ratio will be $=52 \%$

Q. 30 Optimum Payout using Walter Mode MTP Dec 21(2)

The following information is supplied to you:

Particulars	$₹$
Total Earnings	$5,00,000$
Equity shares (of ₹ 100 each)	$50,00,000$
Dividend paid	$3,75,000$
Price/ Earnings ratio	12.5

Applying Walter's Model:
(i) ANALYSE whether the company is following an optimal dividend policy.
(ii) COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share.
(iii) Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE.
(i) The EPS of the firm is ₹ 10 (i.e. ₹ $5,00,000 / 50,000$). $r=5,00,000 / 50,00,000=10 \%$ The P / E Ratio is given at 12.5 and the cost of capital, Ke , may be taken at the inverseof P / E ratio. Therefore, Ke is 8 (i.e., 1/12.5).

The firm is distributing total dividends of $3,75,000$ among 50,000 shares, giving a dividend per share of ₹ 7.50. The value ofthe share as per Walter's model may be found as follows:
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}=\frac{7.5+\frac{0.1}{0.08}(10-7.5)}{0.08}=₹ 132.81$
The firm has a dividend payout of 75% (i.e., ₹ $3,75,000$) out of total earnings of $5,00,000$. Since, the rate of return of the firm, r, is 10% and it is more than the Ke of 8%, therefore, by distributing 75% of earnings, the firm is not following an optimal dividend policy. The optimal dividend policy for the firm would be to pay zero dividend and in such a situation, the market price would be,
$=\frac{0+\frac{0.1}{0.08}(10-0)}{0.08}=₹ 156.25$
So, theoretically, the market price of the share can be increased by adopting a zero payout.
(ii) The P/E ratio at which the dividend policy will have no effect on the value of the share is such at which the Ke would be equal to the rate of return, r, of the firm. The Ke would be 10% ($=r$) at the P/E ratio of 10. Therefore, at the P/E ratio of 10 , the dividend policy would have no effect on the value of the share.
(iii) If the P / E is 8 instead of 12.5 , then the Ke which is the inverse of P / E ratio, would be12.5 and in such a situation ke> r and the market price, as per Walter's model would be:
$P=\frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}=\frac{7.5+\frac{0.1}{0.125}(10-7.5)}{0.125}=₹ 76$

7
 CHAPTER

CASH MANAGEMENT

Q. 1 REORDER INVENTORY LEVEL PY May 22
A company requires 36,000 units of a product per year at cost of ₹ 100 per unit. Ordering cost per order is ₹ 250 and the carrying cost is 4.5% per year of the inventory cost. Normal lead time is 25 days and safety stock is NIL. Assume 360 working days in a year.
(i) Calculate the Reorder Inventory Level.
(ii) Calculate the Economic Order Quantity (EOQ).
(iii) If the supplier offers 1% quantity discount for purchase in lots of 9,000 units or more, should the company accept the proposal?

Annual Consumption Ordering Cost

Carrying Cost
(i) Reorder Level = Lead Time \times Daily Consumption
$=25 \times \frac{36,000}{360}$
$=2,500$ units
(ii) Economic Order Quantity (EOQ)

$$
\begin{aligned}
& =\sqrt{\frac{2 A O}{C}}=\sqrt{\frac{2 \times 36,000 \times 250}{4.5}} \\
& =2,000 \text { units }
\end{aligned}
$$

(iii) Evaluation of Profitability of Quantity Discount Offer:
(a) When EOQ is ordered

		(₹)
Purchase Cost	$(36,000$ units $\times ₹ 100)$	$36,00,000$
Ordering Cost	$[(36,000$ units $/ 2,000$ units $) \times ₹ 250]$	4,500
Carrying Cost	$\left(2,000\right.$ units $\left.\times \frac{1}{2} \times ₹ 4.5\right)$	4,500
Total Cost		$36,09,000$

(b) When Quantity Discount is accepted

		(₹)
Purchase Cost	$\left(36,000\right.$ units $\left.\times ₹ 99^{\star}\right)$	$35,64,000$
Ordering Cost	$[(36,000$ units $/ 9,000$ units $) \times ₹ 250]$	1,000
Carrying Cost	$\left(9,000\right.$ units $\left.\times \frac{1}{2} \times ₹ 99 \times 4.5 \%\right)$	20,048
Total Cost		$35,85,048$

*Unit Cost	$=₹ 100$
Less: Quantity Discount @ 1%	$=₹ 1$
Purchase Cost	$=₹ 99$

eA Amit Sharma

Q. 2

Optimum Cash Balance

PY Nov 22

K Ltd. has a Quarterly cash outflow of ₹ $9,00,000$ arising uniformly during the Quarter.
The company has an Investment portfolio of Marketable Securities. It plans to meet the demands for cash by periodically selling marketable securities. The marketable securities are generating a return of 12% p.a. Transaction cost of converting investments to cash is $₹ 60$. The company uses Baumol model to find out the optimal transaction size for converting marketable securities into cash. Consider 360 days in a year.
You are required to calculate
(i) Company's average cash balance,
(ii) Number of conversions each year and
(iii) Time interval between two conversions.

Ans.
(i) Computation of Average Cash balance:

Annual cash outflow (U) $\quad=9,00,000 \times 4=₹ 36,00,000$
Fixed cost per transaction (P) = ₹ 60
Opportunity cost of one rupee p.a. (S)
$=\frac{12}{100}=0.12$
Optimum cash balance (C)
$=\sqrt{\frac{2 U P}{S}}=\sqrt{\frac{2^{\prime} 36,00,000^{\prime} 60}{0.12}}=₹ 60,000$
$=\frac{(0+60,000)}{2}=₹ 30,000$
(ii) Number of conversions p.a.

Annual cash outflow = ₹ $36,00,000$
Optimum cash balance = ₹ 60,000
\therefore No. of conversions p.a.
$=\frac{36,00,000}{60,000}=60$
(iii) Time interval between two conversions
No. of days in a year
$=360$
No. of conversions p.a.
$=60$
\therefore Time interval
$=\frac{360}{60}=6$ days
Q. 3 Cash Budget

PY Dec 21
A garment trader is preparing cash forecast for first three months of calendar year 2021.
His estimated sales for the forecasted periods are as below:

	January (₹ '000)	February (₹ '000)	March (₹ '000)
Total sales	600	600	800

(i) The trader sells directly to public against cash payments and to other entities on credit. Credit sales are expected to be four times the value of direct sales to public. He expects 15% customers to pay in the month in which credit sales are made, 25% to pay in the next month and 58% to pay in the next to next month. The outstanding balance is expected to be written off.
(ii) Purchases of goods are made in the month prior to sales and it amounts to 90% of sales and are made on credit. Payments of these occur in the month after the purchase. No inventories of goods are held.
(iii) Cash balance as on 1st January, 2021 is ₹ $50,000$.
(iv) Actual sales for the last two months of calendar year 2020 are as below:

	November (₹ '000)	December (₹ '000)
Total sales	640	880

You are required to prepare a monthly cash, budget for the three months from January to March, 2021

Ans
(1) Calculation of cash and credit sales
(₹ in thousands)

	Nov.	Dec.	Jan.	Feb.	Mar.
Total Sales	640	880	600	600	800
Cash Sales (1/5	th of total	128	176	120	120
Credit Sales (4/5	160				
th of total	512	704	480	480	640

(2) Calculation of Credit Sales Receipts

Month	Nov.	Dec.	Jan.	Feb.	Mar.
Forecast Credit sales (Working note 1)	512.00	704.00	480.00	480.00	640.00
Receipts:					
15% in the month of sales			72.00	72.00	96.00
25% in next month			176.00	120.00	120.00
58% in next to next month			296.96	408.32	278.40
Total			544.96	600.32	494.40

Cash Budget				(₹ithousands)	
	Nov.	Dec.	Jan.	Feb.	Mar.
Opening Balance (A)			50.00	174.96	355.28
Sales	640.00	880.00	600.00	600.00	800.00
Receipts: Cash Collection (Working note 1) Credit Collections (Working note 2)			$\begin{aligned} & 120.00 \\ & 544.96 \end{aligned}$	$\begin{aligned} & 120.00 \\ & 600.32 \end{aligned}$	$\begin{aligned} & 160.00 \\ & 494.40 \end{aligned}$
Total (B)			664.96	720.32	654.40
Purchases (90\% of sales in the prior to sales)		540	540	720	
Payments: Payment for purchases (next month)			540	540	720
Total (C)			540	540	720
Closing balance $(D)=(A+B-C)$			174.96	355.28	289.68

RTP Nov 22

A company was incorporated w.e.f. 1st April, 2021. Its authorised capital was ₹ $1,00,00,000$ divided into 10 lakh equity shares of ₹ 10 each. It intends to raise capital by issuing equity shares of ₹ $50,00,000$ (fully paid) on 1 st April. Besides this, a loan of ₹ $6,50,000$ @ 12% per annum will be obtained from a financial institution on 1st April and further borrowings will be made at same rate of interest on the first day of the month in which borrowing is required. All borrowings will be repaid along with interest on the expiry of one year. The company will make payment for the following assets in April.

Particulars	(₹)
Plant and Machinery	$10,00,000$

first attempt success tutorials

Land and Building	$20,00,000$
Furniture	$5,00,000$
Motor Vehicles	$5,00,000$
Stock of Raw Materials	$5,00,000$

The following further details are available:
(1) Projected Sales (April-September)

	$(₹)$
April	$15,00,000$
May	$17,50,000$
June	$17,50,000$
July	$20,00,000$
August	$20,00,000$
September	$22,50,000$

(2) Gross profit margin will be 25% on sales.
(3) The company will make credit sales only and these will be collected in the second month following sales
(4) Creditors will be paid in the first month following credit purchases. There will be credit purchases only.
(5) The company will keep minimum stock of raw materials of ₹ $5,00,000$.
(6) Depreciation will be charged @ 10% per annum on cost on all fixed assets.
(7) Payment of miscellaneous expenses of ₹ 50,000 will be made in April.
(8) Wages and salaries will be ₹ $1,00,000$ each month and will be paid on the first day of the next month.
(9) Administrative expenses of ₹ 50,000 per month will be paid in the month of their incurrence.
(10) No minimum cash balance is required.

You are required to PREPARE the monthly cash budget (April-September), the projected Income Statement for the 6 months period and the projected Balance Sheet as on 30th September, 2021.

Monthly Cash Budget (April-September)

	April	May	June	July	August	September
Opening cash balance	-	10,50,000	-	1,37,500	5,25,000	7,25,000
A. Cash inflows						
Equity shares	50,00,000	-	-	-	-	-
Loans (Refer to working note 1)	6,50,000	1,25,000	-	-	-	-
Receipt from debtors	-	-	15,00,000	17,50,000	17,50,000	20,00,000
Total (A)	56,50,000	11,75,000	15,00,000	18,87,500	22,75,000	27,25,000
B. Cash Outflows						
Plant and Machinery	10,00,000	-	-	-	-	-
Land and Building	20,00,000	-	-	-	-	-
Furniture	5,00,000	-	-	-	-	-
Motor Vehicles	5,00,000	-	-	-	-	-
Stock of raw materials (Minimum stock)	5,00,000	-	-	-	-	-

Chapter - 07
http://tiny.cc/FASTCostFMbyAB

CA Amit Sharma

Miscellaneous expenses	50,000	-	-	-	-	-
Payment to creditors for credit purchases (Refer to working note 2)	-	10,25,000	12,12,500	12,12,500	14,00,000	14,00,000
Wages and salaries	-	1,00,000	1,00,000	1,00,000	1,00,000	1,00,000
Admn. expenses	50,000	50,000	50,000	50,000	50,000	50,000
Total : B)	46,00,000	11,75,000	13,62,500	13,62,500	15,50,000	15,50,000
Closing balance $(A)-(B)$	10,50,000	-	1,37,500	5,25,000	7,25,000	11,75,000

Budgeted Income Statement for six-month period ending 30th September

Particulars	(₹)	Particulars	(₹)
To Purchases	83,37,500	By Sales	1,12,50,000
To Wages and Salaries	6,00,000	By Closing stock	5,00,000
To Gross profit c/d	28,12,500		
	1,17,50,000		1,17,50,000
To Admn. expenses	3,00,000	By Gross profit b/d	28,12,500
To Depreciation	2,00,000		
To Accrued interest on loan	45,250		
To Miscellaneous expenses To Net profit c/d	$\begin{gathered} 50,000 \\ 22,17,250 \end{gathered}$		
	28,12,500		28,12,500

Projected Balance Sheet as on 30th September, 2021

Reserve and		22,17,250	Current Assets: Stock Sundry debtors Cash	$\begin{array}{r} 5,00,000 \\ 42,50,000 \\ \underline{11,75,000} \\ \hline \end{array}$	59,25,000
Surplus:					
Profit and Loss					
Long-term loans	s $15,87,500$	7,75,000			
Current liabilities					
and provisions:					
Sundry creditors					
Accrued interest	45,250				
Outstanding	1,00,000	17,32,750			
expenses		97,75,000			97,75,000

Working Notes:
Subsequent Borrowings Needed
(₹)

	April	May	June	July	August	September
A. Cash Inflow						
Equity shares	50,00,000					
Loans	6,50,000					
Receipt from debtors	-		15,00,000	17,50,000	17,50,000	20,00,000
Total (A)	56,50,000		15,00,000	17,50,000	17,50,000	20,00,000
B. Cash Outflow						
Purchase of fixed assets	40,00,000					
Stock	5,00,000					
Miscellaneous expenses	50,000					
Payment to creditors		10,25,000	12,12,500	12,12,500	14,00,000	14,00,000
Wages and salaries		1,00,000	1,00,000	1,00,000	1,00,000	1,00,000
Administrative expenses	50,000	50,000	50,000	50,000	50,000	50,000
Total	46,00,000	11,75,000	13,62,500	13,62,500	15,50,000	15,50,000
Surplus/ (Deficit)	10,50,000	$(11,75,000)$	1,37,500	3,87,500	2,00,000	4,50,000
Cumulative balance	10,50,000	$(1,25,000)$	12,500	4,00,000	6,00,000	10,50,000

1. There is shortage of cash in May of $₹ 1,25,000$ which will be met by borrowings in May.
2. Payment to Creditors

Purchases $=$ Cost of goods sold - Wages and salaries
Purchases for April $=(75 \%$ of $15,00,000)-₹ 1,00,000=₹ 10,25,000$
(Note: Since gross margin is 25% of sales, cost of manufacture i.e. materials plus wages and salaries should be 75% of sales)
Hence, Purchases = Cost of manufacture minus wages and salaries of ₹ $1,00,000$)
The creditors are paid in the first month following purchases.
Therefore, payment in May is ₹ $10,25,000$
The same procedure will be followed for other months.

April	(75% of $15,00,000$)	₹ 1,00,000	₹ $10,25,000$
May	(75% of $17,50,000$)	₹ 1,00,000	₹ $12,12,500$
June	(75% of $17,50,000$)	₹ 1,00,000	₹ $12,12,500$
July	(75% of $20,00,000$)	₹ 1,00,000	₹ 14,00,000
August	(75\% of 20,00,000)	₹ 1,00,000	₹ $14,00,000$
September	(75\% of 22,50,000)	₹ 1,00,000	₹ 15,87,500
Minimum Stock			₹ $5,00,000$
Total Purchases			₹ $83,37,500$

3. Accrued Interest on Loan

$$
\begin{array}{lr}
12 \% \text { interest on ₹ } 6,50,000 \text { for } 6 \text { months } & 39,000 \\
\text { Add: } 12 \% \text { interest on ₹ } 1,25,000 \text { for } 5 \text { months } & 6,250 \\
& 45,250
\end{array}
$$

Cash Budget in next 3 years RTP May 22
You are given below the Profit \& Loss Accounts for two years for a company:
Profit and Loss Account

	Year 1	Year 2		Year 1	Year 2
	(₹)	(₹)		(₹)	(₹)
To Opening stock	32,00,000	40,00,000	By Sales	3,20,00,000	4,00,00,000
To Raw materials	1,20,00,000	1,60,00,000	By Closing stock	40,00,000	60,00,000
To Stores	38,40,000	48,00,000	By Misc. Income	4,00,000	4,00,000
To Manufacturing Expenses	51,20,000	64,00,000			
To Other Expenses	40,00,000	40,00,000			
To Depreciation	40,00,000	40,00,000			
To Net Profit	42,40,000	72,00,000		-	-
	3,64,00,000	4,64,00,000		3,64,00,000	4,64,00,000

Sales are expected to be ₹ $4,80,00,000$ in year 3 .
As a result, other expenses will increase by ₹ $20,00,000$ besides other charges. Only raw materials are in stock. Assume sales and purchases are in cash terms and the closing stock is expected to go up by the same amount as between year 1 and 2. You may assume that no dividend is being paid. The Company can use 75% of the cash generated to service a loan. COMPUTE how much cash from operations will be available in year 3 for the purpose? Ignore income tax.

Projected Profit and Loss Account for the year 3

Particulars	Year 2 Actual (₹ in lakhs)	Year 3 Projected (₹ in lakhs)	Particulars	Year 2 Actual (₹ in lakhs)	Year 3 Projected (₹ in lakhs)
To Materials consumed	140.00	168.00	By Sales	400.00	480.00

To Stores	48.00	57.60	By Misc. Income	4.00	4.00
To Mfg. Expenses	64.00	76.80			
To Other expenses	40.00	60.00			
To Depreciation	40.00	40.00			
To Net profit	72.00	81.60		484.00	484.00
	404.00	484.00			

Cash Flow:

Particulars	(₹ in lakhs)
Profit	
Add: Depreciation	81.60
	$\underline{40.00}$
Less: Cash required for increase in stock	121.60
Net cash inflow	20.00

Available for servicing the loan: 75\% of ₹ $1,01,60,000$ or $₹ 76,20,000$ Working Notes:
(i) Material consumed in year $1=(32+120-40) / 320=35 \%$

Material consumed in year $2=(40+160-60) / 400=35 \%$
Likely consumption in year $3=480 \times \frac{35}{100}=₹ 168$ (lakhs)
(ii) Stores are 12% of sales \& Manufacturing expenses are 16% of sales for both the years.

Q. 6

Monthly Cash Budget
MTP May 23(1)
You are given the following information:
(i) Estimated monthly Sales are as follows:

	$₹$		$₹$
January	$5,50,000$	June	$4,40,000$
February	$6,60,000$	July	$5,50,000$
March	$7,70,000$	August	$4,40,000$
April	$4,40,000$	September	$3,30,000$
May	$3,30,000$	October	$5,50,000$

(ii) Wages and Salaries are estimated to be payable as follows:

	$₹$		$₹$
April	49,500	July	55,000
May	44,000	August	49,500
June	55,000	September	49,500

(iii) Of the sales, 75% is on credit and 25% for cash. 60% of the credit sales are collected within one month and the balance in two months. There are no bad debt losses.
(iv) Purchases amount to 75% of sales and are made and paid for in the month preceding the sales.
(v) The firm has taken a loan of ₹ $6,00,000$. Interest @ 12% p.a. has to be paid quarterly in January, April and so on.
(vi) The firm is to make payment of tax of ₹26,000 in July 2023.
(vii) The firm had a cash balance of $₹ 35,000$ on $1 \mathrm{~S} \dagger$ April 2023 which is the minimum desired level of cash balance. Any cash surplus/deficit above/below this level is made up by temporary investments/liquidation of temporary investments or temporary borrowings at the end of each month (interest on these to be ignored).
Required:
PREPARE monthly cash budgets for six months beginning from April, 2023 on the basis of the above information.

Computation - Collections from Customers

Particulars	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)
Total Sales	$6,60,000$	$7,70,000$	$4,40,000$	$3,30,000$	$4,40,000$	$5,50,000$	$4,40,000$	$3,30,000$
Credit Sales (75\% of total Sales)	$4,95,000$	$5,77,500$	$3,30,000$	$2,47,500$	$3,30,000$	$4,12,500$	$3,30,000$	$2,47,500$
Collection (within one month)		$2,97,000$	$3,46,500$	$1,98,000$	$1,48,500$	$1,98,000$	$2,47,500$	$1,98,000$
Collection (within two months)			$1,98,000$	$2,31,000$	$1,32,000$	99,000	$1,32,000$	$1,65,000$
Total Collections			$5,44,500$	$4,29,000$	$2,80,500$	$2,97,000$	$3,79,500$	$3,63,000$

Monthly Cash Budget for Six Months: April to September 2023

Particulars	April	May	June	July	August	Sept.
	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)
Receipts:						
Opening Balance	35,000	35,000	35,000	35,000	35,000	35,000
Cash Sales	1,10,000	82,500	1,10,000	1,37,500	1,10,000	82,500
Collections from Debtors	5,44,500	4,29,000	2,80,500	2,97,000	3,79,500	3,63,000
Total Receipts (A)	6,89,500	5,46,500	4,25,500	4,69,500	5,24,500	4,80,500
Payments:						
Purchases	2,47,500	3,30,000	4,12,500	3,30,000	2,47,500	4,12,500
Wages and Salaries	49,500	44,000	55,000	55,000	49,500	49,500
Interest on Loan	18,000	-----	-----	18,000	-----	-----
Tax Payment	-----	-----	-----	26,000	-----	-----
Total Payment (B)	3,15,000	3,74,000	4,67,500	4,29,000	2,97,000	4,62,000
Minimum Cash Balance	35,000	35,000	35,000	35,000	35,000	35,000
Total Cash Required (C)	3,50,000	4,09,000	5,02,500	4,64,000	3,32,000	4,97,000
Surplus/ (Deficit) (A)-(C)	3,39,500	1,37,500	-77,000	5,500	1,92,500	-16,500
Investment/Financing:						

Total effect of (Invest)/ Financing (D)	$-3,39,500$	$-1,37,500$	77,000	$-5,500$	$-1,92,500$	16,500
Closing Cash Balance (A) +(D)-(B)	35,000	35,000	35,000	35,000	35,000	35,000

Q. 7

Monthly Cash Budget
MTP May 21(1)
PREPARE monthly cash budget for the first six months of 2021 on the basis of the following information:
(i) Actual and estimated monthly sales are as follows:

Actual	(Rs.)	Estimated	(Rs.)
October 2020	$2,00,000$	January 2021	60,000
November 2020	$2,20,000$	February 2021	80,000
December 2020	$2,40,000$	March 2021	$1,00,000$
		April 2021	$1,20,000$
		May 2021	80,000
		June 2021	60,000
		July 2021	$1,20,000$

(ii) Operating Expenses (including salary \& wages) are estimated to be payable as follows:

Month	(Rs.)	Month	(Rs.)
January 2021	22,000	April 2021	30,000
February 2021	25,000	May 2021	25,000
March 2021	30,000	June 2021	24,000

(iii) Of the sales, 75% is on credit and 25% for cash. 60% of the credit sales are collected after one month, 30% after two months and 10% after three months.
(iv) Purchases amount to 80% of sales and are made on credit and paid for in the month preceding the sales.
(v) The firm has 12% debentures of Rs.1,00,000. Interest on these has to be paid quarterly in January, April and so on.
(vi) The firm is to make an advance payment of tax of Rs. 5,000 in April.
(vii) The firm had a cash balance of Rs. 40,000 at 31st Dec. 2020, which is the minimum desired level of cash balance. Any cash surplus/deficit above/below this level is made up by temporary investments/liquidation of temporary investments or temporary borrowings at the end of each month (interest on these to be ignored).

Monthly Cash Budget for first six months of 2021
(Amount in Rs.)

Particulars	Jan.	Feb.	Mar.	April	May	June
Opening balance	40,000	40,000	40,000	40,000	40,000	40,000
Receipts:						
Cash sales	15,000	20,000	25,000	30,000	20,000	15,000
Collection from debtors	$1,72,500$	97,500	67,500	67,500	82,500	70,500
Total cash available (A)	$2,27,500$	$1,57,500$	$1,32,500$	$1,37,500$	$1,42,500$	$1,25,500$
Payments:						
Purchases	64,000	80,000	96,000	64,000	48,000	96,000

Chapter - 07

Operating Expenses Interest on debentures Tax payment	$\begin{array}{r} 22,000 \\ 3,000 \end{array}$	$25,000$	$30,000$	$\begin{array}{r} 30,000 \\ 3,000 \\ 5,000 \\ \hline \end{array}$	$25,000$	$24,000$
Total payments (B)	89,000	1,05,000	1,26,000	1,02,000	73,000	1,20,000
Minimum cash balance desired	40,000	40,000	40,000	40,000	40,000	40,000
Total cash needed (C)	1,29,000	1,45,000	1,66,000	1,42,000	1,13,000	1,60,000
Surplus/(deficit) (A-C)	98,500	12,500	$(33,500)$	$(4,500)$	29,500	$(34,500)$
Investment/financing Temporary Investments	$(98,500)$	$(12,500)$	-	-	$(29,500)$	-
Liquidation of temporary investments or temporary borrowings			33,500	4,500	-	$34,500$
Total effect of investment/financing(D)	$(98,500)$	$(12,500)$	33,500	4,500	$(29,500)$	34,500
Closing cash balance ($A+$ $D-B)$	40,000	40,000	40,000	40,000	40,000	40,000

Workings:

1. Collection from debtors:
(Amount in Rs.)

	Year 2020			Year 2021						
	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	
Total sales	$2,00,000$	$2,20,00$	$2,40,00$	60,00	80,000	$1,00,00$	$1,20,000$	80,000	60,000	
Credit sales										
(75\% of total										
calec)	$1,50,000$	$1,65,00$	$1,80,00$	45,00	60,000	75,00	90,000	60,000	45,000	
Collections:										
One month		90,00	99,00	$1,08,00$	27,000	36,00	45,000	54,000	36,000	
Two months		0	45,00	49,50	54,000	13,500	18,000	22,500	27,000	
Three months				15,000	16,500	18,000	4,500	6,000	7,500	
Total										
collections										

2. Payment to Creditors:
(Amount in Rs.)

	Year 2021						
	Jan	Feb	Mar	Apr	May	Jun	Jul
Total sales	60,000	80,000	$1,00,000$	$1,20,000$	80,000	60,000	$1,20,000$
Purchases (80\% of total sales)	48,000	64,000	80,000	96,000	64,000	48,000	96,000
Payment: One month prior	64,000	80,000	96,000	64,000	48,000	96,000	

Monthly Cash Budget MTP Nov 19
You are given the following information:
(i) Estimated monthly Sales are as follows:
(ii)

	Rs.		Rs.
January	$1,00,000$	June	80,000
February	$1,20,000$	July	$1,00,000$
March	$1,40,000$	August	80,000
April	80,000	September	60,000
May	60,000	October	$1,00,000$

(ii) Wages and Salaries are estimated to be payable as follows:

	Rs.		Rs.
April	9,000	July	10,000
May	8,000	August	9,000
June	10,000	September	9,000

(iii) Of the sales, 80% is on credit and 20% for cash. 75% of the credit sales are collected within one month and the balance in two months. There are no bad debt losses.
(iv) Purchases amount to 80% of sales and are made and paid for in the month preceding the sales.
(v) The firm has taken a loan of Rs. $1,20,000$. Interest @ 10% p.a. has to be paid quarterly in January, April and so on.
(vi) The firm is to make payment of tax of Rs. 5,000 in July, 2019.
(vii) The firm had a cash balance of Rs. 20,000 on 1St April, 2019 which is the minimum desired level of cash balance. Any cash surplus/deficit above/below this level is made up by temporary investments/liquidation of temporary investments or temporary borrowings at the end of each month (interest on these to be ignored).
Required
PREPARE monthly cash budgets for six months beginning from April, 2019 on the basis of the above information.

Computation - Collections from Debtors

Particulars	Feb (Rs.)	Mar (Rs.)	Apr (Rs.)	May (Rs.)	Jun (Rs.)	Jul (Rs.)	Aug (Rs.)	Sep (Rs.)
Total Sales	$1,20,000$	$1,40,000$	80,000	60,000	80,000	$1,00,000$	80,000	60,000
Credit Sales (80\% of total Sales)	96,000	$1,12,000$	64,000	48,000	64,000	80,000	64,000	48,000
Collection (within one month)	72,000	84,000	48,000	36,000	48,000	60,000	48,000	
Collection (within two months)		24,000	28,000	16,000	12,000	16,000	20,000	
Total Collections								

Monthly Cash Budget for Six Months: April to September, 2019

Particulars	April (Rs.)	May (Rs.)	June (Rs.)	July (Rs.)	August (Rs.)	Sept. (Rs.)
Receipts:						
Opening Balance	20,000	20,000	20,000	20,000	20,000	20,000
Cash Sales	16,000	12,000	16,000	20,000	16,000	12,000

Chapter - 07

Collections from Debtors	1,08,000	76,000	52,000	60,000	76,000	68,000
Total Receipts (A)	1,44,000	1,08,000	88,000	1,00,000	1,12,000	1,00,000
Payments:						
Purchases	48,000	64,000	80,000	64,000	48,000	80,000
Wages and Salaries	9,000	8,000	10,000	10,000	9,000	9,000
Interest on Loan	3,000	-----	-----	3,000	-----	-----
Tax Payment	-----	-----	-----	5,000	-----	-----
Total Payment (B)	60,000	72,000	90,000	82,000	57,000	89,000
Minimum Cash Balance	20,000	20,000	20,000	20,000	20,000	20,000
Total Cash Required (C)	80,000	92,000	1,10,000	1,02,000	77,000	1,09,000
Surplus/ (Deficit) (A)-(C)	64,000	16,000	$(22,000)$	$(2,000)$	35,000	$(9,000)$
Investment/Financing: Total effect of (Invest)/ Financing (D)	$(64,000)$	$(16,000)$	22,000	2,000	$(35,000)$	9,000
Closing Cash Balance $(A)+(D)-(B)$	20,000	20,000	20,000	20,000	20,000	20,000

8

CHAPTER

```
Accept Factoring or Not
```

Navya Ltd has annual credit sales of Rs. 45 lakhs. Credit terms are 30 days, but its management of receivables has been poor and the average collection period is 50 days, Bad debt is 0.4 per cent of sales. A factor has offered to take over the task of debt administration and credit checking, at an annual fee of 1 per cent of credit sales. Navya Ltd. estimates that it would save Rs. 35,000 per year in administration costs as a result. Due to the efficiency of the factor, the average collection period would reduce to 30 days and bad debts would be zero. The factor would advance 80 per cent of invoiced debts at an annual interest rate of 11 per cent. Navya Ltd. is currently financing receivables from an overdraft costing 10 per cent per year.
If occurrence of credit sales is throughout the year, COMPUTE whether the factor's services should be accepted or rejected. Assume 365 days in a year.

	Rs.
Present level of receivables is 45 lakh $\times 50 / 365$	$6,16,438$
In case of factor, receivables would reduce to 45 lakhs× $30 / 365$	$3,69,863$
The costs of the existing policyare as follows:	
Cost of financing existing receivables: $6,16,438 \times 10 \%$	61,644
Cost of bad debts: 45 lakhs $\times 0.4 \%$	18,000
Cost of current policy	79,644
The cost under the factor are as follows:	
Cost of financing new receivable through factor:	
(Rs. $3,69,863 \times 0.8 \times 0.11)+($ Rs. $3,69,863 \times 0.2 \times 0.10)$	39,945
$=(32,548+7,397)$	45,000
Factor's annual fee: 45 Lakhs $\times 0.01$	$(35,000)$
Administration costs saved:	49,945
Net cost under factor:	

From the above analysis it is clear that the factor's services are cheaper than Existing policy by Rs. 29,699 (Rs. 79,644 - Rs. 49,945) per year. Hence, the services of the factor should be accepted.

The Alliance Ltd., a Petrochemical sector company had just invested huge amount in its new expansion project. Due to huge capital investment, the company is in need of an additional ₹ $1,50,000$ in working capital immediately. The Finance Manger has determined the following three feasible sources of working capital funds:
(i) Bank loan: The Company's bank will lend ₹ $2,00,000$ at 15%. A 10% compensating balance will be required, which otherwise would not be maintained by the company.
(ii) Trade credit: The company has been offered credit terms from its major supplier of
$3 / 30$, net 90 for purchasing raw materials worth ₹ $1,00,000$ per month.
(iii) Factoring: A factoring firm will buy the company's receivables of ₹ $2,00,000$ per month, which have a collection period of 60 days. The factor will advance up to 75% of the face value of the receivables at 12% on an annual basis. The factor will also charge commission of 2% on all receivables purchased. It has been estimated that the factor's services will save the company a credit department expense and bad debt expense of ₹ 1,250 and ₹ 1,750 per month respectively.
http://tiny.cc/FASTCostFMbyAB
http://tiny.cc/yoursamitbhai

On the basis of annual percentage cost, ADVISE which alternative should the company select? Assume 360 days year.
(i) Bank loan: Since the compensating balance would not otherwise be maintained, the real annual cost of taking bank loan would be:
$=\frac{15}{90} \times 100=16.67 \%$ p.a.
(ii) Trade credit: Amount upto ₹ $1,50,000$ can be raised within 2 months or 60 days. The real annual cost of trade credit would be:
$=\frac{3}{97} \times \frac{360}{60} \times 100=18.56 \%$ p.a.
(iii) Factoring:

Commission charges per year $=2 \% \times(₹ 2,00,000 \times 12)=₹ 48,000$
Total Savings per year $=(₹ 1,250+₹ 1,750) \times 12=₹ 36,000$
Net factoring cost per year = ₹ 48,000-₹ $36,000 \quad$ ₹ 12,000
Annual Cost of Borrowing ₹ $1,50,000$ receivables through factoring would be:
$=\frac{12 \% \times 1,50,000+12,000}{1,50,000} \times 100$
$=\frac{18,000+12,000}{1,50,000} \times 100$
$=20 \%$ p.a.

Advise: The company should select alternative of Bank Loan as it has the lowest annual cost i.e. 16.67% p.a.

Bank Loan, Factoring, Credit
MTP May 23(2)
Sundaram limited a plastic manufacturing company had invested enormous amount of money in a new expansion project. Due to such a great amount of capital investment, Company needs an additional ₹ $2,00,00,000$ in working capital immediately. The CFO has determined the following three feasible sources of working capital funds:
Bank Loan: The company's bank will lend ₹ $2,30,00,000$ at 12% per annum. However, the bank will require 15% of the loan granted to be kept in a current account as the minimum average bal ance which otherwise would have been just ₹ 50,000.
Trade Credit: A major supplier with $2 / 20$ net 80 credit terms has approached for supply of raw material worth ₹1,90,00,000 p.m.
Factoring: factoring firm will buy the companies receivables of ₹ $2,50,00,000$ per month, which have a collection period of 60 days. factor will advance up to 75% of the face value of the receivables at 14 percent per annum. Factor Commission will amount to 2% on all receivables purchased. Factoring will save credit department expense and bad debts of ₹ $1,75,000$ p.m. and ₹ $2,25,000$ p.m.
Based on annual percentage cost, ADVISE which alternative should the company select. Assume 360 days a year
(i) Bank Loan: As the minimum average balance more than ₹ 50,000 need not be kept if loan is not undertaken, the incremental money made available by bank through bank loan is $₹ 2,30,00,000-(15 \% \times 2,30,00,000$ $₹ 50,000$) = ₹ $1,96,00,000$. Real annual cost of bank loan $=(₹ 2.3$ crores $\times 12 \%$) / ₹ 1.96 crores $=14.08 \%$.
(ii) Trade Credit: The real annual cost of trade credit will be $2 / 98 \times 360 / 60 \times 100=12.24 \%$.
(iii) Factoring:

Commission charges per year $=2 \% \times 2.5$ crores $\times 12=₹ 60,00,000$
Savings per year $=(1,75,000+2,25,000) \times 12=₹ 48,00,000$
Net Factoring cost per year = ₹ $60,00,000-₹ 48,00,000=₹ 12,00,000$
Annual cost of borrowing ₹ 2.5 crores $\times 75 \%$ i.e. ₹ $1,87,50,000$ will be
$(1,87,50,000 \times 14 \%+₹ 12,00,000) / 1,87,50,000=20.4 \%$

CA Amit Sharma
Conclusion: The company should select trade credit as a preferred mode of financing the working capital requirement as it results in lowest cost on an annual basis.

Change in Credit Terms PY May 23

A company has current sale of ₹ 12 lakhs per year. The profit-volume ratio is 20% and post-tax cost of investment in receivables is 15%. The current credit terms are $1 / 10$, net
50 days and average collection period is 40 days. 50% of customers in terms of sales revenue are availing cash discount and bad debt is 2% of sales.
In order to increase sales, the company want to liberalize its existing credit terms to $2 / 10$, net 35 days. Due to which, expected sales will increase to ₹ 15 lakhs. Percentage of default in sales will remain same. Average collection period will decrease by 10 days. 80% of customers in terms of sales revenue are expected to avail cash discount under this proposed policy.
Tax rate is 30%.
ADVISE, should the company change its credit terms. (Assume 360 days in a year.)

Ans

(i) Calculation of Cash Discount

Cash Discount $=$ Total credit sales $\times \%$ of customers who take up discount \times Rate
Present Policy $=\frac{12,00,000 \times 50 \times 0.01}{100}=₹ 6,000$
Proposed Policy $=15,00,000 \times 0.80 \times 0.02=₹ 24,000$
(ii) Opportunity Cost of Investment in Receivables

Present Policy: Opportunity Cost $=$ Total Cost $\times \frac{\text { Collection period }}{360} \times \frac{\text { Rate of Return }}{100}$
$=9,60,000 \times \frac{40}{360} \times \frac{15}{100}=₹ 16,000$
Proposed Policy: $=$ Total Cost $\times \frac{\text { Collection period }}{360} \times \frac{\text { Rate of Return }}{100}$
$=12,00,000 \times \frac{30}{360} \times \frac{15}{100}=₹ 15,000$
Statement showing Evaluation of Credit Policies

Particulars	Present Policy	Proposed Policy
Credit Sales	$12,00,000$	$15,00,000$
Variable Cost @ 80\%* of sales	$9,60,000$	$12,00,000$
Bad Debts @ 2\%	24,000	30,000
Cash Discount	6,000	24,000
Profit before tax	$2,10,000$	$2,46,000$
Tax @ 30\%	63,000	73,800
Profit after Tax	$1,47,000$	$1,72,200$
Opportunity Cost of Investment in Receivables	16,000	15,000
Net Profit	$1,31,000$	$1,57,200$

*Only relevant or variable costs are considered for calculating the opportunity costs on the funds blocked in receivables. Since 20% is profit-volume ratio, hence the relevant costs are taken to be 80% of the respective sales.
Advise: Proposed policy should be adopted since the net benefit is increased by (₹ $1,57,200$ - ₹ $1,31,000$) = ₹ 26,200 .

Alternative presentation using incremental approach

cA Amit Sharma

Incremental sales (15,00,000-12,00,000)
₹

Incremental sales (15,00,000-12,00,000)	$3,00,000$
Less: Incremental variable cost $(12,00,000-9,60,000)$	$2,40,000$
Less: Incremental Bad debts (30,000-24,000)	6,000
Less: Incremental Cash discount $(24,000-6,000)$	18,000
Increase in Profit Before Tax	36,000
Less: Tax @ 30\%	10,800
Increase in Profit After Tax	25,200
Add: Savings in opportunity cost (16,000-15,000)	1,000
Increase in Net Profit	26,200

Advise: Proposed policy should be adopted since the net benefit is increased by (₹ $1,57,200$ - ₹ $1,31,000$) = ₹ 26,200 .

Current annual sale of SKD Ltd. is ₹ 360 lakhs. It's expenditure on receivables management is too high considering following two new alternate credit policies:
directors are of the opinion that company's current and with a view to reduce the expenditure they are
collection period 1.5 months 2\%
₹ 12 lakh

Policy Y Average

1 month
1%
₹ 20 lakh

Selling price per unit of product is ₹ 150 . Total cost per unit is $₹ 120$. Current credit terms are 2 months and percentage of default is 3%.

Current annual collection expenditure is ₹ 8 lakh. Required rate of return on investment of SKD Ltd. is 20\%. Determine which credit policy SKD Ltd. should follow.

Statement showing the Evaluation of Credit policies (Total Approach)

Particulars		Present Policy (2 Months)	Proposed Policy $\mathrm{X}(1.5$ Months)	Proposed Policy Y (1 Month)
		₹ in lakhs	₹ in lakhs	₹ in lakhs
A.				Expected Profit:
	(a) Credit Sales*	360	360	360
	(b) Total Cost other than Bad Debts and collection expenditure $(360 / 150 \times 120)$	288	288	288
	(c) Bad Debts	10.8	7.2	3.6
		(360×0.03)	(360×0.02)	(360×0.01)

	(d) Collection expenditure	8	12	20
	(e) Expected Profit [(a) - (b) - (c) - (d)]	53.2	52.8	48.4
B.	Opportunity Cost of Investments in Receivables (Working Note)	9.6	7.2	4.8
C.	Net Benefits (A - B)	43.6	45.6	43.6

Recommendation: The Proposed Policy X should be followed since the net benefits under this policy are higher as compared to other policies.
*Note: It is assumed that all sales are on credit.
Working Note:
Calculation of Opportunity Cost of Average Investments

Opportunity Cost	$=$ Total Cost $\times \frac{\text { Collection period }}{12} \times \frac{\text { Rate of Re turn }}{100}$
Present Policy	$=₹ 288$ lakhs $\times \frac{2}{12} \times \frac{20}{100}=₹ 9.6$ lakhs
Policy X	$=₹ 288$ lakhs $\times \frac{1.5}{12} \times \frac{20}{12}=₹ 7.2$ lakhs
Policy X	$=₹ 288$ lakhs $\times \frac{1}{12} \times \frac{20}{100}=₹ 4.8$ lakhs

Alternatively

Statement showing the Evaluation of Credit policies (Incremental Approach)

Particulars	Present Policy (2 Months)	Proposed Policy X (1.5 Months)	Proposed Policy Y (1 Month)
	₹ in lakhs	₹ in lakhs	₹ in lakhs
(a) Credit Sales*	360	360	360
(b) Cost of sales ($360 / 150 \times 120$)	288	288	288
(c) Receivables (Refer Working Note)	48	36	24
(d) Reduction in receivables from present policy	-	12	24
(A) Savings in Opportunity Cost of Investment in Receivables (@ 20\%)	-	2.4	4.8
(e) Bad Debts	10.8	7.2	3.6
	(360 $\times 0.03$)	(360 $\times 0.02$)	(360 \times 0.01)
(B) Reduction in bad debts from present policy	-	3.6	7.2
(f) Collection expenditure	8	12	20
(C) Increase in Collection expenditure from Present policy	-	4	12
(D) Net Benefits ($A+B-C$)		2	0

Recommendation: The Proposed Policy X should be followed since the net benefits under this policy are higher as compared to other policies.
*Note: It is assumed that all sales are on credit.
Working Note:
Calculation of Investment in Receivables $=$ Total Cost $\times \frac{\text { Collection period }}{12}$
first attempt success tutorials
Present Policy $=₹ 288$ lakhs $\times \frac{2}{12}=₹ 48$ lakhs
Policy $X=₹ 288$ lakhs $\times \frac{1.5}{12}=₹ 36$ lakhs
Policy y $=₹ 288$ lakhs $\times \frac{1}{12}=₹ 24$ lakhs

Credit policy
PY Nov 18
MN Ltd. has a current turnover of ₹ $30,00,000$ p.a. Cost of Sale is 80% of turnover and Bad Debts are 2% of turnover, Cost of Sales includes 70% variable cost and 30% Fixed Cost, while company's required rate of return is 15%. MN Ltd. currently allows 15 days credit to its customer, but it is considering increase this to 45 days credit in order to increase turnover.
It has been estimated that this change in policy will increase turnover by 20%, while Bad Debts will increase by 1%. It is not expected that the policy change will result in an increase in fixed cost and creditors and stock will be unchanged.
Should MN Ltd. introduce the proposed policy? (Assume 360 days year)

Statement Showing Evaluation of Credit Policies

	Particulars	Present Policy	Proposed Policy
A.	Expected Contribution		
	(a) Credit Sales	30,00,000	36,00,000
	(b) Less: Variable Cost	16,80,000	20,16,000
	(c) Contribution	13,20,000	15,84,000
	(d) Less: Bad Debts	60,000	1,08,000
	(e) Contribution after Bad debt [(c)-(d)]	12,60,000	14,76,000
B.	Opportunity Cost of investment in Receivables	15,000	54,000
C.	Net Benefits [A-B]	12,45,000	14,22,000
D.	Increase in Benefit		1,77,000

Recommendation: Proposed Policy i.e credit from 15 days to 45 days should be implemented by NM Ltd since the net benefit under this policy are higher than those under present policy

1 Working Note:

	Present Policy $(₹)$	Propose Policy $(₹)$
Sales	$30,00,000$	$36,00,000$
Cost of Sales (80\% of sales)	$24,00,000$	$28,80,000$
Variable cost (70\% of cost of sales)	$16,80,000$	$20,16,000$

2. Opportunity Costs of Average Investments

$$
\begin{aligned}
& \quad \text { Variable Cost } \times \frac{\text { Collection period }}{\text { Return }} \times \text { Rate of } \\
& \text { Present Policy } \\
& =₹ 24,00,000 \times \frac{45}{360} \times 15 \% ₹ 54,000 \\
& \text { Proposed Policy }
\end{aligned}
$$

River limited currently uses the credit terms of $1.5 / 15$ net 45 days and average collection period was 30 days. The company presently having sales of ₹ $50,00,000$ and 30% customers availing the discount. The chances of default are currently 5%. Variable cost constitutes 65% and total cost constitute 85% of sales. The company is planning liberalization of credit terms to $2 / 20$ net 50 days. It is expected that sales are likely to increase by ₹ $5,00,000$, the default chances are 10% and average collection period will decline to 25 days. There won't be any change in the fixed cost and 50% customers are expected to avail the discount. Tax rate is 35%. EVALUATE this policy in comparison with the current policy and recommend whether the new policy should be implemented. Assume cost of capital to be 10% (post tax) and 360 days in a year.

Evaluation of Credit Policies

The new policy leads to lower net benefit for the company. Hence it should not be implemented.

Credit Policy
RTP Nov 20
A company wants to follow a more prudent policy to improve its sales for the region which is ₹ 9 lakhs per annum at present, having an average collection period of 45 days. After certain researches, the management consultant of the company reveals the following information:

Credit Policy	Increase in collection period	Increase in sales	Present defaul \dagger anticipated
W	15 days	₹ 60,000	1.5%
X	30 days	₹ 90,000	2%
Y	45 days	₹ $1,50,000$	3%
Z	70 days	₹ $2,10,000$	4%

The selling price per unit is ₹ 3 . Average cost per unit is ₹ 2.25 and variable costs per unit are ₹ 2 . The current bad debt loss is 1%. Required return on additional investment is 20%. (Assume 360 days year)
ANALYSE which of the above policies would you recommend for adoption?

Ans A. Statement showing the Evaluation of Debtors Policies (Total Approach)
(Amount in ₹)

	Particulars	Present Policy 45 days	Proposed Policy w	Proposed Policy \times	Proposed Policy y	Proposed Policy Z 115 days
I.	Expected Profit:					
	(a) Credit Sales (b) Total Cost other than Bad Debts	9,00,000	9,60,000	9,90,000	10,50,000	11,10,000
	(i) Variable Costs [Sales $\times 2 / 3$]	6,00,000	6,40,000	6,60,000	7,00,000	7,40,000
	(ii) Fixed Costs	75,000	75,000	75,000	75,000	75,000
		6,75,000	7,15,000	7,35,000	7,75,000	8,15,000
	(c) Bad Debts	9,000	14,400	19,800	31,500	44,400
	(d) Expected Profit	2,16,000	2,30,600	2,35,200	2,43,500	2,50,600
	$[[(a)-(b)-(c)]$					
II.	Opportunity Cost of Investments in Receivables	16,875	23,833	30,625	38,750	52,069
III.	Net Benefits (I - II)	1,99,125	2,06,767	2,04,575	2,04,750	1,98,531

Recommendation: The Proposed Policy W (i.e. increase in collection period by 15 days or total 60 days) should be adopted since the net benefits under this policy are higher as compared to other policies.

Working Notes:

(i) Calculation of Fixed Cost $=$ [Average Cost per unit - Variable Cost per unit $] \times$ No. of Units sold
$=[₹ 2.25-₹ 2.00] \times(₹ 9,00,000 / 3)$
$=₹ 0.25 \times 3,00,000=₹ 75,000$
(ii) Calculation of Opportunity Cost of Average Investments

Opportunity Cost $=$ Total Cost $\times \frac{\text { Colle ction period }}{360} \times \frac{\text { Rate of Return }}{100}$
Present Policy $\quad=6,75,000 \times \frac{45}{360} \times \frac{20}{100}=16,875$
Policy W $=7,15,000 \times \frac{60}{360} \times \frac{20}{100}=23,833$
Policy $X \quad=7,35,000 \times \frac{75}{360} \times \frac{20}{100}=\quad 30,625$
Policy y $\quad=7,75,000 \times \frac{90}{360} \times \frac{20}{100}=38,750$
Policy Z $\quad=8,15,000 \times \frac{115}{360} \times \frac{20}{100}=52,069$
B. Another method of solving the problem is Incremental Approach. Here we assume that sales are all credit sales.
(Amount in ₹)

Recommendation: The Proposed Policy W should be adopted since the net benefits under this policy are higher than those under other policies.
C. Another method of solving the problem is by computing the Expected Rate of Return

Expected Rate of Return $=\frac{\text { In crem en tal Exp ected Profit}}{\text { Incremental Investmentin Receivables }} \times 100$
For Policy W $=\frac{14,500}{34,792} \times 100=41.96 \%$
For Policy $X=\frac{19,200}{68,750} \times 100=27.93 \%$
For Policy y $\quad=\frac{27,500}{109,375} \times 100=25.14 \%$

For Policy $Z \quad=\frac{34,600}{1,75,972} \times 100=19.66 \%$
Recommendation: The Proposed Policy W should be adopted since the Expected Rate of Return (41.96\%) is more than the Required Rate of Return (20\%) and is highest among the given policies compared.

Credit Policy

RTP May 20
TM Limited, a manufacturer of colour TV sets is considering the liberalization of existing credit terms to three of their large customers A, B and C. The credit period and likely quantity of TV sets that will be sold to the customers in addition to other sales are as follows:
Quantity sold (No. of TV Sets)

Credit Period (Days)	A	B	C
0	10,000	10,000	-
30	10,000	15,000	-
60	10,000	20,000	10,000
90	10,000	25,000	15,000

The selling price per TV set is $₹ 15,000$. The expected contribution is 50% of the selling price. The cost of carrying receivable averages 20% per annum.
You are required to COMPUTE the credit period to be allowed to each customer. (Assume 360 days in a year for calculation purposes).

In case of customer A, there is no increase in sales even if the credit is given. Hence comparative statement for $B \& C$ is given below:

| Particulars | Customer B | | | | | Customer C | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Credit period (days) | 0 | 30 | 60 | 90 | 0 | 30 | 60 | 90 | |
| 2. Sales Units | 10,000 | 15,000 | 20,000 | 25,000 | - | - | 10,000 | 15,000 | |
| | $₹$ in lakh | | | | | ₹in lakh | | | |
| 3. Sales Value | 1,500 | 2,250 | 3,000 | 3,750 | - | - | 1,500 | 2,250 | |
| 4. Contribution at 50\% (A) | 750 | 1,125 | 1,500 | 1,875 | - | - | 750 | 1,125 | |
| 5. Receivables:-
 Credit Period x Sale 360 | - | 187.5 | 500 | 937.5 | - | - | 250 | 562.5 | |
| 6. Debtors at cost | - | 93.75 | 250 | 468.75 | - | - | 125 | 281.25 | |
| 7. Cost of carrying debtors
 at 20\% (B) | - | 18.75 | 50 | 93.75 | - | - | 25 | 56.25 | |
| 8. Excess of contributions
 over cost of carrying
 debtors (A - B) | 750 | $1,106.25$ | $1,406.25$ | $1,781.25$ | - | - | 725 | $1,068.75$ | |

The excess of contribution over cost of carrying Debtors is highest in case of credit period of 90 days in respect of both the customers B and C. Hence, credit period of 90 days should be allowed to B and C.

A regular customer of your company has approached to you for extension of credit facility for purchasing of goods. On analysis of past performance and on the basis of information supplied, the following pattern of payment schedule emerges:

Pattern of Payment Schedule

At the end of 30 days

At the end of 60 days
30% of the bill

At the end of 90 days
At the end of 100 days
Non-recovery

$$
\begin{aligned}
& 30 \% \text { of the bill. } \\
& 18 \% \text { of the bill. } \\
& 2 \% \text { of the bill. }
\end{aligned}
$$

The customer wants to enter into a firm commitment for purchase of goods of ₹30 lakhs in 2019, deliveries to be made in equal quantities on the first day of each quarter in the calendar year. The price per unit of commodity is ₹ 300 on which a profit of ₹ 10 per unit is expected to be made. It is anticipated that taking up of this contract would mean an extra recurring expenditure of $₹ 10,000$ per annum. If the opportunity cost is 18% per annum, would you as the finance manager of the companyRECOMMEND the grant of credit to the customer? Assume 1 year $=360$ days.

Statement showing the Evaluation of credit Policies

Particulars	Proposed Policy ${ }^{₹}$
A. Expected Profit: (a) Credit Sales	
(b) Total Cost	$30,00,000$
(i) Variable Costs	$29,00,000$
(ii) Recurring Costs	10,000
Bad Debts	$29,10,000$
(c) \quad Expected Profit [(a) - (b) - (c)]	60,000
(d) $\quad 30,000$	
B. Opportunity Cost of Investments in Receivables	$1,00,395$
C. Net Benefits (A - B)	$(70,395)$

Recommendation: The Proposed Policy should not be adopted since the net benefits under this policyare negative
Working Note: Calculation of Opportunity Cost of Average Investments
Opportunity Cost $=$ Total Cost $\times \frac{\text { Collection Period }}{360} \times \frac{\text { Rate of Return }}{100}$

Particulars	20%	30%	30%	18%	Total
A. Total Cost	$5,82,000$	$8,73,000$	$8,73,000$	$5,23,800$	$28,51,800$
B. Collection period	$30 / 360$	$60 / 360$	$90 / 360$	$100 / 360$	
C. Required Rate of Return	18%	18%	18%	18%	
D. Opportunity Cost $(A \times B \times C)$	8,730	26,190	39,285	26,190	$1,00,395$

Q. 11

Credit Policy

RTP Nov 18

Tony Limited, manufacturer of Colour TV sets is considering the liberalization of existing credit terms to three of their large customers A, B and C. The credit period and likely quantity of TV sets that will be sold to the customers in addition to other sales are as follows:
Quantity sold (No. of TV Sets)

Credit Period (Days)	A	B	C
0	1,000	1,000	-
30	1,000	1,500	-
60	1,000	2,000	1,000
90	1,000	2,500	1,500

The selling price per TV set is ₹ 9,000 . The expected contribution is 20% of the selling price. The cost of carrying receivable averages 20% per annum.
You are required:
(a) COMPUTE the credit period to be allowed to each customer. (0) $\mathrm{http}: / /$ tiny.cc/yoursamitbhai
(Assume 360 days in a year for calculation purposes).
(b) DEMONSTRATE the other problems the company might face in allowing the credit period as determined in (a) above?
(a) In case of customer A, there is no increase in sales even if the credit is given. Hence comparative statement for $B \& C$ is given below:

Particulars	Customer B				Customer C			
1. Credit period (days)	0	30	60	90	0	30	60	90
2. Sales Units	1,000	1,500	2,000	2,500	-	-	1,000	1,500
	$₹$ in lakhs				Fin lakhs			
3. Sales Value	90	135	180	225	-	-	90	135
4. Contribution at 20\% (A)	18	27	36	45	-	-	18	27
5. Receivables: $\frac{\text { Credit Period } \times \text { Sales }}{360}$	-	11.25	30	56.25	-	-	15	33.75
6. Debtors at cost i.e. 80% of 11.25	-	9	24	45	-	-	12	27
7. Cost of carrying debtors at 20\% (B)	-	1.8	4.8	9	-	-	2.4	5.4
8. Excess of contributions over cost of carrying debtors ($A-B$)	18	25.2	31.2	36	-	-	15.6	21.6

The excess of contribution over cost of carrying Debtors is highest in case of credit period of 90 days in respect of both the customers B and C. Hence, credit period of 90 days should be allowed to B and C.
(b) Problem:
(i) Customer A is taking 1000 TV sets whether credit is given or not. Customer C is taking 1000 TV sets at credit for 60 days. Hence A also may demand credit for 60 days compulsorily.
(ii) B will take 2500 TV sets at credit for 90 days whereas C would lift 1500 sets only. In such case B will demand further relaxation in credit period i.e. B may ask for 120 days credit.

Q. 12

Credit Policy
MTP Nov 22(2)
Avesh Pvt. Ltd. is considering relaxing its present credit policy for accounts receivable and is in the process of evaluating two proposed policies. Currently, the company has annual credit sales of ₹ 55 lakhs and accounts receivable turnover ratio of 5 times a year. The current level of loss due to bad debts is ₹ $2,00,000$. The company is required to give a return of 15% on the investment in new accounts receivable. The company's variable costs are 75% of the selling price. Given the following information, IDENTIFY which is the better policy?

Particulars	Present Policy	Proposed Policy 1	Proposed Policy 2
Annual credit sales	$55,00,000$	$65,00,000$	$70,00,000$
Accounts receivable turnover ratio	5 times	4 times	3 times
Bad debt losses	$2,00,000$	$3,50,000$	$5,00,000$

Statement showing the Evaluation of Accounts Receivable Policies

first attempt success tutorials

Recommendation: The Proposed Policy 1 should be adopted since the net benefits under this policy are higher as compared to other policies.

Working Note:

Calculation of Opportunity Cost of Average Investments
Opportunity Cost $=$ Total Cost \times Collection period/12 \times Rate of Return/100
Present Policy $=₹ 41,25,000 \times 2.4 / 12 \times 15 \%=₹ 1,23,750$
Proposed Policy $1=₹ 48,75,000 \times 3 / 12 \times 15 \%=₹ 1,82,813$
Proposed Policy $2=₹ 52,50,000 \times 4 / 12 \times 15 \%=₹ 2,62,500$

Q. 13

Credit Policy

MTP Nov 22(1)

GTLtd. is taking into account the revision of its credit policy with a view to increasing its sales and profit. Currently, all its sales are on one month credit. Other information is as follows:

Contribution
 2/5th of Sales Revenue

Additional funds raising cost 20\% per annum
The marketing manager of the company has given the following options along with estimates for considerations:

Particulars	Current Position	Option I	Option II	Option IIII
Sales Revenue ($₹$)	$40,00,000$	$42,00,000$	$44,00,000$	$50,00,000$
Credit period (in months)	1	$1 \frac{1}{2}$	2	3
Bad debts (\% of sales)	2	$2 \frac{1}{2}$	3	5
Cost of Credit administration ($₹$)	24,000	26,000	30,000	60,000

You are required to ADVISE the company for the best option.

($₹$ in lakhs)				
Particulars	Current position (1 month)	Option I (1.5 months)	Option II (2 months)	Option III (3 months)
Sales Revenue	$\begin{aligned} & 40,00 \\ & 000 \end{aligned}$	42,00,000	44,00,000	50,00,000
Contribution @ 40\%	16,00,000	16,80,000	17,60,000	20,00,000
Increase in contribution over Current level price (A)	-	80,000	1,60,000	4,00,000
Debtors = Average Collection period \times Credit Sale 12	-	$\begin{array}{r} \frac{1 \times 40,00,000}{12} \\ =3,33,333.33 \\ \hline \end{array}$	$\begin{gathered} \frac{1.5 \times 42,00,000}{12} \\ =5,25,000 \end{gathered}$	$\begin{aligned} & \frac{3 \times 50,00,000}{12} \\ & =12,50,000 \end{aligned}$
Increase in debtors over current level		1,91,666.67	4,00,000.00	9,16,666.67
Cost of funds for additional amount of debtos @ 20\% (B)	-	38,333.33	80,000.00	1,83,333.33

CA Amit Sharma

Credit administrative cost	24,000	26,000	30,000	60,000
Increase in credit administration cost over present level (c)	-	2,000	6,000	36,000
Bad debts	80,000	$1,05,000$	$1,32,000$	$2,50,000$
Increase in bad debts over current levels (D)	-	25,000	52,000	$1,70,000$
Net gain/loss A - (B + C + D)	-	$14,666,67$	$22,000.00$	$10,666.67$

Advise: It is suggested that the company GT Ltd. should implement Option II with a net gain of $₹ 22,000$ which has a credit period of 2 months

Q. 14

Credit Policy

MTP May 21(2)
WQ Limited is considering relaxing its present credit policy and is in the process of evaluating two proposed polices. Currently, the firm has annual credit sales of Rs. 180 lakh and Debtors turnover ratio of 4 times a year. The current level of loss due to bad debts is Rs. 6 lakh. The firm is required to give a return of 25% on the investment in new accounts receivables. The company's variable costs are 60% of the selling price. Given the following information, DETERMINE which is a better Policy?
(Amount in lakhs)

	Present	Proposed Policy	
	Policy	Option I	Option II
Annual credit sales (Rs.)	180	220	280
Debtors turnover ratio	4	3.2	2.4
Bad debt losses (Rs.)	6	18	38

Statement showing evaluation of Credit Policies

	Particulars	(Amount in lakhs)		
		Present (Rs.)	Proposed Policy (Rs.)	
			Option I	Option II
A	Expected Profit:			
	(a) Credit Sales	180	220	280
	(b) Total Cost other than Bad Debts:			
	Variable Costs (60\%)	108	132	168
	(c) Bad Debts	6	18	38
	(d) Expected Profit [(a)-(b)-(c)]	66	70	74
B	Opportunity Cost of Investment in Debtors (Refer workings)	6.75	10.31	17.5
c	Net Benefits [A - B]	59.25	59.69	56.5

Recommendation: The Proposed Policy I should be adopted since the net benefits under this policy is higher than those under other policies.

Workings:

Calculation of Opportunity Cost of Investment in Debtors
Opportunity Cost $=$ Total Cost $\times \frac{\text { Collection Period }}{12} \times \frac{\text { Rate of Return }}{100}$
*Collection period (in months) $=12 /$ Debtors turnover ratio
Present Policy
$=$ Rs. $108 \times \frac{12 / 4}{12} \times \frac{25}{100}=$ Rs. 6.75 lakhs

CA Amit Sharma

Proposed Policy I $=$ Rs. $132 \times \frac{12 / 3.2}{12} \times \frac{25}{100}=$ Rs. 10.31 lakhs
Proposed Policy II $=$ Rs. $168 \times \frac{12 / 2.4}{12} \times \frac{25}{100}=$ Rs. 17.5 lakhs

Q. 15

Credit Policy
MTP Nov 18(1)
RST Limited is considering relaxing its present credit policy and is in the process of evaluating two proposed polices. Currently, the firm has annual credit sales of Rs 225 lakhs and accounts receivable turnover ratio of 5 times a year. The current level of loss due to bad debts is Rs.7,50,000. The firm is required to give a return of 20% on the investment in new accounts receivables. The company's variable costs are 60% of the selling price. Given the following information, DETERMINE which is a better option?
(Amount in lakhs)

	Present Policy	Policy Option I	Policy Option II
Annual credit sales (Rs)	225	275	350
Accounts receivable turnover ratio	5	4	3
Bad debt losses (Rs)	7.5	22.5	47.5

Statement showing Evaluation of Credit Policies
(Amount in lakhs)

	Particulars	Present Policy (Rs.)	Proposed Policy I (Rs.)	Proposed A
	Expected Profit :			
	(a) Credit Sales			
	(b) Total Cost other than Bad Debts:			
	Variable Costs	135.00	165.00	210.00
	(c) Bad Debts	7.50	22.50	47.50
	(d) Expected Profit [(a)-(b)-(c)]	82.50	87.50	92.50
Cpportunity Cost of Investment in Receivables*	5.40	8.25	14.00	

Recommendation: The Proposed Policy I should be adopted since the net benefits under this policy is higher than those under other policies.
Working Note:
*Calculation of Opportunity Cost of Average Investments
Opportunity Cost $=$ Total Cost $\times \frac{\text { Collection Period }}{12} \times \frac{\text { Rate of Return }}{100}$
Present Policy = Rs. 135 lakhs $\times 2.4 / 12 \times 20 \%=$ Rs. 5.40 lakhs
Proposed Policy I = Rs. 135 lakhs $\times 2.4 / 12 \times 20 \%=$ Rs. 5.40 lakhs
Proposed Policy II =Rs. 210 lakhs $\times 4 / 12 \times 20 \%$ = Rs. 14.00 lakhs

A factoring firm has offered a company to buy its accounts receivables.
The relevant information is given below:
(i) The current average collection period for the company's debt is 80 days and $\frac{1}{2} \%$ of debtors default. The factor has agreed to pay over money due to the company after60 days and it will suffer all the losses of bad debts also.
(ii) Factor will charge commission @ 2%.
(iii) The company spends ₹ $1,00,000$ p.a. on administration of debtor. These are avoidable cost.
(iv) Annual credit sales are ₹ 90 lakhs. Total variable costs is 80% of sales. The company's cost of borrowing is 15% per annum. Assume 365 days in a year.
Should the company enter into agreement with factoring firm?
http://tiny.cc/FASTCostFMbyAB

CA Amit Sharma

	Particulars	(₹)
A.	Annual Savings (Benefit) on taking Factoring Service Cost of credit administration saved Bad debts avoided (₹ 90 lakh $\times \frac{1}{2} \%$) Interest saved due to reduction in average collection period [₹ 90 lakh $\times 0.80 \times 0.15 \times(80$ days -60 days) $/ 365$ days]	$1,00,000$
	45,000	
B.	59,178	
B.	Annual Cost of Factoring to the Firm:	$2,04,178$
	Factoring Commission [₹ 90 lakh $\times 2 \%$]	$1,80,000$
C.	Total	$1,80,000$

Advice: Since savings to the firm exceeds the cost to the firm on account of factoring, therefore, the company should enter into agreement with the factoring firm.
Grant of Credit of Not
RTP Nov 23
A regular customer of your company has approached to you for extension of credit facility for purchasing of goods. On analysis of past performance and on the basis of information supplied, the following pattern of payment schedule emerges:

Pattern of Payment Schedule At	
the end of 30 days	20% of the bill At
the end of 60 days	30% of the bill
At the end of 90 days	30% of the bill
At the end of 100 days	18% of the bill
Non-recovery	2% of the bill

The customer wants to enter into a firm commitment for purchase of goods of ₹ 40 lakhs in 2022, deliveries to be made in equal quantities on the first day of each quarter in the calendar year. The price per unit of commodity is ₹ 400 on which a profit of ₹ 20 per unit is expected to be made. It is anticipated that taking up of this contract would mean an extra recurring expenditure of ₹ 20,000 per annum. If the opportunity cost is 18% per annum, would you as the finance manager of the company RECOMMEND the grant of credit to the customer? Assume 1 year $=360$ days.

Statement showing the Evaluation of credit Policies

Particulars	Proposed Policy ₹
A. Expected Profit:	
(a) Credit Sales	40,00,000
(b) Total Cost	
(i) Variable Costs (₹ 380×10000 units)	38,00,000
(ii) Recurring Costs	20,000
	38,20,000
(c) Bad Debts	80,000
(d) Expected Profit [(a) - (b) - (c)]	1,00,000
B. Opportunity Cost of Investments in Receivables	1,31,790
C. Net Benefits ($A-B$)	$(31,790)$

Recommendation: The Proposed Policy should not be adopted since the net benefits under this policy are negative.

CA Amit Sharma
Working Note: Calculation of Opportunity Cost of Average Investments
Opportunity Cost $=$ Total Cost $\times \frac{\text { Collection Period }}{360} \times \frac{\text { Rate of Return }}{100}$

Particulars	20%	30%	30%	18%	Total
A. Total Cost	$7,64,000$	$11,46,000$	$11,46,000$	$6,87,600$	$37,43,600$
B. Collection period	$30 / 360$	$60 / 360$	$90 / 360$	$100 / 360$	
C. Required Rate of	18%	18%	18%	18%	
Return D. $(A \times B \times C)$	11,460	34,380	51,570	34,380	$1,31,790$

Payment to Debtor

MTP May 19(1)

A bank is analysing the receivables of J Ltd. in order to identify acceptable collateral for a short-term loan. The company's credit policy is $2 / 10$ net 30 . The bank lends 80 percent on accounts where customers are not currently overdue and where the average payment period does not exceed 10 days past the net period. A schedule of J Ltd.'s receivables has been prepared. ANALYSE, how much will the bank lend on pledge of receivables, if the bank uses a 10 per cent allowance for cash discount and returns?

Account	Amount Rs.	Days Outstanding in days	Average Payment Period historically
74	25,000	15	20
91	9,000	45	60
107	11,500	22	24
108	2,300	9	10
114	18,000	50	45
116	29,000	16	10
123	14,000	27	48

Analysis of the receivables of J Ltd. by the bank in order to identify acceptable collateral for a short- term loan:
(i) The J Ltd.'s credit policy is $2 / 10$ net 30 .

The bank lends 80 per cent on accounts where customers are not currently overdue and where the average payment period does not exceed 10 days past the net period i.e. thirty days. From the schedule of receivables of J Ltd. Account No. 91 and Account No. 114 are currently overdue and for Account No. 123 the average payment period exceeds 40 days. Hence Account Nos. 91, 114 and 123 are eliminated. Therefore, the selected Accounts are Account Nos. 74, 107, 108 and 116.
(ii) Statement showing the calculation of the amount which the bank will lend on a pledge of receivables if the bank uses a 10 per cent allowances for cash discount and returns

Account No.	Amount (Rs.)	90 per cent of amount (Rs.)	80% of amount (Rs.)
	(a)	(b) $=90 \%$ of (a)	(c) $=80 \%$ of (b)
74	25,000	22,500	18,000
107	11,500	10,350	8280
108	2,300	2,070	1,656
116	29,000	26,100	20,880
Total loan amount			

CHAPTER

Q. 1

Balance Sheet \& W.Cap required
RTP Nov 23
$\square \square$
Consider the following figures and ratios:

(i)	Sales for the year (all credit)	₹ $1,05,00,000$
(ii)	Gross Profit ratio	35 percent
(iii)	Fixed assets turnover (based on cost of goods sold)	1.5
(iv)	Stock turnover (based on cost of goods sold)	6
(v)	Liquid ratio	$1.5: 1$
(vi)	Current ratio	$2.5: 1$
(vii)	Receivables (Debtors) collection period	1 month
(viii) Reserves and surplus to Share capital	$1: 1.5$	
(ix)	Capital gearing ratio	0.7875
(x)	Fixed assets to net worth	$1.3: 1$

You are required to PREPARE:
(a) Balance Sheet as on 31/3/2022 based on above details.
(b) The statement showing working capital requirement if the company wants to make a provision for contingencies @ 14 percent of net working capital.

Working Notes:
(i) Cost of Goods Sold = Sales - Gross Profit (35\% of Sales)
= ₹ $1,05,00,000-₹ 36,75,000$
= ₹ $68,25,000$
(ii) Closing Stock = Cost of Goods Sold / Stock Turnover

$$
=\frac{68,25,000}{6}=₹ 11,37,500
$$

(iii) Fixed Assets = Cost of Goods Sold / Fixed Assets Turnover

$$
=\frac{68,25,000}{1.5}
$$

$$
=\text { ₹ 45,50,000 }
$$

(iv) Current Assets:

Current Ratio $\quad=2.5$ and Liquid Ratio $=1.5$
Inventories (Stock) $=2.5-1.5=1$
Current Assets $=$ Amount of Inventories (Stock) $\times \frac{2.5}{1}$

$$
=₹ 11,37,500 \times \frac{2.5}{1}=₹ 28,43,750
$$

(v) Liquid Assets (Receivables and Cash)
$=$ Current Assets - Inventories (Stock)
$=₹ 28,43,750-₹ 11,37,500$
$=₹ 17,06,250$
(vi) Receivables (Debtors) $=$ Sales $\times \frac{\text { Debtors Collection period }}{12}$

$$
\begin{aligned}
& =₹ 1,05,00,000 \times \frac{1}{12} \\
& =₹ 8,75,000
\end{aligned}
$$

(vii) Cash
$=$ Liquid Assets - Receivables (Debtors)
= ₹ 17,06,250-₹ 8,75,000 = ₹ 8,31,250
(viii) Net worth

$$
\begin{aligned}
& =\frac{\text { Fixed Assets }}{1.3} \\
& =\frac{45,50,000}{1.3}=₹ 35,00,000
\end{aligned}
$$

(ix) Reserves and Surplus

Reserves and Share Capital = Net worth
Net worth

$$
=1+1.5=2.5
$$

Reserves and Surplus $=₹ 35,00,000 \times \frac{1}{2.5}$

$$
\text { = ₹ } 14,00,000
$$

(x) Share Capital = Net worth-Reserves and Surplus
= ₹ 35,00,000 - ₹ 14,00,000

$$
=\text { ₹ 21,00,000 }
$$

(xi) Current Liabilities = Current Assets/Current Ratio

$$
=\frac{28,43,750}{2.5}=₹ 11,37,500
$$

(xii) Long-term Debts

Capital Gearing Ratio = Long-term Debts / Equity Shareholders' Fund Long-term Debts $=₹ 35,00,000 \times 0.7875=₹ 27,56,250$
(a)

Balance Sheet

Particulars	Figures as at 31-03-2022 (₹)	Figures as at 31-03-2021 (₹)
	21,00,000	-
	14,00,000	-
	27,56,250	-
	11,37,500	-
	73,93,750	-
II. ASSETS		
Non-current assets		
Fixed assets	45,50,000	-
Current assets		
Inventories	11,37,500	-
Trade receivables	8,75,000	-
Cash and cash equivalents	8,31,250	-
TOTAL	73,93,750	-

(b)

Particulars	(₹)	(₹)	
A. Current Assets			
	(i) Inventories (Stocks)		$11,37,500$

	(ii) Receivables (Debtors)		$8,75,000$
	(iii) Cash in hand \& at bank		$8,31,250$
	Total Current Assets		$28,43,750$
B. Current Liabilities: Total Current Liabilities Net Working Capital (A - B)			
Add: Provision for contingencies (14\% of Net Working Capital) Working capital requirement		$17,06,250$	

Balance Sheet \& W.Cap required RTP Nov 20

The following figures and ratios are related to a company:

(i) Sales for the year (all	₹ $90,00,000$
(ii) credit) Gross Profit ratio	35 percent
(iii) Fixed assets turnover (based on cost of goods sold)	1.5
(iv) Stock turnover (based on cost of goods sold)	6
(v) Liquid ratio	$1.5: 1$
(vi) Current ratio	$2.5: 1$
(vii) Receivables (Debtors) collection period	1 month
(viii) Reserves and surplus to Share capital	$1: 1.5$
(ix) Capital gearing ratio	0.7875
(x) Fixed assets to net worth	$1.3: 1$

You are required to PREPARE:
(a) Balance Sheet of the company on the basis of above details.
(b) The statement showing working capital requirement, if the company wants to make a provision for contingencies @ 15 percent of net working capital.
(i) Cost of Goods Sold = Sales - Gross Profit (35\% of Sales)
= ₹ $90,00,000-₹ 31,50,000$
= ₹ $58,50,000$
(ii) Closing Stock = Cost of Goods Sold / Stock Turnover
$=₹ 58,50,000 / 6=₹ 9,75,000$
(iii) Fixed Assets = Cost of Goods Sold / Fixed Assets Turnover

$$
=₹ 58,50,000 / 1.5
$$

= ₹ 39,00,000
(iv) Current Assets:

Current Ratio $\quad=2.5$ and Liquid Ratio $=1.5$
Inventories (Stock) $=2.5-1.5=1$
Current Assets $=$ Amount of Inventories (Stock) $\times 2.5 / 1$
$=₹ 9,75,000 \times 2.5 / 1=₹ 24,37,500$
(v) Liquid Assets (Receivables and Cash)

$$
\begin{aligned}
& =\text { Current Assets - Inventories (Stock) } \\
& =₹ 24,37,500-₹ 9,75,000 \\
& =₹ 14,62,500
\end{aligned}
$$

(vi) Receivables (Debtors) $=$ Sales \times Debtors Collection period /12

$$
\begin{aligned}
& =₹ 90,00,000 \times 1 / 12 \\
& =\text { ₹ } 7,50,000
\end{aligned}
$$

(vii) Cash = Liquid Assets - Receivables (Debtors)
= ₹14,62,500-₹7,50,000 = ₹ 7,12,500
(viii) Net worth = Fixed Assets $/ 1.3$
= ₹ 39,00,000/1.3 = ₹ 30,00,000
(ix) Reserves and Surplus

Reserves and Share Capital = Net worth
Net worth
$=1+1.5=2.5$
Reserves and Surplus = ₹ $30,00,000 \times 1 / 1.5$
= ₹ $20,00,000$
(x) Share Capital $=$ Net worth-Reserves and Surplus
= ₹ 30,00,000 - ₹ 20,00,000
= ₹ 10,00,000
(xi) Current Liabilities = Current Assets/ Current Ratio = ₹ $24,37,500 / 2.5$ = ₹ 9,75,000
(xii) Long-term Debts

Capital Gearing Ratio = Long-term Debts / Equity Shareholders' Fund
Long-term Debts = ₹30,00,000 $\times 0.7875=$ ₹ $23,62,500$
(a)

Balance Sheet of the Company

Particulars	Figures as at 31-03-2020 (₹)	Figures as at 31-03-2019 (₹)
I. $\begin{aligned} & \text { EQUITY AND } \\ & \text { LIABILITIES } \\ & \text { Shareholders'funds } \\ & \text { (a) Share capital } \\ & \text { (b) Reserves and surplus } \\ & \text { Non-current liabilities } \\ & \text { (a) Long-term borrowing } \\ & \text { Current liabilities } \\ & \text { TOTAL }\end{aligned}$		
	10,00,000	-
	20,00,000	-
	23,62,500	-
	9,75,000	-
	63,37,500	-
II. ASSETS		
Non-current assets		
Fixed assets	39,00,000	-
Current assets		
Inventories	9,75,000	-
Trade receivables	7,50,000	-
Cash and cash equivalents	7,12,500	-
TOTAL	63,37,500	-

(b)

Statement Showing Working Capital Requirement

A. Current Assets	(₹)	(₹)
(i) Inventories (Stocks)		$9,75,000$
(ii) Receivables (Debtors)		$7,50,000$
(iii) Cash in hand \& at bank		$7,12,500$

Total Current Assets		$24,37,500$
B. Current Liabilities:		
Total Current Liabilities		$9,75,000$
Net Working Capital (A - B)		$14,62,500$
Add: Provision for contingencies (15\% of Net Working Capital)		$2,19,375$
Working capital requirement		

Max Bank Finance
PY May 22
Balance sheet of X Ltd for the year ended 31st March, 2022 is given below:

Liabilities	Amount	Assets	(₹ in lakhs)
Equity Shares ₹ 10 each	200	Fixed Assets	500
Retained earnings	200	Raw materials	150
11% Debentures	300	W.I.P	100
Public deposits (Short-Term)	100	Finished goods	50
Trade Creditors	80	Debtors	125
Bills Payable	100	Cash/Bank	55
	980		980

Calculate the amount of maximum permissible bank finance under three methods as per Tandon Committee lending norms.

The total core current assets are assumed to be ₹ 30 lakhs.
Current Assets $=150+100+50+125+55=₹ 480$ Lakhs
Current Liabilities $=100+80+100=₹ 280$ Lakhs
Maximum Permissible Banks Finance under Tandon Committee Norms:

Method I
Maximum Permissible Bank Finance $=75 \%$ of (Current Assets - Current Liabilities)
$=75 \%$ of (480-280)
= ₹ 150 Lakhs
Method II
Maximum Permissible Bank Finance
$=75 \%$ of Current Assets - Current Liabilities
= 75% of $480-280$
= ₹ 80 Lakhs
Method III
Maximum Permissible Bank Finance
$=75 \%$ of (Current Assets - Core Current
Assets) - Current Liabilities
$=75 \%$ of (480-30)-280
= ₹ 57.5 Lakhs

Max. Bank Finance
RTP May 23
Kalyan limited has provided you the following information for the year 2021-22:
By working at 60% of its capacity the company was able to generate sales of $₹ 72,00,000$. Direct labour cost per unit amounted to ₹ 20 per unit. Direct material cost per unit was 40% of the selling price per unit. Selling price was 3 times the direct labour cost per unit. Profit margin was 25% on the total cost.For the year 2022-23, the company makes the following estimates:

Production and sales will increase to 90% of its capacity. Raw material per unit price will remain unchanged. Direct expense per unit will increase by 50%. Direct labour per unit will increase by 10%. Despite the fluctuations in the cost structure, the company wants to maintain the same profit margin on sales.
Raw materials will be in stock for one month whereas finished goods will remain in stock for two months. Production cycle is for 2 months. Credit period allowed by suppliers is 2 months. Sales are made to three zones:

Zone	Percentage of sale	Mode of Credit
A	50%	Credit period of 2 months
B	30%	Credit period of 3 months
C	20%	Cash Sales

There are no cash purchases and cash balance will be ₹ $1,11,000$
The company plans to apply for a working capital financing from bank for the year 2022-23. ESTIMATE Net Working Capital of the Company receivables to be taken on sales and also COMPUTE the maximum permissible bank finance for the company using 3 criteria of Tandon Committee Norms. (Assume stock of finished goods to be a core current asset)

Cost Structure

			2021-22			2022-23
Particulars	Calculations	P.U.	Amount (p.u. X units)	Calculations	P.U.	Amount (p.u. X units)
Direct	40\% of SP	₹24	₹28,80,000	Same as PY	₹24	₹ $43,20,000$
Material						
Direct	Given	₹20	₹24,00,000	20*1.1	₹22	₹39,60,000
labour						
Direct	bal. fig.	₹4	₹ 4,80,000	4*1.5	₹6	₹10,80,000
Expenses						
Total Cost	SP - Profit	₹48	₹57,60,000		₹52	₹ $93,60,000$
Profit	(SP/125x25)	₹12	₹14,40,000	52*25\%	₹13	₹23,40,000
Sales	$3 \times$ Direct	₹60	₹72,00,000		₹65	₹ $1,17,00,000$
	Labour p.u.					
*units=		$\begin{gathered} ₹ 72,00,000 / ₹ 60 \\ =1,20,000 \end{gathered}$			1,20,000/60 $\times 90$	
					=1,80,000	

Operating Cycle

Raw material holding period	1 months
Finished Goods holding period	2 months
WIP conversion period	2 months
Creditor Payment Period	2 months
Receiveable collection Period	$2 / 3$ months

Estimation of Working Capital

Particulars	Calculation	Amount
Current Assets		
Stock of Raw Material	$43,20,000 \times 1 / 12$	$₹ 3,60,000$
RM cost	$₹ 19,20,000$	
Labour cost	$₹ 5,40,000$	
Direct Exp cost	$₹ 68,40,000$	
Total WIP Cost	$68,40,000 \times 2 / 12$	$₹ 11,40,000$
Stock of WIP	$93,60,000 \times 2 / 12$	$₹ 15,60,000$

Chapter-09

Receivables (on sales)		
A	$1,17,00,000 \times 50 \% \times 2 / 12$	$₹ 9,75,000$
B	$1,17,00,000 \times 30 \% \times 3 / 12$	$₹ 8,77,500$
C	NIL	-
Cash Balance	Given	$₹ 1,11,000$
Total Current Assets		$₹ 50,23,500$
Current Liabilities	$* ₹ 44,40,000 \times 2 / 12$	$₹ 7,40,000$
Payables		$₹ 42,83,500$
Net Working Capital		

Opening RM stock $=28,80,000 \times 1 / 12=₹ 2,40,000$

* RM purchased = RM consumed - Opening Stock + Closing Stock
= ₹ $43,20,000-₹ 2,40,000+₹ 3,60,000=₹ 44,40,000$

Computation of Maximum Permissible Bank Finance			
Method	Formula	Calculation	₹
I	75\% \times (Current Assets-	75\% x (₹50,23,500-₹7,40,000)	₹ $32,12,625$
	Current Liabilities)		
I	75\% \times Current AssetsCurrent Liabilities	75\% x ₹ 50,23,500-₹7,40,000	₹ $30,27,625$
II	75\% × (Current Assets-Core CA)- Current Liabilities	$\begin{aligned} & 75 \% \times \text { (₹50,23,500- } \\ & ₹ 7,40,000 \end{aligned}$	₹ $18,57,625$

Maximum Bank Finance
MTP Nov 18(2)
A newly formed company has applied to the commercial bank for the first time for financing its working capital requirements. The following information is available about the projections for the current year:
Estimated level of activity: 1,04,000 completed units of production plus 4,000 units of work-in progress. Based on the above activity, estimated cost per unit is:

Raw material	Rs. 80 per unit
Direct wages	Rs. 30 per unit
Overheads (exclusive of depreciation)	Rs. 60 per unit
Total cost	Rs. 170 per unit
Selling price	Rs. 200 per unit

Raw materials in stock: Average 4 weeks consumption, work-in-progress (assume 50% completion stage in respect of conversion cost) (materials issued at the start of the processing).

Finished goods in stock
Credit allowed by suppliers
Credit allowed to debtors/receivables
Lag in payment of wages

8,000 units
Average 4 weeks
Average 8 weeks
Average $\frac{1}{2}$ weeks

Cash at banks (for smooth operation) is expected to be Rs.25,000
Assume that production is carried on evenly throughout the year (52 weeks) and wages and overheads accrue similarly. All sales are on credit basis only.
CALCULATE
(i) Net Working Capital required;
(ii) Maximum Permissible Bank finance under first and second methods of financing as per Tandon Committee Norms.
(i) Estimate of the Requirement of Working Capital

	(Rs.)	(Rs.)
A. Current Assets:		

first attempt success tutorials

Raw material stock (Refer to Working note 3)	6,64,615	
Work in progress stock	5,00,000	
(Refer to Working note 2)		
Finished goods stock (Refer	13,60,000	
to Working note 4) Debtors/		
Receivables (Refer to	29,53,846	
Working note 5) Cash and		
Bank balance	25,000	55,03,461
B. Current Liabilities:		
Creditors for raw	7,15,740	
materials (Refer to		
Working note 6) Creditors	91,731	$(8,07,471)$
for wages		
(Refer to Working note 7)		46,95,990
Net Working Capital (A-B)		

(ii) The maximum permissible bank finance as per Tandon Committee Norms First Method:
75\% of the net working capital financed by bank i.e. 75\% of Rs.46,95,990 (Refer to (i) above)
= Rs. 35,21,993
Second Method:
(75\% of Current Assets) - Current liabilities
$=75 \%$ of Rs. 55,03,461 - Rs. 8,07,471 (Refer to (i) above)
= Rs. $41,27,596$ - Rs. $8,07,471$
= Rs. 33,20,125
Working Notes:

1. Annual cost of production

Raw material requirements ($1,04,000$ units \times Rs. 80)
Direct wages ($1,04,000$ units \times Rs. 30)
Overheads (exclusive of depreciation) $(1,04,000 \times$ Rs. 60)

Rs.
83,20,000
31,20,000
62,40,000
1,76,80,000

Rs.

3,20,000
60,000
1,20,000
5,00,000

3. Raw material stock

It is given that raw material in stock is average 4 weeks consumption. Since, the company is newly formed, the raw material requirement for production and work in progress will be issued and consumed during the year. Hence, the raw material consumption for the year (52 weeks) is as follows:

Rs.

For Finished goods
For Work in progress

83,20,000

3,20,000
86,40,000

Raw material stock
$\frac{86,40,000}{52 \text { weeks }} \times 4$ weeks i.e. Rs. $6,64,615$
4. Finished goods stock

8,000 units @ Rs. 170 per unit = Rs. 13,60,000
5. Debtors for sale

Credit allowed to debtors Average 8 weeks
Credit sales for year (52 weeks) i.e. (1,04,000 units-8,000 units) 96,000 units
Selling price per unit Rs. 200
Credit sales for the year (96,000 units XRs. 200) Rs. 1,92,00,000
Debtors $\frac{1,92,00,000}{52 \text { weeks }} \times 8$ weeks i.e. Rs. 29,53,846
(Debtor can also be calculated based on Cost of goods sold)
6. Creditors for raw material:

Credit allowed by suppliers
Average 4 weeks
Purchases during the year (52 weeks) i.e.
Rs. 93,04,615
(Rs. 83,20,000 + Rs. 3,20,000 + Rs. 6,64,615)
(Refer to Working notes 1,2 and 3 above)
Creditors $\quad \frac{93,04,615}{52 \text { weeks }} \times 4$ weeks i.e. Rs. $7,15,740$
7. Creditors for wages
Lag in payment of wages
Average $1 \frac{1}{2}$ weeks
Direct wages for the year (52 weeks) i.e.
Rs. $31,80,000$
(Rs. $31,20,000$ + Rs. 60,000)
(Refer to Working notes 1 and 2 above)
Creditors
Rs. $\frac{31,80,000}{52 w e e k s} \times 1 \frac{1}{2}$ weeks i.e. Rs. 91,731

Day Ltd., a newly formed company has applied to the Private Bank for the first time for financing it's Working Capital Requirements. The following informations are available about the projections for the current year:

Estimated Level of Activity	Completed Units of Production 31200 plus unit of work in progress 12000
Raw Material Cost	₹ 40 per unit
Direct Wages Cost	₹ 15 per unit
Overhead	₹ 40 per unit (inclusive of Depreciation ₹10 per unit)
Selling Price	₹ 130 per unit
Raw Material in Stock	Average 30 days consumption
Work in Progress Stock	Material 100% and Conversion Cost 50\%
Finished Goods Stock	24000 Units
Credit Allowed by the supplier	30 days
Credit Allowed to Purchasers	60 days
Direct Wages (Lag in payment)	15 days
Expected Cash Balance	₹ $2,00,000$

Assume that production is carried on evenly throughout the year (360 days) and wages and overheads accrue similarly. All sales are on the credit basis. You are required to calculate the Net Working Capital Requirement on Cash Cost Basis.

Calculation of Net Working Capital requirement:

	(₹)	(₹)
A. Current Assets:		
Inventories:		
Stock of Raw material (Refer to Working note (iii) Stock of Work in progress (Refer to Working note (ii)	$1,44,000$	
Stock of Finished goods (Refer to Working note (iv)	$7,50,000$	
Debtors for Sales (Refer to Working note (v)	$20,40,000$	
Cash	$1,02,000$	
Gross Working Capital	$2,00,000$	
B. Current Liabilities:	$32,36,000$	$32,36,000$
Creditors for Purchases	$1,56,000$	
(Refer to Working note (vi)		
Creditors for wages (Refer to Working note (vii)	23,250	
Net Working Capital (A - B)	$1,79,250$	$1,79,250$

Working Notes:

(i) Annual cost of production

	(₹)
Raw material requirements $\{(31,200 \times ₹ 40)+(12,000 \times ₹ 40)\}$ Direct wages $\{(31,200 \times ₹ 15)+(12,000 \times ₹ 15 \times 0.5)\}$ Overheads (exclusive of depreciation) $\{(31,200 \times ₹ 30)+(12,000 \times ₹ 30 \times 0.5)\}$ Gross Factory Cost	$17,28,000$
Less: Closing W.I.P $[12,000(₹ 40+₹ 7.5+₹ 15)]$	$5,58,000$
Cost of Goods Produced	
Less: Closing Stock of Finished Goods	$31,16,000$
₹ $26,52,000 \times 24,000 / 31,200)$	$(7,50,000)$
Total Cash Cost of Sales	$26,52,000$

(ii) Work in progress stock

	(₹)
Raw material requirements (12,000 units \times ₹40)	$4,80,000$
Direct wages ($50 \% \times 12,000$ units \times ₹ 15)	90,000

| Overheads $(50 \% \times 12,000$ units $\times ₹ 30)$ | $1,80,000$ |
| :--- | :--- | :--- |

(iii) Raw material stock

It is given that raw material in stock is average 30 days consumption. Since, the company is newly formed; the raw material requirement for production and work in progress will be issued and consumed during the year. Hence, the raw material consumption for the year (360 days) is as follows:

	(₹)
For Finished goods (31,200 \times ₹ 40)	$12,48,000$
For Work in progress $(12,000 \times$ ₹ 40)	$4,80,000$

Raw material stock $=\frac{17,28,000}{360 \text { days }} \times 30$ days $=₹ 1,44,000$
(iv) Finished goods stock:

$$
\text { 24,000 units @ ₹ }(40+15+30) \text { per unit = ₹20,40,000 }
$$

(v) Debtors for sale: $₹ 6,12,000 \times \frac{60 \text { days }}{360 \text { days }}=₹ 1,02,000$
(vi) Creditors for raw material Purchases [Working Note (iii)]:

Annual Material Consumed (₹12,48,000 + ₹4,80,000) ₹17,28,000
Add: Closing stock of raw material ₹ $1,44,000$
₹18,72,000
Credit allowed by suppliers $=\frac{18,72,000}{360 \text { days }} \times 30$ days $=₹ 1,56,000$
(vii) Creditors for wages:

Outstanding wage payment $=\frac{5,58,000}{360 \text { days }} \times 15$ days $=₹ 23,250$
Net Working Capital
MTP May 18
A newly formed company has applied to the commercial bank for the first time for financing its working capital requirements. The following information is available about the projections for the current year:
Estimated level of activity: 1,04,000 completed units of production plus 4,000 units of work -in-progress. Based on the above activity, estimated cost per unit is:
Raw material ₹80 per unit
Direct wages ₹30 per unit
Overheads (exclusive of depreciation) ₹60 per unit
Total cost ₹170 per unit
Selling price ₹200 per unit
Raw materials in stock: Average 4 weeks consumption, work-in-progress (assume 50\% completion stage in respect of conversion cost) (materials issued at the start of the processing).

Finished goods in stock
Credit allowed by suppliers
Credit allowed to debtors/receivables
Lag in payment of wages

8,000 units
Average 4 weeks
Average 8 weeks
Average $1 \frac{1}{2}$ weeks

Cash at banks (for smooth operation) is expected to be ₹25,000Assume that production is carried on evenly throughout the year (52 weeks) and wages and overheads accrue similarly. All sales are on credit basis only. CALCULATE Net Working Capital.

Estimate of the Requirement of Working Capital
A. Current Assets:

Raw material stock
(Refer to Working note 3)
Work in progress stock 5,00,000
(Refer to Working note 2)
Finished goods stock 13,60,000
(Refer to Working note 4)
Receivables
25,10,769
(Refer to Working note 5)
Cash and Bank balance
25,000

7,15,740
Payables for raw materials
(Refer to Working note 6)
Payables for wages 91,731
(Refer to Working note 7)
Net Working Capital (A - B)
Working Notes:

1. Annual cost of production

	$₹$
Raw material requirements $(1,04,000$ units \times ₹ 80$)$	$83,20,000$
Direct wages (1,04,000 units $\times ₹ 30)$	$31,20,000$
Overheads (exclusive of depreciation)(1,04,000 \times ₹ 60$)$	$\underline{62,40,000}$
	$\underline{1,76,80,000}$

2. Work in progress stock

Raw material requirements (4,000 units $\times ₹ 80$)
₹

Direct wages (50\% x 4,000 units x ₹ 30)
Overheads ($50 \% \times 4,000$ units $\times ₹ 60$)
1,20,000
5,00,000
3. Raw material stock

It is given that raw material in stock is average 4 weeks' consumption. Since, the company is newly formed, the raw material requirement for production and work in progress will be issued and consumed during the year.
Hence, the raw material consumption for the year (52 weeks) is as follows:

	$₹$
For Finished goods	$83,20,000$
For Work in progress	$\underline{3,20,000}$
	$86,40,000$

Raw material stock $=\frac{86,40,000}{86,40,000} \times 4$ weeks i.e. ₹ $6,64,615$
4. Finished goods stock

8,000 units @ ₹ 170 per unit = ₹ $13,60,000$
5. Receivables for sale

Credit allowed to debtors
Average 8 weeks
Credit sales for year (52 weeks) i.e. (1,04,000 units - 8,000 units)
Cost per unit
96,000 units

Credit sales for the year (96,000 units \times ₹170)
₹ 1,63 ,20,000

Receivables $=\frac{1,63,20,000}{52 \text { weeks }} \times 8$ weeks i.e. ₹ $25,10,769$
6. Payables for raw material:

Credit allowed by suppliers

Average 4 weeks

Purchases during the year (52 weeks) i.e.
₹ $93,04,615$
(₹ $83,20,000+₹ 3,20,000+₹ 6,64,615$)
(Refer to Working notes 1,2 and 3 above)
Payables for raw materials $=\frac{93,04,615}{52 \text { weeks }} \times 4$ weeks i.e. ₹ $7,15,740$
7. Payables for wages

Lag in payment of wages Average $1 \frac{1}{2} 52$ weeks
Direct wages for the year (52 weeks) i.e.
(₹ $31,20,000$ + ₹ 60,000)
(Refer to Working notes 1 and 2 above)
Payables for wages $=\frac{31,80,000}{52 \text { weeks }} \times 1 \frac{1}{2}$ weeks i.e. $₹ 91,731$
₹ $31,80,000$

Operating Cycle
PY Jan 21
The following information is provided by MNP Ltd. for the year ending 31st March, 2020:

Raw Material Storage period
Work-in-Progress conversion period
Finished Goods storage period
Debt Collection period
Creditors payment period
Annual Operating Cost

45 days
20 days
25 days
30 days
60 days
₹ $25,00,000$
(Including Depreciation of ₹ $2,50,000$)
Assume 360 days in a year. You are required to calculate:
(i) Operating Cycle period
(ii) Number of Operating Cycle in a year.
(iii) Amount of working capital required for the company on a cost basis.
(iv) The company is a market leader in its product and it has no competitor in the market.Based on a market survey it is planning to discontinue sales on credit and deliver products based on pre-payments in order to reduce its working capital requirement substantially. You are required to compute the reduction in working capital requirement in such a scenario.
(i) Calculation of Operating Cycle Period:

Operating Cycle Period $=R+W+F+D-C$

$$
=45+20+25+30-60=60 \text { days }
$$

(ii) Number of Operating Cycle in a Year

$$
=\frac{360}{\text { Operating cycle period }}=\frac{360}{60}=6
$$

(iii) Amount of Working Capital Required

$$
\begin{aligned}
& =\frac{\text { Annual operating cost }}{\text { Number of operating cycle }}=\frac{25,00,000-2,50,000}{6} \\
& =\frac{22,50,000}{6}=₹ 3,75,000
\end{aligned}
$$

(iv) Reduction in Working Capital

Operating Cycle Period $=\mathrm{R}+\mathrm{W}+\mathrm{F}-\mathrm{C}$
$=45+20+25-60=30$ days

Amount of Working Capital Required $=\frac{22,50,000}{360} \times 30=₹ 1,87,500$
Reduction in Working Capital = ₹ $3,75,000-₹ 1,87,500=₹ 1,87,500$
Note: If we use Total Cost basis, then amount of Working Capital required will be ₹ $4,16,666.67$ (approx.) and Reduction in Working Capital will be ₹ $2,08,333.33$ (approx.)
Operating Cycle RTP May 18

Following information is forecasted by the Puja Limited for the year ending 31 st March,20X8:

	Balance as at 1st April, 20X7(₹)	Balance as at 31st March, 20X8(₹)
Raw Material	45,000	65,356
Work-in-progress	35,000	51,300
Finished goods	60,181	70,175
Debtors	$1,12,123$	$1,35,000$
Creditors	50,079	70,469
Annual purchases of raw material (all credit)		$4,00,000$
Annual cost of production		$7,50,000$
Annual cost of goods sold		$9,15,000$
Annual operating cost		$9,50,000$
Annual sales (all credit)		$11,00,000$

You may take one year as equal to 365 days.
Required:
CALCULATE
(i) Net operating cycle period.
(ii) Number of operating cycles in the year.
(iii) Amount of working capital requirement using operating cycles.

Working Notes:

1. Raw Material Storage Period (R)

```
\(=\frac{\text { Average Stock of RawMaterial }}{\text { Annual Consumption of RawMaterial }} \times 365\)
\(=\frac{\frac{45,000+65,356}{2}}{3,79,644} \times 365\)
\(=53\) days.
Annual Consumption of Raw Material = Opening Stock + Purchases- Closing Stock
= ₹ 45,000 + ₹ 4,00,000 - ₹ 65,356
= ₹ \(3,79,644\)
```

2. Work-in-Progress (WIP) Conversion Period (W)

WIP Conversion Period $=\frac{\text { Average Stock of WIP }}{\text { Annual Cost of Production }} \times 365$

$$
\begin{aligned}
& =\frac{\frac{35,000+51,300}{2}}{7,50,000} \times 365 \\
& =21 \text { days }
\end{aligned}
$$

3. Finished Stock Storage Period (F)
$=\frac{\text { Average Stock of Finished Goods }}{\text { Cost of Goods Sold }} \times 365$

Chapter - 09
$=\frac{65,178}{9,15,000} \times 365=26$ days.

$$
\begin{aligned}
\text { Average Stock } & =\frac{60,181+70,175}{2} \\
& =₹ 65,178 .
\end{aligned}
$$

4. Debtors Collection Period (D)
$=\frac{\text { Average Debtors }}{\text { Annual Credit Sales }} \times 365$
$=\frac{123,56.50}{11,00,000} \times 365$
$=41$ days
Average debtors $=\frac{\frac{1,12,123+1}{35,000}}{2}=1,23,561.50$
5. Creditors Payment Period (C)
$=\frac{\text { Average Creditors }}{\text { Annual Net Credit Purchases }} \times 365$
$=\frac{70,469}{4,00,000} \times 365$
$=55$ days
(i) Operating Cycle Period

$$
\begin{aligned}
& =R+W+F+D-C \\
& =53+21+26+41-55 \\
& =86 \text { days }
\end{aligned}
$$

(ii) Number of Operating Cycles in the Year $=\frac{365}{\text { Operating }}=\frac{365}{86}=4.244$
(iii) Amount of Working Capital Required
$=\frac{\text { Annual Operating Cost }}{\text { Number of Operating Cycles }}=\frac{9,50,000}{4.244}=₹ 2,23,845.42$

Operating Cycle
MTP May 22(1)
Following information is forecasted by Gween Limited for the year ending 31st March, 2022:

	Balance as at 31st March, 2022	Balance as at 31st March, 2021
	(₹ in lakh)	(₹ in lakh)
Raw Material	845	585
Work-in-progress	663	455
Finished goods	910	780
Receivables	1,755	1,456
Payables	923	884
Annual purchases of raw material (all credit)	5,200	
Annual cost of production	5,850	
Annual cost of goods sold	6,825	
Annual operating cost	4,225	
Annual sales (all credit)	7,605	

Considering one year as equal to 365 days, CALCULATE:
(i) Net operating cycle period.
(ii) Number of operating cycles in the year.
(iii) Amount of working capital requirement.

1. Raw Material Storage Period (R)
$=\frac{\text { Average Stock of Raw Material }}{\text { Annual Consumption of Raw Material }} \times 365$
$=\frac{\frac{585+845}{2}}{4,940} \times 365=53$ days
Annual Consumption of Raw Material $=$ Opening Stock + Purchases - Closing Stock = ₹ 585 + ₹ $5,200-₹ 845=₹ 4,940$ lakh
2. Work - in - Progress (WIP) Conversion Period (W)
$=\frac{\text { AverageStockofWIP }}{\text { AnnualCostofProduction }} \times 365$
$=\frac{\frac{455+663}{2}}{5,850} \times 365=35$ days
3. Finished Stock Storage Period (F)
$=\frac{\text { Average Stock of Finished Goods }}{\text { Cost of GoodsSold }} \times 365$
$=\frac{\frac{780+910}{2}}{6,825} \times \times 365=45$ days.
4. Receivables (Debtors) Collection Period (D)
$=\frac{\text { Average Receivables }}{\text { Annual Credit Sales }} \times 365$
$=\frac{\frac{14,56+1,755}{2}}{7,605} \times 365=77$ days
5. Payables (Creditors) Payment Period (C)
$=\frac{\text { Average Payablesfor materials }}{\text { Annual Credit purchases }} \times 365$
$=\frac{\frac{884+923}{2}}{5200} \times 365=64$ days
(i) Net Operating Cycle Period

$$
=R+W+F+D-C
$$

$=53+35+45+77-64=146$ days
(ii) Number of Operating Cycles in the Year
$=\frac{365}{\text { Operating Cycle Period }}=\frac{365}{146}=2.5$ times
(iii) Amount of Working Capital Required
$=\frac{\text { AnnualOperatingCost }}{\text { Number ofOperatingCycles }}=\frac{4,225}{2.5}=₹ 1,690$ lakh
Note: Number of days may vary due to fraction.

Q. 11

Operating Cycle
MTP May 20
The following information is provided by the P Ltd. for the year ending 31st March, 2020.
Raw Material storage period
52 days
Work in progress conversion period 18 days

Finished Goods storage period
20 days
Debt Collection period 75 days
Creditors' payment period
Annual Operating Cost
25 days
45 crore
(Including depreciation of Rs. $42,00,000$)
(1 year = 360 days)
You are required to CALCULATE Operating Cycle period and Number of Operating Cycles in a year.

Calculation of Operating Cycle Period and number of Operating Cycle in a Year
Operating Cycle Period $=\mathrm{R}+\mathrm{W}+\mathrm{F}+\mathrm{D}-\mathrm{C}$

$$
=52+18+20+75-25=140 \text { days }
$$

Number of Operating Cycle in a Year $=$
360
Operating Cycle Period
$=360 / 140=2.57$ times

Statement of Working Cap RTP Nov 19
Following are cost information of KG Ltd., which has commenced a new project for an annual production of 24,000 units which is the full capacity

Earnings of the Company	$₹ 50,00,000$
Dividend Payout ratio	60%
No. of shares outstanding	$10,00,000$
Equity capitalization rate	12%
Rate of return on investment	15%

(i) COMPUTE the market value per share as per Walter's model?
(ii) COMPUTE the optimum dividend payout ratio according to Walter's model and the market value of Company's share at that payout ratio?
(Ignoring Taxation)

	Year 1	Year 2
Production (Units)	12,000	18,000
Sales (Units)	10,000	17,000

	(₹)	(₹)
Sales revenue (A) (Sales unit \times ₹192)	$19,20,000$	$32,64,000$
Cost of production:		
Materials cost (Units produced \times ₹80)	$9,60,000$	$14,40,000$
Direct labour and variable expenses (Units produced \times ₹40)	$4,80,000$	$7,20,000$
Fixed manufacturing expenses (Production Capacity: 24,000 units \times ₹12)	$2,88,000$	$2,88,000$
Depreciation (Production Capacity : 24,000 units \times ₹20)	$4,80,000$	$4,80,000$
Fixed administration expenses (Production Capacity : 24,000 units \times ₹8)	$1,92,000$	$1,92,000$
Total Costs of Production	$24,00,000$	$31,20,000$
Add: Opening stock of finished goods	---	$4,00,000$

| (Year 1: Nil; Year 2 : 2,000 units) | | |
| :--- | :---: | :---: | :---: |
| Cost of Goods available for sale
 (Year 1: 12,000 units; Year 2: 20,000 units) | $24,00,000$ | $35,20,000$ |
| Less: Closing stock of finished goods at average
 cost (year 1: 2000 units, year 2: 3000 units)
 (Cost of Production \times Closing stock/ units
 produced) | $(4,00,000)$ | $(5,28,000)$ |
| Cost of Goods Sold | | |
| Add: Selling expenses - Variable (Sales unit \times
 ₹8) | $20,00,000$ | $29,92,000$ |
| Add: Selling expenses -Fixed (24,000 units \times ₹2) | 48,000 | $1,36,000$ |
| Cost of Sales : (B) | | |

Working Notes:

1. Calculation of creditors for supply of materials:

	Year 1 (₹)	Year 2 (₹)
Materials consumed during the year	$9,60,000$	$14,40,000$
Add: Closing stock (2 month's average consumption)	$1,60,000$	$2,40,000$
	$11,20,000$	$16,80,000$
Less: Opening Stock	---	$1,60,000$

2.

| Creditors for expenses: |
| :--- |$|$| | Year 1 (₹) | Year 2 (₹) |
| :--- | :--- | :--- |
| Direct labour and variable expenses | $4,80,000$ | $7,20,000$ |
| Fixed manufacturing expenses | $2,88,000$ | $2,88,000$ |
| Fixed administration expenses | $1,92,000$ | $1,92,000$ |
| Selling expenses (variable + fixed) | $1,28,000$ | $1,84,000$ |
| | $10,88,000$ | $13,84,000$ |
| Total | | 90,667 |
| Average per month | $1,15,333$ | |

Projected Statement of Working Capital requirements

	Year 1 (₹)	Year 2 (₹)
Current Assets:		
Inventories:		
-Stock of materials (2 month's average consumption)	1,60,000	2,40,000
-Finished goods	4,00,000	5,28,000
Debtors (2 month's average sales) (including profit)	3,20,000	5,44,000
Cash	1,00,000	1,00,000
Total Current Assets/ Gross working capital (A)	9,80,000	14,12,000
Current Liabilities:		
Creditors for supply of materials (Refer to working note 1)	93,333	1,26,667
Creditors for expenses (Refer to working note 2)	90,667	1,15,333
Total Current Liabilities: (B)	1,84,000	2,42,000
Estimated Working Capital Requirements: ($A-B$)	7,96,000	11,70,000

Q. 13

Working Cap Requirement Py Nov 20
PK Ltd., a manufacturing company, provides the following information:

	(₹)
Sales	$1,08,00,000$
Raw Material Consumed	$27,00,000$
Labour Paid	$21,60,000$
Manufacturing Overhead (Including Depreciation for the year ₹ $3,60,000$)	$32,40,000$
Administrative \& Selling Overhead	$10,80,000$

Additional Information:
(a) Receivables are allowed 3 months' credit.
(b) Raw Material Supplier extends 3 months' credit.
(c) Lag in payment of Labour is 1 month.
(d) Manufacturing Overhead are paid one month in arrear.
(e) Administrative \& Selling Overhead is paid 1 month advance.
(f) Inventory holding period of Raw Material \& Finished Goods are of 3 months.
(g) Work-in-Progress is Nil.
(h) PK Ltd. sells goods at Cost plus $331 / 3 \%$.
(i) Cash Balance ₹ $3,00,000$.
(j) Safety Margin 10%.

You are required to compute the Working Capital Requirements of PK Ltd. on Cash Cost basis.
Statement showing the requirements of Working Capital (Cash Cost basis)

Particulars	(₹)	(₹)
A. Current Assets:		
Inventory:		
Stock of Raw material (₹ 27,00,000 $\times 3 / 12$)	6,75,000	
Stock of Finished goods (₹ $77,40,000 \times 3 / 12$)	19,35,000	
Receivables (₹ $88,20,000 \times 3 / 12$)	22,05,000	
Administrative and Selling Overhead ($₹ 10,80,000 \times 1 / 12$)	90,000	
Cash in Hand	3,00,000	
Gross Working Capital	52,05,000	52,05,000
B. Current Liabilities:		
Payables for Raw materials* (₹ 27,00,000 $\times 3 / 12$)	6,75,000	
Outstanding Expenses:		
Wages Expenses (₹ $21,60,000 \times 1 / 12$)	1,80,000	
Manufacturing Overhead (₹ 28,80,000 $\times 1 / 12$)	2,40,000	
Total Current Liabilities	10,95,000	10,95,000
Net Working Capital (A-B)		41,10,000
Add: Safety margin @ 10\%		4,11,000
Total Working Capital requirements		45,21,000

Working Notes:

(i)

(A)	Computation of Annual Cash Cost of Production	(₹)
Raw Material consumed	$27,00,000$	

	Wages (Labour paid)
	Manufacturing overhead (₹ 32,40,000 - ₹ 3,60,000)
	Total cash cost of production
(B)	Computation of Annual Cash Cost of Sales
Cash cost of production as in (A) above	
Administrative \& Selling overhead	$77,40,000$
	(₹)

*Purchase of Raw material can also be calculated by adjusting Closing Stock and Opening Stock (assumed nil). In that case Purchase will be Raw material consumed +Closing Stock -Opening Stock i.e ₹ $27,00,000$ + $₹ 6,75,000$ - Nil = ₹ $33,75,000$. Accordingly, Total Working Capital requirements (₹ $43,35,375$) can be calculated.

Bita Limited manufactures used in the steel industry. The following information regarding the company is given for your consideration:
(i) Expected level of production 9000 units per annum.
(ii) Raw materials are expected to remain in store for an average of two months before issue to production.
(iii) Work-in-progress (50 percent complete as to conversion cost) will approximate to $1 / 2$ month's production.
(iv) Finished goods remain in warehouse on an average for one month.
(v) Credit allowed by suppliers is one month.-
(vi) Two month's credit is normally allowed to debtors.
(vii) A minimum cash balance of $₹ 67,500$ is expected to be maintained.
(viii) Cash sales are 75 percent less than the credit sales.
(ix) Safety margin of 20 percent to cover unforeseen contingencies.
(x) The production pattern is assumed to be even during the year.
(xi) The cost structure for Bita Limited's product is as follows:

Raw Materials 80 per unit
Direct Labour Overheads (including depreciation ₹ 20) 80 per
unit Total Cost 180
per unit Profit 20
per unit Selling Price 200 per unit
You are required to estimate the working capital requirement of Bita limited.
Ans
Statement showing Estimate of Working Capital Requirement

	(Amount in ₹)	(Amount in ₹)
A. Current Assets		
(i) Inventories:		$1,20,000$
- Raw material inventory $\left(\frac{9,000 \text { units } \times 80}{12 \text { months } \times 2 \text { months })}\right.$		
- Work in Progress:		
Raw material $\left(\frac{9,000 \text { units } \times 20}{12 \text { months } \times 0.5 \text { months })}\right.$	30,000	

Chapter - 09

Wages $\quad\left(\frac{9,000 \text { units } \times 80}{12 \text { months }} \times 0.5\right.$ months $) \times 50 \%$	3,750	
Overheads $\left(\frac{9,000 \text { units } \times 60}{12 \text { months }} \times 0.5\right.$ months $) \times 50$ (Other than Depreciation)	11,250	45,000
Finished goods (inventory held for 1 months) $\left(\frac{9,000 \text { units } \times 160}{12 \text { months }} \times 1 \text { months }\right)$		1,20,000
(ii) Debtors (for 2 months) $\left(\frac{9,000 \text { units } \times 160}{12 \text { months }} \times 2\right.$ months $) \times 80 \%$ or $\left(\frac{11,52,000}{12 \text { months }} \times 2\right.$ months $)$		1,92,000
(iii) Cash balance expected		67,500
Total Current assets		5,44,500
B. Current Liabilities		
(i) Creditors for Raw material (1 month) $\left(\frac{9,000 \text { units } \times 80}{12 \text { months }} \times 1 \text { months }\right)$		60,000
Total current liabilities		60,000
Net working capital ($A-B$)		4,84,500
Add: Safety margin of 20 percent		96,900
Working capital Requirement		5,81,400

Working Notes:

1. If Credit sales is x then cash sales is $x-75 \%$ of x i.e. $x / 4$.

Or $x+0.25 x=₹ 18,00,000$
Or $x=₹ 14,40,000$
So, credit Sales is ₹ $14,40,000$
Hence, Cash cost of credit sales $\left(\frac{14,40,000}{5} \times 4\right)=₹ 11,52,000$
2. It is assumed that safety margin of 20% is on net working capital.
3. No information is given regarding lag in payment of wages, hence ignored assuming it is paid regularly.
4. Debtors/Receivables is calculated based on total cost.
[If Debtors/Receivables is calculated based on sales, then debtors will be $\left(\frac{9,000 \text { units } \times 200}{12 \text { months }} \times 2\right.$ month $) \times 80 \%\left(\frac{14,40,000}{12 \text { months }} \times 2\right.$ month $)=₹ 2,40,000$

Then Total Current assets will be ₹ $5,92,500$ and accordingly Net working capital and Working capital requirement will be ₹ $5,32,500$ aand ₹ $6,39,000$ respectively].
Q. 15 Working Capital Requirement RTP Nov 22
Trading and Profit and Loss Account of Beat Ltd. for the year ended 31st March, 2022 is given below:

Particulars	Amount(₹)	Amount(₹)	Particulars	Amount(₹)	Amount(₹)
To Opening Stock: - Raw Materials - Work-in- progress - Finished Goods To Purchases (credit) To Wages To Production Exp. To Gross Profit c/d To Administration Exp. To Selling Exp. To Net Profit			By Sales (Credit)		1,60,00,000
	14,40,000		By Closing Stock:		
	4,80,000		- Raw Materials	16,00,000	
	20,80,000	40,00,000	- Work-inprogress	8,00,000	
		88,00,000	- Finished Goods	24,00,000	48,00,000
		24,00,000			
		16,00,000			
		40,00,000			
		2,08,00,000			2,08,00,000
		14,00,000	By Gross Profitb/d		40,00,000
		6,00,000			
		20,00,000			
		40,00,000			40,00,000

The opening and closing payables for raw materials were $₹ 16,00,000$ and $₹ 19,20,000$ respectively whereas the opening and closing balances of receivables were ₹ $12,00,000$ and $₹ 16,00,000$ respectively.
You are required to ASCERTAIN the working capital requirement by operating cycle method.

Computation of Operating Cycle

(1) Raw Material Storage Period (R)

Raw Material Storage Period $(R)=\frac{\text { Average Stock of Raw Material }}{\text { Daily Average Consumption of Raw material }}$

$$
=\frac{(14,40,000+16,00,000) / 2}{86,40,000 / 365}=64.21 \text { Days }
$$

Raw Material Consumed = Opening Stock + Purchases - Closing Stock

$$
=₹ 14,40,000+₹ 88,00,000-₹ 16,00,000=₹ 86,40,000
$$

(2) Conversion/Work-in-Process Period (W)

Conversion/Processing Period	$=\frac{\text { AverageStock of WIP }}{\text { Daily Average Pr oduction }}$
	$=\frac{(4,80,000+8,00,000) / 2}{1,23,20,000 / 365}=18.96$ days
Production Cost:	$4,80,000$
Opening Stock of WIP	$86,40,000$
Add: Raw Material Consumed	$24,00,000$
Add: Wages	$16,00,000$
Add: Production Expenses	$1,31,20,000$
	$\underline{8,00,000}$
Less: Closing Stock of WIP	$\underline{1,23,20,000}$

(3) Finished Goods Storage Period (F)
$\begin{aligned} \text { Finished Goods Storage Period } & =\frac{\text { Average Stock of Finished Goods }}{\text { Daily Average Cost of Good Sold }} \\ & =\frac{(20,80,000+24,00,000) / 2}{1,20,00,000 / 365}=68.13 \text { Days }\end{aligned}$

Chapter - 09

Cost of Goods Sold

₹

Opening Stock of Finished Goods	$20,80,000$
Add: Production Cost	$\underline{1,23,20,000}$
Less: Closing Stock of Finished Goods	$\underline{1,44,00,000}$
	$\underline{(24,00,000)}$
$1,20,00,000$	

(4) Receivables Collection Period (D)

Receivables Collection Period $=\frac{\text { Average Receivables }}{\text { Daily averagecredit sales }}$

$$
=\frac{(12,00,000+16,00,000) / 2}{1,60,00,000 / 365}=31.94 \text { Days }
$$

(5) Payables Payment Period (C)

Payables Payment Period $=\frac{\text { Average Payable }}{\text { Daily averagecredit sales }}$

$$
=\frac{(16,00,000+19,20,000) / 2}{88,00,000 / 365}=73 \text { Days }
$$

(6) Duration of Operating Cycle (O)
$O=R+W+F+D-C$
$=64.21+18.96+68.13+31.94-73$
$=\quad 110.24$ days
Computation of Working Capital
(i) Number of Operating Cycles per Year
$=365 /$ Duration Operating Cycle $=365 / 110.24=3.311$
(ii) Total Operating Expenses

Total Cost of Goods sold
Add: Administration Expenses
1,20,00,000

Add: Selling Expenses
14,00,000 6,00,000 1,40,00,000
(iii) Working Capital Required

Working Capital Required

$$
\begin{aligned}
& =\frac{\text { Total Operating Expenses }}{\text { Number of Operating Cycles per year }} \\
& =\frac{1,40,00,000}{3.311}=₹ 42,28,329.81
\end{aligned}
$$

Working Capital Requirement
RTP July 21
MTLtd. has been operating its manufacturing facilities till 31.3.202 1 on a single shift working with the following cost structure:

	Per unit (₹)
Cost of Materials	24
Wages (out of which 60\% variable)	20
Overheads (out of which 20\% variable)	20
	64

Profit	8
Selling Price	72

As at 31.3.2021 with the sales of $₹ 17,28,000$, the company held:

	(₹)
Stock of raw materials (at cost)	$1,44,000$
Work-in-progress (valued at prime cost) Finished	88,000
goods (valued at total cost) Sundry debtors	$2,88,000$
	$4,32,000$

In view of increased market demand, it is proposed to double production by working an extra shift. It is expected that a 10% discount will be available from suppliers of raw materials in view of increased volume of business. Selling price will remain the same. The credit period allowed to customers will remain unaltered. Credit availed from suppliers will continue to remain at the present level i.e. 2 months. Lag in payment of wages and overheads will continue to remain at one month.
You are required to CALCULATE the additional working capital requirements, if the policy to increase output is implemented, to assess the impact of double shift for long term as a matter of production policy.
(1) Statement of cost at single shift and double shift working

	24,000 units		48,000 Units	
	Per unit $(₹)$	Total $(₹)$	Per unit $(₹)$	Total $(₹)$
Raw materials	24	$5,76,000$	21.6	$10,36,000$
Wages:	12	$2,88,000$	12	$5,76,000$
Variable	8	$1,92,000$	4	$1,92,000$
Fixed	4			
Overheads:	16	$3,84,000$	4	$1,92,000$
Variable	64	$15,36,000$	49.6	$3,84,000$
Fixed	8	$1,92,000$	22,4	$10,75,200$
Total cost	72	$17,28,000$	72	$34,56,000$

(2) Sales in units 2020-21 $=\frac{\text { Sales }}{\text { Unit sellingprice }}=\frac{17,28,000}{72}=24,000$ units
(3) Stock of Raw Materials in units on 31.3.2021
$=\frac{\text { Value of stock }}{1,44,000}=6,000$ units
Cost per unit ₹ 24
(4) Stock of work-in-progress in units on 31.3.2021
$=\frac{\text { Value of work }- \text { in - progress }}{\text { PrimeCost per unit }}=\frac{88,000}{(24+20)}=2,000$ units
(5) Stock of finished goods in units 2020-213
$=\frac{\text { Value of stock }}{\text { TotalCost per unit }}=\frac{2,88,000}{64}=4,500$ units.

Comparative Statement of Working Capital Requirement

	Single Shift (24,000 units)			Double Shift (48,000 units)		
	Units	Rate (₹)	Amount (₹)	Units	Rate (₹)	Amount (₹)
Current Assets						
Inventories:						
Raw Materials	6,000	24	1,44,000	12,000	21.6	2,59,200
Work-in-Progress	2,000	44	88,000	2,000	37.6	75,200
Finished Goods	4,500	64	2,88,000	9,000	49.6	4,46,400
Sundry Debtors	6,000	64	3,84,000	12,000	49.6	5,95,200
Total Current Assets (A)			9,04,000			13,76,000
Current Liabilities Creditors for Materials	4,000	24	96,000	8,000	21.6	1,72,800
Creditors for Wages	2,000	20	40,000	4,000	16	64,000
Creditors for Overheads	2,000	20	40,000	4,000	12	48,000
Total Current Liabilities (B)			1,76,000			2,84,800
Working Capital (A) - (B)			,28,000			10,91,200

Analysis: Additional Working Capital requirement = ₹ $10,91,200-₹ 7,28,000=₹ 3,63,200$, if the policy to increase output is implemented.

Cost sheet of X\&Y Ltd. provides the following particulars:

	Amount per unit (₹)
Raw materials cost	260.00
Direct labour cost	125.00
Overheads cost	200.00
Total cost	585.00
Profit	75.00
Selling Price	660.00

The Company keeps raw material in stock, on an average for four weeks; work -in-progress, on an average for one week; and finished goods in stock, on an average for two weeks.
The credit allowed by suppliers is three weeks and company allow four weeks credit to its debtors. The lag in payment of wages is one week and lag in payment of overhead expenses is two weeks.
The Company sells one-fifth of the output against cash and maintains cash-in-hand and at bank put together at ₹ $2,70,000$.
Required:
PREPARE a statement showing estimate of Working Capital needed to finance an activity level of
$2,40,000$ units of production. Assume that production is carried on evenly throughout the year, and wages and overheads accrue similarly. Work-in-progress stock is 75% complete in all respects.

Statement showing Estimate of Working Capital Needs

	(Amount in ₹)	(Amount in ₹)
A. Current Assets		
(i) Inventories:		
Raw material (4 weeks)		

$\left(\frac{2,40,000 \text { units } \times 260}{52 \text { weeks }} \times 4 \text { Weeks }\right)$	48,00,000	
WIP Inventory (1 week) $\left(\frac{2,40,000 \text { units } \times 585}{52 \text { weeks }} \times 1 \text { Weeks }\right) \times 0.75$	20,25,000	
Finished goods inventory (2 weeks) $\left(\frac{2,40,000 \text { units } \times 585}{52 \text { weeks }} \times 2 \text { Weeks }\right)$	54,00,000	1,22,25,000
(ii) Receivables (Debtors) (4 weeks) $\left(\frac{2,40,000 \text { units } \times 585}{52 \text { weeks }} \times 4 \text { Weeks }\right) \times \frac{4}{5}$		86,40,000
(iii) Cash and bank balance		2,70,000
Total Current Assets		2,11,35,000
B. Current Liabilities:		
(i) Payables (Creditors) for materials (3 weeks) $\left(\frac{2,40,000 \text { units } \times 125}{52 \text { weeks }} \times 3 \text { Weeks }\right)$		36,00,000
(ii) Outstanding wages (1 week) $\left(\frac{2,40,000 \text { units } \times 125}{52 \text { weeks }} \times 1 \text { Weeks }\right)$		5,76,923
(iii) Outstanding overheads (2 weeks) $\left(\frac{2,40,000 \text { units } \times 125}{52 \text { weeks }} \times 2 \text { Weeks }\right)$		18,46,154
Total Current Liabilities		60,23,077
Net Working Capital Needs ($A-B$)		1,51,11,923

Working Capital Requirement
MTP Nov 23(2)
The following information is provided by the Shrishti Ltd. for the year ending 31st March 2022.

Raw Material storage period
Work in progress conversion period
Finished Goods storage period
Debt Collection period
Creditors' payment period

Annual Operating Cost
(Including depreciation of $₹ 42,00,000$)
(1 year = 360 days)
You are required to CALCULATE Operating Cycle period and Number of Operating Cycles in a year.

Calculation of Operating Cycle Period and number of Operating Cycle in a Year
Operating Cycle Period $=R+W+F+D-C$
$=54+20+22+74-25=145$ days

Number of Operating Cycle in a Year $=$
 360
 Operating Cycle Period
 $=360 / 145=2.48$ times

Working Capital Requirement
MTP May 22(2)
The following annual figures relate to manufacturing entity:
A. Sales at one month credit $84,00,000$
B. Material consumption
60% of sales value
C. Wages (paid in a lag of 15 days)

12,00,000
D. Cash Manufacturing Expenses

3,00,000
E. Administrative Expenses

2,40,000
F. Creditors extend 3 months credit for payment.
G. Cash manufacturing and administrative expenses are paid 1 months in arrear.

The company maintains stock of raw material equal to economic order quantity. The company incurs ₹ 100 as per ordering cost per order and opportunity cost of capital is 15% p.a. The optimum cash balance is determined using Baumol's model. The bank charges ₹ 10 for each cash withdrawal. Finished goods are held in stock for 1 month. The company maintains a bank balance of $₹ 12,00,000$ on an average. Creditors are paid through net banking and all other expenses are incurred in cash which is withdrawn from bank.

Assuming a 20% safety margin, you are required to ESTIMATE the amount of working capital that needs to be invested by the Company.

Statement of working capital Requirement

Particular	(₹)	(₹)
A. Current Assets	81,975	
Stock of Raw Material (W.N. 2)	$5,45,000$	
Stock of finished Goods $\left(65,40,000 \times \frac{1}{12}\right)$	$5,65,000$	
Average Receivables (at Cost) $\left(67,80,000 \times \frac{1}{12}\right)$	$12,00,000$	
Bank Balance	15,232	
Cash Balance (W.N. 3)		$24,07,207$
Gross Working Capital	$12,60,000$	
B. Current Liabilities	50,000	
Average Creditor for materials $\left(50,40,000 \times \frac{3}{12}\right)$	25,000	
Outstanding Wages (12,00,000x $\left.\frac{0.5}{12}\right)$		
Outstanding Cash Manufacturing Expenses $\left(3,00,000 \times \frac{1}{12}\right)$	20,000	
Outstanding administrative Expenses $\left(240,000 \times \frac{1}{12}\right)$		$13,55,000$
Net Working Capital (A-B)		$10,52,207$
dd: Safety Margin @ 20\%		
Total Working Capital Requirement		
Working		

Working Notes:

0
http://tiny.cc/yoursamitbhai

1. Computation of annual cash Cost of Production \& Sales

Material Consumed $(84,00,000 \times 60 \%)$	$50,40,000$
Wages	$12,00,000$
Manufacturing expenses	$3,00,000$
Cash Cost of production	$65,40,000$
(+) Administrative Expenses	$2,40,000$
Cash Cost of Sales	$67,80,000$

2. Computation of stock of Raw Material
$A=50,40,000$
$B=100$
$C=0.15$
$E O Q=\sqrt{\frac{2 A B}{c}}=\sqrt{\frac{2 \times 50,40,000 \times 100}{0.15}}=₹ 81,975$
3. Calculation of Cash Balance
$A=12,00,000+3,00,000+2,40,000$
$A=17,40,000$
$B=10$
$C=0.15$
Optimal Cash Balance $=\sqrt{\frac{2 A B}{c}}=\sqrt{\frac{2 \times 17,40,000 \times 10}{0.15}}=₹ 15,232$
Working Capital Requirements MTP May 20
Cost sheet of A\&R Ltd. provides the following particulars:

	Amount per unit (Rs.)
Raw materials cost	200.00
Direct labour cost	75.00
Overheads cost	150.00
Total cost	425.00
Profit	75.00
Selling Price	500.00

The Company keeps raw material in stock, on an average for four weeks; work-in-progress, on an average for one week; and finished goods in stock, on an average for two weeks.
The credit allowed by suppliers is three weeks and company allows four weeks credit to its debtors. The lag in payment of wages is one week and lag in payment of overhead expenses is two weeks.
The Company sells one-fifth of the output against cash and maintains cash-in-hand and at bank put together at Rs.2,50,000.
Required:
PREPARE a statement showing estimate of Working Capital needed to finance an activity level of $2,60,000$ units of production. Assume that production is carried on evenly throughout the year, and wages and overheads accrue similarly. Work-in-progress stock is 80% complete in all respects.

Statement showing Estimate of Working Capital Needs

	(Amount in Rs.)	(Amount in Rs.)
A. Current Assets		
(i) Inventories:		
\quad Raw material (4 weeks)		
$\left(\frac{2,60,000 \text { units } \times \text { Rs. } 200}{52 \text { weeks }} \times 4\right.$ weeks $)$	$40,00,000$	

Chapter - 09
$\left.\begin{array}{|l|r|r|}\hline \begin{array}{c}\text { WIP Inventory (1 week) } \\ \left(\frac{2,60,000 \text { units } \times \text { Rs.425 }}{52 \text { weeks }} \times 1 \text { weeks }\right) \times 0.8\end{array} & & \\ \left.\hline \begin{array}{c}\text { Finished goods inventory (2 weeks) } \\ \left(\frac{2,60,000 \text { units } \times \text { Rs. } 425}{52} \times 2 \text { weeks }\right.\end{array}\right) & 17,00,000\end{array}\right)$

Cash Cost Basis
RTP July 21
While applying for financing of working capital requirements to a commercial bank, TN Industries Ltd. projected the following information for the next year:

Cost Element	Per unit (₹)	Per unit (₹)
Raw materials		
X	30	
y	7	
Z	6	43
Direct Labour		25
Manufacturing and administration overheads (excluding		20
depreciation)		
Depreciation		10
Selling overheads		15

Additional Information:

(a) Raw Materials are purchased from different suppliers leading to different credit period allowed as follows:
$X-2$ months; Y - 1 months; $Z-\frac{1}{2}$ month
(b) Production cycle is of $\frac{1}{2}$ month. Production process requires full unit of X and Y in the beginning of the production. Z is required only to the extent of half unit in the beginning and the remaining half unit is needed at a uniform rate during the production process.
(c) X is required to be stored for 2 months and other materials for 1 month. (d) Finished goods are held for 1 month.
(e) 25% of the total sales is on cash basis and remaining on credit basis. The credit allowed by debtors is 2 months.
(f) Average time lag in payment of all overheads is 1 months and $\frac{1}{2}$ months for direct labour.
(g) Minimum cash balance of ₹ $8,00,000$ is to be maintained.

CALCULATE the estimated working capital required by the company on cash cost basis if the budgeted level of activity is $1,50,000$ units for the next year. The company also intends to increase the estimated working capital requirement by 10% to meet the contingencies. (You may assume that production is carried on evenly throughout the year and direct labour and other overheads accrue similarly.)

Statement showing Working Capital Requirements of TN Industries Ltd. (on cash cost basis)

	Amount in(₹)	Amount in($₹$)
A. Current Assets		
(i) Inventories:		
Raw material		
$\times\left(\frac{1,50,000 \text { units } \times \text { Rs. } 30}{12 \text { months }} \times 2\right.$ months $)$	7,50,000	
$y\left(\frac{1,50,000 \text { units } \times 7}{12 \text { months }} \times 1\right.$ months $)$	87,500	
$z\left(\frac{1,50,000 \text { units } \times 6}{12 \text { months }} \times 1\right.$ months $)$	75,000	
WIP ($\frac{1,50,000 \text { units } \times 64}{12 \text { months }} \times 0.5$ months $)$	4,00,000	
Finished goods ($\frac{1,50,000 \text { units } \times 88}{12 \text { months }} \times 1$ months $)$	11,00,000	24,12,500
(ii) Receivables (Debtors) $\left(\frac{1,50,000 \text { units } \times 103}{12 \text { months }} \times 2 \text { months }\right) \times 0.75$		19,31,250
(iii) Cash and bank balance		8,00,000
Total Current Assets		51,43,750
B. Current Liabilities:		
(i) Payables (Creditors) for Raw materials		
$\times\left(\frac{1,50,000 \text { units } \times 30}{12 \text { months }} \times 2\right.$ months $)$	7,50,000	
$y\left(\frac{1,50,000 \text { units } \times 7}{12 \text { months }} \times 1 \text { months }\right)$	87,500	
$Z\left(\frac{1,50,000 \text { units } \times 6}{12 \text { months }} \times 0.5\right.$ months $)$	37,500	8,75,000

(ii) Outstanding Direct Labour $\left(\frac{1,50,000 \text { units } \times 25}{12 \text { months }} \times 1\right.$ months $)$	1,56,250
(iii) Outstanding Manufacturing and administration overheads $\left(\frac{1,50,000 \text { units } \times 20}{12 \text { months }} \times 1 \text { months }\right)$	2,50,000
(iv) Outstanding Selling overheads $\left(\frac{1,50,000 \text { units } \times 15}{12 \text { months }} \times 1 \text { months }\right)$	1,87,500
Total Current Liabilities	14,68,750
Net Working Capital Needs (A - B)	36,75,000
Add: Provision for contingencies @ 10\%	3,67,500
Working capital requirement	40,42,500

Workings:

1.

(i) Computation of Cash Cost of Production	Per unit (₹)
Raw Material consumed	43
Direct Labour	25
Manufacturing and administration overheads	20
Cash cost of production	88
(ii) Computation of Cash Cost of Sales	Per unit (₹)
Cash cost of production as in (i) above	88
Selling overheads	15
Cash cost of sales	103

2. Calculation of cost of WIP

Particulars	Per unit (₹)
Raw material (added at the beginning): X	30
Y	7
Z (₹ $6 \times 50 \%$)	3
Cost during the year:	
Z $\{(₹ 6 \times 50 \%) \times 50 \%\}$	1.5
Direct Labour (₹ $25 \times 50 \%$)	12.5
Manufacturing and administration overheads (₹ $20 \times 50 \%$)	10
	64

Day Ltd., a newly formed company has applied to the Private Bank for the first time for financing it's Working Capital Requirements. The following information is available about the projections for the current year:

Estimated Level of Activity	Completed Units of Production 31,200 plus unit of work in progress 12,000
Raw Material Cost	₹ 40 per unit
Direct Wages Cost	₹ 15 per unit
Overhead	₹ 40 per unit (inclusive of Depreciation ₹10 per unit)
Selling Price	₹ 130 per unit

Raw Material in Stock	Average 30 days consumption
Work in Progress Stock	Material 100% and Conversion Cost 50%
Finished Goods Stock	24,000 Units
Credit Allowed by the supplier	30 days
Credit Allowed to Purchasers	60 days
Direct Wages (Lag in payment)	15 days
Expected Cash Balance	$₹ 2,00,000$

Assume that production is carried on evenly throughout the year (360 days) and wages and overheads accrue similarly. All sales are on the credit basis. You are required to CALCULATE the Net Working Capital Requirement on Cash Cost Basis.

Calculation of Net Working Capital requirement:

	(₹)	(₹)
A. Current Assets:		
Inventories:		
Stock of Raw material (Refer to Working note (iii)	$1,44,000$	
Stock of Work in progress (Refer to Working note (ii)	$7,50,000$	
Stock of Finished goods (Refer to Working note (iv)	$20,40,000$	
Debtors for Sales(Refer to Working note (v)	$1,02,000$	
Cash	$2,00,000$	
Gross Working Capital	$32,36,000$	$32,36,000$
B. Current Liabilities:		
Creditors for Purchases (Refer to Working note (vi)	$1,56,000$	
Creditors for wages (Refer to Working note (vii)	23,250	
	$1,79,250$	$1,79,250$
Net Working Capital (A - B)		$30,56,750$

Working Notes:
(i) Annual cost of production

	(₹)
Raw material requirements $\{(31,200 \times ₹ 40)+(12,000 \times ₹ 40)\}$	17,28,000
Direct wages $\{(31,200 \times ₹ 15)+(12,000 \times ₹ 15 \times 0.5)\}$	5,58,000
Overheads (exclusive of depreciation) $\{(31,200 \times ₹ 30)+(12,000 \times ₹ 30 \times 0.5)\}$	11,16,000
Gross Factory Cost	34,02,000
Less: Closing W.I.P [12,000 (₹ 40 + ₹ $7.5+₹ 15$)]	$(7,50,000)$
Cost of Goods Produced	26,52,000
Less: Closing Stock of Finished Goods (₹ $26,52,000 \times 24,000 / 31,200$)	$(20,40,000)$
Total Cash Cost of Sales*	6,12,000

[*Note: Alternatively, Total Cash Cost of Sales $=(31,200$ units $-24,000$ units $) \times(₹ 40+₹ 15+₹ 30)=₹$ 6,12,000]
(ii) Work in progress stock

	(₹)
Raw material requirements (12,000 units \times ₹40)	$4,80,000$
Direct wages $(50 \% \times 12,000$ units $\times ₹ 15)$	90,000
Overheads $(50 \% \times 12,000$ units $\times ₹ 30)$	$1,80,000$

\square
(iii) Raw material stock

It is given that raw material in stock is average 30 days consumption. Since, the company is newly formed; the raw material requirement for production and work in progress will be issued and consumed during the year. Hence, the raw materi al consumption for the year (360 days) is as follows:

	(₹)
For Finished goods $(31,200 \times$ ₹ 40$)$	$12,48,000$
For Work in progress $(12,000 \times ₹ 40)$	$4,80,000$

Raw material stock $=\frac{17,28,000}{360 \text { days }} \times 30$ days $=₹ 1,44,000$
(iv) Finished goods stock:

24,000 units @ ₹ $(40+15+30)$ per unit = ₹ $20,40,000$
(v) Debtors for sale: $₹ 6,12,000 \times \frac{60 \text { days }}{360 \text { days }}=₹ 1,02,000$
(vi) Creditors for raw material Purchases [Working Note (iii)]:

Annual Material Consumed (₹12,48,000 + ₹4,80,000) ₹17,28,000
Add: Closing stock of raw material [(₹17,28,000×30 days)/360 days] ₹ 1,44,000
₹18,72,000
Credit allowed by suppliers $=\frac{18,72,000}{360 \text { days }} \times 30$ days $=₹ 1,56,000$
(vii) Creditors for wages:

Outstanding wage payment $=[(31,200$ units $\times ₹ 15)+(12,000$ units $\times ₹ 15 \times .50)] \times$
15 days / 360 days
$=\frac{5,58,000}{360 \text { days }} \times 15$ days $=₹ 23,250$
Working Capital Estimate RTP May 22
PQR Ltd., a company newly commencing business in the year 2021-22, provides the following projected Profit and Loss Account:

	(₹)	(₹)
Sales		$5,04,000$
Cost of goods sold		$3,67,200$
Gross Profit	33,600	$1,36,800$
Administrative Expenses	31,200	64,800
Selling Expenses		72,000
Profit before tax		24,000
Provision for taxation		48,000
Profit after tax	$\frac{1,01,600}{}$	
The cost of goods sold has been arrived at as under:		
Materials used	$\underline{4,08,000}$	
Wages and manufacturing Expenses	40,800	
Depreciation	$3,67,200$	
Less: Stock of Finished goods (10\% of goods produced not yet sold)		

The figure given above relate only to finished goods and not to work-in-progress. Goods equal to 15% of the year's production (in terms of physical units) will be in process on the average requiring full materials but only 40% of the other expenses. The company believes in keeping materials equal to two months' consumption in stock.

All expenses will be paid one month in advance. Suppliers of materials will extend 1-1/2 months credit. Sales will be 20% for cash and the rest at two months' credit. 70% of the Income tax will be paid in advance in quarterly instalments. The company wishes to keep ₹ 19,200 in cash. 10% must be added to the estimated figure for unforeseen contingencies. PREPARE an estimate of working capital.

Statement showing the requirements of Working Capital

Particulars	(₹)	(₹)
A. Current Assets:		
Inventory:		
Stock of Raw material (₹ 2,31,840 $\times 2 / 12$)	38,640	
Stock of Work-in-progress (As per Working Note)	39,240	
Stock of Finished goods (₹ 3,51,600 $\times 10 / 100$)	35,160	
Receivables (Debtors) (₹ $3,04,992 \times 2 / 12$)	50,832	
Cash in Hand	19,200	
Prepaid Expenses:		
Wages \& Mfg. Expenses (₹ 1,59,000 $\times 1 / 12$)	13,250	
Administrative expenses (₹ $33,600 \times 1 / 12$)	2,800	
Selling \& Distribution Expenses (₹ 31,200 $\times 1 / 12$)	2,600	
Advance taxes paid \{(70\% of ₹ 24,000) $3 / 12\}$	4,200	
Gross Working Capital	2,05,922	2,05,922
B. Current Liabilities:		
Payables for Raw materials (₹ 2,70,480 $\times 1.5 / 12$)	33,810	
Provision for Taxation (Net of Advance Tax) (₹ 24,000× 30/100)	7,200	
Total Current Liabilities	41,010	41,010
C. Excess of CA over CL		1,64,912
Add: 10\% for unforeseen contingencies		16,491
Net Working Capital requirements		1,81,403

Working Notes:

(i) Calculation of Stock of Work-in-progress

Particulars	(₹)
Raw Material (₹ $2,01,600 \times 15 \%$)	30,240
Wages \& Mfg. Expenses (₹ $1,50,000 \times 15 \% \times 40 \%$)	9,000
Total	39,240

(ii) Calculation of Stock of Finished Goods and Cost of Sales

Particulars	(₹)
Direct material Cost [₹ 2,01,600 + ₹ 30,240]	$2,31,840$
Wages \& Mfg. Expenses [₹ $1,50,000+₹ 9,000]$	$1,59,000$
Depreciation	$3,90,840$
Gross Factory Cost	$(39,240)$
Less: Closing W.I.P.	$3,51,600$
Cost of goods produced	33,600
Add: Administrative Expenses	$3,85,200$
	$35,160)$
Less: Closing stock	$3,50,040$
Cost of Goods Sold	31,200
Add: Selling and Distribution Expenses	$3,81,240$
Total Cash Cost of Sales	

Debtors (80% of cash cost of sales) $\quad 3,04,992$
(iii) Calculation of Credit Purchase

Particulars	(₹)
Raw material consumed	$2,31,840$
Add: Closing Stock	38,640
Less: Opening Stock	-
Purchases	$2,70,480$

Working Capital Estimate
RTP Dec 21
The management of Trux Company Ltd. is planning to expand its business and consults you to prepare an estimated working capital statement. The records of the company reveals the following annual information:

	(₹)
Sales - Domestic at one month's credit	$18,00,000$
Export at three month's credit (sales price 10\% below domestic price)	$8,10,000$
Materials used (suppliers extend two months credit)	$6,75,000$
Lag in payment of wages - $\frac{1}{2}$ month	$5,40,000$
Lag in payment of manufacturing expenses (cash) - 1 month	$7,65,000$
Lag in payment of Administration Expenses - 1 month	$1,80,000$
Selling expenses payable quarterly in advance	$1,12,500$
Income tax payable in four installments, of which one falls in the next	$1,68,000$
financial year	

Rate of gross profit is 20%. Ignore work-in-progress and depreciation.
The company keeps one month's stock of raw materials and finished goods (each) and believes in keeping ₹ $2,50,000$ available to it including the overdraft limit of ₹ 75,000 not yet utilized by the company.
The management is also of the opinion to make 10% margin for contingencies on computed figure.
You are required to PREPARE the estimated working capital statement for the next year.

Preparation of Statement of Working Capital Requirement for Trux Company Ltd.

	(₹)	(₹)
A. Current Assets		
(i) Inventories:		
Material (1 month) $\left(\frac{6,75,000}{12 \text { months }} \times 1 \text { month }\right)$	56,250	
Finished goods (1 month) $\left(\frac{21,60,000}{12 \text { months }} \times 1 \text { month }\right)$	1,80,000	2,36,250
(ii) Receivables (Debtors)		
For Domestic Sales $\left(\frac{15,17,586}{12 \text { months }} \times 1\right.$ month $)$	1,26,466	
(iii) Prepayment of Selling expenses $\left(\frac{1,12,500}{12 \text { months }} \times 3 \text { month }\right)$		28,125
(iii) Cash in hand \& at bank		1,75,000
Total Current Assets		7,54,570

(0)
http://tiny.cc/yoursamitbhai

Working Notes:

1. Calculation of Cost of Goods Sold and Cost of Sales

	Domestic (₹)	Export (₹)	Total (₹)
Domestic Sales $18,00,000$ $8,10,000$ Less: Gross profit @ 20\% on domestic sales and 11.11\% on export sales (Working note-2) $3,60,000$ 90,000 Cost of Goods Sold $14,50,000$ Add: Selling expenses (Working note-3) 77,586 34,914	$1,12,500$		
Cash Cost of Sales	$15,17,586$	$7,54,914$	$22,72,500$

2. Calculation of gross profit on Export Sales

Let domestic selling price is ₹ 100 . Gross profit is ₹ 20 , and then cost per unit is ₹ 80 Export price is 10% less than the domestic price i.e. ₹ $100-(1-0.1)=₹ 90$
Now, gross profit will be = ₹ 90 - ₹ 80 = ₹ 10
So, Gross profit ratio at export price will be $=\frac{10}{90} \times 100=11.11 \%$
3. Apportionment of Selling expenses between Domestic and Exports sales:

Apportionment on the basis of sales value:
Domestic Sales $=\frac{1,12,500}{26,10,000} \times 18,00,000=₹ 77,586$
Exports Sales $=\frac{1,12,500}{26,10,000} \times ₹ 8,10,000=₹ 34,914$

4. Assumptions

(i) It is assumed that administrative expenses is related to production activities.
(ii) Value of opening and closing stocks are equal.

PREPARE a working capital estimate to finance an activity level of 52,000 units a year (52 weeks)
based on the following data:
Raw Materials - ₹ 400 per unit
Direct Wages - ₹ 150 per unit
Overheads (Manufacturing) - ₹200 per unit
Overheads (Selling \& Distribution) - ₹100perunit
Selling Price - ₹ 1,000 per unit, Raw materials \& Finished Goods remain in stock for 4 weeks, Work in process takes 4 weeks. Debtors are allowed 8 weeks for payment whereas creditors allow us 4 weeks.
Minimum cash balance expected is ₹50,000. Receivables are valued at Selling Price.
Ans

Cost Structure for 52000 units	
Particulars	Amount (₹)
Raw Material @ ₹ 400P	$2,08,00,000$
Direct Wages @ ₹ 150	$78,00,000$
Manufacturing Overheads@ ₹ 200	$1,04,00,000$
Selling and Distribution OH@ ₹ 100	$52,00,000$
Total Cost	$4,42,00,000$
Sales@ ₹1000	$5,20,00,000$

Particulars	Calculation	Amount (₹)
A. Current Assets:		$16,00,000$
Raw Material Stock	$2,08,00,000 \times \frac{4}{52}$	$23,00,000$
Work in Progress (WIP) Stock	$2,08,00,000+\frac{(78,00,000+1,04,00,000)}{2} \times \frac{4}{52}$	
Finished Goods Stock	$4,42,00,000 \times \frac{4}{52}$	$34,00,000$
Receivables	$5,20,00,000 \times \frac{8}{52}$	$80,00,000$
Cash		$1,53,50,000$
B. \quad Current Liabilities:	Total Current Assets	$16,00,000$
Creditors	$20800000 \times \frac{4}{52}$	$1,37,50,000$
C. Working Capital		

Working Capital Estimate

MTP Dec 21(2)
On 01st April, 2020, the Board of Director of ABC Ltd. wish to know the amount of working capital that will be required to meet the programme they have planned for the year. From the following information, PREPARE a working capital requirement forecast and a forecast profit and loss account and balance sheet:
Issued share capital
₹ $6,00,000$
http://tiny.cc/FASTCostFMbyAB
(0)

10\% Debentures
Fixed Assets
₹ $1,00,000$
₹ $4,50,000$

Production during the previous year was $1,20,000$ units; it is planned that this level of activity should be maintained during the present year.
The expected ratios of cost to selling price are: raw materials 60%, direct wages 10% overheads 20% Raw materials are expected to remain in store for an average of two months before issue to production. Each unit of production is expected to be in process for one month. The time lag in wage payment is one month.
Finished goods will stay in the warehouse awaiting dispatch to customers for approximately three months.
Credit allowed by creditors is two months from the date of delivery of raw materials. Credit given to debtors is three months from the date of dispatch.
Selling price is ₹ 5 per unit.
There is a regular production and sales cycle and wages and overheads accrue evenly.
Forecast Profit and Loss Account for the period 01.04.2020 to 31.03.2021

Particulars	₹	Particulars	₹
Materials consumed	3,60,000	By Sales 1,20,000 @ ₹ 5	6,00,000
1,20,000 @ ₹ 3			
Direct wages :	60,000		
Overheads :	1,20,000		
1,20,000 @ ₹ 1			
Gross profit c/d	60,000	By gross profit b/d	
	6,00,000		6,00,000
Debenture interest	10,000		60,000
(10\% of 1,00,000)			
Net profit c/d	50,000		
	60,000		60,000

Working Capital Requirement Forecast for the year 01.04.2020 to 31.03.2021							
Particulars	Period (Months)	Total (₹)	Current Assets ($\mathrm{F}^{\text {) }}$				Current Liabilities(₹) Creditors
			Raw materials	Work-inprogress	Finished goods	Debtors	
1. Material							
In store	2		60,000				
In work-inprogress	1			30,000			
In finished goods	3				90,000		
Credit to debtors	$\underline{3}$					90,000	
	9						
Less: Credit from creditors	$\underline{2}$						60,000
Net block period	7	2,10,000					
2. Wages:							
In work-in-	1/2			2,500			

progress							
In finished goods	3				15,000		
Credit to debtors	$\underline{3}$					15,000	
	$6 \frac{1}{2}$						
Less : Time lag in payment	$\underline{1}$						
Net block period	$\underline{5 \frac{1}{2}}$	27,500					
3.Overhead							
In work-in- progress	$\frac{1}{2}$			5,000			
In finished goods	3				30,000		
Credit to debtors	$\underline{3}$						
Net block period	$\underline{6 \frac{1}{2}}$	65,000					
4. Profit							
Credit debtors	$\underline{3}$						
Net block period	$\underline{3}$	15,000					
Total (₹)		$3,17,500$	60,000	37,500	$1,35,000$	$1,50,000$	

Forecast Balance Sheet as on 31.03.2021

	(₹)			(₹)
Issued share capital	$6,00,000$	Fixed Assets		$4,50,000$
Profit and Loss A/c	50,000	Current Assets:		
10% Debentures	$1,00,000$	Stock:		
Sundry creditors	65,000	Raw materials	60,000	
Bank overdraft-		Work-in-progress	37,500	
Balancing figure	17,500	Finished goods	$1,35,000$	$2,32,500$
		Debtors		$1,50,000$
	$8,32,500$			
			$8,32,500$	

The Total amount of working capital, thus, stands as follows:
₹
Requirement as per working capital
Less: Bank overdraft as per balance sheet
17,500
Net requirement
3,00,000

Notes:

1. Average monthly production: $1,20,000 \div 12=10,000$ units
2. Average cost per month:

Raw Material
$10,000 \times(₹ 5 \times 0.6)=₹ 30,000$
Direct wages
$10,000 \times(₹ 5 \times 0.1)=₹ 5,000$
$10,000 \times(₹ 5 \times 0.2)=₹ 10,000$
(0)
3. Average profit per month: $10,000 \times(₹ 5 \times 0.1)=₹ 5,000$
4. Wages and overheads accrue evenly over the period and, hence, are assumed to be completely introduced for half the processing time.

A company is considering its working capital investment and financial policies for the next year. Estimated fixed assets and current liabilities for the next year are ₹ 2.60 crores and ₹ 2.34 crores respectively. Estimated Sales and EBIT depend on current assets investment, particularly inventories and book-debts. The Financial Controller of the company is examining the following alternative Working Capital Policies:

Working Capital Policy	Investment in Current Assets	Estimated Sales	EBIT
Conservative	4.50	12.30	1.23
Moderate	3.90	11.50	1.15
Aggressive	2.60	10.00	1.00

the adoption of the moderate working capital policy. The company is now examining the use of long-term and short-term borrowings for financing its assets. The company will use ₹ 2.50 crores of the equity funds. The corporate tax rate is 35%. The company is
considering the following debt alternatives.

Financing Policy	Short-term Debt	Long-term Debt
Conservative	0.54	1.12
Moderate	1.00	0.66
Aggressive	1.50	0.16
Interest rate-Average	12%	16%

You are required to CALCULATE the following:
(i) Working Capital Investment for each policy:
(a) Net Working Capital position
(b) Rate of Return
(c) Current ratio
(ii) Financing for each policy:
(a) Net Working Capital position.
(b) Rate of Return on Shareholders' equity.
(c) Current ratio.
(i) Statement showing Working Capital Investment for each policy

	Working Capital Policy		
	Conservative	Moderate	Aggressive
Current Assets: (i)	4.50	3.90	2.60
Fixed Assets: (ii)	2.60	2.60	2.60
Total Assets: (iii)	7.10	6.50	5.20
Current liabilities: (iv)	2.34	2.34	2.34
Net Worth: (v) = (iii) - (iv)	4.76	4.16	2.86
Total liabilities: (iv) + (v)	7.10	6.50	5.20
Estimated Sales: (vi)	12.30	11.50	10.00
EBIT: (vii)	1.23	1.15	1.00
(a) Net working capital position: (i) - (iv)	2.16	1.56	0.26
(b) Rate of return: (vii) /(iii)	17.32%	17.69%	19.23%
(c) Current ratio: (i)/ (iv)	1.92	1.67	1.11

(ii) Statement Showing Effect of Alternative Financing Policy
(₹in crore)

Financing Policy	Conservative	Moderate	Aggressive
Current Assets (i)	3.90	3.90	3.90
Fixed Assets (ii)	2.60	2.60	2.60
Total Assets (iii)	6.50	6.50	6.50
Current Liabilities (iv)	2.34	2.34	2.34
Short term Debt (v)	0.54	1.00	1.50
Total current liabilities	2.88	3.34	3.84
(vi) $=(\mathrm{iv})+(\mathrm{v})$			
Long term Debt (vii)	1.12	0.66	0.16
Equity Capital (viii)	2.50	2.50	2.50
$\begin{aligned} & \text { Total liabilities (ix) = } \\ & \text { (vi)+(vii)+(viii) } \end{aligned}$	6.50	6.50	6.50
Forecasted Sales	11.50	11.50	11.50
EBIT (x)	1.15	1.15	1.15
Less: Interest on short-term debt	0.06	0.12	0.18
	(12\% of ₹0.54)	(12\% of ₹ 1)	(12\% of ₹ 1.5)
Interest on long term debt	0.18	0.11	0.03
	(16\% of ₹1.12)	(16\% of ₹0.66)	(16\% of ₹0.16)
Earnings before tax (EBT) (xi)	0.91	0.92	0.94
Taxes @ 35\% (xii)	0.32	0.32	0.33
Earnings after tax: (xiii) $=(x i)$ - (xii)	0.59	0.60	0.61
(a) Net Working Capital Position: (i) - [(iv) + (v)]	1.02	0.56	0.06
(b) Rate of return on shareholders Equity capital 23.6\% (xiii)/ (viii)		24.0\%	24.4\%
(c) Current Ratio (i) / (vi)	1.35	1.17	1.02

Working Capital Estimate RTP Nov 18
A company is considering its working capital investment and financial policies for the next year. Estimated fixed assets and current liabilities for the next year are $₹ 2.60$ crores an $₹ 2.34$ crores respectively. Estimated Sales and EBIT depend on current assetsinvestment, particularly inventories and book-debts. The financial controller of the company is examining the following alternative Working Capital Policies:

Working Capital Policy	Investment in Current Assets	Estimated Sales	EBIT
Conservative	4.50	12.30	1.23
Moderate	3.90	11.50	1.15
Aggressive	2.60	10.00	1.00

After evaluating the working capital policy, the Financial Controller has advised the adoption of the moderate working capital policy. The company is now examining the use of long-term and short-term borrowings for
financing its assets. The company will use ₹ 2.50 crores of the equity funds. The corporate tax rate is 35%. The company is considering the following debt alternatives.
(₹Crores)

Financing Policy	Short-term Debt	Long-term Debt
Conservative	0.54	1.12
Moderate	1.00	0.66
Aggressive	1.50	0.16
Interest rate-Average	12%	16%

You are required to CALCULATE the following:
(i) Working Capital Investment for each policy:
(a) Net Working Capital position
(b) Rate of Return
(c) Current ratio
(ii) Financing for each policy:
(a) Net Working Capital position.
(b) Rate of Return on Shareholders' equity.
(c) Current ratio.
(i) Statement showing Working Capital for each policy
(₹ in crores)

	Working Capital Policy		
	Conservative	Moderate	Aggressive
Current Assets: (i)	4.50	3.90	2.60
Fixed Assets: (ii)	2.60	2.60	2.60
Total Assets: (iii)	7.10	6.50	5.20
Current liabilities: (iv)	2.34	2.34	2.34
Net Worth: (v)=(iii)-(iv)	4.76	4.16	2.86
Total liabilities: (iv)+(v)	7.10	6.50	5.20
Estimated Sales: (vi)	12.30	11.50	10.00
EBIT: (vii)	1.23	1.15	1.00
(a) Net working capital position: (i)-(iv)	2.16	1.56	0.26
(b) Rate of return: (vii)/(iii)	17.3%	17.7%	19.2%
(c) Current ratio: (i)/(iv)	1.92	1.67	1.11

(ii) Statement Showing Effect of Alternative Financing Policy

Financing Policy	Conservative	Moderate	Aggressive
Current Assets: (i)	3.90	3.90	3.90
Fixed Assets: (ii)	2.60	2.60	2.60
Total Assets: (iii)	6.50	6.50	6.50
Current Liabilities: (iv)	2.34	2.34	2.34
Short term Debt: (v)	0.54	1.00	1.50
Long term Debt: (vi)	1.12	0.66	0.16
Equity Capital (vii)	2.50	2.50	2.50
Total liabilities	6.50	6.50	6.50
Forecasted Sales	11.50	11.50	11.50
EBIT: (viii)	1.15	1.15	1.15
Less: Interest short-term debt:	0.06	0.12	0.18

(ix)	(12\% of ₹ 0.54$)$	(12\% of ₹ 1.00)	(12\% of ₹ 1.50)
Long term debt: (x)	0.18	0.11	0.03
	(16\% of ₹ 1.12)	(16\% of ₹ 0.66)	(16\% of ₹ 0.16)
Earning before tax:	0.91	0.92	0.94
(xi) - ($\mathrm{ix}+\mathrm{x}$)			
Tax @ 35\%	(0.32)	(0.32)	(0.33)
Earning after tax: (xii)	0.59	0.60	0.61
(a) Net Working Capital Position: (i) $-[(i v)+(v)]$	1.02	0.56	0.06
(b) Rate of return on	23.6\%	24\%	24.4\%
Equity shareholders'			
capital : (xii)/(vii)			
(c) Current Ratio:	1.35	1.17	1.02
[(i)/(iv)+(v)]			

A proforma cost sheet of a company provides the following particulars:

	Amount per unit (₹)
Raw materials cost	100.00
Direct labour cost	37.50
Overheads cost	75.00
Total cost	212.50
Profit	37.50
Selling Price	250.00

The Company keeps raw material in stock, on an average for one month; work-in-progress, on an average for one week; and finished goods in stock, on an average for two weeks.
The credit allowed by suppliers is three weeks and company allows four weeks credit to its debtors. The lag in payment of wages is one week and lag in payment of overhead expenses is two weeks.
The Company sells one-fifth of the output against cash and maintains cash-in-hand and at bank put together at ₹ 37,500 .
Required:
PREPARE a statement showing estimate of Working Capital needed to finance an activity level of 1,30,000 units of production. Assume that production is carried on evenly throughout the year, and wages and overheads accrue similarly. Work-in-progress stock is 80% complete in all respects.

Statement showing Estimate of Working Capital Needs

	(Amount in ₹)	(Amount in ₹)
A. Current Assets		
(i) Inventories:		
Raw material (1 month or 4 weeks) $\left(\frac{1,30,000 \text { unit } s \times 100}{52 \text { weeks }} \times 4 \text { weeks }\right)$	10,00,000	
WIP Inventory (1 week) $\left(\frac{1,30,000 \text { units } \times 212.50}{52 \text { weeks }} \times 1 \text { weeks }\right) \times 0.8$	4,25,000	
Finished goods inventory (2 weeks)	10,62,500	24,87,500

CA Amit Sharma

10

CHAPTER

INVESTING DECISION

Accept Mutually Excl. Project PY May 19

Kanoria Enterprises wishes to evaluate two mutually exclusive projects X and Y .
The particulars are as under :

	Project X	Project Y
Initial Investment	$1,20,000$	$1,20,000$
Estimated cash inflows (per annum for 8 years)		
Pessimistic	26,000	12,000
Most Likely	28,000	28,000
Optimistic	36,000	52,000

The cut off rate is 14%. The discount factor at 14% are :

Year	1	2	3	4	5	6	7	8	9
Discount factor	0.877	0.769	0.675	0.592	0.519	0.456	0.400	0.351	0.308

Advise management about the acceptability of projects X and Y .
The possible outcomes of Project x and Project y are as follows

Estimates	Project X				Project y			
	Estimated Annual Cash inflows (₹)	PVF @ 14% for 8 years	PV of Cash flow (₹)	$\begin{aligned} & \text { NPV } \\ & \text { (₹) } \end{aligned}$	Estimated Annual Cash inflows (₹)	PVF @ 14% for 8 years	PV of Cash flow (₹)	NPV (₹)
Pessimistic	26,000	4.639	1,20,614	614	12,000	4.639	55,668	(-64,332)
Most likely	28,000	4.639	1,29,892	9,892	28,000	4.639	1,29,892	9,892
Optimistic	36,000	4.639	2,41,228	47,004	52,000	4.639	2,41,228	1,21,228

In pessimistic situation project X will be better as it gives low but positive NPV whereas Project Y yield highly negative NPV under this situation. In most likely situation both the project will give same result. However, in optimistic situation Project Y will be better as it will gives very high NPV. So, project X is a risk less project as it gives positive NPV in all the situation whereas Y is a risky project as it will result into negative NPV in pessimistic situation and highly positive NPV in optimistic situation. So acceptability of project will largely depend on the risk taking capacity (Risk seeking/ Risk aversion) of the management.

Dharma Ltd, an existing profit-making company, is planning to introduce a new product with a projected life of 8 years. Initial equipment cost will be ₹ 240 lakhs and additional equipment costing ₹ 26 lakhs will be needed at the beginning of third year. At the end of 8 years, the original equipment will have resale value equivalent to the cost of removal, but the additional equipment would be sold for ₹ 2 lakhs. Working Capital of ₹ 25 lakhs will be needed at the beginning of the operations. The 100% capacity of the plant is of $4,00,000$ units per annum, but the production and sales volume expected are as under:

Year	Capacity (\%)
1	20

2	30
$3-5$	75
$6-8$	50

A sale price of ₹ 100 per unit with a profit volume ratio (contribution/sales) of 60% is likely to be obtained. Fixed operating cash cost are likely to be ₹ 16 lakhs per annum. In addition to this the advertisement expenditure will have to be incurred as under:

Year	1	2	$3-5$	$6-8$
Expenditure (₹ Lakhs each year)	30	15	10	4

The company is subjected to 50% tax rate and consider 12% to be an appropriate cost of capital. Straight line method of depreciation is followed by the company. ADVISE the management on the desirability of the project.

Calculation of Cash Flow After tax

	Year	1	2	3 to 5	6 to 8
A	Capacity	20\%	30\%	75\%	50\%
B	Units	80000	120000	300000	200000
C	Contribution p.u.	₹60	₹60	₹60	₹60
D	Contribution	₹ 48,00,000	₹ $72,00,000$	₹ $1,80,00,000$	₹ 1,20,00,000
E	Fixed Cash Cost	₹ $16,00,000$	₹ $16,00,000$	₹16,00,000	₹ $16,00,000$
	Depreciation				
F	Original Equipment (₹240Lakhs/8)	$₹ 30,00,000$	₹ $30,00,000$	$₹ 30,00,000$	₹ $30,00,000$
G	Additional Equipment (₹24Lakhs/6)	--	--	$₹ 4,00,000$	₹ $4,00,000$
H	Advertisement Expenditure	₹ $30,00,000$	₹ 15,00,000	₹ $10,00,000$	₹ $4,00,000$
I	Profit Before Tax (D-E-F-G-H)	$₹(28,00,000)$	₹ $11,00,000$	₹ $1,20,00,000$	₹ $66,00,000$
J	Tax savings/ (expenditure)	₹ 14,00,000	$₹(5,50,000)$	$₹(60,00,000)$	$₹(33,00,000)$
K	Profit After Tax	₹ (14,00,000)	₹ 5,50,000	₹ $60,00,000$	₹ $33,00,000$
L	Add: Depreciation $(F+G)$	₹ $30,00,000$	₹ $30,00,000$	₹ $34,00,000$	₹ $34,00,000$
M	Cash Flow After Tax	₹ $16,00,000$	₹ $35,50,000$	₹94,00,000	₹ $67,00,000$

Calculation of NPV				
Year	Particula	Cash Flows	PV factor	PV
0	Initial Investment	$₹(2,40,00,000)$	1.000	$₹(2,40,00,000)$
0	Working Capital Introduced	₹ $(25,00,000)$	1.000	₹ $(25,00,000)$
1	CFAT	₹ $16,00,000$	0.893	₹ $14,28,800$
2	CFAT	₹ $35,50,000$	0.797	₹ $28,29,350$
2	Additional Equipment	₹ $(26,00,000)$	0.797	₹ $(20,72,200)$
3	CFAT	₹ 94,00,000	0.712	₹ 66,92,800
4	CFAT	₹ 94,00,000	0.636	₹ $59,78,400$
5	CFAT	₹ 94,00,000	0.567	₹ $53,29,800$

6	CFAT	$₹ 67,00,000$	0.507	$₹ 33,96,900$
7	CFAT	$₹ 67,00,000$	0.452	$₹ 30,28,400$
8	CFAT	$₹ 67,00,000$	0.404	$₹ 27,06,800$
8	WC Released	$₹ 25,00,000$	0.404	$₹ 10,10,000$
8	Salvage Value	$₹ 2,00,000$	0.404	$₹ 80,800$
	Net Present Value			$₹ 39,09,850$

Since the NPV is positive, the proposed project should be implemented.

NPV Method (Accept/Not) MTP Dec 21(2)
Superb Ltd. constructs customized parts for satellites to be launched by USA and Canada. The parts are constructed in eight locations (including the central headquarter) around the world. The Finance Director, Ms. Kuthrapali, chooses to implement video conferencing to speed up the budget process and save travel costs. She finds that, in earlier years, the company sent two officers from each location to the central headquarter to discuss the budget twice a year. The average travel cost per person, including air fare, hotels and meals, is ₹ 27,000 per trip. The cost of using video conferencing is ₹ $8,25,000$ to set up a system at each location plus ₹ 300 per hour average cost of telephone time to transmit signals. A total 48 hours of transmission time will be needed to complete the budget each year. The company depreciates this type of equipment over five years by using straight line method. An alternative approach is to travel to local rented video conferencing facilities, which can be rented for ₹ 1,500 per hour plus ₹ 400 per hour averge cost for telephone charges. You are Senior Officer of Finance Department. You have been asked by Ms. Kuthrapali to EVALUATE the proposal and SUGGEST if it would be worthwhile for the company to implement video conferencing.

Ans. Option I : Cost of travel, in case Video Conferencing facility is not provided
Total Trip $=$ No. of Locations \times No. of Persons \times No. of Trips per Person $=7 \times 2 \times 2=28$ Trips
Total Travel Cost (including air fare, hotel accommodation and meals) (28 trips $\times ₹ 27,000$ per trip $)=₹ 7,56,000$
Option II : Video Conf.Facility is provided by Installation of Own Equipment at Different Locations Cost of Equipment at each location (₹ $8,25,000 \times 8$ locations) $=$ ₹ $66,00,000$
Economic life of Machines (5years). Annual depreciation ($66,00,000 / 5$) $=₹ 13,20,000$
Annual transmission cost (48 hrs . transmission $\times 8$ locations $\times ₹ 300$ per hour) $=₹ 1,15,200$
Annual cost of operation ($13,20,000+1,15,200$) $=₹ 14,35,200$
Option III : Engaging Video Conferencing Facility on Rental Basis
Rental cost ($48 \mathrm{hrs} \times 8$ location $\times ₹ 1,500$ per hr) $=₹ 5,76,000$
Telephone cost ($48 \mathrm{hrs.x} 8$ locations $\times ₹ 400$ per hr.) $=₹ 1,53,600$
Total rental cost of equipment $(5,76,000+1,53,600)=₹ 7,29,600$
Analysis: The annual cash outflow is minimum, if video conferencing facility is engaged on rental basis Therefore, Option III is suggested.
(a) Prem Ltd has a maximum of Rs. 8,00,000 available to invest in new projects. Three possibilities have emerged and the business finance manager has calculated Net present Value (NPVs) for each of the projects as follows:

Investment	Initial cash outlay Rs.	NPV Rs.
Alfa (α)	$5,40,000$	$1,00,000$
Beta (β)	$6,00,000$	$1,50,000$
Gama (γ)	$2,60,000$	58,000

DETERMINE which investment/combination of investments should the company invest in, if we assume that the projects can be divided?
(b) Invest Corporation Ltd. adjusts risk through discount rates by adding various risk premiums to the risk free rate. Depending on the resultant rate, the proposed project is judged to be a low, medium or high risk project.

Risk level	Risk free rate (\%)	Risk Premium (\%)
Low	8	4
Medium	8	7
High	8	10

DEMONSTRATE the acceptability of the project on the basis of Risk Adjusted rate
Ans. (a) Since funds available are restricted, the normal Net Present Value (NPV) rule of accepting investments decisions with the highest NPVs cannot be adopted straight way. Further, as the projects are divisible, a Profitability Index (PI) can be utilized to provide the most beneficial combination of investment for Rio Ltd.

Project	PV Per Rs.	Rank as per PI
Alfa (a)	Rs. $6,40,000 /$ Rs. $5,40,000=1.185$	III
Beta (β)	Rs. $7,50,000 /$ Rs. $6,00,000=1.250$	I
Gama (γ)	Rs. $3,18,000 /$ Rs. $2,60,000=1.223$	II

Therefore Rio Ltd should invest Rs. 6,00,000 into project β (Rank I) earnings Rs. 1,50,000 and Rs.2,00,000 into project y (Rank II) earning Rs.44,615 Rs. 2,00,000 / Rs. 2,60,000 \times Rs. 58,000
So, total NPV will be Rs.1,94,615 Rs. 1,50,000 + Rs. 44,615 from Rs. 8,00,000 of investment.
(b) Calculation of Risk Adjusted rate

Risk level	Risk free rate (\%)	Risk Premium (\%)	Risk adjusted rate (\%)
Low	8	4	12
Medium	8	7	15
High	8	10	18

The cash flows of the project considered are as following:

Point in time (yearly intervals)	0	1	2
Cash flow (Rs. in crore)	(100)	45	80

If the project is judged to be Low risk

Years	0	1	2
PV (Rs. in crore)	(100)	$\frac{45}{1+0.12}=40.18$	$\frac{80}{(1+0.12)^{2}}=63.78$

NPV $=40.18+63.78-100=3.96:$ Accept
If the project is judged to be Medium risk

Years	0	1	2
PV (Rs. in crore)	(100)	$\frac{45}{1+0.15}=39.13$	$\frac{80}{(1+0.15)^{2}}=60.49$

NPV $=39.13+60.49-100=(0.38):$ Reject

Years	0	1	2
PV (Rs. in crore)	(100)	$\frac{45}{1+0.18}=38.14$	$\frac{80}{(1+0.18)^{2}}=57.45$

NPV $=38.14+57.45-100=(4.41):$ Rejec \dagger
first attempt success tutorials
(a) XYZ Ltd. is presently all equity financed. The directors of the company have been evaluating investment in a project which will require ₹ 270 lakhs capital expenditure on new machinery. They expect the capital investment to provide annual cash flows of ₹ 42 lakhs indefinitely which is net of all tax adjustments. The discount rate which it applies to such investment decisions is 14% net.
The directors of the company believe that the current capital structure fails to take advantage of tax benefits of debt, and propose to finance the new project with undated perpetual debt secured on the company's assets. The company intends to issue sufficient debt to cover the cost of capital expenditure and the after tax cost of issue.
The current annual gross rate of interest required by the market on corporate undated debt of similar risk is 10%. The after tax costs of issue are expected to be ₹ 10 lakhs. Company's tax rate is 30%.
You are required to calculate:
(i) The adjusted present value of the investment,
(ii) The adjusted discount rate and
(iii) Explain the circumstances under which this adjusted discount rate may be used to evaluate future investments.
(b) What are Masala Bonds?

Ans.
(a) (i) Calculation of Adjusted Present Value of Investment (APV)

Adjusted PV = Base Case PV + PV of financing decisions associated with the project
Base Case NPV for the project:
(-) ₹ 270 lakhs + (₹ 42 lakhs / 0.14)
Issue costs
Thus, the amount to be raised
Annual tax relief on interest payment
The value of tax relief in perpetuity
Therefore, APV = Base case PV - Issue Costs + PV of Tax Relief on debt interest = ₹ 30 lakhs - ₹ 10 lakhs + 84 lakhs = ₹ 104 lakhs
(ii) Calculation of Adjusted Discount Rate (ADR)

Annual Income / Savings required to allow an NPV to zero
Let the annual income be x.
(-) ₹280 lakhs X (Annual Income / 0.14) = (-) ₹104 lakhs
Annual Income / 0.14
$=(-) ₹ 104+₹ 280$ lakhs
Therefore, Annual income =₹ $176 \times 0.14=₹ 24.64$ lakhs
Adjusted discount rate $=(₹ 24.64$ lakhs $/ ₹ 280$ lakhs) $\times 100$
= 8.8%
(iii) Useable circumstances

This ADR may be used to evaluate future investments only if the business risk of the new venture is identical to the one being evaluated here and the project is to be financed by the same method on the same terms. The effect on the company's cost of capital of introducing debt into the capital structure cannot be ignored.
(b) Masala Bond:

Masala (means spice) bond is an Indian name used for Rupee denominated bond that Indian corporate borrowers can sell to investors in overseas markets. These bonds are issued outside India but denominated in Indian Rupees. NTPC raised ₹2,000 crore via masala bonds for its capital expenditure in the year 2016.

CA Amit Sharma
Q. 6 Annualised Yeild

PY Dec 21

Stand Ltd. is contemplating replacement of one of its machines which has become outdated and inefficient. Its financial manager has prepared a report outlining two possible replacement machines. The details of each machine are as follows:

Machine 1
₹ 12,00 ,000
3 years
₹ $1,20,000$
₹ $11,60,000$
₹ 40,000
₹ $7,20,000$

Machine 2
₹ 16,00 ,000

$$
5 \text { years }
$$

₹ $1,00,000$
₹ $12,00,000$
₹ 80,000
₹ $6,10,000$

The maintenance costs are payable annually in advance. All other cash flows apart from the initial investment assumed to occur at the end of each year. Depreciation has been calculated by straight line method and has been included in other fixed operating costs. The expected cost of capital for this project is assumed as 12% p.a Required:
(i) Which machine is more beneficial, using Annualized Equivalent Approach? Ignore tax.
(ii) Calculate the sensitivity of your recommendation in part (i) to changes in the contribution generated by machine 1.

Year	1	2	3	4	5	6
PVIFO.12,t	0.893	0.797	0.712	0.636	0.567	0.507
PVIFAO.12,t	0.893	1.690	2.402	3.038	3.605	4.112

Calculation of Net Cash flows

Machine 1
Other fixed operating costs (excluding depreciation) $=7,20,000-[(12,00,000-1,20,000) / 3]=₹ 3,60,000$

Year	Initial Investment $(₹)$	Contribution $(₹)$	Fixed maintenance costs(₹)	Other fixed operating costs (excluding depreciation) (₹)	Residual Value $(₹)$	Net cash flow ($₹$)
0	$(12,00,000)$		$(40,000)$			$(12,40,000)$
1		$11,60,000$	$(40,000)$	$(3,60,000)$	$7,60,000$	
2		$11,60,000$	$(40,000)$	$(3,60,000)$		$7,60,000$
3		$11,60,000$		$(3,60,000)$	$1,20,000$	$9,20,000$

Machine 2

Other fixed operating costs (excluding depreciation) $=6,10,000-[(16,00,000-1,00,000) / 5]=₹ 3,10,000$

Year 0	Initial Investment $(₹)(16,00,000)$	Contribution $(₹)$	Fixed maintenanc costs (₹) $(80,000)$	Other fixed operating costs (excluding depreciation) (₹)	Residual Value $(₹)$	Net cash flow (₹) $(16,80,000)$
1		$12,00,000$	$(80,000)$	$(3,10,000)$		$8,10,000$
2		$12,00,000$	$(80,000)$	$(3,10,000)$		$8,10,000$
3		$12,00,000$	$(80,000)$	$(3,10,000)$		$8,10,000$
4		$12,00,000$	$(80,000)$	$(3,10,000)$		$8,10,000$
5		$12,00,000$		$(3,10,000)$	$1,00,000$	$9,90,000$

Calculation of Net Present Value

		Machine 1		Machine 2	
Year	12\% discount factor	Net cash flow (₹)	Present value (₹)	Net cash flow (₹)	Present value (₹)
0	1.000	$(12,40,000)$	$(12,40,000)$	$(16,80,000)$	$(16,80,000)$
1	0.893	7,60,000	6,78,680	8,10,000	7,23,330
2	0.797	7,60,000	6,05,720	8,10,000	6,45,570
3	0.712	9,20,000	6,55,040	8,10,000	5,76,720
4	0.636			8,10,000	5,15,160
5	0.567			9,90,000	5,61,330
NPV @ 12\%			6,99,440		13,42,110
PVAF @ 12\%			2.402		3.605
Equivalent Annualized Criterion			2,91,190.674		3,72,291.262

Recommendation: Machine 2 is more beneficial using Equivalent Annualized Criterion.
(ii) Calculation of sensitivity of recommendation in part (i) to changes in the contribution generated by machine 1
Difference in Equivalent Annualized Criterion of Machines required for changing the recommendation in part (i) $\quad=3,72,291.262-2,91,190.674=$ ₹ $81,100.588$
\therefore Sensitivity relating to contribution $\frac{81.100 .588}{11.60 .000 .00}=\times 100=6.991$ or 7% yearly

Alternatively,

The annualized equivalent cash flow for machine 1 is lower by ₹ $(3,72,291.262-2,91,190.674)=$ ₹ $81,100.588$ than for machine 2. Therefore, it would need to increase contribution for complete 3 years before the decision would be to invest in this machine.
Sensitivity w.r.t contribution $=81,100.588 /(11,60,000 \times 2.402) \times 100=2.911 \%$

A firm is in need of a small vehicle to make deliveries. It is intending to choose between two options. One option is to buy a new three wheeler that would cost ₹ $1,50,000$ and will remain in service for 10 years.
The other alternative is to buy a second hand vehicle for ₹ 80,000 that could remain in service for 5 years.
Thereafter the firm, can buy another second hand vehicle for ₹ 60,000 that will last for another 5 years.
The scrap value of the discarded vehicle will be equal to it written down value (WDV). The firm pays 30% tax and is allowed to claim depreciation on vehicles @ 25% on WDV basis.
The cost of capital of the firm is 12%.
You are required to advise the best option.
Given:

t	1	2	3	4	5	6	7	8	9	10
$P V I F(t, 12 \%)$	0.892	0.797	0.711	0.635	0.567	0.506	0.452	0.403	0.360	0.322

Selection of Investment Decision

Tax shield on Purchase of New vehicle			
Year	WDV	Dep. @ 25\%	Tax shield @ 30\%
1	$1,50,000$	37,500	11,250
2	$1,12,500$	28,125	8,437
3	84,375	21,094	6,328
4	63,281	15,820	4,746

5	47,461	11,865
6	35,596	8,899
7	26,697	6,674
8	20,023	5,006
9	15,017	3,754
10	11,263	2,816

Tax shield on Purchase of Second hand vehicles

Year	WDV	Dep. @ 25\%	Tax shield @ 30%
1	80,000	20,000	6,000
2	60,000	15,000	4,500
3	45,000	11,250	3,375
4	33,750	8,437	2,531
5	25,313	6,328	1,898
6	60,000	15,000	4,500
7	45,000	11,250	3,375
8	33,750	8,437	2,531
9	25,313	6,328	1,898
10	18,985	4,746	Scrap value $=₹ 18,985$
Scrap value $=₹ 14,239$			

Calculation of PV of Net outflow of New Vehicle

Year	Cash OF/IF	PV Factor	PV of OF/IF
0	$1,50,000$	1	$1,50,000$
1	$(11,250)$	0.892	$(10,035)$
2	$(8,437)$	0.797	$(6,724)$
3	$(6,328)$	0.711	$(4,499)$
4	$(4,746)$	0.635	$(3,014)$
5	$(3,560)$	0.567	$(2,018)$
6	$(2,670)$	0.506	$(1,351)$
7	$(2,002)$	0.452	(905)
8	$(1,502)$	0.403	(605)
9	$(1,126)$	0.360	(405)
10	$(845+8447)$	0.322	$(2,992)$
		PVNOF	$1,17,452$

Calculation of PV of Net outflow of Second hand Vehicles

Year	Cash OF/IF	PV Factor	PV of OF/IF
0	80,000	1	80,000
1	$(6,000)$	0.892	$(5,352)$
2	$(4,500)$	0.797	$(3,587)$
3	$(3,375)$	0.711	$(2,400)$
4	$(2,531)$	0.635	$(1,607)$

ca Amit Sharma
first attempt success tutorials

5	$(60000-18985-1898)=39,117$	0.567	22,179
6	$(4,500)$	0.506	$(2,277)$
7	$(3,375)$	0.452	$(1,525)$
8	$(2,531)$	0.403	$(1,020)$
9	$(1,898)$	0.360	(683)
10	$(1424+14239)=(15,663)$	0.322	$(5,043)$
		PVNOF	$\mathbf{7 8 , 6 8 6}$

Advise: The PV of net outflow is low in case of buying the second hand vehicles. Therefore, it is advisable to buy second hand vehicles.

Q. 8 NPV Method (Buy M/c or not) PY Nov 22

A hospital is considering to purchase a diagnostic machine costing ₹ 80,000 . The projected life of the machine is 8 years and has an expected salvage value of $₹ 6,000$ at the end of 8 years. The annual operating cost of the machine is $₹ 7,500$. It is expected to generate revenues of $₹ 40,000$ per year for eight years. Presently, the hospital is outsourcing the diagnostic work and is earning commission income of $₹ 12,000$ per annum.
Consider tax rate of 30% and Discounting Rate as 10\%.
Advise:
Whether it would be profitable for the hospital to purchase the machine?
Give your recommendation as per Net Present Value method and Present Value Index method under below mentioned two situations:
(i) If Commission income of ₹ 12,000 p.a. is before taxes.
(ii) If Commission income of ₹ 12,000 p.a. is net of taxes

Given:

t	1	2	3	4	5	6	7	8
$\operatorname{PVIF}(t, 10 \%)$	0.909	0.826	0.751	0.683	0.621	0.564	0.513	0.467

Analysis of Investment Decisions

Determination of Cash inflows	Situation-(i) Commission Income before taxes	Situation-(ii) Commission Income after taxes
Cash flow up-to $7^{\text {th }}$ year: Sales Revenue Less: Operating Cost	$\begin{aligned} & 40,000 \\ & (7,500) \end{aligned}$	$\begin{aligned} & 40,000 \\ & (7,500) \end{aligned}$
Less: Depreciation (80,000-6,000) $\div 8$	$\begin{aligned} & 32,500 \\ & (9,250) \end{aligned}$	$\begin{aligned} & 32,500 \\ & (9,250) \end{aligned}$
Net Income	23,250	23,250
Tax @ 30\%	$(6,975)$	$(6,975)$
Earnings after Tax (EAT)	16,275	16,275
Add: Depreciation	9,250	9,250
Cash inflow after tax per annum	25,525	25,525
Less: Loss of Commission Income	$(8,400)$	$(12,000)$
Net Cash inflow after tax per annum In $8^{\text {th }}$ Year:	17,125	13,525

CA Amit Sharma
Net Cash inflow after tax
Add: Salvage Value of Machine
Net Cash inflow in year 8

6,000	6,000
23,125	19,525

Calculation of Net Present Value (NPV) and Profitability Index (PI)

	Particulars	PV factor @10\%	Situation-(i) [Commission Income before taxes]	Situation-(ii) [Commission Income after taxes]
A	Present value of cash inflows ($1^{\text {st }}$ to $7^{\text {th }}$ year)	4.867	$\begin{array}{r} 83,347.38 \\ (17,125 \times 4.867) \end{array}$	$\begin{array}{r} 65,826.18 \\ (13,525 \times 4.867) \end{array}$
B	Present value of cash inflow at $8^{\text {th }}$ year	0.467	$\begin{array}{r} 10,799.38 \\ (23,125 \times 0.467) \\ \hline \end{array}$	$\begin{array}{r} 9,118.18 \\ (19,525 \times 0.467) \\ \hline \end{array}$
D	PV of cash inflows Less: Cash Outflow	1.00	$\begin{array}{r} 94,146.76 \\ (80,000) \end{array}$	$\begin{array}{r} 74,944.36 \\ (80,000) \\ \hline \end{array}$
E	Net Present Value (NPV)		14,146.76	$(5,055.64)$
F	$\mathrm{PI}=(C \div D)$		1.18	0.94

Recommendation: The hospital may consider purchasing of diagnostic machine in situation (i) where commission income is 12,000 before tax as NPV is positive and PI is also greater than 1. Contrary to situation (i), in situation (ii) where the commission income is net of tax, the recommendation is reversed to not purchase the machine as NPV is negative and PI is also less than 1.

The General Manager of Merry Ltd. is considering the replacement of five-year-old equipment. The company has to incur excessive maintenance cost of the equipment. The equipment has zero written down value. It can be modernized at a cost of ₹ $1,40,000$ enhancing its economic life to 5 years. The equipment could be sold for ₹ 30,000 after 5 years. The modernization would help in material handling and in reducing labour , maintenance \& repairs costs.
The company has another alternative to buy a new machine at a cost of ₹ $3,50,000$ with an economic life of 5 years and salvage value of ₹ 60,000 . The new machine is expected to be more efficient in reducing costs of material handling, labour , maintenance \& repairs, etc.
The annual cost are as follows:

	Existing Equipment (₹)	Modernization (₹)	New Machine (₹)
Wages \& Salaries	45,000	35,500	15,000
Supervision	20,000	10,000	7,000
Maintenance	25,000	5,000	2,500
Power	30,000	20,000	15,000

Assuming tax rate of 50% and required rate of return of 10%, should the company modernize the equipment or buy a new machine? PV factor at 10% are as follows:

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
PV factor	0.909	0.826	0.751	0.683	0.621

Ans. Workings:
Calculation of Depreciation:
On Modernized Equipment $=\frac{140000-30000}{5 \text { years }}=₹ 22,000$ p.a.
first attempt success tutorials

On New machine

$$
=\frac{350000-60000}{5 \text { years }}=₹ 58,000 \text { p.a. }
$$

(i) Calculation of Incremental annual cash inflows/ savings:

Particulars	Existing Equipment (₹)	Modernization		New Machine	
		Amount (₹)	Savings (₹)	Amount (₹)	Savings (₹)
	(1)	(2)	$(3)=(1)-(2)$	(4)	$(5)=(1)-(4)$
Wages \& Salaries	45,000	35,500	9,500	15,000	30,000
Supervision	20,000	10,000	10,000	7,000	13,000
Maintenance	25,000	5,000	20,000	2,500	22,500
Power	30,000	20,000	10,000	15,000	15,000
Total	1,20,000	70,500	49,500	39,500	80,500
Less: Depreciation (Refer Workings)			22,000		58,000
Total Savings			27,500		22,500
Less: Tax @ 50\%			13,750		11,250
After Tax Savings			13,750		11,250
Add: Depreciation			22,000		58,000
Incremental			35,750		69,250
Annual					
Cash Inflows					

(ii) Calculation of Net Present Value (NPV)

Particulars	Year	Modernization (₹)	New Machine (₹)
Initial Cash outflow (A)	0	1,40,000.00	3,50,000.00
Incremental Cash Inflows	1-5	$\begin{array}{r} 1,35,492.50 \\ (₹ 35,750 \times 3.790) \end{array}$	$\begin{array}{r} 2,62,457.50 \\ (₹ 69,250 \times 3.790) \end{array}$
Salvage value	5	$\begin{array}{r} 18,630.00 \\ (₹ 30,000 \times 0.621) \end{array}$	$\begin{array}{r} 37,260.00 \\ (₹ 60,000 \times 0.621) \end{array}$
PV of Cash inflows (B)		1,54,122.50	2,99,717.50
Net Present Value ($B-A$)		14,122.50	$(50,282.50)$

Advise: The company should modernize its existing equipment and not buy a new machine because NPV is positive in modernization of equipment.

A large profit making company is considering the installation of a machine to process the waste produced by one of its existing manufacturing process to be converted into a marketable product. At present, the waste is removed by a contractor for disposal on payment by the company of ₹ 150 lakh per annum for the next four years. The contract can be terminated upon installation of the aforesaid machine on payment of a compensation of $₹ 90$ lakh before the processing operation starts. This compensation is not allowed as deduction for tax purposes.
The machine required for carrying out the processing will cost ₹ 600 lakh to be financed by a loan repayable in 4 equal instalments commencing from end of the year 1 . The interest rate is 14% per annum. At the end of the 4th year, the machine can be sold for ₹ 60 lakh and the cost of dismantling and removal will be ₹ 45 lakh.
Sales and direct costs of the product emerging from waste processing for 4 years are estimated as under:

(₹ In lakh)						
Year	1	2	3	4		
Sales	966	966	1,254	1,254		
Material consumption	90	120	255	255		
Wages	225	225	255	300		
Other expenses	120	135	162	210		
Factory overheads	165	180	330	435		
Depreciation (as per income tax rules)	150	114	84	63		

Initial stock of materials required before commencement of the processing operations is ₹ 60 lakh at the start of year 1. The stock levels of materials to be maintained at the end of year 1,2 and 3 will be ₹ 165 lakh and the stocks at the end of year 4 will be nil. The storage of materials will utilise space which would otherwise have been rented out for ₹ 30 lakh per annum. Labour costs include wages of 40 workers, whose transfer to this process will reduce idle time payments of ₹ 45 lakh in the year - 1 and ₹ 30 lakh in the year -2 . Factory overheads include apportionment of general factory overheads except to the extent of insurance charges of $₹ 90$ lakh per annum payable on this venture. The company's tax rate is 30%.
Present value factors for four years are as under:

Year	1	2	3	4
PV factors @14\%	0.877	0.769	0.674	0.592

ADVISE the management on the desirability of installing the machine for processing the waste. All calculations should form part of the answer.

Statement of Operating Profit from processing of waste

Year	1	2	3	4
Sales: (A)	966	966	1,254	1,254
Material consumption	90	120	255	255
Wages	180	195	255	300
Other expenses	120	135	162	210
Factory overheads (insurance only)	90	90	90	90
Loss of rent on storage space (opportunity cost)	30	30	30	30
Interest @14\%	84	63	42	21
Depreciation (as per income tax rules)	150	114	84	63
Total cost: (B)	744	747	918	969
Profit (C) = (A)-(B)	222	219	336	285
Tax (30\%)	66.6	65.7	100.8	85.5
Profit after Tax (PAT)	155.4	153.3	235.2	199.5

Statement of Incremental Cash Flows (₹ in lakh)

Year					
Material stock	(60)	(105)	-	-	165
Compensation for contract	(90)	-	-	-	-
Contract payment saved	-	150	150	150	150
Tax on contract payment	-	(45)	(45)	(45)	(45)
Incremental profit	-	222	219	336	285

Depreciation added back	-	150	114	84	63
Tax on profits	-	(66.6)	(65.7)	(100.8)	(85.5)
Loan repayment	-	(150)	(150)	(150)	(150)
Profit on sale of machinery (net)	-	-	-	-	15
Total incremental cash flows	(150)	155.4	222.3	274.2	397.5
Present value factor	1.00	0.877	0.769	0.674	0.592
Present value of cash flows	(150)	136.28	170.95	184.81	235.32
Net present value		577.36			

Advice: Since the net present value of cash flows is ₹ 577.36 lakh which is positive the management should install the machine for processing the waste.
Notes:
(i) Material stock increases are taken in cash flows.
(ii) Idle time wages have also been considered.
(iii) Apportioned factory overheads are not relevant only insurance charges of this project are relevant.
(iv) Interest calculated at 14% based on 4 equal instalments of loan repayment.
(v) Sale of machinery- Net income after deducting removal expenses taken. Tax on Capital gains ignored.
(vi) Saving in contract payment and income tax thereon considered in the cash flows.

Q. 11

Buy or Rent
PY May 18
Maruti Ltd. requires a plant costing ₹ 200 Lakhs for a period of 5 years. The company can use the plant for the stipulated period through leasing arrangement or the requisite amount can be borrowed to buy the plant. In case of leasing, the company received a proposal to pay annual lease rent of ₹ 48 Lakhs at the end of each year for a period of 5 years.
In case of purchase, the company would have a $12 \%, 5$ years loan to be paid in equated annual installment, each installment becoming due in the beginning of each year. It is estimated that plant can be sold for ₹ 40 Lakhs at the end of 5 th year. The company uses straight line method of depreciation. Corporate tax rate is 30%. Cost of Capital after tax for the company is 10%.
The PVIF @ 10% and 12% for the five years are given below:

Year	1	2	3	4	5
PVIF @ 10	0.909	0.826	0.751	0.683	0.621
PVIF @ 12	0.893	0.797	0.712	0.636	0.567

You are required to advise whether the plant should be purchased or taken on lease.

Purchase Option
Loan installment = ₹ 200 lakhs / (1 + PVIFA 12\%, 4)
= ₹ 200 lakhs $/(1+3.038)=₹ 49.53$ lakhs
Interest payable $\quad=(₹ 49.53 \times 5)-₹ 200$ lakhs $=₹ 47.65$ lakhs

Working note:

Amortisation of Loan Installment

Year	Loan amount (₹ In Lakhs)	Installment (₹ In Lakhs)	Interet (₹ In Lakhs)	Principal (₹ In Lakhs)	O/S Amount (₹ In Lakhs)
0	200	49.53	0.00	49.53	150.47
1	150.47	49.53	18.06	31.47	119.00
2	119.00	49.53	14.28	35.25	83.75
3	83.75	49.53	10.05	39.48	44.27
4	44.27	49.53	$* 5.26$	44.27	-

5	0	0	0	0	0

Calculation of PV of outflow under Purchase Option

(₹ In Lakhs)							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
End	Debt Payment	Int. of the o/s Principal	Dep.	Tax Shield $[(3)+(4)] \times 0.3$	Net Cash out flows (2) - (5)	PV factors @ 10\%	PV
0	49.53	0.00	0.00	0.00	49.53	1.000	49.53
1	49.53	18.06	32.00	15.02	34.51	0.909	31.37
2	49.53	14.28	32.00	13.88	35.65	0.826	29.44
3	49.53	10.05	32.00	12.61	36.92	0.751	27.72
4	49.53	*5.26	32.00	11.18	38.35	0.683	26.19
5	49.53	0	32.00	9.60	(9.60)	0.621	(5.96)
		47.65	160.00				158.29
Less: PV of Salvage Value (₹40 lakhs $\times 0.621$) $=$							24.84
Total PV of Outflow							133.45

*Balancing Figure
Leasing Option
PV of Outflows under lease @ 10\% = ₹ 48 lakhs $\times(1-0.30) \times 3.790$

$$
\text { = ₹ } 127.34 \text { lakhs }
$$

Decision: The plant should be taken on lease because the PV of outflows is less as compared to purchase option.

Q. 12

Calculate IRR
MTP Nov 23(2)
A company proposes to install a machine involving a Capital Cost of $₹ 72,00,000$. The life of the machine is 5 years and its salvage value at the end of the life is nil. The machine will produce the net operating income after depreciation of $₹ 13,60,000$ per annum. The Company's tax rate is 35%.
The Net Present Value factors for 5 years are as under:

Discounting Rate	$:$	14	15	16	17	18
Cumulative factor	$: 3.43$	3.35	3.27	3.20	3.13	3.06

You are required to COMPUTE the internal rate of return (IRR) of the proposal.

Computation of cash inflow per annum	$₹$
Net operating income per annum	$13,60,000$
Less: Tax @ 35\%	$4,76,000$
Profit after tax	$8,84,000$
Add: Depreciation (₹72,00,000 / 5 years)	$14,40,000$
Cash inflow	$23,24,000$

The IRR of the investment can be found as follows:
NPV $=-₹ 72,00,000+₹ 23,24,000(P V A F 5, r)=0$
or PVA F5 r (Cumulative factor) $=\frac{7200000}{2324000}=3.09$

Computation of Internal Rate of Return (IRR)

Discounting rate	15%	19%
Cumulative factor	3.35	3.06
Total NPV (₹)	$77,85,400$	$71,11,440$
	$(₹ 23,24,000 \times 3.35)$	$(₹ 23,24,000 \times 3.06)$
Internal outlay (₹)	$72,00,000$	$72,00,000$
Surplus (Deficit) $(₹)$	$5,85,400$	$(88,560)$

$$
\begin{aligned}
\text { IRR } \quad & =L R+\frac{N P V \text { at LR }}{N P V \text { at LR-NPV at HR }} \times(H R-L R) \\
& =15 \%+\frac{585400}{585400-(-88560)} \times(19 \%-15 \%) \\
& =15 \%+3.47=18.47 \%
\end{aligned}
$$

Note: Lower rate can be 18% or less than 18%. However, there will be no change in the final answer.
Calculate NPV

PY Nov 18
From the following details relating to a project, analyse the sensitivity of the project to changes in the Initial Project Cost, Annual Cash Inflow and Cost of Capital :
Particulars
Initial Project Cost
₹2,00,00,000
Annual Cash Inflow
₹ $60,00,000$
Project Life
5 years
Cost of Capital 10\%
To which of the 3 factors, the project is most sensitive if the variable is adversely affected by 10 ? Cumulative Present Value Factor for 5 years for 10% is 3.791 and for 11% is 3.696 .

Calculation of NPV through Sensitivity Analysis

PV of cash inflows $(₹ 60,00,000 \times 3.791)$	$2,27,46,000$
Initial Project Cost	$2,00,00,000$
NPV	$27,46,000$

Situation	NPV	Changes in NPV
Base(present)	₹ $27,46,000$	
If initial project cost is varied adversely by 10%	$\begin{aligned} & \text { (₹ } 2,27,46,000- \\ & \text { ₹ } 2,20,00,000^{\star} \text {) } \\ & =\text { ₹ } 746000 \end{aligned}$	$\begin{aligned} \frac{(2746000-746000)}{2746000} \\ =(72.83 \%) \end{aligned}$
If annual cash inflow is varied adversely by 10%	$\begin{aligned} & \text { ₹ } 54,00,000(\text { revised } \\ & \text { cash flow) ** } \times 3.791 \text {)- } \\ & (₹ 2,00,00,000) \text {] } \\ & \text { = ₹ } 4,71,400 \end{aligned}$	$\begin{aligned} & \frac{(2746000-471400)}{2746000} \\ & =82.83 \% \end{aligned}$
If cost of capital is varied adversely by 10% i.e. it becomes 11\%	$\begin{aligned} & \text { (₹ } 60,00,000 \times 3.696)- \\ & \text { ₹ } 2,00,00,000 \\ & \text { = ₹ } 21,76,000 \end{aligned}$	$\begin{aligned} & \frac{(2746000-2176400)}{2746000} \\ & =20.76 \% \end{aligned}$

Investing Decision
*Revised initial project Cost $=2,00,00,000 \times 110 \%=2,20,00,000$
**Revised Cash Flow = ₹ $60,00,000 \times(100-10) \%$ = ₹ $54,00,000$
Conclusion: Project is most sensitive to 'annual cash inflow'

A company is evaluating a project that requires initial investment of ₹ 60 lakhs in fixed assets and ₹ 12 lakhs towards additional working capital.
The project is expected to increase annual real cash inflow before taxes by ₹ $24,00,000$ during its life. The fixed assets would have zero residual value at the end of life of 5 years. The company follows straight line method of depreciation which is expected for tax purposes also. Inflation is expected to be 6% per year. For evaluating similar projects, the company uses discounting rate of 12% in real terms. Company's tax rate is 30%.
Advise whether the company should accept the project, by calculating NPV in real terms.

PVIF (1 2\%, 5 years)		PVIF (12\%, 5 years)	
Year 1	0.893	Year 1	0.943
Year 2	0.797	Year 2	0.890
Year 3	0.712	Year 3	0.840
Year 4	0.636	Year 4	0.792
Year 5	0.567	Year 5	0.747

(i) Equipment's initial cost = ₹ $60,00,000+₹ 12,00,000$
= ₹ $72,00,000$
(ii) Annual straight line depreciation = ₹ $60,00,000 / 5$
= ₹ $12,00,000$.
(iii) Net Annual cash flows can be calculated as follows:
$=$ Before Tax CFs $\times(1-T c)+T c \times$ Depreciation ($T c=$ Corporate tax i.e. 30%)
$=$ ₹ $24,00,000 \times(1-0.3)+(0.3 \times ₹ 12,00,000)$
= ₹ $16,80,000$ + ₹ $3,60,000=$ ₹ $20,40,000$
So, Total Present Value = PV of inflow + PV of working capital released
$=(₹ 20,40,000 \times$ PVIF $12 \%, 5$ years $)+(₹ 12,00,000 \times 0.567)$
$=(₹ 20,40,000 \times 3.605)+₹ 6,80,400$
= ₹ $73,54,200+₹ 6,80,400$
= ₹ 80,34,600

So NPV = PV of Inflows - Initial Cost
= ₹ $80,34,600$ - ₹ $72,00,000$
= ₹ 8,34,600

Advice: Company should accept the project as the NPV is Positive

A new project "Ambar" requires an initial outlay of ₹ $4,50,000$. The company uses certainty equivalent method approach to evaluate the project. The risk-free rate is 7%. Following information is available:

Year	Cash Flow After Tax $(₹)$	Certainty Equivalent Coefficient
1	$1,50,000$	0.90
2	$2,25,000$	0.80
3	$1,75,000$	0.58
4	$1,50,000$	0.56
5	70,000	0.50

PV Factor at 7%

Year	1	2	3	4	5
PV Factor	0.935	0.873	0.816	0.763	0.713

Is investment in the project beneficial based on above information?

Ans.

Calculation of Net Present Value of the Project

Year	Cash Inflows After Tax (in₹)	C.E.	Adjusted Cash Inflows (in ₹)	Present Value Factor	Present Value (in ₹)		
1	$1,50,000$	0.90	$1,35,000$	0.935	$1,26,225$		
2	$2,25,000$	0.80	$1,80,000$	0.873	$1,57,140$		
3	$1,75,000$	0.58	$1,01,500$	0.816	82,824		
4	$1,50,000$	0.56	84,000	0.763	64,092		
5	70,000	0.50	35,000	0.713	24,955		
Total Present Value of Cash Inflows							
Less: Initial Investment or Cash Outflow required for "Ambar"							
Net Present Value							$(4,50,000)$

Conclusion: As the Net Present Value of the project after considering the Certainty Equivalent factors is still positive, it may be advised to invest in project "Ambar".

NPV Method (Invest Appraisal) RTP Nov 23
PQR Limited is considering buying a new machine which would have a useful economic life of five years, at a cost of ₹ $40,00,000$ and a scrap value of $₹ 5,00,000$, with 80 per cent of the cost being payable at the start of the project and 20 per cent at the end of the first year. The machine would produce 80,000 units per annum of a new product with an estimated selling price of ₹ 400 per unit. Direct costs would be ₹ 375 per unit and annual fixed costs, including depreciation calculated on a straight- line basis, would be ₹ $10,40,000$ per annum.
In the first year and the second year, special sales promotion expenditure, not included in the above costs, would be incurred, amounting to ₹ $1,25,000$ and ₹ $1,75,000$ respectively.
EVALUATE the project using the NPV method of investment appraisal, assuming the company's cost of capital to be 12 percent.

Calculation of Net Cash flows
Contribution $=(400-375) \times 80,000=₹ 20,00,000$
Fixed costs $=10,40,000-[(40,00,000-5,00,000) / 5]=₹ 3,40,000$

Year	Capital (₹)	Contribution (₹)	Fixed costs (₹)	Promotion (₹)	Net cash flow (₹)
0	$(32,00,000)$				$(32,00,000)$
1	$(8,00,000)$	$20,00,000$	$(3,40,000)$	$(1,25,000)$	$7,35,000$
2		$20,00,000$	$(3,40,000)$	$(1,75,000)$	$14,85,000$
3		$20,00,000$	$(3,40,000)$		$16,60,000$
4		$20,00,000$	$(3,40,000)$		$16,60,000$
5	$5,00,000$	$20,00,000$	$(3,40,000)$		$21,60,000$

Calculation of Net Present Value

Year	Net cash flow	12% discount factor	Present value (₹)
0	$(32,00,000)$	1.000	$(32,00,000)$
1	$7,35,000$	0.893	$6,56,355$

CA Amit Sharma

2	$14,85,000$	0.797	$11,83,545$
3	$16,60,000$	0.712	$11,81,920$
4	$16,60,000$	0.636	$10,55,760$
5	$21,60,000$	0.567	$12,24,720$
			$\mathbf{2 1 , 0 2 , 3 0}$

The net present value of the project is ₹ $21,02,300$.

Q. 17

NPV Method (Invest Appraisal)
RTP May 20
A company is considering the proposal of taking up a new project which requires an investment of ₹800 lakhs on machinery and other assets. The project is expected to yield the following earnings (before depreciation and taxes) over the next five years:

Year	Earnings (₹ in lakhs)
1	320
2	320
3	360
4	360
5	300

The cost of raising the additional capital is 12% and assets have to be depreciated at 20% on written down value basis. The scrap value at the end of the five year period may be taken as zero. Income-tax applicable to the company is 40%.
You are required to CALCULATE the net present value of the project and advise the management to take appropriate decision. Also CALCULATE the Internal Rate of Return of the Project.
Note: Present values of Re. 1 at different rates of interest are as follows

Year	10%	12%	14%	16%	20%
1	0.91	0.89	0.88	0.86	0.83
2	0.83	0.80	0.77	0.74	0.69
3	0.75	0.71	0.67	0.64	0.58
4	0.68	0.64	0.59	0.55	0.48
5	0.62	0.57	0.52	0.48	0.40

Ans.
(i) Calculation of Net Cash Flow

(₹ in lakhs)						
Year	Profit before dep. and tax	Depreciation (20\% on WDV)	PBT	PAT	Net cash flow	
(1)	(2)	(3)	(4)	(5)	$(3)+(5)$	
1	320	$800 \times 20 \%=160$	160	96	256	
2	320	$(800-160) \times 20 \%=128$	192	115.20	243.20	
3	360	$(640-128) \times 20 \%=102.4$	257.6	154.56	256.96	
4	360	$(512-102.4) \times 20 \%=81.92$	278.08	166.85	248.77	
5	300	$(409.6-81.92)=327.68^{\star}$	-27.68	-16.61	311.07	

*this is treated as a short term capital loss.
(ii) Calculation of Net Present Value (NPV)
(₹ in lakhs)

Year	Net Cash Flow	12\%		16\%		20\%	
		D.F	P.V	D.F	P.V	D.F	P.V
1	256	0.89	227.84	0.86	220.16	0.83	212.48
2	243.20	0.80	194.56	0.74	179.97	0.69	167.81
3	256.96	0.71	182.44	0.64	164.45	0.58	149.03
4	248.77	0.64	159.21	0.55	136.82	0.48	119.41
5	311.07	0.57	177.31	0.48	149.31	0.40	124.43
			941.36		850.71		773.16
	Less: Initial Investment		800.00		800.00		800.00
		NPV	141.36		50.71		-26.84

(iii) Advise: Since Net Present Value of the project at $12 \%=141.36$ lakhs, therefore the project should be implemented.
(iv) Calculation of Internal Rate of Return (IRR)

IRR $=16 \%+\frac{50.71 \times 4}{50.71-(-26.84)}$
$=16 \%+\frac{2.03}{77.55}=16 \%+2.62 \%=18.62 \%$.

NPV Method (Invest Appraisal) RTP Nov 19
MTR Limited is considering buying a new machine which would have a useful economic life of five years, at a cost of ₹ $25,00,000$ and a scrap value of ₹ $3,00,000$, with 80 per cent of the cost being payable at the start of the project and 20 per cent at the end of the first year. The machine would produce 75,000 units per annum of a new product with an estimated sellingpriceof ₹300 per unit. Direct costs would be ₹285 per unit and annual fixed costs, including depreciation calculated on a straight- line basis, would be ₹ $8,40,000$ per annum.
In the first year and the second year, special sales promotion expenditure, not included in the above costs, would be incurred, amounting to $₹ 1,00,000$ and $₹ 1,50,000$ respectively.
EVALUATE the project using the NPV method of investment appraisal, assuming the company's cost of capital to be 15 percent.

Calculation of Net Cash flows
Contribution $=(300-285) \times 75,000=₹ 11,25,000$
Fixed costs $=8,40,000-[(25,00,000-3,00,000) / 5]=₹ 4,00,000$

Year	Capital (₹)	Contribution (₹)	Fixed costs $(₹)$	Adverts (₹)	Net cash flow (₹)
0	$(20,00,000)$				$(20,00,000)$
1	$(5,00,000)$	$11,25,000$	$(4,00,000)$	$(1,00,000)$	$1,25,000$
2		$11,25,000$	$(4,00,000)$	$(1,50,000)$	$5,75,000$
3		$11,25,000$	$(4,00,000)$		$7,25,000$
4		$11,25,000$	$(4,00,000)$		7
5	$3,00,000$	$11,25,000$	$(4,00,000)$		7,

Calculationof Net Present Value

Year	Net cash flow (₹)	$\mathbf{1 2 \%}$ discount factor	Present value
0	$(20,00,000)$	1.000	$(20,00,000)$
1	$1,25,000$	0.892	$1,11,500$

Investing Decision
CA Amit Sharma

2	$5,75,000$	0.797	$4,58,275$
3	$7,25,000$	0.711	$5,15,475$
4	$7,25,000$	0.635	$4,60,375$
5	$10,25,000$	0.567	$5,81,175$
			$1,26,800$

The net present value of the project is ₹1,26,800.

NPV Method (Buy M/c or not) RTP May 19
BT Pathology Lab Ltd. is using an X-ray machines which reached at the end of their useful lives. Following new Xray machines are of two different brands with same features are available for the purchase.

Brand	Cost of	Life of	Maintenance Cost			Rate of Machine
	Year 1-5	Year 6-10	Year 11-15	Depreciation		
	$₹ 6,00,000$	15 years	$₹ 20,000$	$₹ 28,000$	$₹ 39,000$	4%
$A B C$	$₹ 4,50,000$	10 years	$₹ 31,000$	$₹ 53,000$	--	6%

Residual Value of both of above machines shall be dropped by $1 / 3$ of Purchase price in the first year and thereafter shall be depreciated at the rate mentioned above.
Alternatively, the machine of Brand $A B C$ can also be taken on rent to be returned back to the owner after use on the following terms and conditions:

- Annual Rent shall be paid in the beginning of each year and for first year it shall be ₹ $1,02,000$.
- Annual Rent for the subsequent 4 years shall be ₹ $1,02,500$.
- Annual Rent for the final 5 years shall be ₹ $1,09,950$.
- The Rent Agreement can be terminated by BT Labs by making a payment of $₹ 1,00,000$ as penalty. This penalty would be reduced by ₹ 10,000 each year of the period of rental agreement.
You are required to:
(a) ADVISE which brand of X-ray machine should be acquired assuming that the use of machine shall be continued for a period of 20 years.
(b) STATE which of the option is most economical if machine is likely to be used for a period of 5 years? The cost of capital of BT Labs is 12%.

Since the life span of each machine is different and time span exceeds the useful lives of each model, we shall use Equivalent Annual Cost method to decide which brand should be chosen.
(i) If machine is used for 20 years

Present Value (PV) of cost if machine of Brand XYZ is purchased

Period	Cash Outflow(₹)	PVF@12\%	Present Value
0	$6,00,000$	1.000	$6,00,000$
$1-5$	20,000	3.605	72,100
$6-10$	28,000	2.045	57,260
$11-15$	39,000	1.161	45,279
15	$(64,000)$	0.183	$(11,712)$

PVAF for 1-15 years
6.811

Equivalent Annual Cost $\frac{762927}{6811}=₹ 1,12,014$
Present Value (PV) of cost if machine of Brand $A B C$ is purchased

Period	Cash Outflow (₹)	PVF@12\%	Present Value
0	$4,50,000$	1.000	$4,50,000$

$1-5$	31,000	3.605	$1,11,755$
$6-10$	53,000	2.045	$1,08,385$
10	$(57,000)$	0.322	$(18,354)$

PVAF for 1-10 years
5.65

Equivalent Annual Cost $=\frac{651786}{5.65}=₹ 1,15,360$
Present Value (PV) of cost if machine of Brand ABC is taken on Rent

Period	Cash Outflow(₹)	PVF@12\%	Present Value
0	$1,02,000$	1.000	$1,02,000$
$1-4$	$1,02,500$	3.037	$3,11,293$
$5-9$	$1,09,950$	2.291	$2,51,895$

PVAF for 1-10 years =
Equivalent Annual Cost =

Decision: Since Equivalent Annual Cash Outflow is least in case of purchase of Machine of brand XYZ the same should be purchased.
(ii) If machine is used for 5 years
(a) Scrap Value of Machine of Brand XYZ

$$
\text { = ₹ } 6,00,000-₹ 2,00,000-₹ 6,00,000 \times 0.04 \times 4 \text { = ₹ 3,04,000 }
$$

(b) Scrap Value of Machine of Brand ABC
$=₹ 4,50,000-₹ 1,50,000-₹ 4,50,000 \times 0.06 \times 4=₹ 1,92,000$
Present Value (PV) of cost if machine of Brand XYZ is purchased

Period	Cash Outflow(₹)	PVF@12\%	Present Value
0	$6,00,000$	1.000	$6,00,000$
$1-5$	20,000	3.605	72,100
5	$(3,04,000)$	0.567	$(1,72,368)$
			$4,99,732$

Present Value (PV) of cost if machine of Brand ABC is purchased

Period	Cash Outflow(₹)	PVF@12\%	Present Value
0	$4,50,000$	1.000	$4,50,000$
$1-5$	31,000	3.605	$1,11,755$
5	$(1,92,000)$	0.567	$(1,08,864)$

Present Value (PV) of cost if machine of Brand ABC is taken on Rent

Period	Cash Outflow(₹)	PVF@12\%	Present Value
0	$1,02,000$	1.000	$1,02,000$
$1-4$	$1,02,500$	3.037	$3,11,293$
5	50,000	0.567	28,350
			$4,41,643$

Decision: Since Cash Outflow is least in case of lease of Machine of brand ABC the same should be taken on rent.

Investing Decision

A manufacturing company is presently paying a garbage disposer company ₹ 0.50 per kilogram to dispose-off the waste resulting from its manufacturing operations. At normal operating capacity, the waste is about $2,00,000$ kilograms per year.
After spending ₹ $1,20,000$ on research, the company discovered that the waste could be sold for ₹ 5 per kilogram if it was processed further. Additional processing would, however, require an investment of ₹ $12,00,000$ in new equipment, which would have an estimated life of 10 years with no salvage value. Depreciation would be calculated by straight line method.
No change in the present selling and administrative expenses is expected e xcept for the costs incurred in advertising ₹ 40,000 per year, if the new product is sold. Additional processing costs would include variable cost of ₹ 2.50 per kilogram of waste put into process along with fixed cost of $₹ 60,000$ per year (excluding Depreciation).
There will be no losses in processing, and it is assumed that the total waste processed in a given year will be sold in the same year. Estimates indicate that $2,00,000$ kilograms of the product could be sold each year.
The management when confronted with the choice of disposing off the waste or processing it further and selling it, seeks your ADVICE. Which alternative would you RECOMMEND? Assume that the firm's cost of capital is 15% and it pays on an average 50\% Tax on its income.
Consider Present value of Annuity of ₹ 1 per year @ 15% p.a. for 10 years as 5.019.

Ans.

Evaluation of Alternatives:
Savings in disposing off the waste

Particulars	(₹)
Outflow (2,00,000 \times ₹ 0.50)	$1,00,000$
Less: tax savings @ 50\%	50,000
Net Outflow per year	50,000

Calculation of Annual Cash inflows in Processing of waste Material

Particulars	Amount (₹)	Amount (₹)
Sale value of waste (₹ $5 \times 2,00,000$ kilograms)		$10,00,000$
Less: Variable processing cost (₹ $2.50 \times 2,00,000$ kilograms)	$5,00,000$	
Less: Fixed processing cost	60,000	
Less: Advertisement cost	40,000	
Less: Depreciation	$1,20,000$	$(7,20,000)$
Earnings before tax (EBT)		$2,80,000$
Less: Tax @ 50\%		$(1,40,000)$
		$1,40,000$
Earnings after tax (EAT)		$1,20,000$
Add: Depreciation		$2,60,000$
Annual Cash inflows		

Total Annual Benefits = Annual Cash inflows + Net savings (adjusting tax) in disposal cos \dagger

$$
\text { = ₹ } 2,60,000 \text { + ₹ } 50,000=₹ 3,10,000
$$

Calculation of Net Present Value

Year	Particulars	Amount (₹)
0	Investment in new equipment	$(12,00,000)$
1 to 10	Total Annual benefits × PVAF(10 years, 15\%)	$15,55,890$

Net Present Value

3,55,890
Recommendation: Processing of waste is a better option as it gives a positive Net Present Value.
Note- Research cost of ₹ $1,20,000$ is not relevant for decision making as it is sunk cost.

Q. 21

Calculate IRR
MTP May 20
A company proposes to install a machine involving a Capital Cost of Rs. $72,00,000$. The life of the machine is 5 years and its salvage value at the end of the life is nil. The machine will produce the net operating income after depreciation of Rs. $13,60,000$ per annum. The Company's tax rate is 35%.
The Net Present Value factors for 5 years are as under:

Discounting Rate	$:$	14	15	16	17	18	19
Cumulative factor	$:$	3.43	3.35	3.27	3.20	3.13	3.06

You are required to COMPUTE the internal rate of return (IRR) of the proposal.

Ans.

Computation of cash inflow per annum	Rs.
Net operating income per annum	$13,60,000$
Less: Tax @ 35%	$4,76,000$
Profit after tax	$8,84,000$
Add: Depreciation (Rs.72,00,000 / 5 years)	$14,40,000$
Cash inflow	$23,24,000$

The IRR of the investment can be found as follows:
NPV = - Rs. 72,00,000 + Rs. 23,24,000 (PVAF5, r) $=0$
or PVA F5 r (Cumulative factor) $=\frac{7200000}{2324000}=3.09$
Computation of Internal Rate of Return (IRR)

Discounting rate	15%	19%
Cumulative factor	3.35	3.06
Total NPV (Rs.)	$77,85,400$	$71,11,440$
	$(R s .23,24,000 \times 3.35)$	$(R s .23,24,000 \times 3.06)$
Internal outlay (Rs.)	$72,00,000$	$72,00,000$
Surplus (Deficit) (Rs.)	$5,85,400$	$(88,560)$

IRR $=L R+\frac{N P V \text { at } L R}{N P V \text { at } L R-N P V \text { at } H R} \times(H R-L R)$
$=15 \%+\frac{585400}{585400-(-88560)} \times(19 \%-15 \%)$
$=15 \%+3.47=18.47 \%$

Calculate NPV \& IRR

MTP May 18

You are a financial analyst of B Limited. The director of finance has asked you to analyse two capital investments proposals, Projects X and Y. Each project has a cost of $₹ 10,000$ and the cost of capital for each project is 12 per cent. The project's expected net cash flows are as follows:

Year	Expected net cash flows	
	Project $X(₹)$	

0	$(10,000)$	$(10,000)$
1	6,500	3,500
2	3,000	3,500
3	3,000	3,500
4	1,000	3,500

(i) CALCULATE each project's payback period, net present value (NPV) and internal rate of return (IRR).
(ii) DETERMINE, which project or projects should be accepted if they are independent?

Ans.

(i) Payback Period Method

The cumulative cash flows for each project are as follows

Year	Cumulative Cash Flows	
	Project $\mathrm{X}(₹)$	Project $\mathrm{Y}(₹)$
0	$(10,000)$	$(10,000)$
1	$(3,500)$	$(6,500)$
2	(500)	$(3,000)$
3	2,500	500
4	3,500	4,000

Paybackx $=2+\frac{500}{3000}=2.17$ years .
Paybacky $=2+\frac{3000}{3500}=2.86$ years .
Net Present Value (NPV)
$N P V x=-₹ 10,000+\frac{6500}{(1.12)^{1}}-\frac{3000}{(1.12)^{2}}-\frac{3000}{(1.12)^{3}}-\frac{1000}{(1.12)^{4}}=₹ 966.01$
$N P V y=-₹ 10,000+\frac{3500}{(1.12)^{1}}-\frac{3500}{(1.12)^{2}}-\frac{3500}{(1.12)^{3}}-\frac{3500}{(1.12)^{4}}=-630.72$.
Internal Rate of Return (IRR)
To solve for each project's IRR, find the discount rates that equate each NPV to zero: $\operatorname{IRR} \times=18.0 \%$. IRRy $=15.0 \%$.
(ii) The following table summarizes the project rankings by each method:

	Project that ranks higher
Payback	X
NPV	X
IRR	X

Analysis: All methods rank Project X over Project Y. In addition, both projects are acceptable under the NPV and IRR criteria. Thus, both projects should be accepted if they are independent

Alpha Limited is a manufacturer of computers. It wants to introduce artificial intelligence while making computers.
The estimated annual saving from introduction of the artificial intelligence (AI) is as follows:

- reduction of five employees with annual salaries of ₹ $3,00,000$ each
- reduction of ₹ $3,00,000$ in production delays caused by inventory problem
reduction in lost sales ₹ $2,50,000$ and

Gain due to timely billing ₹ $2,00,000$
The purchase price of the system for installation of artificial intelligence is ₹ $20,00,000$ and installation cost is ₹ $1,00,000.80 \%$ of the purchase price will be paid in the year of purchase and remaining will be paid in next year.
The estimated life of the system is 5 years and it will be depreciated on a straight -line basis. However, the operation of the new system requires two computer specialists with annual salaries of ₹ $5,00,000$ per person.
In addition to above, annual maintenance and operating cost for five years are as below:

(Amount in ₹)					
Year	1	2	3	4	5
Maintenance \& Operating Cost	$2,00,000$	$1,80,000$	$1,60,000$	$1,40,000$	$1,20,000$

Maintenance and operating cost are payable in advance.
The company's tax rate is 30% and its required rate of return is 15%.

Year	1	2	3	4	5
PVIF 0.10,t	0.909	0.826	0.751	0.683	0.621
PVIF 0.12,t	0.893	0.797	0.712	0.636	0.567
PVIF 0.15,t	0.870	0.756	0.658	0.572	0.497

Evaluate the project by using Net Present Value and Profitability Index

Computation of Annual Cash Flow after Tax						
Particulars	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Savings in Salaries		$15,00,000$	$15,00,000$	$15,00,000$	$15,00,000$	$15,00,000$
Reduction in Production Delays		$3,00,000$	$3,00,000$	$3,00,000$	$3,00,000$	$3,00,000$
Reduction in Lost Sales		$2,50,000$	$2,50,000$	$2,50,000$	$2,50,000$	$2,50,000$
Gain due to Timely Billing		$2,00,000$	$2,00,000$	$2,00,000$	$2,00,000$	$2,00,000$
Salaryto Computer Specialist		$(10,00,000)$	$(10,00,000)$	$(10,00,000)$	$(10,00,000)$	$(10,00,000)$
Maintenance and Operating Cost (payableinadvance)		$(2,00,000)$	$(1,80,000)$	$(1,60,000)$	$(1,40,000)$	$(1,20,000)$
Depreciation (21 lakhs/5)		$(4,20,000)$	$(4,20,000)$	$(4,20,000)$	$(4,20,000)$	$(4,20,000)$
Gain Before Tax		$6,30,000$	$6,50,000$	$6,70,000$	$6,90,000$	$7,10,000$
Less: Tax (30\%)		$1,89,000$	$1,95,000$	$2,01,000$	$2,07,000$	$2,13,000$
Gain After Tax		$4,41,000$	$4,55,000$	$4,69,000$	$4,83,000$	$4,97,000$
Add: Depreciation		$4,20,000$	$4,20,000$	$4,20,000$	$4,20,000$	$4,20,000$
Add: Maintenance and Operating Cost (payable in advance)		$2,00,000$	$1,80,000$	$1,60,000$	$1,40,000$	$1,20,000$

Less: Maintenance and Operating Cost (payable in advance)	$(2,00,000)$	$(1,80,000)$	$(1,60,000)$	$(1,40,000)$	$(1,20,000)$	-
Net CFAT	$(2,00,000)$	$8,81,000$	$8,95,000$	$9,09,000$	$9,23,000$	$10,37,000$

Note: Annual cash flows can also be calculated Considering tax shield on depreciation \& maintenance and operating cost. There will be no change in the final cash flows after tax.

Computation NPV				
Particulars	Year	Cash Flows (₹)	PVF	PV (₹)
Initial Investment (80\% of 20 Lacs)	0	$16,00,000$	1	$16,00,000$
Installation Expenses	0	$1,00,000$	1	$1,00,000$
Instalment of Purchase Price	1	$4,00,000$	0.870	$3,48,000$
PV of Outflows (A)				$20,48,000$
CFAT	0	$(2,00,000)$	1	$(2,00,000)$
CFAT	1	$8,81,000$	0.870	$7,66,470$
CFAT	2	$8,95,000$	0.756	$6,76,620$
CFAT	3	$9,09,000$	0.658	$5,98,122$
CFAT	4	$9,23,000$	0.572	$5,27,956$
CFAT	5	$10,37,000$	0.497	$5,15,389$
PV of Inflows (B)				$28,84,557$
NPV (B-A)				$\mathbf{8 , 3 6 , 5 5 7}$
Profitability Index (B/A)				1.408 or 1.41

Evaluation: Since the NPV is positive (i.e. ₹ $8,36,557$) and Profitability Index is also greater than 1 (i.e. 1.41), Alpha Ltd. may introduce artificial intelligence (AI) while making computers.

Q. 24

Calculate NPV, PI \& Disc Payback
PY Jan 21
A company wants to buy a machine, and two different models namely A and B are available.
Following further particulars are available:

Particulars	Machine- A	Machine- B
Original Cost $(₹)$	$8,00,000$	$6,00,000$
Estimated Life in years	4	4
Salvage Value $(₹)$	0	0

The company provides depreciation under Straight Line Method. Income tax rate applicable is 30%.
The present value of ₹ 1 at 12% discounting factor and net profit before depreciation and tax are as under:

Year	Net Profit Before Depreciation and tax		PV Factor
	Machine- A ₹	Machine-B ₹	
1.	2,30,000	1,75,000	0.893
2.	2,40,000	2,60,000	0.797
3.	2,20,000	3,20,000	0.712
4.	5,60,000	1,50,000	0.636

Calculate:

1. NPV (Net Present Value)
2. Discounted pay-back period
3. PI (Profitability Index)

Suggest: Purchase of which machine is more beneficial under Discounted pay-back period method, NPV method and PI method.

Workings:

(i) Calculation of Annual Depreciation

Depreciation on Machine $-A=\frac{800000}{4}=₹ 2,00,000$
Depreciation on Machine $-B=\frac{600000}{4}=₹ 1,50,000$
(ii) Calculation of Annual Cash Inflows

Particulars	Machine-A (₹)			
Net Profit before Depreciation and Tax	$2,30,000$	$2,40,000$	$2,20,000$	$5,60,000$
	$2,00,000$	$2,00,000$	$2,00,000$	$2,00,000$
	30,000	40,000	20,000	$3,60,000$
Less: Tax @ 30\%	9,000	12,000	6,000	$1,08,000$
Profit after Tax	21,000	28,000	14,000	$2,52,000$
Add: Depreciation	$2,00,000$	$2,00,000$	$2,00,000$	$2,00,000$
Annual Cash Inflows	$2,21,000$	$2,28,000$	$2,14,000$	$\mathbf{4 , 5 2 , 0 0 0}$

Particulars	Machine-B (₹)			
Net Profit before Depreciation and Tax	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$1,75,000$	$2,60,000$	$3,20,000$	$1,50,000$
Less: Depreciation	$1,50,000$	$1,50,000$	$1,50,000$	$1,50,000$
Profit before Tax	25,000	$1,10,000$	$1,70,000$	0
Less: Tax @ 30\%	7,500	33,000	51,000	0
Profit after Tax	17,500	77,000	$1,19,000$	0
Add: Depreciation	$1,50,000$	$1,50,000$	$1,50,000$	$1,50,000$
Annual Cash Inflows	$\mathbf{1 , 6 7 , 5 0 0}$	$\mathbf{2 , 2 7 , 0 0 0}$	$\mathbf{2 , 6 9 , 0 0 0}$	$\mathbf{1 , 5 0 , 0 0 0}$

(iii) Calculation of PV of Cash Flows

	Machine - A				Machine - B		
Year	PV of Re 1 @ 12\%	Cash flow $(₹)$	PV (₹)	Cumulative PV $(₹)$	Cash flow (₹)	PV (₹)	Cumulative PV (₹)
1	0.893	$2,21,000$	$1,97,353$	$1,97,353$	$1,67,500$	$1,49,578$	$1,49,578$
2	0.797	$2,28,000$	$1,81,716$	$3,79,069$	$2,27,000$	$1,80,919$	$3,30,497$
3	0.712	$2,14,000$	$1,52,368$	$5,31,437$	$2,69,000$	$1,91,528$	$5,22,025$
4	0.636	$4,52,000$	$2,87,472$	$8,18,909$	$1,50,000$	95,400	$6,17,425$

1. NPV (Net Present Value)

Machine - A
NPV = ₹ $8,18,909-₹ 8,00,000=₹ 18,909$
Machine - B
NPV = ₹ $6,17,425$ - ₹ $6,00,000=₹ 17,425$
2. Discounted Payback Period

Machine - A
Discounted Payback Period $=3+\frac{800000-531437}{287472}$
$=3+0.934$
$=3.934$ years or 3 years 11.21 months

Machine - B

Discounted Payback Period $=3+\frac{600000-522025}{95400}$
$=3+0.817$
$=3.817$ years or 3 years 9.80 months
3. PI (Profitability Index)

Machine - A
Profitability Index $=\frac{818909}{800000}=1.024$
Machine - B

$$
\text { Profitability Index }=\frac{617425}{600000}=1.029
$$

Suggestion:

Method	Machine - A	Machine - B	Suggested Machine
Net Present Value	$₹ 18,909$	$₹ 17,425$	Machine A
Discounted Payback Period	3.934 years	3.817 years	Machine B
Profitability Index	1.024	1.029	Machine B

Q. 25

NPV \& PI Method

RTP Nov 22
K. K. M. M Hospital is considering purchasing an MRI machine. Presently, the hospital is outsourcing the work received relating to MRI machine and is earning commission of ₹ $6,60,000$ per annum (net of tax). The following details are given regarding the machine:

	$(₹)$
Cost of MRI machine	$90,00,000$
Operating cost per annum (excluding Depreciation)	$14,00,000$
Expected revenue per annum	$45,00,000$
Salvage value of the machine (after 5 years)	$10,00,000$
Expected life of the machine	5 years

Assuming tax rate @ 40\%, whether it would be profitable for the hospital to purchase the machine? Give your RECOMMENDATION under:
(i) Net Present Value Method, and
(ii) Profitability Index Method.

PV factors at 10\% are given below

Year	1	2	3	4	5
PV factor	0.909	0.826	0.751	0.683	0.620

CA Amit Sharma
Determination of Cash inflows

Elements	(₹)
Sales Revenue	$45,00,000$
Less: Operating Cost	$14,00,000$
Less: Depreciation (90,00,000-10,00,000)/5	$31,00,000$
Net Income	$16,00,000$
Tax @ 40\%	$15,00,000$
Earnings after Tax (EAT)	$6,00,000$
Add: Depreciation	$9,00,000$
Cash inflow after tax per annum	$16,00,000$
Less: Loss of Commission Income	$25,00,000$
Net Cash inflow after tax per annum	$6,60,000$
New Cash inflow after tax	$18,40,000$
Add: Salvage Value of Machine	$18,40,000$
Net Cash inflow in year 5	$10,00,000$

Calculation of Net Present Value (NPV)

Year	CFAT	PV Factor @10\%	Present Value of Cashin flows
1 to 4	$18,40,000$	3.169	$58,30,960$
5	$28,40,000$	0.620	$\underline{17,60,800}$
Less: Cash Outflows			$75,91,760$
NPV		$\underline{90,00,000}$	

Profitability Index $=\frac{\text { Sum of discounted cash inflows }}{\text { Present value of cash out flows }}=\frac{7591760}{9000000}=0.844$
Advise: Since the net present value is negative and profitability index is also less than 1 , therefore, the hospital should not purchase the MRI machine.

Calculate NPV, PI \& Disc Payback
RTP May 18
A company has to make a choice between two projects namely A and B. The initial capital outlay of two Projects are ₹ $1,35,000$ and ₹ $2,40,000$ respectively for A and B. There will be no scrap value at the end of the life of both the projects. The opportunity Cost of Capital of the company is 16%. The annual incomes are as under:

Year	Project $A(₹)$	Project B (₹)	Discounting factor @ 16%
1	--	60,000	0.862
2	30,000	84,000	0.743
3	$1,32,000$	96,000	0.641
4	84,000	$1,02,000$	0.552
5	84,000	90,000	0.476

Required:

CALCULATE for each project:
(i) Discounted payback period
(ii) Profitability index
(iii) Net present value

DECIDE which of these projects should be accepted?

Ans.

Working notes

1 Computation of Net Present Values of Projects

Year	Cash flows		Disct. factor @ 16 \%	Discounted Cash flow	
	Project A ($₹$)	Project B (₹)		Project A (₹)	Project B (₹)
	(1)	(2)	(3)	(3) \times (1)	(3) $\times(2)$
0	$(1,35,000)$	$(2,40,000)$	1.000	$(1,35,000)$	$(2,40,000)$
1	--	60,000	0.862	--	51,720
2	30,000	84,000	0.743	22,290	62,412
3	1,32,000	96,000	0.641	84,612	61,536
4	84,000	1,02,000	0.552	46,368	56,304
5	84,000	90,000	0.476	39,984	42,840
Net present value				58,254	34,812

2 Computation of Cumulative Present Values of Projects Cash inflows

Year	Project A		Project B	
	PV of cash inflows (₹)	Cumulative PV (₹)	PV of cash inflows (₹)	Cumulative PV (₹)
1	--	--	51,720	51,720
2	22,290	22,290	62,412	$1,14,132$
3	84,612	$1,06,902$	61,536	$1,75,668$
4	46,368	$1,53,270$	56,304	$2,31,972$
5	39,984	$1,93,254$	42,840	$2,74,812$

(i) Discounted payback period: (Refer to Working note 2)

Cost of Project $A=₹ 1,35,000$
Cost of Project $B=₹ 2,40,000$
Cumulative PV of cash inflows of Project A after 4 years $=₹ 1,53,270$
Cumulative PV of cash inflows of Project B after 5 years $=₹ 2,74,812$
A comparison of projects cost with their cumulative PV clearly shows that the project A's cost will be recovered in less than 4 years and that of project B in less than 5 years. The exact duration of discounted payback period can be computed as follows:

	Project A	Project B
Excess PV of cash Inflows over the project cost (₹)	18,270	34,812
Computation of period required to recover excess	$(₹ 1,53,270-₹ 1,35,000)$	$(₹ 2,74,812-₹ 2,40,000)$

cA Amit Sharma
Inver
first attempt success tutorials

amount of cumulative PV over project cos \dagger (Refer to Working note 2)		
Discounted payback period	3.61 year (4-0.39) years	$\begin{gathered} 4.19 \text { years } \\ (5-0.81) \text { years } \end{gathered}$

(ii)

Profitability Index(PI):

Profitability Index (for Project A)
Profitability Index (for Project B)
(iii) Net present value(NPV) (for Project A)

Net present value(NPV) (for Project B) = ₹ 34,812
(Refer to Working note 1)
Conclusion: As the NPV, PI of Project A is higher and Discounted Pay back is lower, therefore Project a should be accepted.

Sadbhavna Limited is a manufacturer of computers. It wants to introduce artificial intelligence while making computers. It estimates that the annual savings from the artificial intelligence (AI) include a reduction of five employees with annual salaries of ₹ $3,00,000$ each, ₹ $3,00,000$ from reduction in production delays caused by inventory problem, reduction in lost sales ₹ $2,50,000$ and ₹ $2,00,000$ from billing issues.
The purchase price of the system for installation of artificial intelligence is ₹ $20,00,000$ with installation cost of $₹ 1,00,000$. The life of the system is 5 years and it will be depreciated on a straight -line basis. The salvage value is zero which will be its market value after the end of its life of five years.
However, the operation of the new system for AI requires two computer specialists with annual salaries of $₹$ $5,00,000$ per person. Also, the estimated maintenance and operating expenses of $1,50,000$ is required.
The company's tax rate is 30% and its required rate of return is 12%.
From the above information:
(i) CALCULATE the initial cash outflow and annual operating cash flow over its life of 5 years.
(ii) Further, EVALUATE the project by using Payback Period, Net Present Value and Profitability Index.
(iii) You are also REQUIRED to obtain the cash flows and NPV on the assumption that book salvage value for depreciation purposes is ₹ $2,00,000$ even though the machine is having no real worth in terms of its resale value. Also, the book salvage value of ₹ $2,00,000$ is allowed for tax purposes.
Also COMMENT on the acceptability of the project in (ii) and (iii) above.
(i) Project's Initial Cash Outlay
Cost 20,00,000

Installation Expenses 1,00,000
Total Cash Outflow 21,00,000
Depreciation per year $=21,00,000 / 5=4,20,000$
Project's Operating Cash Flows over its 5-year life Savings (A)
Reduction in salaries (₹ $3,00,000 \times 5$) $15,00,000$
Reduction in production delays 3,00,000
Reduction in lost sales 2,50,000
Gains due to timely billing 2,00,000
22,50,000

Costs (B)

- Depreciation 4,20,000
- Additional Specialist Cost (₹ $5,00,000 \times 2$) 10,00,000
- Maintenance Cost

1,50,000
15,70,000
Increase in Profit before tax ($\mathrm{A}-\mathrm{B}$)
Less: Tax @ 30\%
6,80,000
2,04,000
Profit after tax
4,76,000
Cash Inflows = Profit after tax + Depreciation
$=4,76,000+4,20,000=8,96,000$
(ii) Evaluation of the project by using NPV Method

Year	Cash Inflows	PVAF (12\%,5y)	Total PV	
$1-5$	$8,96,000$	3.605	$32,30,080$	
Less: Total Initial Cash Outflow	$21,00,000$			
Net Present Value	$11,30,080$			

Since NPV is positive, therefore, the project is acceptable.
Evaluation of the project by using Profitability Index Method
Profitability Index = Present Value of Cash Inflows/Present Value of Cash Outflows

$$
\begin{aligned}
& =32,30,080 / 21,00,000 \\
& =1.538
\end{aligned}
$$

Since, the profitability index is more than 1 , the project is acceptable.
Calculation of the Project's Payback*

Year	Net Cash Flow	Cumulative Cash Flow
1	$8,96,000$	$8,96,000$
2	$8,96,000$	$17,92,000$
3	$8,96,000$	$26,88,000$
4	$8,96,000$	$35,84,000$
5	$8,96,000$	$44,80,000$

Here, the payback period is 2 years plus a fraction of the 3 rd year
So, payback period $=2$ years $+3,08,000 / 8,96,000$

$$
=2.34 \text { years }
$$

* Payback period may also be solved directly as follows: $21,00,000 / 8,96,000=2.34$ years
(iii) Project's cash flows and NPV assuming that the book salvage for depreciation purpose is ₹2,00,000 Depreciation $=(₹ 21,00,000-2,00,000) / 5=3,80,000$
Cash Inflows for the years 1 to 5 are:
Savings (calculated as earlier) 22,50,000
Less: Costs
- Depreciation
- Additional Specialists cost
- Maintenance cos \dagger

Profit before tax
Less: Tax @ 30\%
Profit after tax
Cash Inflow (5,04,000 + 3,80,000)

3,80,000
10,00,000
1,50,000
15,30,000
7,20,000
2,16,000
5,04,000
8,84,000

Calculation of NPV
It may be noted that at the end of year 5 , the book value of the project would be ₹ $2,00,000$ but its realizable value is nil. So, the capital loss of ₹ $2,00,000$ will result in tax savings of ₹ 60,000 (i.e., ₹ $2,00,000$ $\times 30 \%$), as the capital loss is available for tax purposes in view of the information given. Therefore, at the end of year 5 , there would be an additional inflow of ₹ 60,000 . The NPV may now be calculated as follows:

Year	Cash Flow (₹)	PVAF (12\%, n)	PV
$1-5$	$8,84,000$	3.605	$31,86,820$
5	60,000	0.567	34,020
PV of inflows			$32,20,840$
Outflows			$21,00,000$
NPV			$11,20,840$

As the NPV of the project is positive, the project is acceptable.

NPV, PI \& Payback Method

MTP May 19(1)

XLtd. is considering to select a machine out of two mutually exclusive machines. The company's cost of capital is 15 per cent and corporate tax rate is 30 per cent. Other information relating to both machines is as follows:
Machine - I Machine - II
Cost of Machine
Rs. 30,00,000
Rs. 40,00,000
Expected Life
10 years.
10 years.
Annual Income
(Before Tax and Depreciation)
Rs. 12,50,000
Rs. $17,50,000$
Depreciation is to be charged on straight line basis: You are required to CALCULATE:
(i) Discounted Pay Back Period
(ii) Net Present Value
(iii) Profitability Index

The present value factors of Re. 1 @ 15% are as follows:

Year	01	02	03	04	05
PV factor @ 15\%	0.870	0.756	0.658	0.572	0.497.

Working Notes:
Depreciation on Machine - I $=\frac{3000000}{10}=$ Rs. 3,00,000
Depreciation on Machine - II $=\frac{4000000}{10}=$ Rs. 4,00,000

Particulars	Machine-I (Rs.)	Machine - II (Rs.)
Annual Income (before Taxand Depreciation)	$12,50,000$	$17,50,000$
Less: Depreciation	$3,00,000$	$4,00,000$
Annual Income (before Tax)	$9,50,000$	$13,50,000$
Less: Tax @ 30\%	$(2,85,000)$	$(4,05,000)$
Annual Income (after Tax)	$6,65,000$	$9,45,000$
Add: Depreciation	$3,00,000$	$4,00,000$
Annual Cash Inflows	$9,65,000$	$13,45,000$

first attempt success tutorials

Year	Machine - I				Machine - II		
	PV of Re 1 @ 15\%	Cash flow	PV	Cumulative PV	Cash flow	PV	Cumulative PV
1	0.870	$9,65,000$	$8,39,550$	$8,39,550$	$13,45,000$	$11,70,150$	$11,70,150$
2	0.756	$9,65,000$	$7,29,540$	$15,69,090$	$13,45,000$	$10,16,820$	$21,86,970$
3	0.658	$9,65,000$	$6,34,970$	$22,04,060$	$13,45,000$	$8,85,010$	$30,71,980$
4	0.572	$9,65,000$	$5,51,980$	$27,56,040$	$13,45,000$	$7,69,340$	$38,41,320$
5	0.497	$9,65,000$	$4,79,605$	$32,35,645$	$13,45,000$	$6,68,465$	$45,09,785$

(i) Discounted Payback Period

Machine - I
Discounted Payback Period $=4+\frac{(3000000-2756040)}{479605}$
$=4+\frac{243960}{479605}=4+0.5087=4.5087$ years or 4 years 6.10 months
Machine - II
Discounted Payback Period $=4+\frac{(4000000-3841320)}{668465}$
$=4+\frac{158680}{668465}=4+0.2374=4.2374$ years or 4 years 2.85 months
(ii) Net Present Value (NPV)

Machine - I
NPV $=32,35,645-30,00,000=$ Rs. 2,35,645
Machine - II
NPV $=45,09,785-40,00,000=$ Rs. 5,09,785
(iii) Profitability Index

Machine - I
Profitability Index $=\frac{3235645}{3000000}=1.08$

Machine - II
Profitability Index $=\frac{4509785}{4000000}=1.13$

Conclusion:

Method	Machine - I	Machine - II	Rank
Discounted Payback Period	4.51 years	4.24 years	II
Net Present Value	Rs. $2,35,645$	Rs. $5,09,785$	II
Profitability Index	1.08	1.13	II

Q. 29

NPV, PI \& Payback Method
MTP Nov 18(2)
A company has to make a choice between two projects namely A and B. The initial capital outlay of two Projects are Rs. $1,35,00,000$ and Rs.2,40,00,000 respectively for A and B. There will be no scrap value at the end of the life of both the projects. The opportunity cost of capital of the company is 16%. The annual incomes are as under:

Year	Project A	Project B	Discounting factor @ 16\%
1	--	$60,00,000$	0.862
2	$30,00,000$	$84,00,000$	0.743
3	$1,32,00,000$	$96,00,000$	0.641
4	$84,00,000$	$1,02,00,000$	0.552
5	$84,00,000$	$90,00,000$	0.476

You are required to CALCULATE for each project:
(i) Discounted payback period
(ii) Profitability index
(iii) Net present value
(1) Computation of Net Present Values of Projects
(Amount in Rs. '000)

Year	Cash flows		Discount factor @ 16 \%	Discounted Cash flow	
	Project A (Rs.)	Project B (Rs.)		Project A (Rs.)	Project B (Rs.)
	(1)	(2)	(3)	(3) $\times(1)$	(3) $\times(2)$
0	$(13,500)$	$(24,000)$	1.000	$(13,500)$	$(24,000)$
1	--	6,000	0.862	--	5,172
2	3,000	8,400	0.743	2,229	6,241.2
3	13,200	9,600	0.641	8,461.2	6,153.6
4	8,400	10,200	0.552	4,636.8	5,630.4
5	8,400	9,000	0.476	3,998.4	4,284
Net present value				5,825.4	3,481.2

(2) Computation of Cumulative Present Values of Projects Cash inflows
(Amount in Rs. '000)

Year	Project A		Project B	
	PV of cash inflows (Rs.)	Cumulative PV (Rs.)	PV of cash inflows (Rs.)	Cumulative PV (Rs.)
1	--	--	5,172	51,72
2	2,229	22,29	$6,241.2$	$11,413.2$
3	$8,461.2$	$10,690.2$	$6,153.6$	$17,566.8$
4	$4,636.8$	15,327	$5,630.4$	$23,197.2$
5	$3,998.4$	$19,325.4$	4,284	$27,481.2$

(i) Discounted payback period: (Refer to Working note 2)

Cost of Project A $=$ Rs.1,35,00,000
Cost of Project $B=$ Rs. $2,40,00,000$
Cumulative PV of cash inflows of Project A after 4 years $=$ Rs.1,53,27,000
Cumulative PV of cash inflows of Project B after 5 years $=$ Rs. $2,74,81,200$
A comparison of projects cost with their cumulative PV clearly shows that the project A's cost will be recovered in less than 4 years and that of project B in less than 5 years. The exact duration of discounted payback period can be computed as follows :

	Project A	Project B
Excess PV of cash inflows	$18,27,000$	$34,81,200$
over the project cost (Rs.)	(Rs.1,53,27,000 - Rs.1,35,00,000)	(Rs. 2,74,81,200 - Rs.2,40,00,000)

CA Amit Sharma

Computation of period required to recover excess amount of cumulative PV over project cost (Refer to Working note 2)	$\begin{gathered} 0.39 \text { year } \\ \text { (Rs. } 18,27,000 \div \text { Rs. } 46,36,800 \text {) } \end{gathered}$	$\begin{gathered} 0.81 \text { years } \\ (\text { Rs. } 34,81,200 \div \text { Rs. } 42,84,000) \end{gathered}$
Discounted payback period	$\begin{gathered} 3.61 \text { year } \\ (4-0.39) \text { years } \end{gathered}$	$\begin{gathered} 4.19 \text { years } \\ (5-0.81) \text { years } \end{gathered}$

(ii) Profitability Index: $=\frac{\text { Sum of discounted cash inflows }}{\text { Initian cash outlay }}$

Profitability Index (for Project A) $=\frac{19325400}{13500000}=1.43$
Profitability Index (for Project B) $=\frac{27481200}{24000000}=1.15$
(iii) Net present value (for Project A) $=$ Rs.58,25,400 (Refer to Working note 1)

Net present value (for Project B) $=$ Rs. $34,81,200$

NPV, PI \& Payback Method MTP Nov 18(1)
X Limited is considering to purchase of new plant worth Rs. $80,00,000$. The expected net cash flows after taxes and before depreciation are as follows:

Year	Net Cash Flows (Rs.)
1	$14,00,000$
2	$14,00,000$
3	$14,00,000$
4	$14,00,000$
5	$14,00,000$
6	$16,00,000$
7	$20,00,000$
9	$30,00,000$
10	$20,00,000$
$8,00,000$	

The rate of cost of capital is 10%. You are required to CALCULATE
(i) Pay-back period
(ii) Net present value at 10 discount factor
(iii) Profitability index at 10 discount factor
(iv) Internal rate of return with the help of 10% and 15% discount factor The following present value table is given for you:

Year	Present value of Rs. 1 at 10% discount rate	Present value of Rs. 1 at 15% discount rate
1	.909	.870

2	.826	.756
3	.751	.658
4	.683	.572
5	.621	.497
6	.564	.432
7	.513	.376
8	.467	.327
9	.424	.284
10	.386	.247

(i) Calculation of Pay-back Period

Cash Outlay of the Project = Rs. 80,00,000
Total Cash Inflow for the first five years = Rs. 70,00,000
Balance of cash outlay left to be paid back in the 6th year Rs. 10,00,000
Cash inflow for 6th year $=16,00,000$
So the payback period is between 5 th and 6 th years, i.e.,
5 years $+\frac{1000000}{600000}=5.625$ years or 5 years 7.5 months
(ii) Calculation of Net Present Value (NPV) @ 10% discount rate:

Year	Net Cash Inflow (Rs.)	Present Value at Discount Rate of 10\%	Present Value (Rs.)
	(a)	(b)	(c) $=(\mathrm{a}) \times(\mathrm{b})$
1	14,00,000	0.909	12,72,600
2	14,00,000	0.826	11,56,400
3	14,00,000	0.751	10,51,400
4	14,00,000	0.683	9,56,200
5	14,00,000	0.621	8,69,400
6	16,00,000	0.564	9,02,400
7	20,00,000	0.513	10,26,000
8	30,00,000	0.467	14,01,000
9	20,00,000	0.424	8,48,000
10	8,00,000	0.386	3,08,800
			97,92,200

Net Present Value (NPV) = Cash Outflow - Present Value of Cash Inflows
= Rs. $80,00,000$ - Rs. $97,92,200=17,92,200$
(iii) Calculation of Profitability Index @ 10\% discount rate:

Profitability Index $=\frac{\text { Present Value of Cash inflows }}{\text { Cost of the investment }}$

$$
=\frac{9792200}{8000000}=1.224
$$

Investing Decision
(iv) Calculation of Internal Rate of Return:

Net present value @ 10\% interest rate factor has already been ca lculated in (ii) above, we will calculate Net present value @15\% rate factor.

Year	Net Cash Inflow (Rs.)	Present Value at Discount Rate of 15%	Present Value (Rs.)			
1	(a)	(b)	$($ (c) $=(\mathrm{a}) \times(\mathrm{b})$	$	$	$12,18,000$
:---:						
2						

Net Present Value at 15% = Rs. $78,84,000$ - Rs. $80,00,000=$ Rs. $-1,16,000$
As the net present value @ 15% discount rate is negative, hence internal rate of return falls in between 10% and 15%. The correct internal rate of return can be calculated as follows:

$$
\begin{aligned}
\text { IRR } & =L+\frac{N P V_{L}}{N P V_{L}-N P V_{H}}(H-L) \\
& =10 \%+\frac{1792200}{1792200-(-116000)}(15 \%-10 \%) \\
& =10 \%+\frac{1792200}{1908200} \times 5 \%=14.7 \%
\end{aligned}
$$

```
Q. }31\mathrm{ Calculate NPV
MTP May 21(2)
```

(a) SG Ltd. is considering a project " Z " with an initial outlay of Rs. 7,50,000 and life of 5 years. The estimates of project are as follows:

	Lower Estimates	Base	Upper Estimates
Sales (units)	4,500	5,000	5,500
	(Rs.)	(Rs.)	(Rs.)
Selling Price p.u.	175	200	225
Variable cost p.u.	100	125	150
Fixed Cost	50,000	75,000	$1,00,000$

Depreciation included in Fixed cost is Rs. 35,000 and corporate tax is 25%.
Assuming the cost of capital as 15%, DETERMINE NPV in three scenarios i.e worst, base and best case scenario. PV factor for 5 years at 15% are as follows:

Years	1	2	3	4	5
P.V. factor	0.870	0.756	0.658	0.572	0.497

Ans.

(i) Calculation of Yearly Cash Inflow

In worst case: High costs and Low price (Selling price) and volume(Sales units) are taken. In best case: Low costs and High price(Selling price) and volume(Sales units) are taken.

	Worst Case	Base	Best Case
Sales (units) (A)	4,500	5,000	5,500
	(Rs.)	(Rs.)	(Rs.)
Selling Price p.u.	175	200	225
Less: Variable cost p.u.	150	125	100
Contribution p.u. (B)	25	75	125
Total Contribution $(A \times B)$	$1,12,500$	$3,75,000$	$6,87,500$
Less: Fixed Cost	$1,00,000$	75,000	50,000
EBT	12,500	$3,00,000$	$6,37,500$
Less: Tax @ 25\%	3,125	75,000	$1,59,375$
EAT	9,375	$2,25,000$	$4,78,125$
Add: Depreciation	35,000	35,000	35,000
Cash Inflow	44,375	$2,60,000$	$5,13,125$

(ii) Calculation of NPV in different scenarios

	Worst Case	Base	Best Case
Initial outlay (A) (Rs.)	$7,50,000$	$7,50,000$	$7,50,000$
Cash Inflow (c) (Rs.)	44,375	$2,60,000$	$5,13,125$
Cumulative PVF @ 15\% (d)	3.353	3.353	3.353
PV of Cash Inflow (B = cxd) (Rs.)	$1,48,789.38$	$8,71,780$	$17,20,508.13$
NPV (B - A) (Rs.)	$(6,01,210.62)$	$1,21,780$	$9,70,508.13$

Q. 32

Calculate NPV
MTP Nov 19
H Ltd. is considering a new product line to supplement its range of products. It is anticipated that the new product line will involve cash investments of Rs. $70,00,000$ at time 0 and Rs. $1,00,00,000$ in year 1. After-tax cash inflows of Rs. $25,00,000$ are expected in year 2, Rs. $30,00,000$ in year 3, Rs $35,00,000$ in year 4 and Rs. $40,00,000$ each year thereafter through year 10. Although the product line might be viable after year 10 , the company prefers to be conservative and end all calculations at that time.
(i) If the required rate of return is 15 per cent, FIND OUT the net present value of the project? Is it acceptable?
(ii) COMPUTE NPV if the required rate of return were 10 per cent?
(iii) COMPUTE the internal rate of return?
(i)

Year	Cash flow	Discount Factor (15\%)	Present value
	(Rs.)		(Rs.)
0	$(70,00,000)$		$(70,00,000)$
1	$(1,00,00,000)$	1.000	$(87,00,000)$
2	$25,00,000$	0.870	$18,90,000$
3	$30,00,000$	0.756	$19,74,000$
4	$35,00,000$	0.658	$20,02,000$

| $5-10$ | $40,00,000$ | 2.163 | $86,52,000$ |
| :---: | :---: | :---: | :---: | :---: |
| | | Net Present Value | $(11,82,000)$ |

As the net present value is negative, the project is unacceptable.
(ii) Similarly, NPV at 10\% discount rate can be computed as follows:

Year	Cash flow	Discount Factor (10\%)	Present value
	(Rs.)		(Rs.)
0	$(70,00,000)$	1.000	$(70,00,000)$
1	$(1,00,00,000)$	0.909	$(90,90,000)$
2	$25,00,000$	0.826	$20,65,000$
3	$30,00,000$	0.751	$22,53,000$
4	$35,00,000$	0.683	$23,90,500$
$5-10$	$40,00,000$	2.974	$1,18,96,000$
		Net Present Value	$25,14,500$

Since NPV = Rs.25,14,500 is positive, hence the project would be acceptable.
(iii) IRR $=L+\frac{N P V_{L}}{N P V_{L}-N P V_{H}}(H-L)$
$=10 \%+\frac{2514500}{2514500-(-) 1182000} \times(15 \%-10 \%)$
$=10 \%+3.4012$ or 13.40%

Q. 33

Calculate NPV

MTP May 19(2)
Probabilities for net cash flows for 3 years of a project of Ganesh Ltd are as follows:

Year 1		Year 2		Year 3	
Cash Flow (Rs.)	Probability	Cash Flow (Rs.)	Probability	Cash Flow (Rs.)	Probability
2,000	0.1	2,000	0.2	2,000	0.3
4,000	0.2	4,000	0.3	4,000	0.4
6,000	0.3	6,000	0.4	6,000	0.2
8,000	0.4	8,000	0.1	8,000	0.1

CALCULATE the expected net cash flows and the present value of the expected cash flow, using 10 per cent discount rate. Initial Investment is Rs. 10,000

Year 1			Year 2			Year 3		
Cash Flow (Rs.)	Probability	Expecte Value (Rs.)	Cash Flow (Rs.)	Probability Expected Value (Rs.) Cash Flow (Rs.) Probability	Expecte d Value (Rs.)			
2,000	0.1	200	2,000	0.2	400	2,000	0.3	600
4,000	0.2	800	4,000	0.3	1200	4,000	0.4	1,600
6,000	0.3	1,800	6,000	0.4	2400	6,000	0.2	1,200
8,000	0.4	3,200	8,000	0.1	800	8,000	0.1	800

The present value of the expected value of cash flow at 10 per cent discount rate has been determined as follows:
Present Value of cash flow $\quad=\frac{\mathrm{ENCF}_{1}}{(1+\mathrm{K})^{1}}+\frac{\mathrm{ENCF}_{2}}{(1+\mathrm{K})^{2}}+\frac{\mathrm{ENCF}_{3}}{(1+\mathrm{K})^{3}}$

$$
=\frac{6000}{(1.1)^{1}}+\frac{4800}{(1+1)^{2}}+\frac{4200}{(1.1)^{3}}
$$

$=(6,000 \times 0.909)+(4,800 \times 0.826)+(4,200+0.751)=12,573$
Expected Net Present value = Present Value of cash flow - Initial Investment
$=$ Rs. $12,573-$ Rs. $10,000=$ Rs.2,573.

NPV Method (Accept/Not)
Py Nov 20
CK LTd. is planning to buy a new machine. Details of which are as follows:
Cost of the Machine at the commencement ₹ $2,50,000$
Economic Life of the Machine 8 year
Residual Value
Annual Production Capacity of the Machine
Nil
1,00,000 units
Estimated Selling Price per unit
₹ 6
Estimated Variable Cost per unit
₹ 3
Estimated Annual Fixed Cost ₹ $1,00,000$
(Excluding depreciation)
Advertisement Expenses in 1st year in addition of annual fixed cost
Maintenance Expenses in 5 th year in addition of annual fixed cost
₹ 20,000

Cost of Capital
₹ 30,000
Ignore Tax.
12\%
Analyse the above mentioned proposal using the Net Present Value Method and advice. P.V. factor @ 12% are as under:

Year	1	2	3	4	5	6	7	8
PV Factor	0.893	0.797	0.712	0.636	0.567	0.507	0.452	0.404

Calculation of Net Cash flows

Contribution $=(₹ 6-₹ 3) \times 1,00,000$ units $=₹ 3,00,000$
Fixed costs (excluding depreciation) $=₹ 1,00,000$

Year	Capital (₹)	Contribution (₹)	Fixed costs (₹)	Advertisement/ Maintenance expenses (₹)	Net cash flow (₹)
0	$(2,50,000)$				$(2,50,000)$
1		$3,00,000$	$(1,00,000)$	$(20,000)$	$1,80,000$
2		$3,00,000$	$(1,00,000)$		$2,00,000$
3		$3,00,000$	$(1,00,000)$		$2,00,000$
4	$3,00,000$	$(1,00,000)$	$2,00,000$		
5	$3,00,000$	$(1,00,000)$	$(30,000)$	$1,70,000$	

6	$3,00,000$	$(1,00,000)$		$2,00,000$
7	$3,00,000$	$(1,00,000)$		$2,00,000$
8	$3,00,000$	$(1,00,000)$	$2,00,000$	

Calculation of Net Present Value

Year	Net cash flow (₹)	12% discount factor	Present value (₹)
0	$(2,50,000)$	1.000	$(2,50,000)$
1	$1,80,000$	0.893	$1,60,740$
2	$2,00,000$	0.797	$1,59,400$
3	$2,00,000$	0.712	$1,42,400$
4	$2,00,000$	0.636	$1,27,200$
5	$1,70,000$	0.567	96,390
6	$2,00,000$	0.507	$1,01,400$
7	$2,00,000$	0.452	90,400
8	$2,00,000$	0.404	80,800
			$7,08,730$

Advise: CK Ltd. should buy the new machine, as the net present value of the proposal is positive i.e ₹ $7,08,730$.

PD Ltd. an existing company, is planning to introduce a new product with projected life of 8 years. Project cost will be ₹ $2,40,00,000$. At the end of 8 years no residual value will be realized. Working capital of ₹ $30,00,000$ will be needed. The 100% capacity of the project is $2,00,000$ units p.a. but the Production and Sales Volume is expected are as under :

Year	Number of Units
1	60,000 units
2	80,000 units
$3-5$	$1,40,000$ units
$6-8$	$1,20,000$ units

Other Information:
(i) Selling price per unit ₹ 200
(ii) Variable cost is 40 of sales.
(iii) Fixed cost p.a. ₹ $30,00,000$.
(iv) In addition to these advertisement expenditure will have to be incurred as under:

Year	1	2	$3-5$	$6-8$
Expenditure (₹)	$50,00,000$	$25,00,000$	$10,00,000$	$5,00,000$

(v) Income Tax is 25%.
(vi) Straight line method of depreciation is permissible for tax purpose. (vii) Cost of capital is 10%.
(viii) Assume that loss cannot be carried forward.

Year	1	2	3	4	5	6	7	8
PVF@10	0.909	0.826	0.751	0.683	0.621	0.564	0.513	0.467

Advise about the project acceptability.

CA Amit Sharma
Ans.
Computation of initial cash outlay(COF)

	(₹ in lakhs)
Project Cost	240
Working Capital	$\underline{30}$

Calculation of Cash Inflows(CIF):

Years	1	2	$3-5$	$6-8$
Sales in units	60,000	80,000	$1,40,000$	$1,20,000$
	$₹$	$₹$	$₹$	$₹$
Contribution (₹ $200 \times 60 \% \times$ No. of Unit)	$\underline{72,00,000}$	$\underline{96,00,000}$	$\underline{1,68,00,000}$	$\underline{1,44,00,000}$
Less: Fixed cost	$30,00,000$	$30,00,000$	$30,00,000$	$30,00,000$
Less: Advertisement	$50,00,000$	$25,00,000$	$10,00,000$	$5,00,000$
Less: Depreciation (24000000/8) $=30,00,000$	$\underline{30,00,000}$	$\underline{30,00,000}$	$\underline{30,00,000}$	$\underline{30,00,000}$
Profit /(loss)	$(38,00,000)$	$11,00,000$	$98,00,000$	$79,00,000$
Less: Tax @ 25%	$\underline{\text { NIL }}$	$\underline{2,75,000}$	$\underline{\underline{24,50,000}}$	$\underline{19,75,000}$
Profit/(Loss) after tax	$(38,00,000)$	$8,25,000$	$73,50,000$	$59,25,000$
Add: Depreciation	$\underline{30,00,000}$	$\underline{30,00,000}$	$\underline{30,00,000}$	$\underline{30,00,000}$
Cash inflow	$(8,00,000)$	$38,25,000$	$1,03,50,000$	$89,25,000$

(Note: Since variable cost is 40%, Contribution shall be 60% of sales)
Computation of PV of CIF

Year	CIF	PV Factor	
	₹	@ 10%	₹
1	$(8,00,000)$	0.909	$(7,27,200)$
2	$38,25,000$	0.826	$31,59,450$
3	$1,03,50,000$	0.751	$77,72,850$
4	$1,03,50,000$	0.683	$70,69,050$
5	$1,03,50,000$	0.621	$64,27,350$
6	$89,25,000$	0.564	$50,33,700$
7	$89,25,000$	0.513	$45,78,525$
8	$89,25,000$		
Working Capital	$30,00,000$	0.467	$55,68,975$
			$3,88,82,700$
			$2,70,00,000$
		PV of COF	
		NPV	$1,18,82,700$

Recommendation: Accept the project in view of positive NPV.

Investing Decision

PY May 19
AT Limited is considering three projects A, B and C. The cash flows associated with the projects are given below:
Cash flows associated with the Three Projects (₹)

Project	C_{0}	C_{1}	C_{2}	C_{3}	C_{3}
A	$(10,000)$	2,000	2,000	6,000	0
B	$(2,000)$	0	2,000	4,000	6,000
C	$(10,000)$	2,000	2,000	6,000	10,000

You are required to :
(a) Calculate the payback period of each of the three projects.
(b) If the cut-off period is two years, then which projects should be accepted?
(c) Projects with positive NPVs if the opportunity cost of capital is 10 percent.
(d) "Payback gives too much weight to cash flows that occur after the cut-off date". True or false?
(e) "If a firm used a single cut-off period for all projects, it is likely to accept too many short lived projects." True or false?
P.V. Factor @ 10 \%

Year	0	1	2	3	4	5
P.V.	1.000	0.909	0.826	0.751	0.683	0.621

(a) Payback Period of Projects

Projects	$C_{0}(₹)$	$C_{1}(₹)$	$C_{2}(₹)$	$C_{3}(₹)$	Payback
A	$(10,000)$	2000	2000	6,000	$2,000+2,000+6,000=10,000$ i.e 3 years
B	$(2,000)$	0	2,000	NA	$0+2,000=2,000$ i.e 2 years
C	$(10,000)$	2000	2000	6,000	$2,000+2,000+6,000=10,000$ i.e 3 years

(b) If standard payback period is 2 years, Project B is the only acceptable project.
(c) Calculation of NPV

Year	PVF	Project A		Project B		Project C	
	@ 10%	Cash Flows $(₹)$	PV of cash flows $(₹)$	Cash Flows $(₹)$	PV of cash flows $(₹)$	Cash Flows $(₹)$	PV of cash flows $(₹)$
0	1	$(10,000)$	$(10,000)$	$(2,000)$	$(2,000)$	$(10,000)$	$(10,000)$
1	0.909	2,000	1,818	0	0	2,000	1,818
2	0.826	2,000	1,652	2,000	1,652	2,000	1,652
3	0.751	6,000	4506	4,000	3004	6,000	4,506
4	0.683	0	0	6,000	4,098	10,000	6,830
NPV			$(-2,024)$		6,754		4,806

So, Projects with positive NPV are Project B and Project C
(d) False. Payback gives no weightage to cash flows after the cut-off date.
(e) True. The payback rule ignores all cash flows after the cutoff date, meaning that future years' cash inflows are not considered. Thus, payback is biased towards short-term projects.

Shiv Limited is thinking of replacing its existing machine by a new machine which would cost ₹ 60 lakhs. The company's current production is 80,000 units, and is expected to increase to $1,00,000$ units, if the new machine is bought. The selling price of the product would remain unchanged at ₹ 200 per unit. The following is the cost of producing one unit of product using both the existing and new machine:

	Existing Machine $(80,000$ units $)$	New Machine $(1,00,000$ units $)$	Difference
Materials	75.0	63.75	(11.25)
Wages \& Salaries	51.25	37.50	(13.75)
Supervision	20.0	25.0	5.0
Repairs and Maintenance	11.25	7.50	(3.75)
Power and Fuel	15.50	14.25	(1.25)
Depreciation	0.25	5.0	4.75
Allocated Corporate Overheads	$\underline{10.0}$	$\underline{12.50}$	$\underline{2.50}$

The existing machine has an accounting book value of ₹ $1,00,000$, and it has been fully depreciated for tax purpose. It is estimated that machine will be useful for 5 years. The supplier of the new machine has offered to accept the old machine for ₹ $2,50,000$. However, the market price of old machine today is ₹ $1,50,000$ and it is expected to be ₹ 35,000 after 5 years. The new machine has a life of 5 years and a salvage value of ₹ $2,50,000$ at the end of its economic life. Assume corporate Income tax rate at 40\%, and depreciation is charged on straight line basis for Income-tax purposes. Further assume that book profit is treated as ordinary income for tax purpose. The opportunity cost of capital of the Company is 15%.
Required:
(i) ESTIMATE net present value of the replacement decision.
(ii) CALCULATE the internal rate of return of the replacement decision.
(iii) Should Company go ahead with the replacement decision? ANALYSE.

Year (\dagger)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
PVIF $_{0.15 t}$	0.8696	0.7561	0.6575	0.5718	0.4972
PVIF $_{0.20 t}$	0.8333	0.6944	0.5787	0.4823	0.4019
PVIF $_{0.25 t}$	0.80	0.64	0.512	0.4096	0.3277
PVIF $_{0.30+}$	0.7692	0.5917	0.4552	0.3501	0.2693
PVIF $_{0.35 t}$	0.7407	0.5487	0.4064	0.3011	0.2230

Ans. (i) Net Cash Outlay of New Machine Purchase Price
Less: Exchange value of old machine [2,50,000-0.4(2,50,000-0)]
₹ $60,00,000$
$1,50,000$
₹ $58,50,000$

Market Value of Old Machine: The old machine could be sold for ₹ $1,50,000$ in the market. Since the exchange value is more than the market value, this option is not attractive. This opportunity will be lost whether the old machine is retained or replaced. Thus, on incremental basis, it has no impact.
Depreciation base: Old machine has been fully depreciated for tax purpose.
Thus, the depreciation base of the new machine will be its original cost i.e. ₹ $60,00,000$.

Net Cash Flows: Unit cost includes depreciation and allocated overheads. Allocated overheads are allocated from corporate office therefore they are irrelevant. The depreciation tax shield may be computed separately. Excluding depreciation and allocated overheads, unit costs can be calculated. The company will obtain additional revenue from additional 20,000 units sold.
Thus, after-tax saving, excluding depreciation, tax shield, would be
$=\{100,000(200-148)-80,000(200-173)\} \times(1-0.40)$
$=\{52,00,000-21,60,000\} \times 0.60$
= ₹ $18,24,000$
After adjusting depreciation tax shield and salvage value, net cash flows and net present value are estimated.
Calculation of Cash flows and Project Profitability

$₹(1000)$						
	0	1	2	3	4	5
1 After-tax savings	-	1824	1824	1824	1824	1824
$\left\lvert\, \begin{array}{ll} 2 & \text { Depreciation } \\ (₹ 60,00,000-2,50,000) / 5 \end{array}\right.$	-	1150	1150	1150	1150	1150
3 Tax shield on depreciation (Depreciation \times Tax rate)	-	460	460	460	460	460
4 Net cash flows from operations (1+3)*	-	2284	2284	2284	2284	2284
5 Initial cost	(5850)					
6 Net Salvage Value	-	-	-	-	-	215
7 Net Cash Flows (4+5+6)	(5850)	2284	2284	2284	2284	2499
8 PVF at 15\%	1.00	0.8696	0.7561	0.6575	0.5718	0.4972
9 PV	(5850)	1986.166	1726.932	1501.73	1305.99	1242.50
10 NPV	$₹ 1913.32$					

* Alternately Net Cash flows from operation can be calculated as follows:

Profit before depreciation and tax = ₹ 1,00,000 (200-148) - 80,000 (200-173)

$$
\begin{aligned}
& =₹ 52,00,000-21,60,000 \\
& =₹ 30,40,000
\end{aligned}
$$

So profit after depreciation and tax is ₹ $(30,40,000-11,50,000) \times(1-.40)$
= ₹ 11,34,000

So profit before depreciation and after tax is :
₹ $11,34,000+₹ 11,50,000$ (Depreciation added back) $=$ ₹ $22,84,000$
(ii)

$₹(1000)$						
	0	1	2	3	4	5
NCF	(5850)	2284	2284	2284	2284	2499
PVF at 20\%	1.00	0.8333	0.6944	0.5787	0.4823	0.4019
PV	(5850)	1903.257	1586.01	1321.751	1101.57	1004.35
PV of benefits	6916.94					
PVF at 30\%	1.00	0.7692	0.5917	0.4550	0.3501	0.2693
PV	(5850)	1756.85	1351.44	1039.22	799.63	672.98
PV of benefits	5620.12					

IRR $=20 \%+10 \% \times \frac{1066.94}{1296.82}=28.23 \%$
(iii) Advise: The Company should go ahead with replacement project, since it is positive NPV decision.

NPV, Payback \& Disc Payback
PY Nov 19
A company has ₹ $1,00,000$ available for investment and has identified the following four investments in which to invest.

Project	Investment (₹)	NPV (₹)
C	40,000	20,000
D	$1,00,000$	35,000
E	50,000	24,000
F	60,000	18,000

You are required to optimize the returns from a package of projects within the capital spending limit if-
(i) The projects are independent of each other and are divisible.
(ii) The projects are not divisible.

Ans.
(i) Optimizing returns when projects are independent and divisible.

Computation of NPVs per Re. 1 of Investment and Ranking of the Projects

Project	Investment (₹)	NPV (₹)	NPV per Re. 1 invested (₹)	Ranking
C	40,000	20,000	0.50	1
D	$1,00,000$	35,000	0.35	3
E	50,000	24,000	0.48	2
F	60,000	18,000	0.30	4

Building up of a Package of Projects based on their Rankings

Project	Investment (₹)	NPV (₹)
C	40,000	20,000
E	50,000	24,000
(1/10th of Project)	10,000	3,500
Total		

The company would be well advised to invest in Projects C, E and $D(1 / 10$ th $)$ and reject Project F to optimise return within the amount of ₹ $1,00,000$ available for investment.
(ii) Optimizing returns when projects are indivisible.

Package of Project	Investment (₹)	Total NPV (₹)
C and E	90,000	44,000
	$(40,000+50,000)$	$(20,000+24,000)$
C and F	$1,00,000$	38,000
	$(40,000+60,000)$	$(20,000+18,000)$
Only D	$1,00,000$	35,000

The company would be well advised to invest in Projects C and E to optimise return within the amount of $₹$ $1,00,000$ available for investment.

NPV, Payback \& Disc Payback MTP Nov 23(1)
A firm can make investment in either of the following two projects. The firm anticipates its cost of capital to be 10%. The pre-tax cash flows of the projects for five years are as follows:

Year	0	1	2	3	4	5
Project A (₹)	$(3,00,000)$	55,000	$1,20,000$	$1,30,000$	$1,05,000$	40,000
Project 8 (₹)	$(3,00,000)$	$3,18,000$	20,000	20,000	8,000	6,000

Ignore Taxation.

An amount of ₹ 45,000 will be spent on account of sales promotion in year 3 in case of Project A. This has not been considered in calculation of pre-tax cash flows.
The discount factors are as under:

Year	0	1	2	3	4	5
PVF (10\%)	1	0.91	0.83	0.75	0.68	0.62

You are required to calculate for each project:
(i) The payback period
(ii) The discounted payback period
(iii) Desirability factor
(iv) Net Present Value

Calculation of Present Value of cash flows

Year	$\begin{gathered} \text { PV factor @ } \\ 10 \% \end{gathered}$	Project A		Project B	
		Cash flows (₹)	Discounted Cash flows	Cash flows (₹)	Discounted Cash flows
0	1.00	$(3,00,000)$	$(3,00,000)$	$(3,00,000)$	$(3,00,000)$
1	0.91	55,000	50,050	3,18,000	2,89,380
2	0.83	1,20,000	99,600	20,000	16,600
3	0.75	85,000(1,30,000-45,000)	63,750	20,000	15,000
4	0.68	1,05,000	71,400	8,000	5,440
5	0.62	40,000	24,800	6,000	3,720
Net Present Value			9,600		30,140

(i) The Payback period of the projects:

Project-A: The cumulative cash inflows up-to year 3 is ₹ $2,60,000$ and remaining amount required to equate the cash outflow is ₹ 40,000 i.e. (₹ $3,00,000$ - ₹ $2,60,000$) which will be recovered from year- 4 cash inflow. Hence, Payback period will be calculated as below:
3 years $+\frac{40000}{105000}=3.381$ years or 3 years, 4 months, 9 days (approx.)
Project-B: The cash inflow in year-1 is ₹ $3,18,000$ and the amount required to equate the cash outflow is ₹ $3,00,000$, which can be recovered in a period less than a year. Hence, Payback period will be calculated as below:
$\frac{300000}{318000}=0.943$ years or 11 months
(ii) Discounted Payback period for the projects:

Project-A: The cumulative discounted cash inflows up-to year 4 is ₹ $2,84,800$ and remaining amount required to equate the cash outflow is ₹ 15,200 i.e. ($3,00,000$ - ₹ $2,84,800$) which will be recovered from year- 5 cash inflow. Hence, Payback period will be calculated as below:

4 years $+\frac{15200}{24800}=4.613$ years or 4 years, 2 months, and 11 days
Project-B: The cash inflow in year-1 is ₹ $2,89,380$ and remaining amount required to equate the cash outflow is ₹ 10,620 i.e. ($₹ 3,00,000-₹ 2,89,380$) which will be recovered from year-2 cash inflow. Hence, Payback period will be calculated as below:
1 year $+\frac{10620}{16600}=1.640$ years or 1 Year, 7 months and 23 days.
(iii) Desirability factor of the projects

Desirability Factor (Profitability Index) $=\frac{\text { Discounted value Cash Inflows }}{\text { Discounted value of Cash }}$
Project $A=\frac{309600}{300000}=1.032$
Project $B=\frac{330140}{300000}=1.100$
(iv) Net Present Value (NPV) of the projects:

Please refer the above table.
Project A- ₹ 9,600
Project B- ₹ 30,140
(a) Rambow Ltd. is contemplating purchasing machinery that would cost ₹ $10,00,000$ plus $G S T$ @ 18% at the beginning of year 1. Cash inflows after tax from operations have been estimated at ₹ $2,56,000$ per annum for 5 years. The company has two options for the smooth functioning of the machinery - one is service, and another is replacement of parts. The company has the option to service a part of the machinery at the end of each of the years 2 and 4 at ₹ $1,00,000$ plus GST @ 18% for each year. In such a case, the scrap value at the end of year 5 will be ₹ 76,000 . However, if the company decides not to service the part, then it will have to be replaced at the end of year 3 at ₹ $3,00,000$ plus GST@ 18% and in this case, the machinery will work for the 6th year also and get operational cash inflow of ₹ $1,86,000$ for the 6 th year. It will have to be scrapped at the end of year 6 at ₹ $1,36,000$.
Assume cost of capital at 12% and GST paid on all inputs including capital goods are eligible for input tax credit in the same month as and when incurred.
(i) DECIDE whether the machinery should be purchased under option 1 or under option 2 or it shouldn't be purchased at all.
(ii) If the supplier gives a discount of ₹ 90,000 for purchase, WHAT would be your decision? Note: The PV factors at 12% are:

Year	0	1	2	3	4	5	6
PV Factor	1	0.8928	0.7972	0.7118	0.6355	0.5674	0.5066

Ans. Option I: Purchase Machinery and Service Part at the end of Year 2 and 4.
Net Present value of cash flow @ 12% per annum discount rate.
NPV (in ₹) $=-10,00,000+2,56,000 \times(0.8928+0.7972+0.7118+0.6355+0.5674)-(1,00,000 \times 0.7972+1,00,000 \times$ $0.6355)+(76,000 \times 0.5674)$
$=-10,00,000+(2,56,000 \times 3.6047)-1,43,270+43,122.4$
$=-10,00,000+9,22,803.2-1,43,270+43,122.4$
NPV $=-1,77,344.4$
Since Net Present Value is negative; therefore, this option is not to be considered.
If Supplier gives a discount of ₹ 90,000, then:
NPV (in ₹) $=+90,000-1,77,344.4=-87,344.4$
In this case, Net Present Value is still negative; therefore, this option may not be advisable
Option II: Purchase Machinery and Replace Part at the end of Year 2.

NPV (in ₹) $=-10,00,000+2,56,000 \times(0.8928+0.7972+0.7118+0.6355+0.5674)-(3,00,000 \times 0.7118)+(1,86,000$ $\times 0.5066+1,36,000 \times 0.5066)$
$=-10,00,000+(2,56,000 \times 3.6047)-2,13,540+1,63,125.2$
$=-10,00,000+9,22,803.2-2,13,540+1,63,125.2$
NPV $=-1,27,611.6$
Net Present Value is negative, the machinery should not be purchased.
If the Supplier gives a discount of $₹ 90,000$, then:
NPV (in ₹) $=90,000-1,27,611.6=-37,611.6$
In this case, Net Present Value is still negative; therefore, this option may not be advisa ble.
Decision: The Machinery should not be purchased as it will earn a negative NPV in both options of repair and replacement.

Purchase Machine or Not MTP May 23(1)
Yellow bells Ltd. wants to replace its old machine with new automatic machine. The old machine had been fully depreciated for tax purpose but has a book value of ₹ $3,50,000$ on 31 st March 2022. The machine cannot fetch more than ₹ 45,000 if sold in the market at present. It will have no realizable value after 10 years. The company has been offered $₹ 1,60,000$ for the old machine as a trade in on the new machine which has a price (before allowance for trade in) of $₹ 6,50,000$. The expected life of new machine is 10 years with salvage value of $₹ 63,000$. Further, the company follows straight line depreciation method but for tax purpose, wri tten down value method depreciation @ 9% is allowed taking that this is the only machine in the block of assets.
Given below are the expected sales and costs from both old and new machine:

	Old machine (₹)	New machine (₹)
Sales	$11,74,500$	$11,74,500$
Material cost	$2,61,000$	$1,83,063$
Labour cost	$1,95,750$	$1,59,500$
Variable overhead	81,563	68,875
Fixed overhead	$1,30,500$	$1,41,375$
Depreciation	34,800	60,175
Profit Before Tax (PBT)	$4,70,888$	$5,61,513$
Tax @ 25\%	$1,17,722$	$1,40,378$
Profit After Tax (PAT)	$3,53,166$	$4,21,134$

From the above information, ANALYSE whether the old machine should be replaced or not if required rate of return is 10% ? Ignore capital gain tax.
PV factors @ 10\%:

Year	1	2	3	4	5	6	7	8	9	10
PVF	0.909	0.826	0.751	0.683	0.621	0.564	0.513	0.467	0.424	0.386

(i) Calculation of Base for depreciation or Cost of New Machine

Particulars	$(₹)$
Purchase price of new machine	$6,50,000$
Less: Sale price of old machine	$1,60,000$
	$4,90,000$

(iii) Calculation of Profit before tax as per books

Particulars	Old machine (₹)	New machine (₹)

PBT as per books	$4,70,888$	$5,61,513$	90,625
Add: Depreciation as per books	34,800	60,175	25,375
Profit before tax and depreciation	$5,05,688$	$6,21,688$	$1,16,000$

Calculation of Incremental NPV

Analysis: Since the Incremental NPV is positive, the old machine should be replaced.
Purchase Machine or Not
MTP Nov 22(1)
Emb ros Ltd. is planning to invest in a new product with a project life of 8 years. Initial equipment cost will be ₹ 35 crores. Additional equipment costing ₹ 2.50 crores will be purchased at the end of the third year from the cash inflow of this year. At the end of 8 th year, the original equipment will have no resale value, but additional equipment can be sold at 10% of its original cost. A working capital of ₹ 4 crores will be needed, and it will be released at the end of 8 th year. The project will be financed with sufficient amount of equity capital.
The sales volumes over eight years have been estimated as follows:

Year	1	2	3	$4-5$	
Units	$14,40,000$	$21,60,000$	$52,00,000$	$54,00,000$	$36,00,000$

Sales price of ₹ 120 per unit is expected and variable expenses will amount to 60% of sales revenue. Fixed cash operating costs will amount ₹ 3.60 crores per year. The loss of any year will be set off from the profits of subsequent year. The company follows straight line method of depreciation and is subject to 30% tax rate. Considering 12% after tax cost of capital for this project, you are required to CALCULATE the net present value (NPV) of the project and advise the management to take appropriate decision.
PV factors @ 12% are:

Year	1	2	3	4	5	6	7	8
	.893	.797	.712	.636	.567	.507	.452	.404

Ans.
Calculation of year-wise Cash Inflow
(₹ in crores)

Year	Sales	VC $(60 \%$ of Sales Value) $)$	FC	Dep.	Profit	Tax $(@ 30 \%)$	PAT	Dep.	Cash inflow
1	17.28	10.368	3.6	4.375	(1.063)	-	(1.0630)	4.375	3.312
2	25.92	15.552	3.6	4.375	2.393	0.3990^{\star}	1.9940	4.375	6.369
3	62.4	37.44	3.6	4.375	16.985	5.0955	11.8895	4.375	16.2645
$4-5$	64.8	38.88	3.6	$4.825^{\#}$	17.495	5.2485	12.2465	4.825	17.0715
$6-8$	43.2	25.92	3.6	4.825	8.855	2.6565	6.1985	4.825	11.0235

*(30\% of 2.393-30\% of 1.063) $=0.7179-0.3189=0.3990$
$\# 4.375+(2.50-.25) / 5=4.825$
Calculation of Cash Outflow at the beginning

Particulars	₹
Cost of New Equipment	$35,00,00,000$
Add: Working Capital	$4,00,00,000$
Outflow	$39,00,00,000$

Calculation of NPV

Year	Cash inflows (₹)	PV factor	NPV (₹)
1	3,31,20,000	. 893	2,95,76,160
2	6,36,90,000	. 797	5,07,60,930
3	$16,26,45,000-2,50,00,000=13,76,45,000$. 712	9,80,03,240
4	17,07,15,000	. 636	10,85,74,740
5	17,07,15,000	. 567	9,67,95,405
6	11,02,35,000	. 507	5,58,89,145
7	11,02,35,000	. 452	4,98,26,220
8	11,02,35,000 + 4,00,00,000 + 25,00,000 = 15,27,35,000 Present Value of Inflow Less: Out flow Net Present Value	. 404	6,17,04,940
			55,11,30,780
			39,00,00,000
			16,11,30,780

Advise: Since the project has a positive NPV, it may be accepted.

Manoran jan Ltd is a News broadcasting channel having its broadcasting Centre in Mumbai. There are total 200 employees in the organisation including top management. As a part of employee benefit expenses, the company serves tea or coffee to its employees, which is outsourced from a third -party. The company offers tea or coffee three times a day to each of its employees. 120 employees prefer tea all three times, 40 employees prefer coffee all three times and remaining prefer tea only once in a day. The third-party charges ₹ 10 for each cup of tea and $₹ 15$ for each cup of coffee. The company works for 200 days in a year.

Looking at the substantial amount of expenditure on tea and coffee, the finance department has proposed to the management an installation of a master tea and coffee vending machine which will cost ₹ $10,00,000$ with a useful life of five years. Upon purchasing the machine, the company will have to enter into an annual maintenance contract with the vendor, which will require a payment of ₹ 75,000 every year. The machine would require electricity consumption of 500 units p.m. and current incremental cost of electricity for the company is ₹ 12 per unit. Apart from these running costs, the company will have to incur the following consumables expenditure also:
(1) Packets of Coffee beans at a cost of ₹ 90 per packet.
(2) Packet of tea powder at a cost of ₹ 70 per packet.
(3) Sugar at a cost of ₹ 50 per Kg .
(4) Milk at a cost of ₹ 50 per litre.
(5) Paper cup at a cost of 20 paise per cup.

Each packet of coffee beans would produce 200 cups of coffee and same goes for tea powder packet.
Each cup of tea or coffee would consist of 10 g of sugar on an average and 100 ml of milk.
The company anticipate that due to ready availability of tea and coffee through vending machines its employees would end up consuming more tea and coffee. It estimates that the consumption will incr ease by on an average 20\% for all class of employees. Also, the paper cups consumption will be 10% more than the actual cups served due to leakages in them.
The company is in the 25% tax bracket and has a current cost of capital at 12% per annum. Straight line method of depreciation is allowed for the purpose of taxation. You as a financial consultant is required to ADVISE on the feasibility of acquiring the vending machine.
PV factors @ 12\%:

Year	1	2	3	4	5
PVF	0.8929	0.7972	0.7118	0.6355	0.5674

A. Computation of CFAT (Year 1 to 5)

Particulars		Amount (₹)	
(a)	Savings in existing	$(120 \times 10 \times 3)+(40 \times 15 \times 3)+(40 \times 10 \times 1)$	$11,60,000$
	Tea \& Coffee charges	$\times 200$ days	
(b)	AMC of machine		$(75,000)$
(c)	Electricity charges	$500 \times 12 \times 12$	$(72,000)$
(d)	Coffee Beans	(W.N.) 144×90	$(12,960)$
(e)	Tea Powder	(W.N.) 480×70	$(33,600)$
(f)	Sugar	(W.N. $) 1248 \times 50$	$(62,400)$
(g)	Milk	(W.N.) 12480×50	$(6,24,000)$
(h)	Paper Cup	(W.N.) $1,37,280 \times 0.2$	$(27,456)$
(i)	Depreciation	$10,00,000 / 5$	$(2,00,000)$
Profit before Tax		52,584	
(-) Tax @ 25%		$(13,146)$	
Profit after Tax		39,438	
Depreciation	$2,00,000$		
CFAT			

B. Computation of NPV

Year	Particulars	CF	PVF @ 12\%	PV
0	Cost of machine	$(10,00,00)$	1	$(10,00,000)$
$1-5$	CFAT	$2,39,438$	3.6048	$8,63,126$

CA Amit Sharma

Net Present Value

Since NPV of the machine is negative, it should not be purchased.

Working Note:

Computation of Qty of consumable
No. of Tea Cups $=[(120 \times 3 \times 200$ days $)+(40 \times 1 \times 200$ days $) \times 1.2=96,000$
No. of Coffee cups $=40 \times 3 \times 200$ days $\times 1.2=28,800$
No. of coffee beans packet $=\frac{28800}{200}$
$=144$
No. of Tea Powder Packets $=\frac{96000}{200}=480$
Qty of Sugar $=\frac{(96000+28800) \times 10 \mathrm{~g}}{1000 \mathrm{~g}} \quad=1248 \mathrm{kgs}$
Qty of Milk $\quad=\frac{(96000+28800) \times 100 \mathrm{ml}}{1000 \mathrm{ml}} \quad=12,480$ litres
No. of paper cups $=(96,000+28,800) \times 1.1=1,37,280$

City Clap Ltd. is in the business of providing housekeeping services. There is a proposal before the company to purchase a mechanized cleaning system for a sum of Rs. 40 lakhs. The present system of the company is to use manual labour for the cleaning job. You are provided with the following information:

Proposed Mechanized System:
Cost of the machine Rs. 40 lakhs
Life of the machine 7 years

Depreciation (on straight line basis)
Operating cost of mechanized system
15\%
Rs. 20 lakhs per annum

Present system (Manual):
Manual labour
350 persons
Cost of manual labour

Rs. 15,000 per person per annum

The company has an after-tax cost of fund at 10% per annum.
The applicable tax rate is 50%.

Calculation of NPV

	(Rs.)	(Rs.)
Cost of Manual System (Rs. 15,000 $\times 350$)		52,50,000
Less: Cost of Mechanised System:		
Operating Cost	20,00,000	
Depreciation (Rs. $40,00,000 \times 0.15$)	6,00,000	26,00,000
Saving per annum		26,50,000
Less: Tax (50\%)		13,25,000
Saving after tax		13,25,000
Add: Depreciation		6,00,000
Cash flow per annum		19,25,000
Cumulative PV Factor for 7 years @ 10\%		4.867

```
Present value of cash flow for }7\mathrm{ years
Less: Cost of the Machine
NPV
```

 93,68,975
 40,00,000
53,68,975

The mechanized cleaning system should be purchased since NPV is positive by Rs. $53,68,975$.
Purchase Machine or Not MTP May 21(1)

GG Pat hology Lab Ltd. is using 2D sonography machine which has reached the end of its useful life. The lab is intending to upgrade along with the technology by investing in 3D sonography machine as per the choices preferred by the patients. Following new 3D s onography machine of two different brands with same features is available in the market:

Brand	Cost of machine (Rs.)	Life of machine (Rs.)	Maintenance Cost (Rs.)			SLM Depreciation rate (\%)
			Year 1-5	Year 6-10	Year 11-15	
X	15,00,000	15	50,000	70,000	98,000	6
Y	10,00,000	10	70,000	1,15,000	-	6

Residual Value of machines shall be dropped by 10% and 40% of Purchase price for Brand X and Y respectively in the first year and thereafter shall be depreciated at the rate mentioned above on the original cost. Alternatively, the machine of Brand Y can also be taken on rent to be returned back to the owner after use on the following terms and conditions:

- Annual Rent shall be paid in the beginning of each year and for first year it shall be Rs. $2,24,000$. Annual Rent for the subsequent 4 years shall be Rs. 2,25,000.
- Annual Rent for the final 5 years shall be Rs. 2,70,000.
- The Rent/Agreement can be terminated by GG Labs by making a payment of Rs. $2,20,000$ as penalty. This penalty would be reduced by Rs. 22,000 each year of the period of rental agreement.
You are required to:
(i) ADVISE which brand of 3D sonography machine should be acquired assuming that the use of machine shall be continued for a period of 20 years.
(ii) STATE which of the option is most economical if machine is likely to be used for a period of 5 years? The cost of capital of $G G$ Labs is 12%.
The present value factor of Rs. 1 @ 12% for different years is given as under:

Year	PVF	Year	PVF
1	0.893	9	0.361
2	0.797	10	0.322
3	0.712	11	0.287
4	0.636	12	0.257
5	0.567	13	0.229
6	0.507	14	0.205
7	0.452		0.183
8	0.404	16	0.163

Since the life span of each machine is different and time span exceeds the useful lives of each modeI, we shall use Equivalent Annual Cost method to decide which brand should be chosen.
(i) If machine is used for 20 years
(a) Residual value of machine of brand X
$=$ [Rs. 15,00,000-(1-0.10)] - (Rs. 15,00,000 $\times 0.06 \times 14$) $=$ Rs. 90,000
(b) Residual value of machine of brand Y
$=[$ Rs. $10,00,000-(1-0.40)]$ - (Rs. $10,00,000 \times 0.06 \times 9)=$ Rs. 60,000
Present Value (PV) of cost if machine of brand X is purchased

Period	Cash Outflow (Rs.)	PVF @ 12\%	PV (Rs.)
0	$15,00,000$	1.000	$15,00,000$
$1-5$	50,000	3.605	$1,80,250$
$6-10$	70,000	2.046	$1,43,220$
$11-15$	98,000	1.161	$1,13,778$
15	$(90,000)$	0.183	$(16,470)$

PVAF for 1-15 years $=6.812$
Equivalent Annual Cost $=\frac{1920778}{6.812}=$ Rs. 2,81,969.76
Present Value (PV) of cost if machine of brand Y is purchased

Period	Cash Outflow (Rs.)	PVF @ 12\%	PV (Rs.)
0	$10,00,000$	1.000	$10,00,000$
$1-5$	70,000	3.605	$2,52,350$
$6-10$	$1,15,000$	2.046	$2,35,290$
10	$(60,000)$	0.322	$(19,320)$
			$14,68,320$

PVAF for 1-10 years $=5.651$
Equivalent Annual Cost $=\frac{1468320}{5.651}=$ Rs. $2,59,833.66$
Present Value (PV) of cost if machine of brand Y is taken on rent

Period	Cash Outflow (Rs.)	PVF @ 12\%	PV (Rs.)
0	$2,24,000$	1.000	$2,24,000$
$1-4$	$2,25,000$	3.038	$6,83,550$
$5-9$	$2,70,000$	2.291	$6,18,570$

PVAF for 1-10 years $=5.651$
Equivalent Annual Cost $=\frac{1526120}{5.651}=$ Rs. 2,70,061.94
Decision: Since Equivalent Annual Cash Outflow is least in case of purchase of Machine of brand Y the same should be purchased.
(ii) If machine is used for 5 years
(a) Scrap value of machine of brand X
$=[$ Rs. 15,00,000-(1-0.10) $]$ - (Rs. 15,00,000 $\times 0.06 \times 4)=$ Rs. 9,90,000
(b) Scrap value of machine of brand Y
$=[$ Rs. $10,00,000-(1-0.40)]-($ Rs. $10,00,000 \times 0.06 \times 4)=$ Rs. $3,60,000$
Present Value (PV) of cost if machine of brand X is purchased
Period \mid Cash Outflow (Rs.) \quad PVF @ 12\% \quad PV (Rs.)

0	$15,00,000$	1.000	$15,00,000$
$1-5$	50,000	3.605	$1,80,250$
5	$(9,90,000)$	0.567	$(5,61,330)$
			$11,18,920$

Present Value (PV) of cost if machine of brand Y is purchased

Period	Cash Outflow (Rs.)	PVF @ 12\%	PV (Rs.)
0	$10,00,000$	1.000	$10,00,000$
$1-5$	70,000	3.605	$2,52,350$
5	$(3,60,000)$	0.567	$(2,04,120)$
			$10,48,230$

Present Value (PV) of cost if machine of brand Y is taken on rent

Period	Cash Outflow (Rs.)	PVF @ 12\%	PV (Rs.)
0	$2,24,000$	1.000	$2,24,000$
$1-4$	$2,25,000$	3.038	$6,83,550$
5	$1,10,000^{\star}$	0.567	62,370
			$9,69,920$

* [Rs. 2,20,000-(Rs. 22,000 $\times 5$) $=$ Rs. 1,10,000]

Decision: Since Cash Outflow is least in case of rent of Machine of brand Y the same should be taken on rent.
Replace Machine using NPV
RTP May 22
$A B C$ \& $C o$. is considering whether to replace an existing machine or to spend money on revamping it. $A B C$ \& Co. currently pays no taxes. The replacement machine costs ₹ $18,00,000$ now and requires maintenance of $₹$ $2,00,000$ at the end of every year for eight years. At the end of eight years, it would have a salvage value of $₹$ $4,00,000$ and would be sold. The existing machine requires increasing amounts of maintenance each year and its salvage value fall each year as follows:

Year	Maintenance (₹)	Salvage (₹)
Present	0	$8,00,000$
1	$2,00,000$	$5,00,000$
2	$4,00,000$	$3,00,000$
3	$6,00,000$	$2,00,000$
4	$8,00,000$	0

The opportunity cost of capital for $A B C \& C 0$. is 15%.
REQUIRED:
When should the company replace the machine?
The following present value table is given for you:

Year	Present value of ₹ 1 at 15% discount rate
1	0.8696
2	0.7561
3	0.6575
4	0.5718
5	0.4972
6	0.4323

7	0.3759
8	0.3269

$A B C \& C o$.
Equivalent Annual Cost (EAC) of new machine

		(₹)
(i)	Cost of new machine now Add: PV of annual repairs @ ₹ $2,00,000$ per annum for 8 years $(₹ 2,00,000 \times 4.4873)$	$\begin{array}{r} 18,00,000 \\ 8,97,460 \end{array}$
		26,97,460
	Less: PV of salvage value at the end of 8 years	
	(₹ $4,00,000 \times 0.3269)$	1,30,760
		25,66,700
	Equivalent annual cost (EAC) (₹ $25,66,700 / 4.4873$)	5,71,992

PV of cost of replacing the old machine in each of 4 years
with new machine

Advice: The company should replace the old machine immediately because the PV of cost of replacing the old machine with new machine is least.

Four years ago, Z Ltd. had purchased a machine of ₹ $4,80,000$ having estimated useful life of 8 years with zero salvage value. Depreciation is charged using SLM method over the useful life. The company want to replace this machine with a new machine. Details of new machine are as below:

- Cost of new machine is ₹ $12,00,000$, Vendor of this machine is agreed to take old machine at a value of ₹ $2,40,000$. Cost of dismantling and removal of old machine will be ₹ 40,000 . 80% of net purchase price will be paid on spot and remaining will be paid at the end of one year.
- Depreciation will be charged @ 20% p.a. under WDV method.
- Estimated useful life of new machine is four years and it has salvage value of ₹ $1,00,000$ at the end of year four.
- Incremental annual sales revenue is ₹ $12,25,000$.
- Contribution margin is 50%.
- Incremental indirect cost (excluding depreciation) is ₹ $1,18,750$ per year.
- Additional working capital of ₹ $2,50,000$ is required at the beginning of year and ₹ $3,00,000$ at the beginning of year three. Working capital at the end of year four will be nil.
- Tax rate is 30%.
- Ignore tax on capital gain.

Z Ltd. will not make any additional investment, if it yields less than 12% Advice, whether existing machine should be replaced or not.

Year	1	2	3	4	5
PVIF0.12, t	0.893	0.797	0.712	0.636	0.567

Working Notes:
(i) Calculation of Net Initial Cash Outflow

Particulars	$₹$
Cost of New Machine	$12,00,000$
Less: Sale proceeds of existing machine	$2,00,000$
Net Purchase Price	$10,00,000$
Paid in year 0	$8,00,000$
Paid in year 1	$2,00,000$

(ii) Calculation of Additional Depreciation

Year	$\mathbf{1}$	2	3	4
	$₹$	$₹$	$₹$	$₹$
Opening WDV of machine	$10,00,000$	$8,00,000$	$6,40,000$	$5,12,000$
Depreciation on new machine @ 20\%	$2,00,000$	$1,60,000$	$1,28,000$	$1,02,400$
Closing WDV	$8,00,000$	$6,40,000$	$5,12,000$	$4,09,600$
Depreciation on old machine	60,000	60,000	60,000	60,000
$(4,80,000 / 8)$				
Incremental depreciation	$\mathbf{1 , 4 0 , 0 0 0}$	$\mathbf{1 , 0 0 , 0 0 0}$	$\mathbf{6 8 , 0 0 0}$	$\mathbf{4 2 , 4 0 0}$

(iii) Calculation of Annual Profit before Depreciation and Tax (PBDT)

Particulars	Incremental Values (₹)
Sales	$12,25,000$
Contribution	$6,12,500$
Less: Indirect Cost	$1,18,750$
Profit before Depreciation and Tax (PBDT)	$4,93,750$

Calculation of Incremental NPV

Year	PVF @ 12\%	PBTD (₹)	Incremental Depreciation (₹)	PBT (₹)	$\begin{gathered} \text { Tax @ } \\ 30 \% ~(₹) ~ \end{gathered}$	Cash Inflows (₹)	PV of Cash Inflows (₹)
	(1)	(2)	(3)	(4)	$\begin{gathered} (5)=(4) \times \\ 0.30 \end{gathered}$	$\begin{aligned} (6)= & (4)-(5) \\ & +(3) \end{aligned}$	$(7)=(6) \times(1)$
1	0.893	4,93,750	1,40,000	3,53,750	106,125	3,87,625	3,46,149.125
2	0.797	4,93,750	1,00,000	3,93,750	1,18,125	3,75,625	2,99,373.125
3	0.712	4,93,750	68,000	4,25,750	1,27,725	3,66,025	2,60,609.800
4	0.636	4,93,750	42,400	4,51,350	1,35,405	3,58,345	2,27,907.420
*						*	11,34,039.470
Add: PV of Salvage ($₹ 1,00,000 \times 0.636$)							63,600
Year $1(₹ 2,00,000 \times 0.893)$							$\begin{aligned} & 8,00,000 \\ & 1,78,600 \end{aligned}$
Less: Working Capital - Year 0 Year 2 (₹ 3,00,000 $\times 0.797$)							$\begin{aligned} & 2,50,000 \\ & 2,39,100 \end{aligned}$
Add: Working Capital released - Year 4 (₹ 5,50,000 $\times 0.636$)							3,49,800
Incremental Net Present Value							79,739.470

Since the incremental NPV is positive, existing machine should be replaced.
Alternative Presentation
Computation of Outflow for new Machine:

	$₹$
Cost of new machine	$\frac{12,00,000}{2,40,000}$
Replaced cost of old machine	40,000
Cost of removal	$10,00,000$
Net Purchase price	$8,00,000$
Outflow at year 0	$2,00,000$
Outflow at year 1	

Computation of additional deprecation

Year	1	2	3	4
	$₹$	$₹$	$₹$	$₹$
Opening WDV of machine	$10,00,000$	$8,00,000$	$6,40,000$	$5,12,000$
Depreciation on new machine @ 20\%	$2,00,000$	$1,60,000$	$1,28,000$	$1,02,400$
Closing WDV	$8,00,000$	$6,40,000$	$5,12,000$	$4,09,600$
Depreciation on old machine	60,000	60,000	60,000	60,000

$(4,80,000 / 8)$				
Incremental depreciation	$1,40,000$	$1,00,000$	68,000	42,400

Computation of NPV

		0	1	2	3	4
	Year	₹	₹	₹	₹	₹
1.	Increase in sales revenue		12,25,000	12,25,000	12,25,000	12,25,000
2.	Contribution		6,12,500	6,12,500	6,12,500	6,12,500
3.	Increase in fixed cost		1,18,750	1,18,750	1,18,750	1,18,750
4.	Incremental Depreciation		1,40,000	1,00,000	68,000	42,400
5.	Net profit before tax $[1-(2+3+4)]$		3,53,750	3,93,750	4,25,750	4,51,350
6.	Net Profit after tax ($5 \times 70 \%$)		2,47,625	2,75,625	2,98,025	3,15,945
7.	Add: Incremental depreciation		1,40,000	1,00,000	68,000	42,400
8.	Net Annual cash inflows $(6+7)$		3,87,625	3,75,625	3,66,025	3,58,345
9.	Release of salvage value					1,00,000
10.	(investment)/disinvestment in working capital	$(2,50,000)$		$(3,00,000)$		5,50,000
11.	Initial cost	$(8,00,000)$	$(2,00,000)$			
12.	Total net cash flows	$(10,50,000)$	1,87,625.0	75,625	3,66,025	10,08,345
13.	Discounting Factor	1	0.893	0.797	0.712	0.636
14.	Discounted cash flows (12×13)	$(10,50,000)$	1,67,549.125	60,273.125	2,60,609.800	641307.420

NPV $=(1,67,549+60,273+2,60,610+6,41,307)-10,50,000=₹ 79,739$
Since the NPV is positive, existing machine should be replaced.

Replace Machine using NPV
Py July 21
An exis ting company has a machine which has been in operation for two years, its estimated remaining useful life is 4 years with no residual value in the end. Its current market value is ₹ 3 lakhs. The management is considering a proposal to purchase an improved model of a machine gives increase output. The details are as under:

Particulars	Existing Machine	New Machine
Purchase Price	$₹ 6,00,000$	$₹ 10,00,000$
Estimated Life	6 years	4 years
Residual Value	0	0
Annual Operating days	300	300
Operating hours per day	6	6
Selling price per unit	$₹ 10$	$₹ 10$

CA Amit Sharma

Material cost per unit	$₹ 2$	$₹ 2$
Output per hour in units	20	40
Labour cost per hour	$₹ 20$	$₹ 30$
Fixed overhead per annum excluding depreciation	$₹ 1,00,000$	$₹ 60,000$
Working Capital	$₹ 1,00,000$	$₹ 2,00,000$
Income-tax rate	30%	30%

Assuming that - cost of capital is 10% and the company uses written down value of depreciation @ 20% and it has several machines in 20% block.
Advice the management on the Replacement of Machine as per the NPV method. The discounting factors table given below:

Discounting Factors	Year 1	Year 2	Year 3	Year 4
10%	0.909	0.826	0.751	0.683

(i) Calculation of Net Initial Cash Outflows:

Particulars	
Purchase Price of new machine	$10,00,000$
Add: Net Working Capital	$1,00,000$
Less: Sale proceeds of existing machine	$3,00,000$
Net initial cash outflows	$8,00,000$

(ii) Calculation of annual Profit Before Tax and depreciation

Particulars	Existing machine	New Machine	Differential
(1)	(2)	(3)	$(4)=(3)-(2)$
Annual output	36,000 units	72,000 units	36,000 units
	₹	₹	₹
(A) Sales revenue @ ₹ 10 per unit (B) Cost of Operation	3,60,000	7,20,000	3,60,000
Material @ ₹ 2 per unit	72,000	1,44,000	72,000
Labour			
Old $=1,800 \times ₹ 20$	36,000		
New $\quad=1,800 \times ₹ 30$		54,000	18,000
Fixed overhead excluding depreciation	1,00,000	60,000	$(40,000)$
Total Cost (B)	2,08,000	2,58,000	50,000
Profit Before Tax and depreciation (PBTD) (A - B)	1,52,000	4,62,000	3,10,000

(iv) Calculation of Net Present value on replacement of machine

Year	PBTD Depreciati on @ 20% WDV	PBT 30%	PAT	Net cash flow	PVF @ 10%	PV		
(1)	(2)	(3)	$(4=2-3)$	(5)	$(6=4-5)$	$(7=6+3)$	(8)	$(9=7 \times 8)$
1	$3,10,000$	$1,40,000$	$1,70,000$	51,000	$1,19,000$	$2,59,000$	0.909	$2,35,431.000$

2	$3,10,000$	$1,12,000$	$1,98,000$	59,400	$1,38,600$	$2,50,600$	0.826		
3	$3,10,000$	89,600	$2,20,400$	66,120	$1,54,280$	$2,43,880$	0.751		
4	$3,10,000$	71,680	$2,38,320$	71,496	$1,66,824$	$2,38,504$	0.683		$1,62,898,232$
:---									
Add: Release of net working capital at year end 4(1,00,000 $\times 0.683)$									
Less: Initial Cash Outflow									
NPV									

Advice: Since the incremental NPV is positive, existing machine should be replaced.
Working Notes:

1. Calculation of Annual Output

Annual output $=($ Annual operating days \times Operating hours per day) \times output per hour
Existing machine $=(300 \times 6) \times 20=1,800 \times 20=36,000$ units
New machine $=(300 \times 6) \times 40=1,800 \times 40=72,000$ units
2. Base for incremental depreciation

(Note: The above solution have been done based on incremental approach) Alternatively, solution can be done based on Total Approach as below:
(i) Calculation of depreciation:

Existing Machine						
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Opening balance	$6,00,000$	$4,80,000$	$3,84,000$	$3,07,200$	$2,45,760$	$1,96,608.00$
Less: Depreciation @ 20\%	$1,20,000$	96,000	76,800	61,440	49,152	$39,321.60$
WDV	$4,80,000$	$3,84,000$	$3,07,200$	$2,45,760$	$1,96,608$	$1,57,286.40$

New Machine				
	Year 1	Year 2	Year 3	Year 4
Opening balance	$10,84,000^{*}$	$8,67,200$	$6,93,760$	$5,55,008.00$
Less: Depreciation @ 20\%	$2,16,800$	$1,73,440$	$1,38,752$	$1,11,001.60$

WDV	$8,67,200$	$6,93,760$	$5,55,008$	$4,44,006,40$

* As the company has several machines in 20% block, the value of Existing Machine from the block calculated as below shall be added to the new machine of ₹ $10,00,000$:
WDV of existing machine at the beginning of the year ₹ $3,84,000$
Less: Sale Value of Machine ₹ $3,00,000$
WDV of existing machine in the block ₹ 84,000
Therefore, opening balance for depreciation of block $=₹ 10,00,000+₹ 84,000=₹ 10,84,000$
(ii) Calculation of annual cash inflows from operation:

Particulars	NEW MACHINE			
	Year 1	Year 2	Year 3	Year 4
Annual output (300 operating days $\times 6$ operating hours x 40 output per hour) (A) Sales revenue @ ₹ 10 per unit	$\begin{array}{r} 72,000 \\ \text { units } \\ \text { ₹ } \\ 7,20,000.00 \end{array}$	72,000 units $₹$ $7,20,000.00$	$\begin{array}{r} 72,000 \\ \text { units } \\ ₹ \\ 7,20,000.00 \end{array}$	$\begin{array}{r} 72,000 \\ \text { units } \\ \text { ₹ } \\ 7,20,000.00 \end{array}$
(B) Less: Cost of Operation Material @ ₹ 2 per unit Labour @ ₹ 30 per hour for (300×6) hours Fixed overhead	$\begin{array}{r} 1,44,000.00 \\ 54,000.00 \\ 60,000.00 \end{array}$			

	$2,16,800.00$	$1,73,440.00$	$1,38,752.00$	$1,11,001.60$
Depreciation	$4,74,800.00$	$4,31,440.00$	$3,96,752.00$	$3,69,001.60$
Total Cost (B)	$2,45,200.00$	$2,88,560.00$	$3,23,248.00$	$3,50,998.40$
Profit Before Tax (A - B)	$73,560.00$	$86,568.00$	$96,974.40$	$1,05,299.52$
Less: Tax @ 30\%	$1,71,640.00$	$2,01,992.00$	$2,26,273.60$	$2,45,698.88$
Profit After Tax	$2,16,800.00$	$1,73,440.00$	$1,38,752.00$	$1,11,001.60$
Add: Depreciation				
Add: Release of Working				$2,00,000.00$
Capital				
Annual Cash Inflows	$\mathbf{3 , 8 8 , 4 4 0 . 0 0}$	$\mathbf{3 , 7 5 , 4 3 2 . 0 0}$	$\mathbf{3 , 6 5 , 0 2 5 . 6 0}$	$\mathbf{5 , 5 6 , 7 0 0 . 4 8}$

(iii) Calculation of Incremental Annual Cash Flow:

Particulars	Year 1 $(₹)$	Year 2 $(₹)$	Year 3 $(₹)$	Year 4 (₹)
Existing Machine (A)	$1,29,440.00$	$1,24,832.00$	$1,21,145.60$	$2,18,196.48$
New Machine (B)	$3,88,440.00$	$3,75,432.00$	$3,65,025.60$	$5,56,700.48$
Incremental Annual	$2,59,000.00$	$2,50,600.00$	$2,43,880.00$	$3,38,504.00$
Cash Flow (B - A)				

(iv) Calculation of Net Present Value on replacement of machine:

Year	Incremental Annual Cash Flow (₹) (A)	Discounting factor @ $10 \%(B)$	Present Value of Incremental Annual Cash Flow (₹) (A \times B)
1	$2,59,000.00$	0.909	$2,35,431.000$
2	$2,50,600.00$	0.826	$2,06,995.600$
3	$2,43,880.00$	0.751	$1,83,153.880$
4	$3,38,504.00$	0.683	$2,31,198.232$
Total Incremental Inflows			
Less: Net Initial Cash Outflows (Working note)	$\mathbf{8 , 5 6 , 7 7 8 . 7 1 2}$		
Incremental NPV	$8,00,000.000$		

Advice: Since the incremental NPV is positive, existing machine should be replaced.
Working Note:
Calculation of Net Initial Cash Outflows:

Particulars	₹
Cost of new machine	$10,00,000$
Less: Sale proceeds of existing machine	$3,00,000$
Add: incremental working capital required (₹ $2,00,000-₹ 1,00,000)$	$1,00,000$
Net initial cash outflows	$\mathbf{8 , 0 0 , 0 0 0}$

Q. 49

Replace Machine using NPV RTP Dec 21
HMR Ltd. is considering replacing a manually operated old machine with a fully automatic new machine. The old machine had been fully depreciated for tax pu rpose but has a book value of ₹ $2,40,000$ on 31 st March 2021. The machine has begun causing problems with breakdowns and it cannot fetch more than ₹ 30,000 if sold in the market at present. It will have no realizable value after 10 years. The company has been offered ₹ $1,00,000$ for the old machine as a trade in on the new machine which has a price (before allowance for trade in) of $₹ 4,50,000$. The expected life of new machine is 10 years with salvage value of ₹ 35,000 .

Further, the company follows straight line depreciation method but for tax purpose, written down value method depreciation @ 7.5% is allowed taking that this is the only machine in the block of assets.
Given below are the expected sales and costs from both old and new machine:

	Old machine (₹)	New machine (₹)
Sales	$8,10,000$	$8,10,000$
Material cost	$1,80,000$	$1,26,250$
Labour cost	$1,35,000$	$1,10,000$
Variable overhead	56,250	47,500
Fixed overhead	90,000	97,500
Depreciation	24,000	41,500
PBT	$3,24,750$	$3,87,250$
Tax @ 30\%	97,425	$1,16,175$
PAT	$2,27,325$	$2,71,075$

From the above information, ANALYSE whether the old machine should be replaced or not if required rate of return is 10% ? Ignore capital gain tax.
PV factors @ 10\%:

Year	1	2	3	4	5	6	7	8	9	10
PVF	0.909	0.826	0.751	0.683	0.621	0.564	0.513	0.467	0.424	0.386

Workings:

1. Calculation of Base for depreciation or Cost of New Machine

Particulars	(₹)
Purchase price of new machine	$4,50,000$
Less: Sale price of old machine	$1,00,000$
	$3,50,000$

2. Calculation of Profit before tax as per books

Particulars	Old machine $(₹)$	New machine $(₹)$	Difference $(₹)$
PBT as per books	$3,24,750$	$3,87,250$	62,500
Add: Depreciation as per books	24,000	41,500	17,500
Profit before tax and depreciation (PBTD)	$3,48,750$	$4,28,750$	80,000

Calculation of Incremental NPV

Year	PVF @ 10\%	PBTD (₹)	Dep. @ $7.5 \%(₹)$	PBT (₹)	Tax @ 30\% (₹)	Cash Inflows $(₹)$	PV of Cash Inflows (₹)
	(1)	(2)	(3)	(4)	$(5)=(4) \times 0.30$	$(6)=(4)-(5)$ $+(3)$	$(7)=(6) \times(1)$
1	0.909	$80,000.00$	$26,250.00$	$53,750.00$	$16,125.00$	$63,875.00$	$58,062.38$
2	0.826	$80,000.00$	$24,281.25$	$55,718.75$	$16,715.63$	$63,284.38$	$52,272.89$
3	0.751	$80,000.00$	$22,460.16$	$57,539.84$	$17,261.95$	$62,738.05$	$47,116.27$
4	0.683	$80,000.00$	$20,775.64$	$59,224.36$	$17,767.31$	$62,232.69$	$42,504.93$
5	0.621	$80,000.00$	$19,217.47$	$60,782.53$	$18,234.76$	$61,765.24$	$38,356.21$

6	0.564	80,000.00	17,776.16	62,223.84	18,667.15	61,332.85	34,591.73
7	0.513	80,000.00	16,442.95	63,557.05	19,067.12	60,932.88	31,258.57
8	0.467	80,000.00	15,209.73	64,790.27	19,437.08	60,562.92	28,282.88
9	0.424	80,000.00	14,069.00	65,931.00	19,779.30	60,220.70	25,533.58
10	0.386	80,000.00	13,013.82	66,986.18	20,095.85	59,904.15	23,123.00
							3,81,102.44
Add: PV of Salvage value of new machine ($₹ 35,000 \times 0.386$)							13,510.00
Total PV of incremental cash inflows							3,94,612.44
Less: Cost of new machine							3,50,000.00
Incremental Net Present Value							44,612.44

Analysis: Since the Incremental NPV is positive, the old machine should be replaced.

Q. 50

Which Finance to choose RTP Nov 18
XYZ Ltd. requires an equipment costing $₹ 50,00,000$; the same will be utilized over a period of 5 years. It has two financing options in this regard:
(i) Arrangement of a loan of $₹ 50,00,000$ at an interest rate of 14 percent per annum; the loan being repayable in 5 equal year end instalments; the equipment can be sold at the end of fifth year for ₹ $5,00,000$.
(ii) Leasing the equipment for a period of five years at an early rental of ₹ $16,50,000$ payable at the year end. The rate of depreciation is 15 percent on Written Down Value (WDV) basis, income tax rate is 35 percent and discount rate is 12 percent.
ADVISE which of the financing options should XYZ Ltd. exercise and why?
Option A
The loan amount is repayable together with the interest at the rate of 14% on loan amount and is repayable in equal instalments at the end of each year. The PVAF at the rate of 14% for 5 years is 3.432 , the amount payable will be
Annual Payment $=\frac{5000000}{3.432}=₹ 14,56,876$
Schedule of Debt Repayment

End of year	Total Payment (₹)	Interest (₹)	Principal (₹)	Principal amount outstanding (₹)
1	$14,56,876$	$7,00,000$	$7,56,876$	$42,43,124$
2	$14,56,876$	$5,94,037$	$8,62,839$	$33,80,285$
3	$14,56,876$	$4,73,240$	$9,83,636$	$23,96,649$
4	$14,56,876$	$3,35,531$	$11,21,345$	$12,75,304$
5	$14,56,876$	$1,81,572^{*}$	$12,75,304$	0

*Balancing Figure
Schedule of Cash Outflows: Debt Alternative

End of year	Debt Payment	Interest	Depreciation	Total	Tax Shield	Cash Outflows	PV factor @ 12%	
1	$14,56,876$	$7,00,000$	$7,50,000$	$14,50,000$	$5,07,500$	$9,49,376$	0.893	$8,47,793$
2	$14,56,876$	$5,94,037$	$6,37,500$	$12,31,537$	$4,31,038$	$10,25,838$	0.797	$8,17,593$
3	$14,56,876$	$4,73,240$	$5,41,875$	$10,15,115$	$3,55,290$	$11,01,586$	0.712	$7,84,329$

eA Amit Sharma

4	$14,56,876$	$3,35,531$	$4,60,594$	$7,96,125$	$2,78,644$	$11,78,232$	0.636	$7,49,356$
5	$14,56,876$	$1,81,572$	$3,91,505$	$5,73,077$	$2,00,577$	$12,56,299$	0.567	$7,12,322$
							$39,11,393$	
Less:	PV of Salvage						$(12,57,904)$	
							$26,53,489$	

Total present value of Outflows $=₹ 26,53,489$

Option B

Lease Rent ₹16,50,000
Tax Shield $(5,77,500)$
Outflow $10,72,500 \times 3.605=₹ 38,66,363$
Since PV of outflows is lower in the Borrowing option, XYZ Ltd. should avail of the loan and purchase the equipment.

