COST OF LONG TERM DEBT [Ka]
If cost of Irredeemable II cost of Redeemable Debt

If cost of Irredeemable Debt
\rightarrow Debentures or bonds which are NOT redeemed [principal amount is not to be repaid] during the life of the company.
\rightarrow No maturity period.
\rightarrow only Interest is paid every year. Principal amount is repaid only when company is closed [wind-up]

Example
A co. issued irredemable debentures
a) face value $=\mp 1,000$; In r Rate $=10 \%$; $\operatorname{tax}=30 \%$
b)

$$
\begin{aligned}
& \text { F.V. }=£ 1,000 ; \quad \text { Issue Price }=£ 980 \\
& \text { Issue Exp }=£ 30 ; \text { Interest }=10 \% ; \text { Tax }=30 \%
\end{aligned}
$$

c) F.V. $=£ 1,000$; Marker Price $=£ 1,080$; floatation cost $=290$; Interest $=10 \%$; Tax $=30 \%$ Calculate Kd in all above cases.

Solution
a)

$$
\begin{aligned}
& F V=£ 1,000 \quad \text { Int }=£ 100 \quad \text { Int }=£ 100 \text { Int }= \pm 100 \cdots \cdots \\
& \begin{array}{llll}
\operatorname{Int}=10 \% \\
\operatorname{Tax}=30 \% & (-1 \text { Tax }=(30) \\
70 & \frac{(30)}{70} & \frac{(30)}{70}
\end{array} \\
& 1,000=\frac{70}{k d} \\
& \Rightarrow K d=\frac{70}{1000}=0.07 \rightarrow 70 \\
& K d=\frac{\text { Interest }(1-t)}{\text { Net Proceeds }} \times 100
\end{aligned}
$$

where,

- Net Proceeds = Issue Price - Issue Exp. [F.C.]
- If Market Price is given in Q^{n} i then Use Marke Price instead of Issue Price in N.P.
- If Issue Exp are not given in Q^{n}; then assume ir to be " O "
by

$$
\begin{aligned}
K d=\frac{100(1-0.30)}{980-30} \times 100 & =\frac{70}{950} \times 100 \\
& =7.37 \%
\end{aligned}
$$

$$
\text { cy } \begin{aligned}
K_{d} & =\frac{100(1-0.30)}{1080-(2 \% \times 1.080)} \times 100 \% \\
& =\frac{70}{1058.40} \times 100=6.61 \%
\end{aligned}
$$

Note:
Floatation cost is the cost which a company incurs while issuing a security [shares, deb ck] They are aka. Issue Expenses.

Eg: legal fees, registration fees, commission, listing exp. etc.

Treatment of flotation cost
\rightarrow If F.C. is given in "Oo" form \rightarrow then logically F.C. should be calwiated on ISSUE PRICE. [But, if Issue Price is not given \& C.M.P. is given \rightarrow then use CMP as IP]
\rightarrow However, if question specifically mentions to calculate F.C. on FACE VALUE \rightarrow then do so.
II) Cost of Redeemable Debentures

IlIa) Approximation / Short - wt Method

$$
\begin{aligned}
& =\frac{10(1-0.35)+\left(\frac{100-110}{5}\right)}{\left(\frac{100+110}{2}\right)} \\
& =\frac{6.50+(-2)}{105}=\frac{4.50}{105} \\
& =0.042857 \simeq 4.29 \%
\end{aligned}
$$

Eg:

$$
\begin{align*}
& 1 \quad 1 \quad 2 \quad 1 \quad 1 \quad 3 \\
& F V=£ 100 \\
& \text { Lu }=10 \\
& 10 \\
& 10 \\
& \text { NP }= \pm 88 \begin{cases}I P=\Sigma 90 & \text { Tax }=(4) \\
I E= \pm 2 & \text { saving }\end{cases} \tag{4}\\
& \text { Ir }=10 \% \\
& \text { TaX }=40 \% \\
& R V=120 \\
& K_{d}=\frac{10(1-0.4)+\left(\frac{120-88}{3}\right)}{\left(\frac{120+88}{2}\right)} \\
& =\frac{6+10.67}{104}=0.1603 \\
& \simeq 16.03 \%
\end{align*}
$$

$$
\begin{aligned}
& \text { Cost of Redeemable Debentures }=\frac{\operatorname{Int}(1-t)+\left[\frac{R V-N P}{n}\right]}{\left[\frac{R V+N P}{2}\right]} \\
& \text { (Approximation Method) }
\end{aligned}
$$

Note:
i) when R.V. is nor given, then assume F.V. = R.V.
ii) In above formula " n " = Remaining life of deb. or Years Remaining to Maturing
iii) If Question mentions that, "Discount on Issue" or "Premium on Redemption" of Debentures is also 0 tax deductible, then using approximation method -

$$
\begin{aligned}
K d & =\frac{\operatorname{Int}(1-t)+\left(\frac{R V-N P}{n}\right)(1-t)}{(R V+N P / 2)} \\
\Rightarrow K_{d} & =\frac{\left[\operatorname{Ink}+\left(\frac{R V-N P}{n}\right)\right](1-t)}{(R V+N P / 2)}
\end{aligned}
$$

II) $\frac{Y I E L P \text { TO MATURITY }}{[Y T M]}$ [YTM] [IRE]
lu 2

Calculation of IRR

(10%)			(68)			
Year	Parbiculars	cf	Df	Dcf	Df	Dcf
0	Ner Proceeds	(110)	1	(110)	1	(110)
$1-5$	Int Net of Tax	6.50	3.791	24.64	4.212	27.38
5	R.V.	100	0.621	62.10	0.747	74.70
	N.P.V.			(23.26)		(7.92)

IRR is the rate at which $N P V=0$

Yr	Partiwlars	cf	Df(4\%)	Dcf
0	Net Proceeds	(110)	1	(110)
$1-5$	Int (net of Tox)	6.50	4.452	28.94
5	R.V.	100	0.822	82.20
	N.P.V.		1.14	

If investor is expecting 4\% retum on his money, NPV of $£ 1.14 \rightarrow$ signifies $\rightarrow 490$ return toh milega hi $\rightarrow 4 \%$ ke upar ∓ 1.14 bhi milege.

$$
\begin{aligned}
& \text { NPV } \rightarrow \underset{-7.92}{0}+1.14 \\
& \text { Caves } \rightarrow 6 \% \quad \text { IRL = ? } 4 \% \\
& 7.92+1.14=9.06 \\
& \text { IRR }=4 \%+\frac{1.14}{9.06}(6 \%-4 \%)=4.25 \% \\
& I R R=\text { Lower Rate }+\frac{\text { NPV@LR }}{\text { NPVQLR - NPV@HR }}(H R-L R)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1.14}{9.06} \times 2 \%
\end{aligned}
$$

* Amortization of Bonds
\rightarrow A bond may also be amortised every year, i.e. principal amount is repaid every year rather than on maturity.
\rightarrow In such a situation, principal amount every year \& interest will be calculated on BALANCE principal amount.
\rightarrow Here, we will NOT calculate Kd . However, here we will use $K d$ to calculated "value of Bond" which is amortised.

$$
\text { Value of Bond }=\frac{c_{1}}{(1+k d)^{1}}+\frac{c_{2}}{(1+k d)^{2}}+\ldots .+\frac{c_{n}}{(1+k d)^{n}}
$$

OR

Year	Partulars	CF	Df(6\%)	DC
1	$C F_{1}$	1,400	0.943	1320.20
2	$C F_{2}$	1.320	0.890	1174.80
3	$C F_{3}$	1.240	0.840	1041.60
4	$C F_{4}$	1.160	0.792	918.72
5	$C F_{5}$	1.080	0.747	806.76
	Value of			
	Bond			$5,262.08$

* cost of convertible debentures
\rightarrow Holders of convertible debentures have an option on maturity to either

\rightarrow Calculation of cost of ConN. Deb is SAME AS that of redeemable deb.
(1) Approximation method or (2) YTM/ IRR method

However, difference lies in calculation of REDEMPTION VALUE.

