

In this chapter we will learn toi) calculate k_{d}, k_{p}, le \& k_{r}
ii) calculate weighted Average cost of capital [WACC or KO]

Calculation of weighted Average cost of Capital

TIME VALUE OF MONEY
If FV of a single Amount
suppose you invest $F 10,000$ in a bank's fixed deposit. Interest Rate is 10% p. a. What will be the F.V. at the end of 3 years?

The value of $F D$ today $[P V=\mp 10,000]$ becomes $\mathcal{F} 13,310\left[\mathrm{FV}_{3}\right]$ at the end of $3^{\text {rd }} \mathrm{yr}$ if interest rate is 10% pa.

$$
\begin{aligned}
& \int 10,000+(10 \%, 610,000)=11,000 \\
& \left\{\begin{array}{l}
11,000+(10 \% \times 11,000)=12,100 \\
12,100+(10 \% \times 12,100)=13,310
\end{array}\right. \\
& \rightarrow \quad 10,000+10 \%+10 \%+10 \% \\
& 10,000 \times(1+10 \%) \times(1+10 \%) \times(1+10 \%) \\
& \Rightarrow \underbrace{10,000}_{P V} \times \underbrace{(1+0.10)^{3}}_{x(1+\gamma)^{n}}=\underbrace{13,310}_{F V_{n}}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& F 50,000 \\
& F V_{10}=P V \times(1+\gamma)^{10} \\
& \Rightarrow f V_{10}=50,000 \times(1+0.12)^{10} \\
&=50,000 \times 3.106 \\
& \Rightarrow f V_{10}=£ 1,55,300
\end{aligned}
$$

II PV of a single Amount
Eg: Suppose you are going to receive El,00,000 after 5 yrs from now. Then what will be the P.V., if interest rate is 15% pa.?

$$
\begin{aligned}
& F V_{n}=P V(1+r)^{n} \Rightarrow P V=\frac{F V n}{(1+r)^{n}} \\
& \Rightarrow P V=\frac{1,00,000}{(1+0.15)^{5}}=\frac{1,00,000}{2.011}=49,726.50
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow P V & =1,00,000 \times \frac{1}{(1+0.15)^{5}} \\
& =1,00,000 \times\left[\frac{1}{1+0.15}\right]^{5} \\
& =1,00,000 \times 0.497=\mp 49.700
\end{aligned}
$$

* Discounting factors@ 15\%
[Present value Interest factors $\rightarrow \operatorname{PVIF}(15 \%, n)$] $1^{\text {st }}$ yr he end be \mathcal{F} ki value \rightarrow adj $15 \% \rightarrow 0.870$ $2^{\text {nd }}$ yr he end we \mathcal{F} ki value \rightarrow adj $15 \% \rightarrow 0.756$ $3^{\text {rd }}$ yr he end he FI ki value \rightarrow adj $15 \% \rightarrow 0.658$ $4^{\text {th }}$ yr we end he FI ki value $\rightarrow a a j 15 \% \rightarrow 0.572$ $5^{\text {th }}$ yr he end he oi ki value $\rightarrow a a j 15 \% \rightarrow 0.497$
III) PV of Annuity [uniform Cashflow for finite period]
Eg: Suppose as per a contract, you are going to receive $\ddagger 1,00,000$ at the end of every year upto 5 yrs. Then what is the P.V., if rate is 15%.

$$
\begin{aligned}
& 8 P V=\frac{1 L}{(1.15)^{1}}+\frac{1 L}{(1.15)^{2}}+\frac{1 L}{(1.15)^{3}}+\frac{12}{(1.15)^{4}}+\frac{12}{(1.15)^{5}} \\
& =\begin{aligned}
& 1 L\left(\frac{1}{1.15}\right)^{1}+12\left(\frac{1}{1.15}\right)^{2}+12\left(\frac{1}{1.15}\right)^{3}+12\left(\frac{1}{1.15}\right)^{4} \\
&+12\left(\frac{1}{1.15}\right)^{5}
\end{aligned} \\
& =12(0.870)+11(0.756)+12(0.658)+16(0.572) \\
& \\
& \\
&
\end{aligned}
$$

OR

$$
\begin{aligned}
& \text { IL }(0.870+0.756+0.658+0.572+0.447) \\
& \Rightarrow 12 \times 3.353 \\
& \Rightarrow £ 3.35,300
\end{aligned}
$$

$$
\begin{aligned}
& \text { PV of }=A \times \operatorname{PVAf}(r, n) \\
& \text { Annuity }
\end{aligned} \quad \stackrel{O R}{=} \underbrace{A \times\left[\frac{1-\left(\frac{1}{1+r}\right)^{n}}{r}\right.}_{\text {Nor to be used ever }}
$$

IV) PV of Perpetuity [uniform Cashflow for Infinite period]

Eg: suppose as per a contract, you are going to receive ₹ IL at the end of each year for infinite period. Find PV, if interest rate is 12%.

$$
\begin{aligned}
\text { PV of Perpetuity }= & \frac{\frac{1 L}{(1+0.12)^{1}}+\frac{1 L}{(1+0.12)^{2}}+\frac{1 L}{(1+0.12)^{3}}}{}+1 \\
& \rightarrow\left\{\frac{A}{\gamma}\right\} \frac{1 L}{0.12}=8.33 L
\end{aligned}
$$

I) P.V. of Uneven Cash How
$631.60 \quad P V=?$

Discountiv\%
Rule $=10 \%$

$$
\left\{\begin{array}{l}
P V=\frac{1 L}{(1.10)^{1}}+\frac{2 L}{(1.10)^{2}}+\frac{5 L}{(1.10)^{3}} \\
=1 L \times\left(\frac{1}{1.10}\right)^{1}+2 L\left(\frac{1}{1.10}\right)^{2} \cdots \\
=1 L \times(0.909)+2 L(0.826) \\
\quad+5 L \times(0.751) \\
=\mp 6.31,600
\end{array}\right.
$$

Basic task of finance manager is Efficienti) Procurement L iiyutilisation of funds.

* Main objective of FM \downarrow wealth (value) max

$$
\left[\begin{array}{l}
\text { value of } \\
\text { firm }
\end{array}=\frac{\text { EBIT }}{\text { WACK }}\right]
$$

Thus, a finance manager has to select such a capiral structure where

$$
\downarrow
$$

Expected Return of fund Providers [WACC] is MINIMUM
When WACC is Minimum, value of firm will be MAXIMISED
\downarrow
Hence, for this purpose, we need to calculate the cost of various sources of finance $\&$ WACE.

* Cost of capital is expressed in terms of "rate" \rightarrow \% form.
* Cost of capital is aka.
\rightarrow cut of f rate, or
\rightarrow Hurdle rate, or
\rightarrow minimum rate of return.
* SIGNIFICANCF of cost of CAPITAL
ip It helps in evaluating investment decisions cost of capital is used as discounting rate while making investment decision.
ii) Helps in taking financing decision. Finance manager will select that source of finance whose cost is lower, while also considering risk \& control.
iii Designing optimum credit policy. [Average collection period]
* COST of LONG TERM DEBT [Gd]
- External Borrowings or debt instruments -
if do NOT have ownership of company. ii do NOT participate in the affairs of the company [no voting right]
iii But, they enjoy a charge against profits BEFORF taxes.

$$
\text { BIT } \rightarrow \text { +vel - Ne }
$$

- Interest \rightarrow must be paid \rightarrow charge against protir.

$$
\begin{array}{r}
\text { PBT } \\
- \text { TaX } \\
\hline \text { PAT }
\end{array}
$$

Pref Div Eq Div 3 tee PAT Joproprianion

* "LONG TERM DEBT" includes

Long Term Loans Debentures/Bonds from F.I.
\downarrow
In this chapter we will calculate
Similar to Kd Kd on Dehentures/Bonds only. on Redeemable Debentures.

* IMPORTANT NOTE
\rightarrow Interest on Bonds/Deb. is always calculated on face value.
\rightarrow Company gets a benefic of Tax shield (saving) on Interest expenditure.

In above example, $c o . N$ paid interest of £40,000, due to which it had to pay lower tax by $\underbrace{\mp 12,000}_{\text {Tax saving }(\text { shield })}[40,000 \times 30 \%]$ on Interest

$$
\text { (O\% LTD } \frac{E 4 L}{S}+C_{N}^{C O} \left\lvert\, \frac{28,000 \theta}{4 L-10 \mathrm{~K}}\right.
$$

Thus, cost of using debt for $\operatorname{co} . N$ is

$$
K_{d}=\frac{28,000}{4,00,000}=7 \%
$$

This proves that Interest rate on Debt is NOT equal to Kd always.

Also, for calculating $\mathrm{Kd} \rightarrow$ Interest Net of Tax [Interest $(1-t)$] is used.

