Example - 3 :A company issued 10,000, 15\% Convertible debentures of ₹100 each with a maturity period of 5 years. At maturity, the debenture holders will have an option to convert the debentures into equity shares of the company in the ratio of $1: 10$ (10 shares for each debenture). The current market price of the equity shares is ₹12 each and historically the growth rate of the shares is 5% per annum. Compute the cost of debentures assuming 35% tax rate.

Solution:
i) Calculation of R.V.

- R.V. will be, the higher of -
is value of equity shares at maturity or
iii cash to be received at maturity.
- value of equity shares at maturity

FV of 1 Equity share at end of $5^{\text {th }}$ year

$$
\begin{aligned}
& =12 \times(1+0.05)^{5} \\
& =12 \times 1.276 \\
& =£ 15.32
\end{aligned}
$$

AV of 10 eq Share at end of $5 \mathrm{th} \mathrm{yr}=10 \times 15.32$
\because value of 10 eq shares is greater than the cash to be received on onaturity, thus R.V. $=$ ₹ 153.20
ii) Calculation of Cos of Cony. Deb. Using approximation method

$$
\begin{aligned}
K_{d} & =\frac{\operatorname{Int}(1-t)+\left(\frac{R V-N P}{n}\right)}{\left(\frac{R V+N P}{2}\right)} \\
& =\frac{15(1-0.35)+\left(\frac{153.20-100}{5}\right)}{\left(\frac{153.20+100}{2}\right)} \\
\Rightarrow K_{d} & =16.10 \%
\end{aligned}
$$

COST OF PREFERENCE SHARE CAPITAL [KP]
\rightarrow Preference shareholders are paid dividend at a specified rate on the F.V. (fixed)
\rightarrow Pref. sh. are given priority over equity sh. in payment of dividend.
\rightarrow However, payment of dividend is NOT tax-deductible. It is treated as appropriation of profits.

COST OF EQUITY SHARE CAPITAL [Kl]
\rightarrow cost of Equity $=$ Returns expected by equity shareholders.
\rightarrow Equity dividend is uncertain. [No fixed rate]
\rightarrow Methods of calculating Ge
i) Dividend Price Approach
i) Earnings Price Approach
iii) Growth Approach or Gordon's Model
ivy capital Asset Pricing Model [CAPM] v) Realised Yield Approach.
i) Dividend Price Approach
\rightarrow Here, we assume the amount of dividend to be constant. [till infinity \rightarrow going concern]

$\xrightarrow{0} 1$| 1 | 1 | 2 | $3 \ldots \ldots \infty$ | |
| :---: | :---: | :---: | :---: | :---: |
| $P_{0}=?$ | 15 | 15 | 15 | \ldots |

$K_{e}=10 \%$

$$
\begin{aligned}
& P_{0}=\frac{15}{1090}=\tilde{=} \quad\left[P_{0}=\frac{D}{\mathrm{Ke}}\right] \\
& \therefore \quad K_{e}=\frac{D}{P_{0}} \quad \text { * we have to use } \\
& \text { "Ex-Dividend" Prices } \\
& \text { for calculation of ie or } \mathrm{Kr}
\end{aligned}
$$

ii) Earnings Price Approach
\rightarrow Here, we assume the amount of E.P.S. to be constant. [till infinity \rightarrow going concern]

$$
K_{e}=\frac{E \cdot P \cdot S}{P_{0}}
$$

iii) Growth Approach or Gordon's Model
\rightarrow Here we assume that earnings it dividend are growing at a constant rate. [till infinity]

iv) Capital Asset Pricing Model [CAPM]
\rightarrow Here, $k e$ is calwlated based on risk.
\rightarrow Higher the risk, higher the ke. CAPM describes the linear relationship between risk \& return for securities.

$$
K_{e}=R_{f}+\beta\left(R_{m}-R_{f}\right)
$$

where, $R_{F}=$ Risk free Rate
$R m=$ Market Rate of Return
$\beta=$ Beta [measure of Systematic Risk]
$\left[R_{m}-R_{f}\right]=$ Market Risk Premium
$\left[B\left(R m-R_{f}\right)\right]=$ Security Risk Premium.
$K_{e}=R_{f}+\beta$ (Market Risk Premium)
$\rightarrow K_{e}=R_{F}+$ security Risk Premium.
\rightarrow The risks to which a security is exposed to, can be classified into-

Unsystematic Risk
Systematic Risk

- Company specific risk.
- Related to finance. business \& insolvency. Eg-nor obtaining proper copyright/trademark, sub-oprimal capiral structure, gour. policy ere. liquidity issues, data breach,
CA Mohnish Vora (MVSIR) litigation
- Macro-Economic or Market specific risk.
- Related to inflation, changes in interest rake, recession, natural disarrex,
unsystematic Rick
- Aka. Diversifiable Risk
- Ir can be reduced by diversification.
systematic Rick
- Aka. Non-Diversifíable Risk.
- Ir cannor be reduced by diversification.
- It is measured using "Beta" [β]
since, systematic risk cannot be eliminated, thus a company is expected to pay additional return for this type of risk.
* Beta co-efficient [β]

Beta measures the sensitivity of a share to changes in the market.

Example (No Question in Exam \rightarrow from below Eg)
a) $\beta=3$ Sensex $\rightarrow 290$ Increase $C M P=550$. Calculate new MP.

Sol:

$$
\text { New MP }=C M P+6 \%=\$ 53
$$

by If in above que, $\beta=-1.50$

$$
\begin{array}{cl}
\frac{\text { Market }}{270 T} & \frac{\text { MP of shares }}{2 \% \times(-1.50)}=-3 \% \downarrow \\
\text { New MP } & =50-3 \% 0=48.50
\end{array}
$$

v) Realised Yield Approach
\rightarrow when it is difficult to forecast future returns, then this method is used, which uses the past record of dividends actually received by equity shareholders.
\rightarrow Unrealistic Assumptions
a) Risks faced by the company will remain same. b) Shareholders will continue to expect same return.
c) Re-investment opportunity cost (rate) of shareholders is same as the realised yield.
\rightarrow If earnings of the company are not stable, then this method is nor practical.
$\rightarrow 2$ ways to calculate" $\mathrm{Ke}^{\prime \prime}$ as per this methods

calculate Re by using "YTM/IRR" Method [IIUU 10]

If on mention e op. \& Cl. Price of every year along with dividend payments every year

$\underbrace{$| | \downarrow | |
| :---: | :---: | :---: |
| 0 | 1 | 2 |
| 1 | 1 | 3 |
| $P_{0}=$ | $P_{1}=$ | $P_{2}=$ |
| $B_{1}=$ | $D_{2}=$ | 1 |}

i) calculate retums of each

$$
\begin{aligned}
& \text { year } \mapsto 1+r_{1}=\frac{P_{1}+D_{1}}{P_{0}} \\
& \rightarrow 1+r_{2}=\frac{P_{2}+D_{2}}{P_{1}} \\
& \vdots \\
& =\left[\begin{array}{l}
n \\
\text { (1+r) }) \times\left(1+r_{2}\right) \cdots \cdots \times\left(1+P_{n}\right) \\
4.25
\end{array}\right]
\end{aligned}
$$

* Important notes

Growth Rate $=$ Retention Ratio x Return on Invt.
(g)
(b)
(r)
EFFS \rightarrow isme se Return earned on kitra 9o retain kiva. funds invested in business.

In CO. B

$$
\begin{aligned}
& \text { Retention Ratio }[b]=\frac{\text { R.f. }}{\text { Earnings }}=\frac{6 L}{10 L}=60 \% \\
& \begin{aligned}
\text { Growth Rate } & =b \times r \\
& =60 \% \times 20 \% \\
& =12 \%
\end{aligned}
\end{aligned}
$$

2) Dirty Power / Hill Climb Method
[when power (index) is in fraction]

$$
m^{n}=?
$$

Steps on calculator
step 1: " m " \rightarrow " $\sqrt{"}$
12 times
Step 2: " -1 "
Step 3: Multiply by power " n "
Step 4: " +1 "
Step 5: " $x=" \rightarrow 12$ times.

COST OF RETAINED EARNINGS [Kr]
$\rightarrow K_{r}=$ opportunity cost of dividends foregone by equity shareholders
\rightarrow Generally, $\underbrace{\mathrm{Ke}_{e}=\mathrm{Kr}^{2}}$
However, difference comes when
floationcost \& personal tax exists.

New Issue Existing
of Eq. Sh. Eq. sh .
F.C. is F.C. is considered. not considered.

\downarrow	\downarrow	\downarrow	
Dividend	Earnings	Gordon's	CAPS
Price Approach Price APProach Model	\downarrow		
\downarrow	\downarrow	\downarrow	\downarrow
$K_{r}=\frac{D_{1}}{P_{0}}$	$K_{r}=\frac{E P S_{1}}{P_{0}}$	$K_{r}=\frac{D_{1}}{P_{0}}+g$	$K_{r}=R_{f}+\beta\left(R_{m}-R_{f}\right)$

* If Personal Tax [to] is given in question

$$
K r=K e(1-f c)(1-t p)
$$

* If we have to Calculate both Re \& Kr \& θ^{n} mentions \rightarrow Issue Price, f.C. \& CMP. [Ill 13]
for We [New issue of

$$
\begin{gathered}
P_{0}=I s s u e \\
\text { Price }
\end{gathered}
$$

$$
P_{0}=C \cdot M \cdot P .
$$

WEIGHTED AVERAGE COST OF CAPITAL (FAC) or
OVERALL COST OF CAPITAL [KO]
\rightarrow In order to balance
financial Risk Control cost of Capiral,

A company usually does not procure funds only from a single source
$\&$ tries to use a mix of various sources of finance.

WACE $=K_{0}=$ weighted Average cost of capital of all sources of finance

* General format for calculating WACC

Sources of finance	Amt	weight $\left(\omega_{i}\right)$	Cost of capital $\left(k_{i}\right)$	$w_{i} \times k_{i}$
ESC	$x \times x$	w_{e}	k_{e}	we xke
RE.	$x \times x$	ω_{r}	k_{r}	$\omega_{r} \times k_{r}$
SC	$x \times x$	ω_{p}	k_{p}	$\omega_{p} \times k_{p}$
LTD	$x \times x$	ω_{d}	k_{d}	$\omega_{d} \times k_{d}$
	Total			$\omega A C C$
	capital			

* CHOICE OF WEIGHTS
- No seperate MV of R\&S
- Thus,

MV of Equity shares is to be divided as per BV of ESC to BV of RIS.

MV of ESC

MV of x $\mathrm{Eq} \cdot \mathrm{Sh}$
$\left[\begin{array}{l}B V \text { of } R L S \\ B V \text { of }+ \text { By } 2 f \\ E S C\end{array}\right]$

* Marginal cost of capital [MCC]
$\rightarrow M C C$ is the cost of raising additional capital.
\rightarrow MCC is calculated using marginal weights. Marginal weight represent the proportion of funds which a firm intends to employ. \Downarrow
Thus, here there is no problem of choosing between BV \& MV weights.
\rightarrow When additional (marginal) funds are raised in same proportion as the existing capircel structure t if cost of individual sources remain same, then

$$
W A C C=M C C
$$

* USES of WACC
i) security analysts use FAC for valving \& selecting investments.

2) In discounted cashflow analysis, wACE is used as the discounting rate for calculating NOV.
3) WACC is used as hurdle rate to assess the return on capital investment.
4) Investors use WACC as a tool to decide whether or nor to invest.
