

CA Inter - May 2024 Pg 4.14 -> New ICAI Sm

Example – 3: A company issued 10,000, 15% Convertible debentures of ₹100 each with a maturity period of 5 years. At maturity, the debenture holders will have an option to convert the debentures into equity shares of the company in the ratio of 1:10 (10 shares for each debenture). The current market price of the equity shares is ₹12 each and historically the growth rate of the shares is 5% per annum. Compute the cost of debentures assuming 35% tax rate.

Convertible

Otherhores

Maturity

OR

Cash -> \$100

<u>Solution</u>:

i) calwighton of R.V.

R.V. will be, the higher of -

iy value of equity shakes at materity

ily couch to be received at maturity.

value of equity sname at maturity

(mP = E[2]) +590

FV of 1 Equity share at end of 5th year = $12 \times (1+0.05)^5$

= 12 × 1.276

= £15.32

FU of 10 eg share at end of 5th yr= 10 × 15.32

= £153.20 (4.19

i. value of 10 eq shares is greater than the cash to be received on anaturity, thus R.V. =\$ 153.20

in calculation of cost of conv. Deb. using approximation method

$$Kd = \frac{IM(1-t) + \left(\frac{RV - NP}{D}\right)}{\left(\frac{RV + NP}{D}\right)}$$

$$= 15(1-0.35) + (153.20 - 100)$$

$$= (153.20 + 100)$$

> Kd= 16.10%

COST OF PREFERENCE SHARE CAPITAL [Kp]

- -> Preference shareholders are paid dividend at a specified rate on the F.V.
- -> Pref. sh. are given priority over equity sh. in payment of dividend.
- → However, payment of dividend is <u>NOT</u>
 tax-deductible. It is treated as appropriation
 of profits.

KP cost of Redeemable cost of Irredeemable Pref. Shares Pref. Shares Kb = b0 + (EA-Nb) X100 Kp= PD x 100 where, where, If R.v. is not given in On, then assume F.V. = RV. • NP= I.P. - I.E. · If comp is given, then I.P. = C.M.P. . If I.E. are not give 27 YTM IRR method can in on, then assume "O" also be used. If an

COST OF EQUITY SHARE CAPITAL [Ke]

- -> cost of Equity = Returns expected by equity shareholders.
- -> Equity dividend is uncertain. [No fixed rate]
- iy Dividend Price Approach

 iiy farnings Price Approach

 iii's Growth Approach or Gordon's Model

 ivy capital Asset Pricing Model [CAPM]

 vy Realised Yield Approach.

iy Dividend Price Approach

> Here, we assume the amount of dividend to be constant. [till infinity -> going concern]

Ke= 10%

* we have to use Ke = D "fx-Dividend" Prices for calculation of the or Kr

ijy <u>Earnings Price Approach</u>

Here, we assume the amount of E.P.S. to be constant. [till infinity -> going concern?

Ke = E.P.S

iiiy Growth Approach or Gordon's Model

-> Here we assume that earnings & dividend are growing at a constant rate [till infinity]

where, D1 = Dividend at the end of 4rl.

Do DI= Do (149)

9= PXX

* If F.C. [I.E.] is given in 0ⁿ, then subtract

it from Po in above formulus.

4.22

iv) Capital Asser Pricing Model [CAPM]

- Here, ke is calwlated based on risk.
- -> Higher the risk, higher the Ke. CAPM describes the linear relationship between risk I return for securities.

Ke = Rf + B (Rm-Rf)

where, RF = Rish free Rate

Rm = Market Rate of Return

B = Beta [measure of systematic Risk]
[Rm-Rf] = Market Risk Premium —

[B(Rm-Rf)] = sewity Risk Premium.

Ke= Rf + B (Market Risk Premium) <

> Ke = Rf + Sewnity Risk Premium.

-> The risks to which a security is exposed to, can be classified into-

Unsystematic Risk

Systematic Risk

- · Company specific risk.
- · Related to finance, Market specific risk.

business & insolveny.

Eq - not obtaining proper

copyright trademark,

sub-optimal capital structure, liquidity issues, data breath,

CA Mohnish Vora (MVSIR) rich etc.

· Mauro - Economic or

· Related to inflation, changes in interest take,

recession, natural disaver, gout policy etc.

	and the Colde
	unsystematic Risk systematic Risk
	- Aka. Diversitiable Risk · Aka. Non-Diversitiable
	Risk.
	• It can be reduced • It cannot be reduced
	by diversification. by diversification.
	'
	·It is measured using
	"Beta" [B]
	Since, systematic risk cannot be eliminated,
	thus a company is expected to pay additional
	return for this type of risk.
*	Beta co-efficient [B]
	Beta measures the sensitivity of a share
	to changes in the market.
	Example (No Question in Exam -> from below Eq)
(I)	B=3 Sensex -> 2% Increase
-4 /	CMP= 750. Calwiate new MP.
	CITITIZESO. CALLOJARE TICHO 13/1.
	Soln: If Market MP of share
	2901 290×3=6901
	Beta himes T
	respond harega
	New MP = cmP + 690 = £53
	1000 1017 - CITIT 17 Q 10 - Q 23
by	If in above que, B=-1.50
	Makket MP of shares
	2901 290 x (-1.50) = -390 V
	New MP= 50-390= 48.50

calculate Ke by using "YTM TRR" method if calulate returns of each year > 1+r, = P,+D, ZIIU ID

> 1+ r2= P. + D2

iiy Ke= S(1+17) x (1+12) x (1+17) -(Geometric Mean)

	* IMPORT ANT	Notes	
17	Growth Rate =		Return on Invt.
	(9)	(6)	(Y)
	.3,		
		EFES -> isme se	Return earned on
		Kitna 90 retain kiya	funds invested
			in business.
	Eg:	A Utel	B Hd
	capital Employed		50,00,000
	ROI (Y)	20%	20%
	Earnings of yr	, ,	10,00,000
(YV 1)	(-) Dividend	10,00,000	4,00,000
	Retained Earnive	S	6,00,000
	op capital Emp.	50,00,000	56,00,000
45	ROI(Y)	20%	20%
	Earning of 4x2	000,00,01	11,20,000
		-,6'	
	Growth in Egralu		1.201
	from 4r1 to 4r2	(101 - 101)	[11.201-101]
	Growth Rate	0	12%
	[42-721 ×10	9)	[11.20L - 10L ×100]
	In W. R		
	Retention Ratio	[6] = R.E. Earninge	= <u>6L</u> = <u>60%</u>
	Growth Rate	= b x x	
		= 60% x 20%	
		= 12%	

27	Dirty	Power	Hill	(lim)	6 M	lethod	
1	Twhe	n powe	r (inc	lex)	is i	n trac	- Union]

 ω_{μ} = 3

Steps on calulator

Step1: "m" -> "J" 12 times

Step 2 . " - 1"

Step 3: Multiply by power "n"

Step 4: "+1"

Step 5: " x = " -> 12 times.

COST OF RETAINED EARNINGS [Kr]

- > Kr= Opportunity cost of dividends foregone by equity shareholders
- → Generally, Ke = Kr

However, difference comes when Hoation cost I personal toux exists.

→ CKe Kr

New Issue Existing F.C. is NEVER inwared.

of Eq. sh. Eq. sh.

F.C. is F.C. is

considered, not considered

		Kr						
			<u> </u>					
	Dividend Earn	2prin	boxdon's	CAPM				
	Price Approach Pric		Model					
	J ''		T					
		= EPS,	Kr= D1 +q	Kr= Rf + B(Rm-Rf				
	Po	P	ρ ₀)					
*	If Pexsonal To	x [tp]	is given in	question				
				5				
	Kr = Ke	_(1-FC)_	(I-tp)					
*	If we have							
	+ On menhi			F.C. & CMP.				
		[III]	3)					
	- X - E. 1011 in 10 M2							
	for the [new	. shares -		for Kr				
	Po= Issue _ f.(Po	= C.M.P.				
	Trice							
	1016161960 01	1001° C		(1)4/11/10/10/10/10/10/10/10/10/10/10/10/10/				
	WEIGHTED A	_	WSI OF U	APTIAL (WHICE)				
	01/600	11 11987	OF CAPITI	7.V7 1A				
	OVERA	ws t	OI CHITI	(0)				
->	In order to	halante)					
		1300,000						
	financial Risk	(In	itrol C	ocr of capital,				
	A company us	vally do	es not proc	wre funds				
	only A	mm a s	ingle source					
	2 tries	to use	a mix of					
	Louis	Sourles	a mix of of finance	•				

WACC = Ko = Weighted Average cost of capital all sources of finance

*	General	Format	for	cal wlating	WACL
)	

Sources	Amk	weight	Cost of capital	wixki
of finance		(wi)	(Ki)	
ESC	XXX	we	Ke	wexke
R.E.	XXX	WY	KY C	WXXKY
PSC	XXX	WP	Ke	WOXKO
LTD	XXX	Wd	Kd	wax hd
	Total			WACC
	capital			, -

* CHOICE OF WEIGHTS

BOOK VALUE

MARKET VALUE

- · No seperate MV of Rfs
- · Thus,

My of Equity Shares is

to be divided as per

to BU of RAS BV of ESC

MU of ESL MV of x BV of +

MV of RIS

MV of X By of + Eq. Sh

Eq. Sh.

-> when additional (marginal) funds are traised in same proportion as the existing capital structure & if cost of individual sources remain same, then

WACC = MCC

* USES of WACC

- y Sewiny analysts use wacc for valuing I selecting investments.
- 2) In discounted cashflow analysis, wACC is used as the discounting rate for cal wating NPV.
- 3) WACL is used as hurdle rate to assess the return on capital investment.
- 4) Investors use WACC as a tool to decide whether or nor to invest.