

cy Ovarterly Compounding	dy Monthly Compounding
O sont but and I want least 21 2	0 1 2 2
2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%	FV = 2000 + 0.83%++0.83%
	24 himes
FV2 = 2000 + 2.5%+ +25%	= 2000 x (1+0.0083)24
& Himes	= 2000 x 1.219
or 2 7 11 102	= £2,438.85
FV2 = 2000 x (1+0.025)8	
$= 2000 \times 1.218 = 2436.81$	

*	FUTURE VALUE (F.V.)	PRESENT VALUE (P.V.)				
	F.V. is the cash value	P.V. is the sum of				
	of an investment at	money to be inverted				
	some time in future.	today in order to				
		achieve a specific				
	It is tomorrow's value	amount in future.				
	of today's money	OL				
	compounded air a raire	P.V. is the whenh				
	of interest.	(today's) value of				
	8	future sum of money				
	FV= PV(1+m)n	or stream of calniflows,				
	0,	at a specified rate of int.				
		,				
		PV = FV				
		(1+12)				

$$(0.000) + (0.000) = 11,000$$

$$710,000 \times (1+0.10)^3 = 13310$$

FV4 = PV (1+8)4 How to do on calwindor?
= 200 (1+0.15)4 Step1: 1.15 "x = "
= 200 (1.15)4 Step2: =
= 200 x 1.749 Scep3: = y Ans.
=
$$\pm 349.80$$

	CA Inter – May 2024 FM Handwritten Notes
	ITY PV of a single Amount
	Suppose you are going to receive
	E1,00,000 after 5 yrs from now. Then
	what will be the P.V., if interest rate
	is 15% P.a.?
	0 1 2 3 4 5
	DV = 2
	1590 1590 1590 1590
	EV ₅
	Int Rate = 15%
	[FVs]
	PV + 15%+ 15%+15%+15%= 1,00,000
	PV 1 13/81 13/8 113/8 113/8 1 13/8 1 1001000
	PV x (1+0.15)5 = 1,00,000
	= $V = 1.00,000 = 1.00,000 x 1$
	(1+0.15)5 (1+0.15)5
=	1,00,000 × 1 -> How to do on calw lator?
	1
	(1.15) ⁵ Step1: 1 = 1.15 Srep2: "=" y 4 times
2	1,00,000 X 0.497 Ans: 0.497
13	£49,700
	PVIF (15%,5) = 0.497
*	Discounting factors @ 15%
	[Queent status Takerest Gither - DVICE 2]
	19t yr he end mei El chahiye -> aaj 15% -> 0.870
	19t yr he end mei El wahiye > aaj 15% > 0.870 2nd yr he end mei El wahiye > aaj 15% > 0.756
	and you he end mei El chathiye -> aaj 15% -> 0.658

00					
	4th yr he end wei El	chahiy	$e \rightarrow \alpha \alpha i$	15% -> 0.	572
	5th yr he end wei El	chathiy	$r \rightarrow \alpha \alpha i$	15% -> 0.	497
	·		<u>, </u>		
			<u> </u>	4	
	(E)	F) (FI)	Ė) (Į I
	0.00				
DV1F	(15%1)=0.870 < @.1590				
aus	(59,2) = 0.756 (@ 1590				
You	(3)(1)			(2)	
a. 116/	15h 3) = 0.658 < @ 15	,70			
YOR	(No. 3) - (C. 3) - (C. 3)				
2.1.5	(1596H= 0.572 <	@ 15	0		
ha is	(S)011/0.5 /2				
€	(45965) = 0.497 <	.0	@ 15	%	
9011	(13161) - U. WY /	74			
		70	5		
	O INF=1	5%	2		
	(3)1				
	(10=?)		FV5= 1,	001000	
	Army to be invested toda	y U	ar end	of 5m	48
	£0.497	-	£1	•	
	(PV=7)		£ 1.0	0,000	
		\			
	x 000,000,1 = V9	0.497	= £40	1,700	
	·	·			
				_	_

Illy PV of Annuity [uniform caehflows each year]
for finite period

fg: Suppose as per a contract, you are going to receive £1,00,000 at the end of every year upto 5 yrs. Then what is the P.V., if rate is 15%.

PV3=11 (1+0.15)3

PV4= 1L (1+0.15)4

PVs = 11 (1+0.15)\$

PV= 1L + 1L + 1L + 1L + 1L (1.15)1 (1.15)2 (1.15)3 (1.15)4 (1.15)5

 $= 1 \left(\frac{1}{1.15} \right)^{1} + 1 \left(\frac{1}{1.15} \right)^{2} + 1 \left(\frac{1}{1.15} \right)^{3} + 1 \left(\frac{1}{1.15} \right)^{4} + 1 \left(\frac{1}{1.15} \right)^{5}$

$$= 1L \left(0.870 + 0.756 + 0.658 + 0.572 + 0.497 \right)$$

$$PV = Annuity \times PVAF(1590, 5)$$

= 1,00,000 × (3.353)

	. ^
Present value Interest	Present value Interest factor
factor [PVIF]	Annuity or wmulative factor
	or PV Annuity factor
• ([PVIFA or PVAF]
Eg: PVIF(158,5)	Eg: PVAF (15%, 5)
0 05	
(<u>F</u>)	
= 0.497	
(1.15)5	$PVAF(159,5) = \frac{1}{(1.15)!} + \frac{1}{(1.15)^2} + \frac{1}{(1.15)^2}$
	+ (1.15)4 + (1.15)5 = 3.353
<u>Calulator Steps</u>	<u>Calulator Steps</u>
1 1 + 1.15	□ 1 ÷ 1.15
2) "=" 5 time	② "=" 5 times
Ans. 0.497	3 Press "GT"
	Ans. 3.352

12-50%

Example

C		1	2	3	4	5	6	7	8
		+)	1	1	 	 	-
b/= j	9	5L	SL	SL	SL	SL	SL	SL	<u> </u>

90,900

1,65,200

3,75,500

IVY P.V. of uneven Cashflow	
0 1 2 3	PV= 11 + 21 + 51
6,31,600 PV=? 11 21 51	PV= 1L + 2L + 5L (1.10) (1.10)2 (1.10)3
Discounting Pare = 10%	$=11\times \left(\frac{1}{1-10}\right)^{2}+21\left(\frac{1}{1-10}\right)^{2}$
(1+0.10)	(1-10)
	= 1L X (0.909) + 2L(0.826) + 5 LX (0.751)
(1+0.10)2	+5LX (0.751)
$\frac{5L}{(1+0.0)^3}$	3
Tabular form	
Yr Partiwlass CF	DF (10%) DCF

1,00,000 0.909

2,00,000 0,826

0-751

<000,000≥

2

CF

CF

CP-

Example
Suppose a machinery costs £ 5,00,000 today.

we can receive countlows of \$2,00,000,

£3,00,000 & £4,00,000 or the end of Yr 1,2 &3 respectively.

Our companies fund provident expect a return of 12% on their funds. (Cost of Capital)

whether should we purchase this M/L or not?

(5,00,000) (5,00,000) (5,00,000) (5,00,000)

PV of M|C@1290 = 2L + 3L + 4L $(1.12)^{1} (1.12)^{2} (1.12)^{3}$

= 21(0.893) + 31(0.797) + 41(0.712)

= £7,02,500

If we want earn a return of 12%, then we should purchase the MC out £7,02,500.

However, lost of MIC is only & 5,00,000. Thus, we should purchause the MIC.

Now, we will be able to earn 1290 on the ask it along with additional £ 2,02,500 [NPV]

Nex Present Value = Sum of DV of (-) Initial

Life a cost of apiral Investment

= 7,02,500 - 5,00,000

=) NPV = ₹ 2,02,500

CA Inter - May 2024 Example COST OF MIL IF cost of capital = 10%, then whether Should we purchase MIC using NPV method) Sum of PV of ct from MIC = 2,00,000 x PVAF(109.4) discounted @ Ko = 10% = 2,00,000 x 3.170 = £ 6,34,000 NPY = Sum of Prof cf - Initial Invi = 6,34,000 - 6,00,000 = 734,000Since, NPV is the we should purchase the MIC. IF cost of capital = 12%, then whether Should we prichase MIC using NPV method?

- Sum of PV of CF = 2 L + 1 L + 1 L

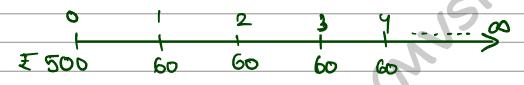
 discounted@ 40=1290 (1+0.12) (1+0.12)2 (1+0.12)3
 - = 2L (0.893) + 1L(0.797) + 1L(0.712)
 - = £3,29,500.
- · NPV= 3,29,500 4,00,000 = (70,500)

Thus, MIC should not be purchased as NPV is -ve.

Ity PV of Perpetuity [Uniform Cashflows Perpetual Annuity For Infinite Period]

fg: suppose us per a contract, you are going to receive &IL at the end of each year for infinite period. Find pv, if interest rate is 12%.

PV of Perpetuity=
$$\frac{1L}{(1+0.12)^3}$$
 $\frac{1L}{(1+0.12)^2}$ $\frac{1L}{(1+0.12)^3}$


Sum of Infinite GP =
$$Q = First Term$$

(when $Y < I$) $I - Y = I - Common Paulie$

$$= \begin{bmatrix} 1 \\ 1 + 0.12 \end{bmatrix} \div \begin{bmatrix} 1 \\ 1 + 0.12 \end{bmatrix}$$

PV of Perpetuity = A

Example
Suppose today MV foods Urd's share price
is of £500. It is expected to earn £60
as dividend perpetually from this share.
Whether should we purchase this share or not,
if we expect a return of 10% [Ke]?

PV of share =
$$\frac{A}{Y} = \frac{60}{10\%} = 7600$$
.


alicounted@10%

Since NPV is the, we should purchase shares.

YY

PV of Growing Perpetuity
[constant anown]

Example
Suppose today MV foods Urd's share price
is of £500. Last year's dividend was £80.
It is expected that dividend will grow by 5% every year till intinity.
Whether should we purchase this share or not, if we expect a return of 12% [Ke]?

Po=500 Di=84 Dz=86.20 D3=92.61

Do- £80

$$D_2 = 84 + 5\% = 80 \times (1 + 0.05)^2 = 88.20$$

80+590+590]

[80+590+590+590]

Now, PV of Gnowing =
$$84 + 88.20 + 92.61$$

Perpetuity (1+0.12) (1+0.12)² (1+0.12)³

The above is also like an infinite G.P.

• First Term (a) =
$$80(1+0.05)$$
 (1+0.12)

Sum of Infinite GP= a (when r<1) 1-r

: Sum of Infinite 67P
=
$$\frac{80(1+0.05)}{(1+0.12)}$$
 \div $\frac{1-1+0.05}{1+0.12}$

$$= \frac{80(1+0.05)}{(1+0.12)} \div \frac{1}{1+0.12} - 1 - 0.05$$

$$= 80(1+0.05) \times (1+0.12)$$
(1+0.12) 0.12 - 0.05

$$= 80(1+0.05) = 84 = £1200$$

$$0.12-0.05 = 0.07$$

The value of share should have been £1,200 in the above example, but in market it is only of £500, which means it is "under-priced", thus we should buy the shares.

Example

Suppose today I G Boni Pin' Urd's share price is of £1,200. The experted dividend at end of 1st year is £90. It is experted that dividend will grow by 6% every year till infinity. Whether should we purhase this share or not, if we expect a return of 15% [Ke]?

PV of Share =	Di			
•	ke-g			
=	90	=	90	
	0.15-0.06		0.09	
7	£ 1,000.			
	• •			

Theoritical MP = £1,000 (Kya price honi chahiye formula he hisab se)

Actual MP = \$1,200

The share is over-priced, we should not buy the share.