FINANCIAL MANAGEMENT BOOSTER BATCH

FOR MAY 2024

By
CA Namit Arora Sir

This book is dedicated to my Parents Mr. S. K. ARORA \& Mrs. Raman Arora

INDEX

S. NO.	CHAPTER NAME	PAGE NO.
1	CAPITAL STRUCTURE-EBIT \& EPS ANALYSIS	$3-13$
2	LEVERAGES	$14-24$
3	MANAGEMENT OF RECEIVABLES \& PAYABLES	$25-33$
4	MANAGEMENT OF WORKING CAPITAL	$34-49$
5	TREASURY AND CASH MANAGEMENT	$50-56$
6	RATIO ANALYSIS	$57-73$
7	CAPITAL BUDGETING OR INVESTMENT DECISIONS	$74-94$
9	COST OF CAPITAL	$95-110$
10	DIVIDEND DECISIONS	$111-120$

CHAPTER 1

1. EBIT \& EPS Analysis: Finance manager has to select best Capital Structure or Financing Plan which provides highest EPS \& MPS out of many financing Plans.
2. Proforma Statement Showing EBIT, EPS \& MPS:

Note:

$>$ MPS	$=$	EPS \times PE Ratio
$>$ Number of Equity Shares	$=$	Existing Shares + New Shares
$>$ New Equity Shares	$=$	$\frac{\text { Additional Funds Raised through Equity }}{\text { Net Proceeds from One Equity Share }}$
$>$ Net Proceeds from Share	$=$	Issue Price - Issue Expenses

Note: If nothing is specified in the question, MPS is assumed to be Issue Price.
Note: If nothing is specified in the question and we have both MPS \& EPS then decision should be based on MPS.
3. Selection of plan on the basis of EPS or MPS (New company):

Statement of EPS \& MPS

Particulars		Alternatives		
		Equity	Equity - Debt	Equity - Preference
$\begin{aligned} & \text { EBIT } \\ & \text { Less: Interest } \end{aligned}$	EBT	$\boldsymbol{X X X}$	XXX	$\boldsymbol{X X X}$
		-	(XXX)	-
		$\begin{gathered} X X X X \\ (X X X) \end{gathered}$	$\begin{gathered} X X X \\ (X X X) \end{gathered}$	$\begin{gathered} X X X \\ (X X X) \end{gathered}$
Less: Tax	EAT	XXX	XXX	XXX

Less: Preference Dividend			
Earning For Equity	-	-	$(X X X)$
\div No. of Equity shares	$X X X$	$X X X$	$X X X$
EPS	$\div X X$	$\div X X$	$\div X X$
$M P S$ (EPS \times PE Ratio)	$X X X$	$X X X$	$X X X$
		$X X X$	$X X X$

4. Selection of plan on the basis of EPS or MPS (Existing company):

Statement of EPS \& MPS

Particulars	Alternatives		
	Equity	Debt	Preference
EBIT	XXX	XXX	$\boldsymbol{X X X}$
Less: Interest:			
Existing	(XXX)	(XXX)	(XXX)
New	-	(XXX)	-
Less: Tax EBT	$X X X$	$X X X$	$X X X$
EAT	XXX	XXX	XXX
Less: Preference Dividend:			
Existing	(XXX)	(XXX)	(XXX)
New	-	-	(XXX)
Earning For Equity	XXX	XXX	XXX
\div No. of Equity shares	$\div X X$	$\div X X$	$\div X X$
(Existing + New)	$(X X+X X)$	$(X X+N I L)$	$(X X+N I L)$
EPS	XXX	XXX	XXX
MPS (EPS \times PE Ratio)	XXX	XXX	XXX

5. Indifference Point: Indifference point refers the level of EBIT at which EPS under two different options are same.

EPS under option 1	$=$	EPS under option 2
$\frac{\left(E B I T-I_{1}\right)(1-t)-P D_{1}}{N_{1}}$	$=$	$\frac{\left(E B I T-I_{2}\right)(1-t)-P D_{2}}{N_{2}}$

Course of Action:

Situations	Action
Expected EBIT < Indifference Point	Select option having lower Fixed Financial Burden
Expected EBIT = Indifference Point	Select any option
Expected EBIT > Indifference Point	Select option having higher Fixed Financial Burden

6. Financial Break Even Point: It is the level of EBIT at which EPS will be zero.

$$
\text { EBIT }=\quad \text { Interest }+\frac{\text { Preference Dividend }}{(1-t)}
$$

7. Indifference Point in case of Equal Number of Share:

Indifference Point in Case of Equal Number of Shares

Situation 1

No EBIT will provide same EPS under both plans
There is no indifference point between two plans
Plan having lower financial fixed burden will dominate other plan

Situation 2

Each and every EBIT will provide same EPS under both plans
$>$ Each and every EBIT is indifference point between two plans
No plan will dominate

BBQ 1

The Modern Chemicals Ltd. requires ₹ $25,00,000$ for a new plant. This plant is expected to yield earnings before interest and taxes of ₹ $5,00,000$. While deciding about the financial plan, the company considers the objective of maximizing earnings per share.

It has three alternatives to finance the projects by raising debt of ₹ $2,50,000$ or ₹ $10,00,000$ or $₹ 15,00,000$ and the balance in each case, by issuing equity shares. The company's share is currently selling at $₹ 150$, but is expected to decline to ₹ 125 in case the funds are borrowed in excess of $₹ 10,00,000$. The funds can be borrowed at the rate of 10% up to ₹ $2,50,000$ at 15% over ₹ $2,50,000$ and upto ₹ $10,00,000$ and at 20% over $₹ 10,00,000$. The tax rate applicable to the company is 50%.

Which form of financing should the company choose?

Answer

Statement of EPS

Particulars	Alternatives		
	1	2	3
Earnings before interest and tax	5,00,000	5,00,000	5,00,000
Less: Interest:			
@ 10\% on first ₹ $2,50,000$	25,000	25,000	25,000
@ 15\% on ₹ $2,50,001$ to ₹ $10,00,000$	-	1,12,500	1,12,500
@ 20\% on above ₹ $10,00,000$	-	-	1,00,000
EBT	4,75,000	3,62,500	2,62,500
Less: Tax @ 50\%	2,37,500	1,81,250	1,31,250
EAT	2,37,500	1,81,250	1,31,250
\div No. of Equity shares	15,000	10,000	8,000
	(22,50,000/150)	(15,00,000/150)	$(10,00,000 / 125)$
EPS	F15.833	F18.125	F16.406

Decision: The earning per share is higher in alternative II i.e. if the company finance the project by raising debt of $₹ 10,00,000$ \& issue equity shares of $₹ 15,00,000$. Therefore, the company should choose this alternative to finance the project.

BBQ 2
Akash Limited provides you the following information:

Particulars	$₹$
Earnings before interest and tax	$2,80,000$
Less: Debenture interest @ 10\%	40,000
	Earnings before tax
Less: Income tax @ 50\%	Earnings after tax
No. of Equity Shares (₹10 each)	$2,40,000$
	Earning per share (EPS)
Price Earning (PE) Ratio	$1,20,000$

The company has reserves and surplus of ₹ $7,00,000$ lakhs and required ₹ $4,00,000$ further for modernization. Return on Capital Employed (ROCE) is constant. Debt (Debt/Debt + Equity) Ratio higher than 40% will bring the P/E Ratio down to 8 and increase the interest rate on additional debts to 12%.

You are required to ascertain the probable price on the share.

(1) If the additional capital are raised as debt and
(2) If the amount is raised by issuing equity shares at ruling market price.

Answer

Statement of Market Value Per Share (MPS)

Particulars	Debt Plan	Equity Plan
EBIT @ 20\% of 18,00,000 (14,00,000 + 4,00,000)	3,60,000	3,60,000
Less: Interest: Existing	40,000	40,000
New (12% of $₹ 4,00,000$)	48,000	-
EBT	2,72,000	3,20,000
Less: Tax @ 50\%	1,36,000	1,60,000
PAT	1,36,000	1,60,000
\div No. of Equity shares	30,000	40,000
EPS	₹ 4.53	₹4.00
\times PE Ratio	8 Times	10 Times
MPS	F36.24	F40.00

Working notes:

1. Calculation of capital employed before expansion plan:

Equity share capital (30,000 shares \times ₹ 10)
₹3,00,000
Retained earnings
₹7,00,000
Debentures (40,000/10\%)
₹ $4,00,000$
Total capital employed
₹14,00,000
2. Return on Capital Employed (ROCE):

ROCE $=\frac{\text { EBIT }}{\text { Capital Employed }} \times 100=\frac{2,80,000}{14,00,000} \times 100=20 \%$
3. Debt Ratio if $\mathfrak{₹} 4,00,000$ is raised as debt:

$$
=\frac{8,00,000(4,00,000+4,00,000)}{18,00,000(14,00,000+4,00,000)} \times 100 \quad=\quad 44.44 \%
$$

As the debt ratio is more than 40% the P / E ratio will be brought down to 8 in Plan 1
4. Debt Equity Ratio if ₹4,00,000 is raised as Equity:

$$
=\frac{4,00,000}{18,00,000} \times 100 \quad=\quad 22.22 \%
$$

As the debt ratio is less than 40% the P / E ratio in this case will remain at 10 times in Plan 2.
5. Number of Equity Shares to be issued in Plan 2:

$$
=\frac{4,00,000}{40} \quad=\quad 10,000 \text { shares }
$$

BBQ 3

Yoyo Limited presently has $₹ 36,00,000$ in debt outstanding bearing an interest rate of 10 per cent. It wishes to finance a ₹ $40,00,000$ expansion programme and is considering three alternatives: additional debt at 12 per cent interest, preference shares with an 11 per cent dividend, and the issue of equity shares at ₹ 16 per share. The company presently has $8,00,000$ shares outstanding and is in a 40 per cent tax bracket.
(a) If earnings before interest and taxes are presently $₹ 15,00,000$, what would be earnings per share for the three alternatives, assuming no immediate increase in profitability?
(b) Analyse which alternative do you prefer? Compute how much would EBIT need to increase before the next alternative would be best?

Answer

(a) Statement of EPS

Particulars	Alternatives		
	Debt	Preference	Equity
Earnings before interest and tax	15,00,000	15,00,000	15,00,000
Less: Interest:			
Existing @ 10\% on ₹ $36,00,000$	3,60,000	3,60,000	3,60,000
New 12% on ₹ $40,00,000$	4,80,000	-	-
EBT	6,60,000	11,40,000	11,40,000
Less: Tax @ 40\%	2,64,000	4,56,000	4,56,000
EAT	3,96,000	6,84,000	6,84,000
Less: Preference Dividend	-	4,40,000	-
Earnings Available for Equity Shareholders	3,96,000	2,44,000	6,84,000
\div No. of Equity shares	8,00,000	8,00,000	10,50,000
EPS	₹0.495	₹0.305	₹0.651

(b) For the present EBIT level, equity share is clearly preferable. EBIT would need to increase by $₹ 8,76,000$ ($₹ 23,76,000-₹ 15,00,000$) before next alternative i.e. debt would be best.

Working Note: Indifference point between Equity (best option) and Debt (second best option) of financing:

$$
\begin{aligned}
\frac{(\text { EBIT }-\mathrm{I})(1-T)}{\mathrm{N}_{1}} & =\frac{(\text { EBIT }-\mathrm{I})(1-\mathrm{T})}{\mathrm{N}_{2}} \\
\frac{(\text { EBIT }-3,60,000)(1-0.40)}{1,05,000} & =\frac{(\text { EBIT }-8,40,000)(1-0.40)}{80,000} \\
\text { EBIT } & =₹ 23,76,000
\end{aligned}
$$

BBQ 4

Ganapati Limited is considering three financing plans. The key information is as follows:
(a) Total investment to be raised ₹ $2,00,000$.
(b) Financing proportion of Plans:

Plans	Equity	Debt	Preference Shares
A	100%	-	-
B	50%	50%	-
C	50%	-	50%

(c) Cost of debt is 8%

Cost of preference shares is 8%
(d) Tax rate 50\%
(e) Equity shares of the face value of ₹ 10 each will be issued at a premium of $₹ 10$ per share
(f) Expected EBIT is ₹80,000.

You are required to determine for each plan:

(1) Earnings per share
(2) Financial break-even-point
(3) Indicate if any of the plans dominate and compute the EBIT range among the plans for indifference.

Answer

(1) Statement of EPS

Particulars	Alternatives		
	A	B	C
Earnings before interest and tax	80,000	80,000	80,000
Less: Interest @ 8\% on ₹ $1,00,000$	-	8,000	-
EBT	80,000	72,000	80,000
Less: Tax @ 50\%	40,000	36,000	40,000
EAT	40,000	36,000	40,000
Less: Preference Dividend @ 8\% on ₹ $1,00,000$	-	-	8,000
Earning Available for Equity Shareholders	40,000	36,000	32,000
\div No. of Equity shares (Issue price ₹ 20)	10,000	5,000	5,000
EPS	F4.00	F7.20	₹6.40

(2) Financial Break Even Point (EBIT equals to fixed financial cost):

Proposal A	Financial B.E.P.	$=$	No Fixed Financial Cost	$=$	Zero
Proposal B	Financial B.E.P.	$=$	Interest on Debt	$=$	$\mathbf{8 , 0 0 0}$
Proposal C	Financial B.E.P.	$=$	Preference Dividend	$(1-\mathrm{t})$	$=$
		$=16,000$	$\frac{8,000}{1-0.50}$		

(3) Indifference Point:

Between Proposal A \& B:

$$
\begin{array}{cl}
\frac{(\text { EBIT-I) }(1-T)}{\mathrm{N}_{\mathrm{A}}} & =\frac{(\text { EBIT-I) }(1-\mathrm{T})}{\mathrm{N}_{\mathrm{B}}} \\
\frac{(\text { EBIT-0) }(1-0.50)}{10,000} & =\frac{(\text { EBIT }-8,000)(1-0.50)}{5,000} \\
\boldsymbol{E B I T} & =\mathrm{F} 16,000
\end{array}
$$

Between Proposal A \& C:

$$
\begin{array}{ll}
\frac{(\text { EBIT-I) }(1-T)}{\mathrm{N}_{\mathrm{A}}} & =\frac{\{(\text { EBIT }-\mathrm{I})(1-\mathrm{T})-\mathrm{PD}\}}{\mathrm{N}_{\mathrm{C}}} \\
\frac{(\text { EBIT }-0)(1-0.50)}{10,000} & =\frac{\{(\text { EBIT }-0)(1-0.50)-8,000\}}{5,000}
\end{array}
$$

$$
\text { EBIT } \quad=\quad ₹ 32,000
$$

Between Proposal B \& C:

$$
\begin{array}{lll}
\frac{(\text { EBIT-I) }(1-T)}{N_{B}} & = & \frac{\{(\text { EBIT-I) }(1-T)-\text { PD }\}}{N_{C}} \\
\frac{(\text { EBIT-8,000) }(1-0.50)}{5,000} & = & \frac{\{(\text { EBIT-0) }(1-0.50)-8,000\}}{5,000} \\
\mathbf{0 . 5 ~ E B I T - 4 , 0 0 0 ~} & \neq & \mathbf{0 . 5} \text { EBIT }-\mathbf{8}, 000
\end{array}
$$

There is no indifference point between the financial plans B and C. It can be seen that Financial Plan B dominates Plan C. Since, the financial break-even point of the former is only ₹ 8,000 but in case of latter it is ₹ 16,000 .

BBQ 5
Xylo Ltd. is considering the following two alternative financing plans:

Particulars	Plan \boldsymbol{A}	Plan \boldsymbol{B}
Equity Shares of ₹10 each	$8,00,000$	$8,00,000$
12\% Debentures	$4,00,000$	-
Preference Shares of ₹100 each	-	$4,00,000$
	$\mathbf{1 2 , 0 0 , 0 0 0}$	$\mathbf{1 2 , 0 0 , 0 0 0}$

The indifference point between the plans is ₹ $4,80,000$. Corporate tax rate 30%.
Calculate the rate of dividend on preference shares.

Answer

Rate of dividend $=\quad \frac{\text { Preference Dividend }}{\text { Preference Share Capital }} \times 100=\quad \frac{33,600}{4,00,000} \times 100=\mathbf{8 . 4 0 \%}$

Working Notes:

Calculation of preference dividend:

$\frac{(\text { EBIT }-\mathrm{I})(1-\mathrm{T})}{\mathrm{N}_{1}}$	$=$	$\frac{[(\text { EBIT }-\mathrm{I})(1-\mathrm{T})]-\mathrm{PD}}{\mathrm{N}_{2}}$
$\frac{(4,80,000-48,000)(1-0.30)}{80,000}$	$=$	$\frac{[(4,80,000-\mathrm{Nil})(1-0.30)]-\mathrm{PD}}{80,000}$
$3,02,400$	$=3,36,000-\mathrm{PD}$	
Preference dividend (PD)	$=\mathrm{F} 33,600$	

BBQ 6

Current Capital Structure of XYZ Ltd is as follows:

Equity Share Capital	$:$	7 lakh shares of face value ₹20 each
Reserves	$:$	$₹ 10,00,000$
9% bonds	$:$	$₹ 3,00,00,000$

11\% preference capital : Additional Funds required :
$3,00,000$ shares of face value ₹ 50 each
₹5,00,00,000

XYZ Ltd is evaluating the following alternatives:

(1) Proposed alternative I: Raise the funds via 25% equity capital and 75% debt at 10%. PE ratio in such scenario would be 12 .
(2) Proposed alternative II: Raise the funds via 50\% equity capital and rest from 12\% Preference capital. PE ratio in such scenario would be 11.

Any new equity capital would be issued at a face value of ₹20 each. Any new preferential capital would be issued at a face value of ₹ 20 each. Tax rate is 34%

Determine the indifference point under both the alternatives.

Answer
 Calculation of Indifference point between Proposal I \& Proposal II:

Let the indifference point be X

$$
\begin{aligned}
\frac{[(E B I T-I)(1-T)]-\text { PD }}{N_{1}} & =\frac{[(E B I T-I)(1-T)]-\text { PD }}{N_{2}} \\
\frac{(X-64,50,000)(1-0.34)-16,50,000}{13,25,000} & =\frac{(X-27,00,000)(1-0.34)-46,50,000}{19,50,000} \\
\frac{.66 \mathrm{X}-42,57,000-16,50,000}{1,325} & =\frac{.66 \mathrm{X}-17,82,000-46,50,000}{1,950} \\
\frac{.66 \mathrm{X}-59,07,000}{53} & =\frac{.66 \mathrm{X}-64,32,0000}{78} \\
51.48 \mathrm{X}-46,07,46,000 & =34.98 \mathrm{X}-34,08,96,000 \\
16.5 \mathrm{X} & =11,98,50,000 \\
\mathrm{X} & =F 72,63,636.36
\end{aligned}
$$

Working Notes:

(1) Calculation of number of Equity shares:

Under Proposal I $=7,00,000$ Existing shares $+\frac{5,00,00,000 \times 25 \%}{20}$ New shares

$$
=7,00,000+6,25,000 \quad=\quad 13,25,000 \text { shares }
$$

Under Proposal II $=7,00,000$ Existing shares $+\frac{5,00,00,000 \times 50 \%}{20}$ New shares

$$
=7,00,000+13,50,000 \quad=\quad 19,50,000 \text { shares }
$$

(2) Calculation of Interest:

Under Proposal I	$=3,00,00,000 \times 9 \%+(5,00,00,000 \times 75 \%) \times 10 \%$
	$=64,50,000$
Under Proposal II	$=3,00,00,000 \times 9 \%$

(3) Calculation of Preference Dividend:

Under Proposal I	$=(3,00,000 \times 50) \times 11 \%=16,50,000$
Under Proposal II	$=16,50,000+(5,00,00,000 \times 50 \%) \times 12 \%$
	$=46,50,000$

BBQ 7

RM Steels Limited requires $₹ 10,00,000$ for the construction of new plant. It is considering three financial plans:
(1) The Company may issue $1,00,000$ ordinary shares at ₹ 10 per share.
(2) The Company may issue 50,000 ordinary shares at ₹10 per share and 5,000 debentures of ₹ 100 denomination bearing 8% rate of interest.
(3) The Company may issue 50,000 ordinary shares at ₹10 per share and 5,000 preference shares at ₹ 100 per share bearing a 8% rate of dividend.

If RM Steels Limited's earnings before interest and taxes are ₹ 20,000 , ₹ 40,000 , ₹ 80,000 , ₹ $1,20,000$ and ₹ $2,00,000$. Tax rate is 50%.

You are required to compute the earning per share under each of the three plans? Which alternative would you recommend for RM Steels and why?

Answer

1. Statement showing EPS with respect to various plans \& different EBIT:

a. Equity Financing

Particulars	$₹$	₹	$₹$	$₹$	$₹$
EBIT	20,000	40,000	80,000	1,20,000	2,00,000
Less: Interest	0	0	0	0	0
EBT	20,000	40,000	80,000	1,20,000	2,00,000
Less: Tax @ 50\%	$(10,000)$	$(20,000)$	$(40,000)$	$(60,000)$	(1,00,000)
EAT	10,000	20,000	40,000	60,000	1,00,000
\div No. of Equity Shares	$\div 1,00,000$				
EPS	₹0.10	F0.20	₹0.40	₹0.60	₹1.00

b. Debt-Equity Mix

Particulars	F	₹	F	₹	₹
EBIT	20,000	40,000	80,000	1,20,000	2,00,000
Less: Interest	$(40,000)$	$(40,000)$	$(40,000)$	$(40,000)$	$(40,000)$
EBT	$(20,000)$	0	40,000	80,000	1,60,000
Less: Tax @ 50\%	*10,000	0	$(20,000)$	$(40,000)$	$(80,000)$
EAT	$(10,000)$	0	20,000	40,000	80,000
\div No. of Equity Shares	$\div 50,000$				
EPS	(₹0.20)	F0.00	F0.40	F0.80	₹1.60

* 10,000 is the tax saving in case of loss.
c. Preference Share - Equity Mix

Particulars	₹	₹	₹	₹	₹
EBIT	20,000	40,000	80,000	1,20,000	2,00,000
Less: Interest	0	0	0	0	0
EBT	20,000	40,000	80,000	1,20,000	2,00,000
Less: Tax @ 50\%	$(10,000)$	$(20,000)$	$(40,000)$	$(60,000)$	(1,00,000)
EAT	10,000	20,000	40,000	60,000	1,00,000
Less: Preferential Div.	${ }^{* *}(40,000)$	** 40,000$)$	$(40,000)$	$(40,000)$	$(40,000)$
EAT after Pref. Dividend	$(30,000)$	$(20,000)$	0	20,000	60,000
\div No. of Equity Shares	$\div 50,000$				
EPS	(₹0.60)	(₹0.40)	F0.00	F0.40	F1.20

${ }^{* *}$ In case of cumulative preference shares, the company has to pay cumulative dividend to preference shareholders, when company earns sufficient profits, so deducted here even in case of insufficient profit to reach right decision.

2. Recommendation:

(a) If expected EBIT is less than ₹ 80,000
(b) If expected EBIT is equal to ₹ 80,000
(c) If expected EBIT is more than $₹ 80,000$:

Equity Finance (Alternative 1)
Equity or Debt - Equity Mix (Alternative 1 or 2)
Debt - Equity Mix (Alternative 2)

CHAPTER 2

LEVERAGES

1. Leverage Technique: The term leverage represents influence or power. Leverage is the technique which is used to evaluate risk associated with any business organisation. The term Leverage in general refers to a relationship between two interrelated variables. In financial analysis it represents the influence of one financial variable over some other related financial variable. These financial variables may be costs, output, sales revenue, Earnings Before Interest and Tax (EBIT), Earning per share (EPS) etc.
2. Types of Risk: There are two types of risk: (a) Business Risk and (b) Financial Risk:
(a) Business Risk: It refers to the risk associated with firm's operations. It is the uncertainty about the future operating income (EBIT).
(b) Financial Risk: It refers to the additional risk placed on the firm's equity shareholders because of use debt, preference shares or both. It is the uncertainty about the future EPS.
3. Types of Cost and Risk:

4. Understanding of Various Leverage

5. Types of Leverages:

6. Degree of Operating Leverage or Operating Leverage: Operating leverage is used to measure operating or business risk associated with any business organisation, DOL indicates \% change in EBIT occurs due to a given \% change in Sales.
$>\quad$ If OL is 2.5 times, 1% increase in sales would result in 2.5\% increase in EBIT.
Formulae:

Formula 1	Operating Leverage	$=\frac{\text { Contribution }}{\text { EBIT }}$
Formula 2	Operating Leverage	$=\frac{\% \text { Change in EBIT }}{\% \text { Change in Sales }}$
Formula 3	Operating Leverage	$=\frac{\text { Combined Leverage }}{\text { Financial Leverage }}$
Formula 4		

Notes:

$>\quad 0 L$ can never be between 0 and 1.
$>$ Higher the fixed cost, higher the BEP, Higher the OL and higher the operating risk.
> No operating fixed cost means no operating risk.
> Higher the proportion of MOS, lower the OL and lower operating risk.
7. Degree of Financial Leverage or Financial Leverage: Financial leverage is used to measure financial risk associated with any business organisation. DFL indicates \% change in EPS occurs due to a given \% change in EBIT.
$>$ If FL is 5 times, 1\% increase in EBIT would result in 5\% increase in EPS.
Formulae:
Formula 1 Financial Leverage

$$
\begin{aligned}
& =\frac{E B I T}{E B T-\frac{P D}{1-T}} \\
& =\frac{\% \text { Change in } E P S}{\% \text { Change in } E B I T}
\end{aligned}
$$

Formula 3 Financial Leverage $=\quad \frac{\text { Combined Leverage }}{\text { Operating Leverage }}$

Notes:
$>\quad F L$ can never be between 0 and 1.
$>\quad$ Higher the Financial fixed cost (interest and preference dividend), higher the Financial BEP, Higher the FL and higher the Financial risk.
$>\quad$ No Financial fixed cost means no Financial risk.
8. Degree of Combined Leverage or Combined Leverage: Combined leverage is used to measure combined risk associated with any business organisation. DCL indicates \% change in EPS occurs due to a given \% change in Sales.
$>$ If CL is 2 times, 1\% increase in Sales would result in 2\% increase in EPS.
Formulae:

Formula 1	Combined Leverage	$=\frac{\text { Contribution }}{E B T-\frac{P D}{1-T}}$
Formula 2	Combined Leverage	$=\frac{\% \text { Change in EPS }}{\% \text { Change in Sales }}$
Formula 3	Combined Leverage	$=O L \times F L$

9. Effect of Financial Leverage on Equity Investors:

10. Financial Leverage as a 'Double edged Sword': When the cost of 'fixed cost fund' is less than the return on investment, financial leverage will help to increase return on equity and EPS. The firm will also benefit from the saving of tax on interest on debts etc. However, when cost of debt will be more than the return it will affect return of equity and EPS unfavorably and as a result firm can be under financial distress. Therefore, financial leverage is also known as "double edged sword".
11. Trading on Equity: A firm is known to have a positive/favourable leverage when its earnings are more than the cost of debt. If earnings are equal to or less than cost of debt, it will be an negative/unfavourable leverage. When the quantity of fixed cost fund is relatively high in comparison to equity capital it is said that the firm is "trading on equity".

BBQ 8

Calculate the operating leverage, financial leverage and combined leverage from the following data under situations I and II and financial plans A and B:

Installed capacity
Actual production and sales
Selling price
Variable cost
Fixed cost:
Under situation I
Under situation II

Capital structure:

	Plan \boldsymbol{A}	Plan \boldsymbol{B}
Equity	₹ 10,000	$₹ 15,000$
Debt (rate of interest at 20\%)	$₹ 10,000$	$₹ 5,000$
Capital Employed	₹20,000	₹20,000

Capital Employed

4,000 units
75% of the Capacity
₹30 per unit
₹ 15 per unit
₹15,000
₹20,000

Plan A Plan B
₹15,000
₹5,000
₹20,000

Answer

Statement Showing OL, FL and CL

Particulars	Situation I		Situation II	
	Plan A	Plan B	Plan A	Plan B
Sales ($3,000 \times$ ₹ 30)	90,000	90,000	90,000	90,000
Less: Variable cost	45,000	45,000	45,000	45,000
Contribution	45,000	45,000	45,000	45,000
Less: Fixed Cost	15,000	15,000	20,000	20,000
EBIT	30,000	30,000	25,000	25,000
Less: Interest	2,000	1,000	2,000	1,000
EBT	28,000	29,000	23,000	24,000
OL (Contribution \div EBIT)	1.5	1.5	1.8	1.8
FL (EBIT \div EBT)	1.07	1.03	1.09	1.04
CL (Contribution \div EBT)	1.61	1.55	1.96	1.88

BBQ 9

The capital structure of the Progressive Corporation consists of an ordinary share capital of $₹ 1,00,00,000$ (share of ₹ 100 par value) and ₹ $10,00,000$ of 10% debentures.

Sales increased by 20% from $1,00,000$ units to $1,20,000$ units, the selling price is $₹ 10$ per unit; variable cost amounts to ₹ 6 per unit and fixed expenses amount to ₹ $2,00,000$. The income tax rate is assumed to be 50%.

You are required to calculate the following:

(i) The percentage increase in earnings per share;
(ii) The degree of operating leverage at 1,00,000 units and 1,20,000 units.
(iii) The degree of financial leverage at 1,00,000 units and 1,20,000 units.
(iv) Comment on the behavior of operating and financial leverages in relation to increase in production from 1,00,000 units to $1,20,000$ units.

Answer

(i) Calculation of \% increase in EPS

Particulars	1,00,000 units	1,20,000 units
Sales @ ₹ 10 per unit Less: Variable cost	10,00,000	12,00,000
	6,00,000	7,20,000
Contribution	4,00,000	4,80,000
Less: Fixed cost Profit before interest and tax	2,00,000	2,00,000
	2,00,000	2,80,000
Less: Interest @ 10\% of ₹ 10 lacs	1,00,000	1,00,000
Less: Tax @ 50\% Profit before tax	1,00,000	1,80,000
	50,000	90,000
\cdots No. of shares $\begin{gathered}\text { Profit after tax } \\ \\ \text { Earning per share }\end{gathered}$	50,000	90,000
	1,00,000	1,00,000
	₹0.50	₹0.90
\% increase in EPS [(0.90-0.50) $\div 0.50] \times 100$	-	+80\%

(ii) Degree of Operating Leverage $=\frac{\text { Contribution }}{\text { EBIT }}$

| At $1,00,000$ units | $=\frac{4,00,000}{2,00,000}$ | $=2$ times |
| :--- | :--- | :--- | :--- |
| At $1,20,000$ units | $=\frac{4,80,000}{2,80,000}$ | $=1.71$ times |

(iii) Degree of Financial Leverage
$=\frac{\text { EBIT }}{\text { EBT }}$

| At $1,00,000$ units | $=\frac{2,00,000}{1,00,000}$ | $=2$ times |
| :--- | :--- | :--- | :--- |
| At $1,20,000$ units | $=\frac{2,80,000}{1,80,000}$ | $=1.56$ times |

(iv) Increase in production and sales will result in decrease in risk.

BBQ 10

On the basis of following information calculate Operating leverage with the help of Margin of Safety:

	Particulars
Number of Unit Sold	1,000
Sale Price per unit	$₹ 50$
Variable Cost per unit	$₹ 30$
Fixed Cost	$₹ 15,000$

Answer

Statement Showing Operating Leverage

Particulars	Product \boldsymbol{X}
Sale \quad Contribution	50,000
Less: Variable Cost per unit $\quad 30,000$	
Less: Fixed cost $\quad \mathbf{2 0 , 0 0 0}$	
\quad Earning before interest and tax	$\mathbf{1 5 , 0 0 0}$
Break-even point (Fixed Cost \div Contribution per unit) or $(15,000 \div 20)$	750 units
Margin of Safety (1,000 units - 750 units)	250 units

Operating Leverage ($\mathbf{1} \div$ MOS to sales ratio) or $(\mathbf{1} \div 0.25)$

Margin of Safety to Sales (250 units $\div 1,000$ units)	0.25
Operating Leverage (1 \div MOS to sales ratio) or $(\mathbf{1} \div \mathbf{0 . 2 5})$	$\mathbf{4}$ times

BBQ 11

Company P and Q are having same earnings before tax. However, the margin of safety of Company P is 0.20 and, for Company Q , is 1.25 times than that of Company P . The interest expense of Company P is $₹ 1,50,000$ and, for Company Q, is $1 / 3^{\text {rd }}$ less than that of Company P. Further, the financial leverage of Company P is 4 and, for Company Q , is 75% of Company P . Other information is given as below:

Particulars	Company \boldsymbol{P}	Company \boldsymbol{Q}
Profit volume ratio	25%	33.33%
Tax rate	45%	45%

You are required to prepare Income Statement for both the companies.

Answer

Income Statement

Particulars	Company P	Company Q
Sales Less: Variable cost	40,00,000	18,00,000
	30,00,000	12,00,000
Contribution	10,00,000	6,00,000
Less: Fixed cost	8,00,000	4,50,000
Profit before interest and tax	2,00,000	1,50,000
Less: Interest	1,50,000	1,00,000
Less: Tax @ 45\% $\begin{array}{r}\text { Profit before tax } \\ \text { Profit after tax }\end{array}$	50,000	50,000
	22,500	22,500
	27,500	27,500

Working Notes:

(a) Margin of Safety:

For Company P
For Company Q
$=0.20 \times 1.25$
$=0.25$
(b) Interest Expenses:

For Company P = ₹1,50,000
For Company Q = ₹1,50,000-1/3 of ₹ $1,50,000=$ ₹ $1,00,000$
(c) Financial Leverage:

For Company $\mathrm{P}=4$
For Company Q $=4 \times 75 \%=3$
(d) EBIT:

For Company A
Financial Leverage $=$ EBIT/(EBIT- Interest)
$4=$ EBIT/(EBIT-₹ $1,50,000$)
4 EBIT $-₹ 6,00,000=$ EBIT
3 EBIT $=$ ₹ $6,00,000$
EBIT $=$ ₹2,00,000
For Company B

Financial Leverage	$=$	EBIT/(EBIT - Interest)
3		$=$
EBIT/(EBIT -₹1,00,000)		
3 EBIT $-₹ 3,00,000$	$=$	EBIT
2 EBIT	$=$	$₹ 3,00,000$
EBIT	$=$	$₹ 1,50,000$

(e) Contribution:

For Company A
Operating Leverage $=1 /$ Margin of Safety $=1 / 0.20=5$

Operating Leverage $=$ Contribution/EBIT
$5=$ Contribution/₹2,00,000
Contribution $=\quad ₹ 10,00,000$
For Company B

Operating Leverage	$=$	$1 /$ Margin of Safety	$=$	$1 / 0.25$	$=$
Operating Leverage	$=$	Contribution/EBIT			
4	$=$	Contribution/₹1,50,000			
Contribution	$=$	$₹ 6,00,000$			

(f) Sales:

For Company A

Profit Volume Ratio	$=$	25%
Profit Volume Ratio	$=$	$($ Contribution/Sales) $\times 100$
25%	$=$	$₹ 10,00,000 /$ Sales
Sales	$=$	$₹ 10,00,000 / 25 \%$
Sales	$=$	$₹ 40,00,000$

For Company B

Profit Volume Ratio	$=$	33.33%
Therefore, Sales	$=$	$₹ 6,00,000 / 33.33 \%$
Sales	$=$	$₹ 18,00,000$

BBQ 12

Information of A Ltd. is given below:

- Earnings after tax : 5\% of sales
- Income tax rate : 50\%
- Degree of Operating leverage : 4 times
- 10% Debenture in capital structure : ₹3 lakhs
- Variable costs : ₹6 lakhs

Required:

(i) From the given data complete following statement:

Sales	XXXX
Less: Variable Costs	$₹ 6,00,000$
Contribution	XXXX
Less: Fixed costs	XXXX
EBIT	XXXX

Less: Interest expenses	XXXX
EBT	XXXX
Less: Income tax	XXXX
EAT	XXXX

(ii) Calculate Financial Leverage and Combined Leverage.
(iii) Calculate percentage change in earning per share, if sales increased by 5%.

Answer

(i) Statement of EAT

Particulars	$₹$
Sales	$12,00,000$
Less: Variable Costs	$6,00,000$
Contribution	$6,00,000$
Less: Fixed costs	$4,50,000$
EBIT	$1,50,000$
Less: Interest expenses @ 10\% of ₹3 lakhs	30,000
EBT	$1,20,000$
Less: Income tax	60,000
EAT @5\% of ₹12,00,000	₹ 60,000

| (ii) | $=\frac{\text { EBIT }}{\text { Financial Leverage }}=$ | $=\frac{1,50,000}{1,20,000}$ | $=1.25$ times |
| ---: | :--- | :--- | :--- | :--- |
| Combined Leverage | $=0 \mathrm{OL} \times \mathrm{FL}$ | $=4 \times 1.25$ | $=5$ times |

(iii) $\%$ change in EPS $=\quad \%$ change in Sales \times CL $=5 \% \times 5=+25 \%$

Working Notes:

(d) EBT $=10 \%$ of Sales $=10 \%$ of ₹ $12,00,000$
(e) EBIT $=$ EBT + Interest $=$ ₹ $1,20,000+₹ 30,000$
(f) Fixed cost $=75 \%$ of Contribution $=75 \%$ of ₹ $6,00,000$

$$
=\quad ₹ 4,50,000
$$

BBQ 13
A company had the following Balance Sheet as on 31 ${ }^{\text {st }}$ March, 2014:

Liabilities	$₹$	Assets	[in crores]
Equity Share Capital	5.00	Fixed Assets (Net)	12.50
(50 lakh shares of ₹10 each)		Current Assets	7.50
Reserve and Surplus	1.00		
15\% Debentures	10.00		
Current Liabilities	4.00		$\mathbf{2 0 . 0 0}$

The additional information given is as under:

Fixed cost per annum (excluding interest)
Variable operating cost ratio
Total assets turnover ratio
Income Tax rate
4 crores
65\%
2.5

30\%

Required:

(i) Earnings Per Share
(ii) Operating Leverage
(iii) Financial Leverage
(iv) Combined Leverage

Answer
(i) Calculation of EPS:

EPS $=\frac{\text { EAT }}{\text { No. of Shares }}=\frac{840 \text { Lakhs }}{50 \text { Lakhs }}=\mathbf{1 6 . 8 0}$
(ii) Calculation of OL:

OL $=\frac{\text { Contribution }}{\text { EBIT }}=\frac{17.50 \text { Crores }}{13.50 \text { Crores }}=1.296$ times
(iii) Calculation of FL:

FL $=\frac{\text { EBIT }}{\text { EBT }}=\frac{13.50 \text { Crores }}{12.00 \text { Crores }}=\mathbf{1 . 1 2 5}$ times
(iv) Calculation of CL:
$\mathrm{CL}=\mathrm{OL} \times \mathrm{FL}=1.296 \times 1.125=\quad \mathbf{1 . 4 5 8}$ times
Working Notes:
Income Statement

Sales (2.5 times of 20 crores) Less: Variable Cost @ 65\% of 50 crores	50.00
	32.50
Contribution	17.50
Less: Fixed Cost	4.00
EBIT	13.50
Less: Interest @ 15\% of 10 crores	1.50
Less: Tax @ 30\%	12.00
	3.60
	8.40

BBQ 14

Axar Ltd. has a Sales of ₹ $68,00,000$ with a Variable cost Ratio of 60%. The company has fixed cost of $₹ 16,32,000$. The capital of the company comprises of 12% long term debt, ₹ $1,00,000$ Preference Shares of ₹ 10 each carrying dividend rate of 10% and $1,50,000$ equity shares. The tax rate applicable for the company is 30%.

At current sales level, determine the Interest, EPS and amount of debt for the firm if a 25\% decline in Sales will wipe out all the EPS.

Answer

(A) Interest $=$ EBIT - EBT $=(68,00,000-60 \%-16,32,000)-6,94,286$

$$
=\quad ₹ 3,93,714
$$

(B) EPS of X Ltd. $=\{$ EBT $(1-\mathrm{t})-\mathrm{PD}\} \div$ No of Equity Shares

$$
=\quad\{6,94,286(1-0.3)-10,000\} \div 1,50,000=\text { F3.17 }
$$

(C) Amount of DEBT $=$ Interest \div Rate of interest
$=3,93,714 \div 12 \% \quad=\quad$ ₹32,80,950

Working Note: Calculation of CL and EBT:

Question says that 25\% decrease in sales will result in 100\% decrease in EPS:

Combined Leverage	$=\frac{\% \text { Change in EPS }}{\% \text { Change in Sales }}=\frac{100 \%}{25 \%}=\frac{68,00,000-60 \%}{\text { EBT }-\frac{10,000}{1-0.30}}$
	$=\frac{\text { Contribution }}{\text { EBT }-\frac{\text { Preference Dividend }}{1-\text { Tax }}}=4$
4	$=\frac{27,20,000}{\text { EBT }-14,286}$
4 EBT $-57,144$	$=27,20,000$
EBT	$=6,94,286$

BBQ 15

A firm has sales of ₹ $75,00,000$ variable cost is 56% and fixed cost is ₹ $6,00,000$. It has a debt of $₹ 45,00,000$ at 9% and equity of $₹ 55,00,000$.
(i) What is the firm's ROI?
(ii) Does it have favourable financial leverage?
(iii) If the firm belongs to an industry whose capital turnover is 3 , does it have a high or low capital turnover?
(iv) What are the operating, financial and combined leverages of the firm?
(v) If the sales is increased by 10% by what percentage EBIT will increase?
(vi) At what level of sales the EBT of the firm will be equal to zero?
(vii) If EBIT increases by 20%, by what percentage EBT will increase?

Answer

Income Statement

Particulars	₹
Sales	75,00,000
Less: Variable cost @ of 56\% of sales	42,00,000
Contribution	33,00,000
Less: Fixed costs	6,00,000
EBIT	27,00,000
Less: Interest @ 9\% of 45,00,000	4,05,000
EBT	22,95,000

(i) ROI $=\frac{\text { EBIT }}{\text { Capital Employed }} \times 100=\frac{27,00,000}{45,00,000+55,00,000} \times 100=27 \%$
(ii) ROI is 27% and Interest on debt is 9%, hence, it has a favourable financial leverage.
(iii) Capital Turnover $=\frac{\text { Net Sales }}{\text { Capital }}=\frac{75,00,000}{1,00,00,000}=\boldsymbol{0 . 7 5}$

Firm has very low capital turnover as compared to industry average of 3 .
(iv) Calculation of Operating, Financial and Combined leverages:

Operating Leverage	$=\frac{\text { Contribution }}{\text { EBIT }}=\frac{33,00,000}{27,00,000}$	$=1.222$	
Financial Leverage	$=\frac{E B I T}{E B T}$	$=\frac{27,00,000}{22,95,000}$	$=1.176$
Combined Leverage	$=O L \times F L$	$=1.222 \times 1.176$	$=1.437$

(v) Operating leverage is 1.22 . So if sales is increased by 10% then EBIT will be increased by 1.222 $\times 10$ i.e. 12.22% (approx)
(vi) EBT $=\quad$ Sales - Variable cost - Fixed cost - Interest

Nil $=\quad$ Sales -56% sales $-6,00,000-4,05,000$
44% of sales $=\quad 10,05,000$
Sales $=\quad 22,84,091$
Hence at ₹22,84,091 sales level EBT of the firm will be equal to Zero.
(vii) Financial leverage is 1.176 . So, if EBIT increases by 20% then EBT will increase by $1.18 \times 20 \%=$ 23.52\% (approx)

CHAPTER 3

MANAGEMENT OF RECEIVABLES AND PAYABLES

1. Evaluation of Credit Policies (Total Approach):

Statement of Evaluation of Credit Policies (Total Approach)

Particulars	Existing	Option 1	Option 2
Annual credit sales	XXX	XXX	XXX
Less: Variable cost	($X X X$)	(XXX)	(XXX)
Less: Fixed cost	(XXX)	(XXX)	(XXX)
Profit before bad debts and admin cost	XXX	XXX	XXX
Less: Bad debts and Cash Discount	(XXX)	(XXX)	(XXX)
Less : Cost of administration	(XXX)	(XXX)	(XXX)
Expected Profit Before Tax	XXX	XXX	XXX
Less: Cost of funds before Tax	(XXX)	(XXX)	($X X X$)
Net Benefit Before Tax	XXX	XXX	XXX
Less: Tax	(XXX)	(XXX)	(XXX)
Net Benefit After Tax	XXX	XXX	XXX

Select the option having higher net benefit.

Notes:

> If tax is given in the question and:
a. Cost of fund or Required return or Opportunity cost if before tax: It must be deducted before tax.
b. Cost of fund or Required return or Opportunity cost if after tax: It must be deducted after tax.
$>\quad$ Cost of fund or Required return or Opportunity cost is calculated on the basis of total of Variable and Fixed cost related to credit sales and Bad debt, cash discount and credit admin cost are ignored.
> Cost of fund or Required return or opportunity cost is calculated as given below:
Formula $1=\quad($ Variable cost + Fixed cost $) \times \frac{A C P}{365 / 52 / 12} \times$ Rate
Formula $2=\quad($ Variable cost + Fixed cost $) \times \frac{1}{D T R} \times$ Rate
> Average collection period is used to calculate Cost of fund when question provides both average collection period and credit period allowed to debtors.
2. Evaluation of Credit Policies (Incremental Approach)

Statement of Evaluation of Credit Policies (Incremental Approach)

Particulars	Existing	Option 1	Option 2
Annual credit sales	$X X X$	$X X X$	$X X X$
Less: Variable cost	$(X X X)$	$(X X X)$	$(X X X)$
Less: Fixed cost	$(X X X)$	$(X X X)$	$(X X X)$
Profit before bad debts and admin cost	$X X X$	$X X X$	$X X X$
(A) Incremental Profit before bad debts and admin cost	-	$X X X$	$X X X$

Bad debts (B) Incremental Bad debts Cash discount (C) Incremental Cash discount Cost of administration (D) Incremental Cost of administration	$\begin{gathered} X X X \\ - \\ X X X \\ - \\ X X X \end{gathered}$	XXX XXX XXX XXX XXX XXX	$\begin{aligned} & X X X \\ & X X X \end{aligned}$
(E) Incremental Expected Profit Before Tax ($A-B-C-D$)	-	XXX	XXX
Cost of funds before tax (F) Incremental Cost of funds before Tax	$X X X$	$X X X$ XXX	$\begin{aligned} & X X X \\ & X X X \end{aligned}$
Incremental Net Benefit Before Tax (E-F) Less: Tax	-	$\begin{gathered} X X X \\ (X X X) \end{gathered}$	$\begin{gathered} X X X X \\ (X X X) \end{gathered}$
Incremental Net Benefit After Tax	-	XXX	XXX

Select the option having higher Incremental net benefit.
3. Meaning of Cash Discount with line: $\quad x / y$ ' net ' z 'days or $1 / 10$ net 45 days:

It means: if the bill is paid within 10 days, there is a 1% cash discount, otherwise, the total amount is due within 45 days"
4. Annual \% of Cost of Cash Discount $=\frac{\text { Cash Discount }}{100-\text { Cash discount }} \times \frac{365}{T} \times 100$
5. Factoring Service: Factoring is an agreement between factor and business firm. Factor provides various services to business firm as per the factoring agreement.

FACTORING SERVICE

6. Steps in case of Collection Factoring Service:

Step 1: Calculate savings due to factoring proposal.
Step 2: Calculate cost due to factoring proposal.
Step 3: Calculate net benefit or loss and take decision accordingly.

Proforma Statement of Evaluation of Factoring Proposal

Particulars	₹
(A) Savings:	
Saving in administration cost	XXX
Saving in bad debts	XXX
*Saving in cost of debtors (if any)	$X X X$
Total (A)	$X X X$
(B) Cost:	
Annual charges	${ }_{X X X}$
Any other charges or cost	$X X X$
Total (B)	XXX
Net Benefit or Loss ($A-B$)	XXX

7. Steps in case of Advance Factoring Service:

Step 1: Calculate amount of advance:
Calculation of Amount of Advance

Particulars	$₹$
Average receivables	XXX
Less: Factor reserve	$(X X X)$
Less: Commission	$(X X X)$
Amount available for advance	XXX
Less: Interest on amount available for advance before interest	
	Amount of Advance

Step 2: Calculate Effective cost of Factoring (Annual):
Statement of Effective Cost of Factoring to the Firm (Annual)

Step 3: Compare Rate of Effective cost with Rate of Bank interest and take decision accordingly.
8. Assumptions in numerical questions of Factoring Service:
> Bad debts will be saved
$>\quad$ Credit administration cost will be saved
> Commission and interest are payable in advance/upfront.

BBQ 16

A trader whose current sales are in the region of ₹ 6 lakhs per annum and an average collection period of 30 days wants to pursue a more liberal policy to improve sales. A study made by a management consultant reveals the following information:

Credit Policy	Increase in Collection Period	Increase in Sales	Present default anticipated
A	10 days	$₹ 30,000$	1.5%
B	20 days	$₹ 48,000$	2%
C	30 days	$₹ 75,000$	3%
D	45 days	$₹ 90,000$	4%

The selling price per unit is ₹3. Average cost per unit is ₹ 2.25 and variable costs per unit are ₹ 2 . The current bad debt loss is 1%. Required return on additional investment is 20%. Assume a 360 days year.

Analyse which of the above policies would you recommend for adoption?

Answer

Statement of Evaluation of Credit Policies

Particulars	Existing	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
No of units	$2,00,000$	$2,10,000$	$2,16,000$	$2,25,000$	$2,30,000$
Credit sales @ ₹3 per unit	$6,00,000$	$6,30,000$	$6,48,000$	$6,75,000$	$6,90,000$
Less: Variable cost @ ₹2 per unit	$4,00,000$	$4,20,000$	$4,32,000$	$4,50,000$	$4,60,000$
Less: Fixed cost (2.25 - 2) $\times 2,00,000$	50,000	50,000	50,000	50,000	50,000
Profit before bad debt losses	$1,50,000$	$1,60,000$	$1,66,000$	$1,75,000$	$1,80,000$
Less: Bad debt losses	6,000	9,450	12,960	20,250	27,600
Expected Profit Less: Req. return on investment Net Benefit	$\mathbf{1 , 4 4 , 0 0 0}$	$\mathbf{1 , 5 0 , 5 5 0}$	$\mathbf{1 , 5 3 , 0 4 0}$	$\mathbf{1 , 5 4 , 7 5 0}$	$\mathbf{1 , 5 2 , 4 0 0}$
	$\mathbf{1 , 5 6 0}$	10,444	13,389	16,667	21,250

Recommendation: The Proposed Policy A (i.e. increase in collection period by 10 days or total 40 days) should be adopted since the net benefits under this policy are higher as compared to other policies.

Working notes: Calculation of cost required rate of return:

Required rate of return	$=$	Total cost \times	$\times \frac{\text { Collection Per }}{360 \text { Days }}$	\times Rat		
Existing Policy	=	4,50,000 ×	$\frac{30}{360 \text { Days }} \times$	20\%	=	7,500
Credit Policy A	=	4,70,000 ×	$\frac{40}{360 \text { Days }} \times$	20\%	=	10,444
Credit Policy B	=	4,82,000 ×	$\frac{50}{360 \text { Days }} \times$	20\%	=	13,389
Credit Policy C	=	5,00,000 \times	$\frac{60}{360 \text { Days }} \times$	20\%	=	16,667
Credit Policy D	=	5,10,000 ×	$\frac{75}{360 \text { Days }} \times$	20\%	=	21,250

BBQ 17

XYZ Corporation is considering relaxing its present credit policy and is in the process of evaluating two proposed policies. Currently, the firm has annual credit sales of ₹50 lakhs and accounts receivable
turnover ratio of 4 times a year. The current level of loss due to bad debts is ₹ $1,50,000$. The firm is required to give a return of 25% on the investment in new accounts receivables. The company's variable costs are 70% of the selling price. Given the following information, identify which is the better option?

Particulars	Policies		
	Present	Option 1	Option 2
Annual credit sales	$₹ 50,00,000$	$₹ 60,00,000$	$₹ 67,50,000$
Account receivable turnover ratio	4 times	3 times	2.4 times
Bad debt losses	$₹ 1,50,000$	$₹ 3,00,000$	$₹ 4,50,000$

Answer

Statement of Evaluation of Credit Policies

Particulars	Existing	Option 1	Option 2
Credit sales	$50,00,000$	$60,00,000$	$67,50,000$
Less: Variable cost @ 70\%	$35,00,000$	$42,00,000$	$47,25,000$
Profit before bad debt losses	$15,00,000$	$18,00,000$	$20,25,000$
Less: Bad debt losses	$1,50,000$	$3,00,000$	$4,50,000$
Expected Profit	$\mathbf{1 3 , 5 0 , 0 0 0}$	$\mathbf{1 5 , 0 0 , 0 0 0}$	$\mathbf{1 5 , 7 5 , 0 0 0}$
Less: Required return on investment 'WN'	$2,18,750$	$3,50,000$	$4,92,188$
	Net Benefit	$\mathbf{1 1 , 3 1 , 2 5 0}$	$\mathbf{1 1 , 5 0 , 0 0 0}$
$\mathbf{1 0 , 8 2 , 8 1 2}$			

Working notes:

Calculation of required return on investment:

Existing	$=$	$=$	$\mathbf{2 , 1 8 , 7 5 0}$
Option 1	$=$	$45,00,000 \times 1 / 4 \times 25 \%$	$=$
Option 2	$=$	$3,50,000$	
	$47,25,000 \times 1 / 3 \times 25 \%$	$=1 / 2.4 \times 25 \%$	$\mathbf{4 , 9 2 , 1 8 8}$

Recommendation: The Proposed Policy I (option 1) should be adopted since the net benefits under this policy are higher as compared to other policies.

BBQ 18

As a part of the strategy to increase sales and profits, the sales manager of a company proposes to sell goods to a group of new customers with 10% risk of non-payment. This group would require one and a half months credit and is likely to increase sales by ₹ $1,00,000$ p.a. Production and Selling expenses amount to 80% of sales and the income-tax rate is 50%. The company's minimum required rate of return (after tax) is 25%.
(1) Should the sales manager's proposal be accepted?
(2) Also find the degree of risk of non-payment that the company should be willing to assume if the required rate of return (after tax) were (i) 30%, (ii) 40\% and (iii) 60\%.

Answer

(1) Statement of Evaluation

	Particulars	₹
Increase in sales		$1,00,000$
Less: Cost of sales @ 80\%		80,000
Profit before bad debts	20,000	
Less: Bad debts @ 10\%	Expected PBT	10,000
		$\mathbf{1 0 , 0 0 0}$

Less: Tax @ 50\% Expected PAT	5,000
Less: Required return after tax $(80,000 \times 1.5 / 12 \times 25 \%)$	5,000
Net Benefit (After Tax $)$	2,500
	2,500

Advise: The sales manager's proposal should be accepted.
(2) Computation the Degree of risk of non-payment:

```
Required returnafter tax
\(=\quad(\) Sales - Cost of sales - Risk of non payment \()(1-t)\)
```


Case I

Required returnafter tax
$=\quad$ (Sales - Cost of sales - Risk of non payment) $(1-t)$
$80,000 \times 1.5 / 12 \times 30 \%$
$=\quad(1,00,000-80,000-$ Risk of non payment $)(1-.50)$
Risk of non payment
$=14,000$
Degree of risk of non-payment
$=14,000 / 1,00,000 \times 100=14 \%$

Case II

Required returnafter tax
$=\quad$ (Sales - Cost of sales - Risk of non payment) $(1-t)$
$80,000 \times 1.5 / 12 \times 40 \%$
Risk of non payment
Degree of risk of non-payment
$=\quad(1,00,000-80,000-$ Risk of non payment $)(1-.50)$
$=12,000$
$=12,000 / 1,00,000 \times 100=12 \%$

Case III

Required returnafter tax
$=\quad$ (Sales - Cost of sales - Risk of non payment) $(1-t)$
$80,000 \times 1.5 / 12 \times 60 \%$
$=\quad(1,00,000-80,000-$ Risk of non payment) (1-.50)
Risk of non payment
Degree of risk of non-payment

$=8,000$

$=8,000 / 1,00,000 \times 100=8 \%$

BBQ 19

Slow Payers are regular customer of Goods Dealers Ltd., Calcutta and have approached the sellers of extension of a credit facility for enabling them to purchase goods from Goods Dealer Ltd. On an analysis of past performance and on the basis of information supplied, the following pattern of payment schedule is regard to Slow Payers:

At the end of 30 Days
At the end of 60 Days
At the end of 90 Days
At the end of 100 Days
Non-recovery

Pattern of Payment Schedule
15% of the bills
34% of the bills
30% of the bills
20% of the bills
1% of the bills

Slow Payers want to enter into a firm commitment for purchase of goods of ₹15 Lacs in 2023, deliveries to be made in equal quantities on the first day of each quarter in the calendar year. The price per unit of commodity is ₹ 150 on which a profit of ₹ 5 per unit is expected to be made. It is anticipated by Goods Dealers Ltd. that taking up of this contract would mean an extra recurring expenditure of ₹5,000 per annum.

If the opportunity cost of funds in the hands of Goods dealers is 24\% per annum, would you as the finance manager of the seller recommend the grant of credit to Slow Payers? Workings should form part of your answer. Assume year of 365 days.

Answer

Statement of Evaluation of Credit Policy

Particulars	Proposed
Sales in units	10,000
Sales value @ ₹ 150 per unit	15,00,000
Less: Variable cost @ ₹ 145 per unit	14,50,000
Less: Extra recurring expenditure	5,000
Profit before bad debt	45,000
Less: Bad debts @ 1\%	15,000
Expected Profit	30,000
Less: Opportunity cost of investment in receivables (WN)	68,788
Net Benefit	$(38,788)$

Recommendation: The proposed policy should not be adopted since the net benefit under this policy is negative.

Working notes:

Calculation of Opportunity cost of average investment:

Opportunity cost	$=$ Total cost $\times \frac{\text { Average Collection Period }}{365} \times$ Rate
	$=14,55,000 \times 71.90 / 365 \times 24 \%=\mathbf{6 8 , 7 8 8}$

Calculation of Average collection period:

Average collection period $=30$ days $\times 15 \%+60$ days $\times 34 \%+90$ days $\times 30 \%+100$ days $\times 20 \%$

$$
=\quad 71.90 \text { Days }
$$

BBQ 20
A company is considering using a factor, the following information is relevant:
(a) The current average collection period for the company's debts is 80 days and $1 / 2 \%$ of debt default. The factor has agreed to pay over money due, after 60 days, and it will suffer loss of any bad debts.
(b) The annual charge for the factoring is 2% of turnover payable annually in arrears. Administration cost saving will total $₹ 1,00,000$ per annum.
(c) Annual sales, all on credit are ₹ $1,00,00,000$. Variable costs total 80% of sales price. The company's cost of borrowings is 15% per annum. Assume year consisting of 365 days. Should the company enter into a factoring agreement?

Answer

Statement of Evaluation

Total (B)	$2,00,000$
Net Benefit ($A-B$)	15,753

*Presently, the debtors of the company pay after 80 days. However, the factor has agreed to pay after 60 days only. So, the investment in Debtors will be reduced by 20 days.

Conclusion: Yes, company should enter into factoring agreement.

BBQ 21

A firm has total sales as ₹200 lakhs of which 80% is on credit. It is offering credit term of $2 / 40$, net 120 . Of the total, 50% of customers avail of discount and the balance pay in 120 days. Past experience indicates that bad debt losses are around 1% of credit sales. The firm spends about ₹ $2,40,000$ per annum to administer its credit sales. These are avoidable as a factor is prepared to buy the firm's receivables. He will charge 2% commission. He will pay advance against receivables to the firm at an interest rate of 18% after withholding 10% as reserve.
(i) What is the effective cost of factoring? Consider year as 360 days.
(ii) If bank finance for working capital is available at 14% interest, should the firm avail of factoring service?

Answer

(i) Statement of Effective Cost of Factoring to the Firm

Particulars	₹
(1) Cost of factoring:	
Factoring commission (₹71,111 $\times 360$ Days $/ 80$ Days)	3,20,000
Interest charges ($₹ 31,28,889 \times 18 \%$)	5,63,200
Total (A)	8,83,200
(2) Savings:	
Saving in credit administration cost	2,40,000
Saving in bad debts ($1 \% \times 80 \% \times$ ₹ 2,00 Lakhs)	1,60,000
Total (B)	4,00,000
Effective cost of factoring ($\mathrm{A}-\mathrm{B}$)	4,83,200
Rate of effective cost $\left(\frac{4,83,200}{30,03,733} \times 100\right)$	16.09\%

Working Notes:

1. Calculation of advance:

(ii) If bank finance for working capital is available at 14\%, firm will not avail factoring services as 14\% is less than 16.08%.

BBQ 22

ABC Ltd has been offered credit terms from its major supplier $2 / 10$ net 45 . If $A B C$ Ltd. can invest the additional cash and can obtain an annual return of 25% per annum and the amount of invoice is ₹ 10,000 .

Should ABC Ltd accept the discount offer?

Answer

Statement of Evaluation of Discount Offer

Particulars	Refuse	Accept
Payment to supplier	10,000	9,800
Less: Return from investing ₹9,800 between day 10 and day 45 $(₹ 9,800 \times 35 / 365 \times 25 \%)$ Net Cost	(235)	-
	9,765	9,800

Advise: Thus it is better for the company to refuse the discount, as return on cash retained is more than the saving on account of discount.

BBQ 23

The Dolce Company purchases raw materials on terms of $2 / 10$, net 30 . A review of the company's records by the owner, Mr. Gautam, revealed that payments are usually made 15 days after purchases are made. When asked why the firm did not take advantage of its discounts, the accountant, Mr. Rohit, replied that it cost only 2% for these funds, whereas a bank loan would cost the company 12%.
(a) Analyse, what mistake is Rohit making?
(b) If the firm could not borrow from the bank and was forced to resort to the use of trade credit funds, what suggestion might be made to Rohit that would reduce the annual interest cost? Identify.

Answer

(a) Rohit's argument of comparing 2% discount with 12% bank loan rate is not rational as 2% discount can be earned by making payment 5 days in advance i.e. within 10 days rather 15 days as payments are made presently. Whereas 12% bank loan rate is for a year.

Assume that the purchase value is ₹ 100 , the discount can be earned by making payment within 10 days is ₹ 2 , therefore, net payment would be ₹ 98 only. Annualized benefit:

$$
\frac{2}{98} \times \frac{365}{5} \times 100 \quad=\quad 148.98 \% \text { p.a. }
$$

This means cost of not taking cash discount is 148.98%.
(b) If the bank loan facility could not be available, then in this case the company should resort to utilise maximum credit period as possible. Therefore, payment should be made in 30 days to reduce the interest cost. The annual interest cost in such case:

$$
\frac{2}{98} \times \frac{365}{20} \times 100 \quad=\quad 37.24 \% \text { p.a. }
$$

CHAPTER 4

1. Working Capital: Working capital refers to funds invested in Stock of Raw Material, WIP, Finished Goods, Debtors, BR, and Prepaid etc. net of current liabilities"
```
> Gross Working Capital = Current Assets
> Net Working Capital = Current Assets - Current Liabilities
```

2. Permanent working capital: The minimum level of investment in the current assets that is carried by the entity at all times to carry its day to day activities.
3. Temporary working capital: It is used to finance the short term working capital requirements which arises due to fluctuation in sales volume. It is in additional of permanent working capital"
4. Estimation of Working Capital:

Method 1: Operating or Working Capital Cycle Method
Method 2: Component wise Estimation or Quantitative Estimation Method
5. Operating or Working Capital Cycle Method:

Step 1: Estimate Various Holding Period:
(a) Raw Material Storage Period
$=\quad \frac{\text { Average Stock of Raw Materials }}{\text { Annual Raw Material Consumption }} \times 365$
(b) Work in Progress holding period $=\frac{\text { Average Stock of WIP }}{\text { Annual Cost of Production }} \times 365$
(c) Finished Goods storage period $=\frac{\text { Average Stock of Finished Goods }}{\text { Annual Cost of Goods Sold }} \times 365$
(d) Receivables collection period
$=\quad \frac{\text { Average Receivables }}{\text { Annual Credit Sales }} \times 365$
(e) Credit period allowed by suppliers $=\frac{\text { Average Payables }}{\text { Annual Credit Purchase }} \times 365$

Step 2: Calculate Operating Cycle Period:
Operating Cycle Period $=\quad R+W+F+D-C$

Step 3: Estimate Working Capital:
Formula $1=\frac{\text { Annual Operating Cost }}{365} \times$ Operating Cycle Period + Desired Cash
Formula $2=\quad \frac{\text { Annual Operating Cost }}{\text { Number of Operating Cycle in one year }}+$ Desired Cash
6. Component-wise Estimation Method:

Step 1: Prepare Projected Income Statement
Step 2: Prepare Statement of Estimated Working Capital
Proforma Statement of Working Capital Requirement

7. Valuation of Items Under Total and Cash Cost Approach:

$\frac{\text { Items }}{\text { Current Assets }}$	Total Approach	Cash Cost Approach
Raw Material Stock	Valued on the basis of Raw Material Consumed	Valued on the basis of Raw Material Consumed
WIP Stock: Materials Wages Production OH	Valued on the basis of Raw Material Consumed On the basis of Wages Cost On the basis of Production OH (including Depreciation)	Valued on the basis of Raw Material Consumed On the basis of Wages Cost On the basis of Production OH (excluding Depreciation)
Finished Goods Stock	Valued on the basis of Cost of Production (including Depreciation)	Valued on the basis of Cost of Production (excluding Depreciation)
Debtors: Alternative 1 Alternative 2	Valued on the basis of cost of credit sales (including Depreciation) Valued on the basis of credit sales	Valued on the basis of cost of credit sales (excluding Depreciation) N. A.
Prepaid Wages	On the basis of Wages Cost	On the basis of Wages Cost
Prepaid Overheads	On the basis of OH (excluding Depreciation)	On the basis of OH (excluding Depreciation)
Cash and Bank	As per given information	As per given information
$\frac{\text { Items }}{\text { Current Liabilities }}$	Total Approach	Cash Cost Approach
Creditors	On the basis of credit purchases	On the basis of credit purchases
Outstanding Wages	On the basis of Wages Cost	On the basis of Wages Cost
Outstanding Overheads	On the basis of OH (excluding Depreciation)	On the basis of OH (excluding Depreciation)

Notes:
> Depreciation can never be outstanding or prepaid
> Debtors can be valued on cost of credit sales (preferred) or amount of credit sales under total approach
> Depreciation and profit are fully ignored under cash cost approach
$>$ Assumption in respect of $\%$ of completion of WIP:
> Material cost 100\%
$>$ Labour cost 50\%
$>$ Production overheads 50\%
> If nothing is specified, it is preferred to use total approach
8. Working Capital Estimation Charts of Existing and New Business:

Concept of Existing Business

Existing Business

Concept of New Business

New Business

Note: In case of new company Purchase of RM $\quad=\quad$ RM consumed + Closing RM stock
9. Impact of Double Shift:

Items	
Production and Sales	Double
Variable Cost	Double
Fixed Cost	No change
Raw Material Stock	Double in quantity and value subject to quantity discount
WIP stock	No change in units
Finished Goods Stock	Double in quantity, lower than double in value due to fixed cost
Debtors	Double
Prepaid (Variable cost)	Double
Prepaid (Fixed cost)	No change
Creditors	Double subject to quantity discount
Outstanding (Variable cost)	Double
Outstanding (Fixed cost)	No change

BBQ 24

Following information is forecasted by R Limited for the year ending 31 ${ }^{\text {st }}$ March, 2023:

Balance as at 31.03.23 Balance as at 31.03.22 (₹in Lakh) (₹in Lakh)

Raw Material	65	45
Work-in-process	51	35
Finished goods	70	60
Receivables	135	112
Payables	71	68
Annual purchases of raw materials (all credit)	400	
Annual cost of production	450	
Annual cost of goods sold	525	
Annual operating cost	325	
Sales (all credit)	585	

You are required to calculate:

(i) Net operating cycle period.
(ii) Number of operating cycles in the year.
(iii) Amount of working capital requirement.

Answer

(i) Operating cycle

$$
\begin{array}{ll}
= & R+W+F+D-C \\
= & 53+35+45+77-63 \quad=\quad 147 \text { Days }
\end{array}
$$

(ii) Number of operating cycles in the year:
$\frac{365}{\text { Operating cycle period }}=\frac{365}{147}=2.48$ times

(iii) Amount of working capital required:

$\frac{\text { Annual operating cost }}{\text { Number of operating cycles }}=\quad \frac{325 \text { Lakhs }}{2.48} \quad$ ₹ 131 Lakhs

Calculations:

Finished Goods storage period

Debtors collection period

$$
\begin{aligned}
& =\frac{\text { Average stock of } \mathrm{FG}}{\text { Average cos } \mathrm{t} \text { of goods sold per day }} \\
& =\frac{65}{525 \div 365} \quad \text { 45 days } \\
& =\frac{\text { Average book debts }}{\text { Average credit sales per day }} \\
& =\frac{123.5}{585 \div 365} \quad=\quad \mathbf{7 7} \text { days }
\end{aligned}
$$

Credit period availed

$$
\begin{aligned}
& =\frac{\text { Average trade creditors }}{\text { Average credit purchases per day }} \\
& =\quad=\quad \mathbf{6 3} \text { days }
\end{aligned}
$$

Calculation of averages:

1. Average stock of raw materials
$=(45+65) \div 2 \quad=\quad 55$
2. Average stock of WIP
$=(35+51) \div 2 \quad=\quad 43$
3. Average stock of FG
$=(60+70) \div 2 \quad=\quad 65$
4. Average receivables
$=(112+135) \div 2 \quad=\quad 123.5$
5. Average payables
$=(68+71) \div 2 \quad=\quad 69.5$

BBQ 25

The following information is provided by the DPS Limited for the year ending 31st March, 2013

Raw material storage period	55 days
Work-in progress conversion period	18 days
Finished Goods storage period	22 days
Debt collection period	45 days
Creditor's payment period	60 days
Annual Operating cost (including depreciation of ₹2,10,000)	$₹ 21,00,000$
1 year	360 days

You are required to calculate:

I. Operating Cycle period.
II. Number of Operating Cycle in a year.
III. Amount of working capital required of the company on a cash cost basis.
IV. The company is a market leader in its product, there is virtually no competitor in the market. Based on a market research it is planning to discontinue sales on credit and deliver products based on pre-payment. Thereby, it can reduce its working capital requirement substantially. What would be the reduction in working capital requirement due to such decision?

Answer

\(\left.\begin{array}{llll}I. \quad Operating cycle \& = \& \mathrm{R}+\mathrm{W}+\mathrm{F}+\mathrm{D}-\mathrm{C} \& =55+18+22+45-60

\& =80 Days\end{array}\right]\)| | | |
| :--- | :--- | :--- |
| II. No. of operating cycle | $=\frac{360}{80}$ | $=4.5$ times |

$\begin{aligned} \text { III. Working Capital } & =\text { Annual cash operating cost } \times \frac{\text { Operating cycle }}{360 \text { Days }} \\ & =(₹ 21,00,000-₹ 2,10,000) \times \frac{80 \text { Days }}{360 \text { Days }}=₹ 4,20,000\end{aligned}$
IV. In case of cash sales operating cycle period will reduce by 45 Days (Debt collection period).

Reduction in working capital $=(₹ 21,00,000-₹ 2,10,000) \times \frac{80 \text { Days }-35 \text { Days }}{360 \text { Days }}$
$=$ F2,36,250

BBQ 26

On $1^{\text {st }}$ January, the Managing Director of Naureen Ltd. wishes to know the amount of working capital that will be required during the year. From the following information prepare the working capital requirements forecast.

Production during the previous year was 60,000 units. It is planned that this level of activity would be maintained during the present year.

The expected ratios of the cost to selling prices are Raw materials 60%, Direct wages 10% and Overheads 20\%.

Raw materials are expected to remain in store for an average of 2 months before issue to production. Each unit is expected to be in process for one month, the raw materials being fed into the pipeline immediately and the labour and overhead costs accruing evenly during the month. Finished goods will stay in the warehouse awaiting dispatch to customers for approximately 3 months. Credit allowed by creditors is 2 months from the date of delivery of raw material. Credit allowed to debtors is 3 months from the date of dispatch.

Selling price is ₹ 5 per unit. There is a regular production and sales cycle. Wages and overheads are paid on the $1^{\text {st }}$ of each month for the previous month. The company normally keeps cash in hand to the extent of ₹ 20,000 .

You are required to prepare the forecast statement. The finance manager is particularly interested in applying the quantitative techniques for forecasting the working capital needs of the company.

Answer

Statement of Working Capital Requirement

Outstanding labour $(30,000 \times 1 / 12)$	2,500
Outstanding overhead $(60,000 \times 1 / 12)$	
Total (\boldsymbol{B})	5,000
Working Capital $(\boldsymbol{A}-\boldsymbol{B})$	$\mathbf{3 7 , 5 0 0}$

Working Notes:

Projected Income Statement

Particulars	₹
Raw materials ($60,000 \times 5 \times 60 \%$)	1,80,000
Direct Labour ($60,000 \times 5 \times 10 \%$)	30,000
Overheads including depreciation (60,000 $\times 5 \times 20 \%$)	60,000
Total cost	2,70,000
Profit ($60,000 \times 5 \times 10 \%$)	30,000
Sales ($60,000 \times 5)$	3,00,000

BBQ 27
The following annual figures relate to XYZ Co.
Sales (at 2 months' credit)
Materials consumed (suppliers extend two months' credit)
₹ $36,00,000$
Wages paid (1 month lag in payment)
₹9,00,000
Cash Manufacturing expenses (1 month lag in payment)
₹7,20,000
Administrative expenses (cash 1 month lag in payment)
Sales promotion expenses (paid quarterly in advance)
₹ $9,60,000$
₹ $2,40,000$
₹ $1,20,000$

The company sells its products on gross profit 25\%. Depreciation is considered as a part of the cost of production. It keeps one month's stock each of raw materials and finished goods and a cash balance of ₹ $1,00,000$. Assuming a 20% safety margin, ignore work-in-process.

Find out the requirements of working capital of the company on cash cost basis.

Answer

Statement of Working Capital Requirement (Cash Cost Basis)

Particulars	₹
(A) Current Assets:	
Raw Materials (9,00,000 $\times 1 / 12$)	75,000
Finished Goods (25,80,000 $\times 1 / 12$)	2,15,000
Debtors (29,40,000 $\times 2 / 12$)	4,90,000
Cash	1,00,000
Prepaid Sales Promotion Expenses (1,20,000 $\times 1 / 4$)	30,000
Total (A)	9,10,000
(B) Current Liabilities:	
Creditors ($9,00,000 \times 2 / 12$)	1,50,000
Outstanding labour ($7,20,000 \times 1 / 12$)	60,000
Outstanding Manufacturing Expenses (9,60,000 $\times 1 / 12$)	80,000
Outstanding Administrative Expenses (2,40,000 $\times 1 / 12$)	20,000
Total (B)	3,10,000

Working Capital Before Provision $(A-B)$	$6,00,000$
Add : Safety Margin @ 20\% of 6,00,000	$1,20,000$
Working Capital	$\mathbf{7 , 2 0 , 0 0 0}$

Working Notes:

Projected Income Statement (Cash Cost Basis)

Particulars	₹
Raw Materials	9,00,000
Wages	7,20,000
Manufacturing Expenses (in cash)	9,60,000
Cash Cost of Goods Sold	25,80,000
Administration Expenses (in cash)	2,40,000
Sales Promotion Expenses (in cash)	1,20,000
Cash Cost of Sales	29,40,000

BBQ 28

Aneja Limited, a newly formed company, has applied to the commercial bank for the first time for financing its working capital requirements. The following information is available about the projections for the current year:

Estimated level of activity is $1,04,000$ completed units of production plus 4,000 units of work-inprogress.

Based on the above activity, estimated cost per unit is:

Raw material	₹ 80
Direct wages	$₹ 30$
Overheads (exclusive of depreciation)	$₹ 60$
Total cost	$₹ 170$
Selling price	$₹ 200$

Raw materials in stock: average 4 weeks consumption, work-in-progress (assume 50\% completion stage in respect of conversion cost but materials issued at the start of the processing).

Finished goods in stock
Credit allowed by suppliers
Credit allowed to debtors
Lag in payment of wages
Cash at banks (for smooth operation)

8,000 units
Average 4 weeks
Average 8 weeks Average 1.5 weeks ₹ 25,000

Assume that production is carried on evenly throughout the year (52 weeks) and wages and overheads accrue similarly. All sales are on credit basis only.

Find out The net working capital required.

Answer

(a) Statement of Working Capital Requirement

Particulars	$₹$
(1) Current Assets:	
Raw materials $(86,40,000 \times 4 / 52)$	$6,64,615$
Work in progress $[4,000$ units $\times(80+15+30)]$	$5,00,000$
Finished goods $(8,000$ units $\times 170)$	$13,60,000$

Debtors (1,63,20,000 $\times 8 / 52$) Cash	$\begin{gathered} \hline 25,10,769 \\ 25,000 \end{gathered}$
Total (1)	50,60,384
(2) Current Liabilities:	
Creditors (86,40,000 + 6,64,615) \times 4/52	7,15,740
Outstanding labour ($31,80,000 \times 1.5 / 52$)	91,731
Total (2)	8,07,471
Working Capital (1-2)	42,52,913

Working Notes:

Projected Income Statement

Particulars	₹
Raw materials (1,08,000 $\times 80$)	86,40,000
Direct labour ($1,04,000+1 / 2 \times 4,000) \times 30$	31,80,000
Overheads ($1,04,000+1 / 2 \times 4,000) \times 60$	63,60,000
Cost Upto Factory	1,81,80,000
Less: Closing WIP 4,000 units $\times(80+15+30)$	(5,00,000)
Cost of Production (1,08,000 units)	1,76,80,000
Less: Closing FG 8,000 units $\times 170$	(13,60,000)
Cost of Goods Sold (96,000 units)	1,63,20,000
Profit	28,80,000
Sales (96,000 $\times 200$)	1,92,00,000

BBQ 29

PQ Ltd. a company newly commencing business in 2023 has the under-mentioned projected P \& L Account:

Particulars	$₹$	$₹$
Sales		$2,10,000$
Cost of goods sold		$1,53,000$
Gross Profit		57,000
Administrative Expenses	14,000	
Selling Expenses	13,000	27,000
Profit Before Tax		30,000
Provision for taxation		10,000
Profit After Tax		20,000
The cost of goods sold has been arrived at as under:		
Materials used	84,000	
Wages and manufacturing Expenses	62,500	
Depreciation	23,500	
Cost of Finished Goods Produced	$1,70,000$	
Less: Stock of Finished Goods	17,000	
(10\% of goods produced not yet sold)	$1,53,000$	

The figure given above relate only to finished goods and not to work-in-progress. Goods equal to 15% of the year's production (in terms of physical units) will be in process on the average requiring full materials but only 40% of the other expenses. The company believes in keeping materials equal to two months consumption in stock.

All expenses will be paid one month in advance. Suppliers of materials will extend $1-1 / 2$ months
credit. Sales will be 20% for cash and rest at two months credit. 70% of the income tax will be paid in advance in quarterly installments. The company wishes to keep ₹ 8,000 in cash. 10% has to be added to the estimated figure for unforeseen contingencies.

Prepare an estimate of working capital on cash cost basis.

Answer

Statement of Working Capital Requirement

Particulars	₹
(1) Current Assets:	
Raw materials (96,600 $\times 2 / 12$)	16,100
Work in progress	16,350
Finished goods	14,650
Debtors (1,58,850 $\times 80 \% \times 2 / 12$)	21,180
Prepaid expenses:	
Wages and Manufacturing Expenses ($66,250 \times 1 / 12$)	5,521
Administrative Expenses (14,000 $\times 1 / 12$)	1,167
Selling Expenses (13,000 $\times 1 / 12$)	1,083
Advance tax paid [(70\% of 10,000$) \times 3 / 12$]	1,750
Cash	8,000
Total (1)	85,801
(2) Current Liabilities:	
Creditors (96,600 + 16,100) $\times 1.5 / 12$	14,088
Provision for Tax (Net of Advance Tax) (10,000 $\times 30 \%$)	3,000
Total (2)	17,088
Working Capital Before Provision(1-2)	68,713
Add : Provision for Contingencies @ 10\% of 68,713	6,871
Working Capital Including Provision	75,584

Working Notes:

Projected Income Statement

Particulars	₹
Raw Materials (84,000 + 15\%)	96,600
Wages and Manufacturing Expenses (62,500 $+15 \%$ of 62,500 $\times 40 \%$)	66,250
Cost Upto Factory	1,62,850
Less: Closing WIP (84,000 $\times 15 \%$) $+(15 \%$ of 62,500 $\times 40 \%$)	$(16,350)$
Cost of Production	1,46,500
Less: Closing FG (10\% of 1,46,500)	$(14,650)$
Cost of Goods Sold	1,31,850
Administrative Expenses	14,000
Selling Expenses	13,000
Cash Cost of Sales	1,58,850

BBQ 30

The management of Trux Company Ltd. is planning to expand its business and consults you to prepare an estimated working capital statement. The records of the company reveals the following annual information:

The records of the company revealed the following annual information:
Sales:

Domestic at one month's credit
₹ $18,00,000$
Export at three month's credit
₹ $8,10,000$
(Sales price 10\% below Domestic price)
Material used (suppliers extend two months credit) ₹6,75,000
Lag in payment of wages $-1 / 2$ month
₹5,40,000
Lag in payment of manufacturing expenses (cash) - 1 month
₹7,65,000
Lag in payment of administrative expenses - 1 month ₹1,80,000
Sales promotion expenses payable quarterly in advance
Income tax payable in four installments (of which one falls in the next financial year) $₹ 1,68,000$
Rate of gross profit is 20%. Ignore work-in-progress and depreciation. The company keeps one month's stock of raw materials and finished goods (each) and believes in keeping ₹ $2,50,000$ available to it including the overdraft limit of ₹ 75,000 not yet utilized by the company. The management is also of the opinion to make 10% margin for contingencies on computed figure.

You are required to prepare the estimated working capital statement for next year.

Answer

Statement of Working Capital Requirement (Cash Cost Basis)

Particulars	₹
(A) Current Assets:	
Raw Materials (6,75,000 $\times 1 / 12$)	56,250
Finished Goods (21,60,000 $\times 1 / 12$)	1,80,000
Debtors:	
Domestic (14,40,000 + 77,586) × 1/12	1,26,466
Export (7,20,000 + 34,914) $\times 3 / 12$	1,88,729
Cash (2,50,000-75,000)	1,75,000
Prepaid Sales Promotion Expenses (1,12,500 $\times 1 / 4$)	28,125
Total (A)	7,54,570
(B) Current Liabilities:	
Creditors (6,75,000 $\times 2 / 12$)	1,12,500
Outstanding labour ($5,40,000 \times 0.5 / 12$)	22,500
Outstanding Manufacturing Expenses (7,65,000 $\times 1 / 12$)	63,750
Outstanding Administrative Expenses (1,80,000 $\times 1 / 12$)	15,000
Income Tax Payable($1,68,000 \times 1 / 4$)	42,000
Total (B)	2,55,750
Working Capital Before Provision (A-B)	4,98,820
Add : Safety Margin @ 10\% of 4,98,820	49,882
Working Capital	5,48,702

Working Notes:

1. Calculation of Cash cost of Debtors:

Export sales (10\% below domestic sales price) $=8,10,000$
Export sales equivalent to domestic sales $\quad=\quad 8,10,000 \times \frac{100}{90} \quad=9,00,000$
Total equivalent domestic sales $=18,00,000+9,00,000=27,00,000$

Apportionment of cash cost of sales except sales promotion expenses in proportion of equivalent domestic sales between Domestic and Foreign Sales:

Domestic sales	$=21,60,000 \times \frac{18,00,000}{27,00,000}$	$=14,40,000$
Foreign sales	$=21,60,000 \times \frac{9,00,000}{27,00,000}$	$=7,20,000$

Apportionment of sales promotion expenses between Domestic and Foreign Sales in sales ratio:

Domestic sales	$=1,12,500 \times \frac{18,00,000}{26,10,000}$	$=77,586$
Foreign sales	$=1,12,500 \times \frac{8,10,000}{26,10,000}$	$=34,914$

2. Projected Income Statement

Particulars	₹
Raw Materials	6,75,000
Wages	5,40,000
Manufacturing Expenses (in cash)	7,65,000
Administration Expenses (in cash)	1,80,000
Cash Cost of Goods Sold	21,60,000
Sales Promotion Expenses (in cash)	1,12,500
Cash Cost of Sales	22,72,500

Assumption: Administrative expenses is related to production.

BBQ 31

M.A. Limited is commencing a new project of a plastic component. The following cost information has been ascertained for annual production of 12,000 units which is the full capacity.
(Cost per unit)

Materials	₹ 40
Direct labour and variable expenses	₹ 20
Fixed manufacturing expenses	₹ 6
Depreciation	$₹ 10$
Fixed administrative expenses	$₹ 4$

The selling price per unit is expected to be ₹96 and the selling expenses ₹ 5 per unit 80% of which is variable. In the first two years of operation, productivity and sales are expected to be as follows:

Year	Productivity No. of units	Sales No. of unit
$\mathbf{1}$	6,000	5,000
$\mathbf{2}$	9,000	8,500

To assess the working capital requirement, the following additional information is available:
(a) Stock of Materials 2.25 months average
(b) Work-in-Progress
(c) Debtors
(d) Cash balance
(e) Creditors for supply of materials
(f) Creditors for expenses

Nil
1 month's average sales
₹ 10,000
1 month's average purchase
1 month average of all expenses

Prepare for two years:

(1) Projected Statement of Profit and Loss (ignoring taxation) and
(2) Projected Statement of working capital requirements.

Answer

(1) M.A. Limited
 Projected Statement of Profit and Loss

Particulars	Year 1	Year 2
Production (in units)	6,000	9,000
Sales (in units)	5,000	8,500
Materials	2,40,000	3,60,000
Direct labour and variable expenses	1,20,000	1,80,000
Fixed manufacturing expenses	72,000	72,000
Depreciation	1,20,000	1,20,000
Fixed administrative expenses	48,000	48,000
Cost of production	6,00,000	7,80,000
Add: Opening FG (Year 1: Nil; Year 2: 1,000 units)	Nil	1,00,000
Total cost of goods available for sale	6,00,000	8,80,000
Less: Closing FG (Year 1: 1,000; Year 2: 1,500 units)	$(1,00,000)$	$(1,32,000)$
Cost of goods sold	5,00,000	7,48,000
Selling expenses: Variable @ ₹ 4 per unit sold	20,000	34,000
Fixed	12,000	12,000
Cost of sales	5,32,000	7,94,000
Profit or loss	$(52,000)$	22,000
Sales	4,80,000	8,16,000

(2) Projected Statement of Working Capital Requirement

Particulars	Year 1	Year 2
(A) Current Assets:		
Raw materials	45,000	67,500
Finished goods	1,00,000	1,32,000
Debtors (on sales value)	40,000	68,000
Cash	10,000	10,000
Total (A)	1,95,000	2,77,500
(B) Current Liabilities:		
Creditors (Purchase = RMC + CS - OS) Outstanding expenses	$\begin{aligned} & 23,750 \\ & 22,667 \end{aligned}$	$\begin{aligned} & 31,875 \\ & 28,833 \end{aligned}$
Total (B)	46,417	60,708
Working Capital (A - B)	1,48,583	2,16,792

Assumptions:

1. Administrative expenses is related to production.
2. Stock of finished goods is valued as per weighted average method.

BBQ 32
Samreen Enterprises has been operating its manufacturing facilities till 31.03.2022 on a single shift working with the following cost structure:

	Per unit
Cost of Materials	₹6.00
Wages (out of which 40\% fixed)	₹5.00
Overheads (out of which 80\% fixed)	₹5.00
Profit	₹2.00
Selling price	₹18.00
Sales during 2021-2022	₹4,32,000

As at 31.03.22 the company held:
Stock of raw materials (at cost)
Work-in-progress (valued at prime cost)
Finished goods (valued at total cost)
Sundry debtors
₹36,000
₹ 22,000
₹ 72,000
₹ $1,08,000$

In view of increased market demand, it is proposed to double production by working an extra shift. It is expected that a 10% discount will be available from suppliers of raw materials in view of increased volume of business. Selling price will remain the same. The credit period allowed to customers will remain unaltered. Credit availed of from suppliers will continue to remain at the present level i.e. 2 months. Lag in payment of wages and expenses will continue to remain half a month.

You are required to assess the additional working capital requirement, if the policy to increase output is implemented (Assessment of impact of double shift for long term as a matter of production policy).

Answer
Statement of Working Capital for Single Shift and Double Shift Working

Particulars	Single Shift (24,000)			Double Shift (48,000)		
	P. U.	Units	Total	P. U.	Units	Total
(A) Current Assets:						
Raw Materials Stock	6.00	6,000	36,000	5.40	12,000	64,800
WIP Stock	11.00	2,000	22,000	9.40	2,000	18,800
FG Stock	16.00	4,500	72,000	12.40	9,000	$1,11,600$
Debtors	16.00	6,000	96,000	12.40	12,000	$1,48,800$
\quad Total (A)	-	-	$2,26,000$	-	-	344,000
(B) Current Liabilities:						
Creditors	6.00	4,000	24,000	5.40	8,000	43,200
Outstanding Wages	5.00	1,000	5,000	4.00	2,000	8,000
Outstanding Overheads	5.00	1,000	5,000	3.00	2,000	6,000
\quad Total (B)	-	-	$\mathbf{3 4 , 0 0 0}$	-	-	$\mathbf{5 7 , 2 0 0}$
	Working Capital (A-B)	-	-	$\mathbf{1 , 9 2 , 0 0 0}$	-	-
$\mathbf{n y y y y y}$		$-2,86,800$				

Increase in working capital requirement is $₹ 94,800(₹ 2,86,800-\mathfrak{F} 1,92,000)$.

Working Notes:

1. Statement of Cost at Single Shift and Double Shift Working

Particulars	Single Shift (24,000)		Double Shift (48,000)	
	P. U.	Total	P. U.	Total
Raw Materials	6.00	1,44,000	5.40	2,59,200
Wages Variable	3.00	72,000	3.00	1,44,000
Wages Fixed	2.00	48,000	1.00	48,000
Prime Cost	11.00	2,64,000	9.40	4,51,200
Overhead Variable	1.00	24,000	1.00	48,000
Overhead Fixed	4.00	96,000	2.00	96,000
Total Cost	16.00	3,84,000	12.40	5,95,200
Profit	2.00	48,000	5.60	2,68,800
Sales Value	18.00	4,32,000	18.00	8,64,000

2. Sales units in 2021-2022 $=$ Sales \div Sale Price per unit
$=₹ 4,32,000 \div ₹ 18=24,000$ units
3. Raw Material units on $31.03 .2022=$ Raw Material Stock \div Raw Material cost per unit
$=$ ₹ $36,000 \div ₹ 6=$ 6,000 units
4. WIP units on 31.03 .2022
$=\quad$ WIP Stock \div Prime cost per unit
$=₹ 22,000 \div ₹ 11=2,000$ units
5. \quad Finished Goods units on $31.03 .2022=$

Finished Goods Stock \div Total cost per unit
$=$ ₹ $72,000 \div ₹ 16=4,500$ units
6. Debtors units on 31.03 .2022
7. Credit allowed to Customers
$=\quad$ Sundry debtors \div Sale Price per unit
$=₹ 1,08,000 \div ₹ 18=6,000$ units
$=\quad 6,000 \div(24,000$ units $\div 12$ months $)$
$=3$ months

CHAPTER 5

TREASURY AND CASH MANAGEMENT

1. Management of Cash:

Step 1: Prepare cash budget for coming period
Step 2: Take action for coming period on the basis of cash budget

SITUATIONS	PLANNING
Budgeted Cash Balance < Desired Cash Balance (Deficit Cash)	Plan to arrange cash to fulfill deficiency of cash (Like: Sell of marketable securities or arrangement of overdraft etc.)
Budgeted Cash Balance $=$ Desired Cash Balance (Sufficient Cash)	No action
Budgeted Cash Balance > Desired Cash Balance (Surplus Cash)	Plan to invest surplus cash (Like: Purchase of marketable securities or invest surplus cash elsewhere)

Proforma Cash Budget

Particulars	October	November	December	Total
Opening balance	XXX	$\boldsymbol{X X X}$	$\boldsymbol{X X X}$	XXX
Collections:				
Cash sales	XXX	XXX	XXX	XXX
Collection from debtors etc.	XXX	XXX	XXX	XXX
Other receipts	XXX	XXX	XXX	XXX
Total A	XXX	XXX	XXX	XXX
Payments:				
Cash purchase	XXX	XXX	XXX	XXX
Payment to creditors	XXX	XXX	XXX	XXX
Salaries and wages	XXX	XXX	XXX	XXX
Overheads, rent, tax etc.	XXX	XXX	XXX	XXX
Other payments	XXX	XXX	XXX	XXX
Total B	XXX	XXX	XXX	XXX
Closing balance ($A-B$)	XXX	XXX	XXX	XXX
Add: Arrangement of Cash	XXX	-	-	XXX
Less: Investment of Cash	-	(XXX)	-	(XXX)
Adjusted closing balance	XXX	XXX	XXX	XXX

2. William J. Baumol's Economic Order Quantity Model, (1952): According to this model, optimum cash level is that level of cash where the total of annual carrying costs and transactions costs are the minimum.
Optimum Cash Transaction (C) $=\sqrt{\frac{2 U \times P}{S}}$
Where,

C	$=$	Optimum cash balance
U	$=$	Annual cash disbursement
P	$=$	Fixed cost per transaction
S	$=$	Opportunity cost of one rupee p.a.

The model is based on the following assumptions:
> Cash needs of the firm are known with certainty.
$>\quad$ The cash is used uniformly over a period of time and it is also known with certainty.
$>\quad$ The holding cost is known and it is constant.
$>\quad$ The transaction cost also remains constant.

3. Miller-Orr Cash Management Model (1966): According to this model the net cash flow is completely stochastic. In this model control limits are set for cash balances. These limits may consist of h as upper limit, z as the return point; and zero as the lower limit"

$>\quad$ When the cash balance reaches the upper limit, the transfer of cash equal to $h-z$ is invested in marketable securities account.
$>\quad$ When it touches the lower limit, a transfer from marketable securities account to cash account is made.
$>\quad$ During the period when cash balance stays between (h, z) and $(z, 0)$ i.e. high and low limits no transactions between cash and marketable securities account is made.

BBQ 33

Following information relates to ABC company for the year 2016:
(a) Projected sales (₹ in lakhs)

August	September	October	November	December
35	40	40	45	46

(b) Gross profit margin will be 20% on sale.
(c) 10% of projected sale will be cash sale. Out of credit sale of each month, 50% will be collected in the next month and the balance will be collected during the second month following the month of sale.
(d) Creditors will be paid in the first month following credit purchase. There will be credit purchase only.
(e) Wages and salaries will be paid on the first day of the next month. The amount will be ₹ 3 lakhs each month.
(f) Interim dividend of ₹2 lakhs will be paid in December 2016.
(g) Machinery costing ₹10 lakhs will be purchased in September 2016. Repayment by instalment of ₹ 50,000 p.m. will start from October 2016.
(h) Administrative expenses of ₹ $1,00,000$ per month will be paid in the month of their incurrence.
(i) Assume no minimum cash balance is required. Opening cash balance as on 01.10.2016 is estimated at ₹10 lakhs.

You are required to prepare the monthly cash budget for the 3 month period (October 2016 to December 2016).

Answer

Cash Budget
(From Oct 2016 to December 2016)

Particulars	October	November	December
Opening Balance	10,00,000	14,25,000	21,25,000
Cash Sales @ 10\% of Sales	4,00,000	4,50,000	4,60,000
Debtors Collection:			
50\% of Credit Sales 1 Month	18,00,000	18,00,000	20,25,000
50\% of Credit Sales 2 Month	15,75,000	18,00,000	18,00,000
Total A	47,75,000	54,75,000	64,10,000
Payments to creditors (1 Month Credit) Purchase = Sales - GP - Wages	$\left.\begin{array}{c} 29,00,000 \\ (40 \mathrm{~L}-20 \%-3 \mathrm{~L} \end{array}\right)$	$\begin{gathered} 29,00,000 \\ (40 \mathrm{~L}-20 \%-3 \mathrm{~L}) \end{gathered}$	$\left.\begin{array}{c} 33,00,000 \\ (45 \mathrm{~L}-20 \%-3 \mathrm{~L} \end{array}\right)$
Wages \& Salaries	3,00,000	3,00,000	3,00,000
Admin Expenses	1,00,000	1,00,000	1,00,000
Interim dividend	-	-	2,00,000
Machine installments	50,000	50,000	50,000
Total B	33,50,000	33,50,000	39,50,000
Closing Balance ($A-B$)	14,25,000	21,25,000	24,60,000

BBQ 34

The following information relates to Zeta Limited, a publishing company:

The selling price of a book is ₹ 15 , and sales are made on credit through a book club and invoiced on the last day of the month. Variable costs of production per book are materials (₹5), labour (₹4), and overhead ($₹ 2$). The sales manager has forecasted the following volumes:

Month	No. of Books
November	1,000
December	1,000
January	1,000
February	1,250
March	1,500
April	2,000
May	1,900
June	2,200
July	2,200
August	2,300

Customers are expected to pay as follows:

One month after sale	40%
Two months after the sale	60%.

The company produces the books two months before they are sold and the creditors for materials are paid two months after production. Variable overheads are paid in the month following production and are expected to increase by 25% in April; 75% of wages are paid in the month of production and 25% in the following month. A wage increase of 12.5% will take place on $1^{\text {st }}$ March.

The company is going through a restructuring and will sell one of its freehold properties in May for $₹ 25,000$, but it is also planning to buy a new printing press in May for $₹ 10,000$. Depreciation is currently ₹ 1,000 per month, and will rise to ₹ 1,500 after the purchase of the new machine.

The company's corporation tax (of $₹ 10,000$) is due for payment in March. The company presently has a cash balance at bank on $31^{\text {st }}$ December 2023, of ₹ 1,500 .

You are required to prepare a cash budget for the six months from January to June, 2023. Answer

Monthly Cash Budget for Six Months, January to June 2023

Particulars	Jan	Feb	March	April	May	June
Opening balance	1,500	3,250	1,500	$(11,912)$	$(15,024)$	576
Receipts:						
Sales receipts	15,000	15,000	16,500	20,250	25,500	29,400
Sell of property	-	-	-	-	25,000	-
Cash available (A)	16,500	18,250	18,000	8,338	35,476	29,976
Payments:						
Payment for purchases	5,000	6,250	7,500	10,000	9,500	11,000
Variable overheads	2,500	3,000	4,000	3,800	5,500	5,500
Wages	5,750	7,500	8,412	9,562	9,900	10,237
Printing press	-	-	-	-	10,000	-
Corporation tax	-	-	10,000	-	-	-
Total payments (B)	13,250	16,750	29,912	23,362	34,900	26,737
Closing balance ($A-B$)	3,250	1,500	$(11,912)$	$(15,024)$	576	3,239

Working note:

Calculation of Sales receipts, payment for Purchases, Variable overheads and Wages:

Particulars	Nov	Dec	Jan	Feb	March	April	May	June
Forecast sales in units1. Sales receipts:Sales @ ₹15/unit1 month 40%2 months 60%	1,000	1,000	1,000	1,250	1,500	2,000	1,900	2,200
	15,000	15,000	15,000	18,750	22,500	30,000	28,500	33,000
		6,000	6,000	6,000	7,500	9,000	12,000	11,400
		-	9,000	9,000	9,000	11,250	13,500	18,000
			15,000	15,000	16,500	20,250	25,500	29,400
2. Pay for purchase:								
Quantity produced	1,000	1,250	1,500	2,000	1,900	2,200	2,200	2,300
Materials cost @ ₹ 5 p.u.	5,000	6,250	7,500	10,000	9,500	11,000	11,000	11,500
Payment after 2 month	-	-	5,000	6,250	7,500	10,000	9,500	11,000
3. Pay for variable oh: Quantity produced Variable OH @ ₹2 and ₹ 2.50 p.u. from April Payment next month								
	1,000	1,250	1,500	2,000	1,900	2,200	2,200	2,300
	2,000	2,500	3,000	4,000	3,800	5,500	5,500	5,750
		2,000	2,500	3,000	4,000	3,800	5,500	5,500
4. Pay for wages:								
Quantity produced	1,000	1,250	1,500	2,000	1,900	2,200	2,200	2,300
Wages @ ₹ 4 and ₹ 4.50 p.u. from March	4,000	5,000	6,000	8,000	8,550	9,900	9,900	10,350
Same month 75\%	3,000	3,750	4,500	6,000	6,412	7,425	7,425	7,762
Next month 25\%	,	1,000	1,250	1,500	2,000	2,137	2,475	2,475
	-	4,750	5,750	7,500	8,412	9,562	9,900	10,237

BBQ 35

You are given below the Profit \& Loss Accounts for two years for a company:

Particulars	Year 1	Year 2	Particulars	Year 1	Year 2
To Opening stock	$80,00,000$	$1,00,00,000$	By Sales	$8,00,00,000$	$10,00,00,000$
To Raw materials	$3,00,00,000$	$4,00,00,000$	By Closing	$1,00,00,000$	$1,50,00,000$
To Stores	$1,00,00,000$	$1,20,00,000$	stock	$10,00,000$	$10,00,000$
To Man. exps	$1,00,00,000$	$1,60,00,000$	By Misc.		
To Other expenses	$1,00,00,000$	$1,00,00,000$	Income		
To Depreciation	$1,00,00,000$	$1,00,00,000$			
To Net Profit	$\mathbf{1 , 3 0 , 0 0 , 0 0 0}$	$\mathbf{1 , 8 0 , 0 0 , 0 0 0}$			
	$\mathbf{9 , 1 0 , 0 0 , 0 0 0}$	$\mathbf{1 1 , 6 0 , 0 0 , 0 0 0}$		$\mathbf{9 , 1 0 , 0 0 , 0 0 0}$	$\mathbf{1 1 , 6 0 , 0 0 , 0 0 0}$

Sales are expected to be ₹ $12,00,00,000$ in year 3 .
As a result, other expenses will increase by ₹ $50,00,000$ besides other charges. Only raw materials are in stock. Assume sales and purchases are in cash terms and the closing stock is expected to go up by the same amount as between year 1 and 2 . You may assume that no dividend is being paid. The Company can use 75% of the cash generated to service a loan.

Compute how much cash from operations will be available in year 3 for the purpose? Ignore income tax.

Answer

Projected Profit and Loss Account for the year 3 (₹in Lakhs)

Particulars	Year 2 (Actual)	Year 3 (Projected)	Particulars	Year 2 (Actual)	Year 3 (Projected)
To RM Consumed	350	420	By Sales	1,000	1,200
To Stores	120	144	By Misc. Income	10	10
To Man. Expenses	160	192			
To Other Expenses	100	150			
To Depreciation	100	100			
To Net Profit	$\mathbf{1 8 0}$	$\mathbf{2 0 4}$		$\mathbf{1 , 0 1 0}$	$\mathbf{1 , 2 1 0}$

Cash Flow:

Particulars	(₹in Lakhs)
Net Profit	204
Add: Depreciation	100
	304
Less: Cash required for increase in stock (50 Lakhs same as between year 1 \& 2)	$\mathbf{(5 0)}$
Net Cash Inflow	$\mathbf{2 5 4}$

Available for servicing the loan: 75\% of ₹2,54,00,000 = ₹1,90,50,000
Note: The above also shows how a projected profit and loss account is prepared

Working Notes:

(a) Material consumed in year $2=$ ₹ 350 Lakhs $\div ₹ 1,000$ lakhs $=35 \%$ of sales

Likely consumption in year $3=$ ₹ 1,200 Lakhs $\times 35 \%=$ ₹ 420 Lakhs
(b) Stores are 12\% of sales, as in year 2
(c) Manufacturing expenses are 16% of sales

BBQ 36

K Ltd. has a Quarterly cash outflow of ₹ $9,00,000$ arising uniformly during the Quarter. The company has an Investment portfolio of Marketable Securities. It plans to meet the demands for cash by periodically selling marketable securities. The marketable securities are generating a return of 12% p.a. Transaction cost of converting investments to cash is ₹ 60 . The company uses Baumol model to find out the optimal transaction size for converting marketable securities into cash.
Consider 360 days in a year.

You are required to calculate:

(a) Company's average cash balance,
(b) Number of conversions each year and
(c) Time interval between two conversions.

Answer
$\begin{array}{llll}\text { (a) Average cash balance } & =1 / 2 \text { of } ₹ 60,000 & =\mathcal{F 3 0 , 0 0 0} \\ \text { (b) Number of conversions p.a. } & =\frac{\text { Annual Cash Requirement }}{\text { Optimal Transaction Size }}=\frac{9,00,000 \times 4}{60,000} \\ & =60 \text { conversions per annum }\end{array}$
(c) Time interval btn two conversions $=\frac{360}{\text { No.of Coversions }}=\frac{360}{60}=6$ Days

Working Note:
Optimal Cash Balance $(C)=\sqrt{\frac{2 U P}{S}}=\sqrt{\frac{2 \times 9,00,000 \times 4 \times 60}{0.12}}=₹ 60,000$

CHAPTER 6

RATIO ANALYSIS

1. Types of Ratios:

2. Profitability Ratios: The profitability ratios measure the profitability or the operational efficiency of the firm. Profitability ratios are broadly classified in four categories:
> Profitability Ratios related to Sales.
> Profitability Ratios related to overall Return on Investment/Assets.
> Profitability Ratios required for Analysis from Owner's Point of View.
> Profitability Ratios related to Market/ Valuation/ Investors.
(A) Profitability Ratios Related to Sales:
(a) Gross Profit (G.P.) Ratio $=\frac{\text { Gross Profit }}{\text { Sales }} \times 100$
(b) Net Profit (N.P.) Ratio:
(i) After Tax $=\frac{\text { Net Profit/EAT }}{\text { Sales }} \times 100$
(ii) Before Tax
$=\quad \frac{\text { Earning Before Tax }(\text { EBT })}{\text { Sales }} \times \mathbf{1 0 0}$
(c) Operating Profit Ratio $=\frac{\text { Operating Profit }}{\text { Sales }} \times 100$ or $=\frac{\text { EBIT }}{\text { Sales }} \times 100$
(d) Expense Ratio:
(i) COGS Ratio

$$
=\frac{\text { COGS }}{\text { Sales }} \times 100
$$

(ii) Operating Expense Ratio	$=\frac{\text { Operating Expenses }}{\text { Sales }} \times 100$
(iii) Operating Ratio	$=\frac{\text { COGS }+ \text { Operating Expenses }}{\text { Sales }} \times 100$
(iv) Financial Expenses Ratio	$=\frac{\text { Financial Expenses }}{\text { Sales }} \times 100$

(B) Profitability Ratios Related to Overall Return on Investment or Assets:
(a) Return on Assets (ROA):
(i) Formula $1=\frac{\text { EBIT }(1-t)}{\text { Average Total Assets/Average Tangible Assets/Average Fixed Assets }} \times 100$
(ii) Formula $2=\frac{\text { Net Profit (EAT) }}{\text { Average Total Assets/Average Tangible Assets/Average Fixed Assets }} \times 100$
(iii) Formula $3=\frac{\text { Net Profit (EAT) + Interest }}{\text { Average Total Assets/Average Tangible Assets/Average Fixed Assets }} \times 100$
(b) Return on Investments (ROI):
(1) Return on Capital Employed (ROCE):
(i) Pre Tax (Before Tax) $=\frac{\text { EBIT }}{\text { Average Capital Employed }} \times 100$
(ii) Post Tax (After Tax) $=\frac{\text { EBIT (1-t) }}{\text { Average Capital Employed }} \times 100$
(2) Return on Shareholders Fund $=\frac{\text { EAT }}{\text { Average Shareholders Fund }} \times 100$
(3) Return on Equity (ROE) $=\frac{\text { EAT }- \text { Preference Dividend }}{\text { Equity Share Holders' Fund }} \times 100$
(C) Profitability Ratios Required For Analysis From Owner's Point of View:
(a) Earnings Per Share (EPS) $=\frac{\text { EAT }- \text { Preference Dividend }}{\text { No. of Equity Shares Outstanding }}$
(b) Dividend Per Share (DPS) $=\frac{\text { Equity Dividend }}{\text { No. of Equity Shares Outstanding }}$
(c) Dividend Payout Ratio (DP) $=\frac{\text { DPS }}{\text { EPS }} \times 100$
(d) Earnings Retention Ratio $=\frac{\mathrm{EPS}-\mathrm{DPS}}{\mathrm{EPS}} \times 100$
(D) Profitability Ratios Related to Market/ Valuation/ Investors:
(a) Price Earnings Ratio (P/E Ratio) $\quad=\quad \frac{\text { Market Price Per Share (MPS) }}{\text { Earning Per Share (EPS) }}$
(b) Dividend Yield Ratio $=\frac{\text { Dividend Per Share (DPS) }}{\text { Market Price Per Share (MPS) }} \times 100$
(c) Earnings Yield Ratio
$=\quad \frac{\text { Earnings Per Share (EPS) }}{\text { Market Price Per Share (MPS) }} \times \mathbf{1 0 0}$
(d) Market Value/Book Value (MVBV)
$=\quad \frac{\text { Market Value Per Share }}{\text { Book Value Per Share }}$
(e) Q Ratio
$=\quad \frac{\text { Market Value of Equity and Liabilities }}{\text { Estimated Replacement Cost of Assets }}$
3. Return on Capital Employed (ROCE) as per Du Pont Model:

Return on Capital Employed (ROCE) = Operating Profit Margin \times Capital Turnover
4. Return on Equity (ROE) as per Du Pont Model:

Return on Equity (ROE) = Net Profit Margin \times Asset Turnover \times Equity Multiplier
5. Activity/Efficiency/ Performance/Turnover/Velocity Ratios: These ratios are employed to evaluate the efficiency with which the firm manages and utilises its assets.
(a) Total Assets Turnover Ratio
(b) Fixed Assets Turnover Ratio
(c) Capital/Net Asset Turnover Ratio
$=\frac{\text { Sales/CoGS }}{\text { Average Total Assets }}$
$=\frac{\text { Sales/COGS }}{\text { Average Fixed Assets }}$
$=\frac{\text { Sales/CoGS }}{\text { Average Capital Employed }}$
$=\frac{\text { Sales/CoGS }}{\text { Average Current Assets }}$
$=\frac{\text { Sales/CoGS }}{\text { Average Working Capital }}$
$=\frac{\text { Annual Net Credit Sales }}{\text { Average Accounts Receivable }}$
(g) Receivables Velocity
$=\quad$ Average Accounts Receivables
Or
$\begin{array}{ll}\text { (h) Payables Turnover Ratio } & =\frac{\text { Annual Net Credit Purchase }}{\text { Average Accounts Payables }} \\ \text { (i) Payables Velocity } & =\frac{\text { Average Accounts Payables }}{\text { Average Daily/Monthly/Weekly Net Credit Purchase }} \text { Or }\end{array}$

$$
\begin{array}{ll}
= & \frac{12 \text { Months } / 52 \text { weeks } / 365 \text { Days }}{\text { Payables Turnover Ratio }} \\
= & \text { Or } \\
\text { Average Accounts Payables } \\
\text { Annual Net Credit Purchase }
\end{array} 365 / 52 / 12
$$

(j) Inventory (Finished Stock) Turnover
(k) Inventory (Finished Stock) Velocity
$=\frac{\text { Average FG Inventory }}{\text { Average Daily/Monthly/Weekly COGS }} \quad$ Or
$=\frac{12 \text { Months/ } 52 \text { weeks/ } 365 \text { Days }}{\text { FG Inventory Turnover Ratio }}$

$$
=\quad \frac{\text { Average FG Inventory }}{\text { Annual COGS }} \times 365 / 52 / 12
$$

(I) Inventory (WIP) Turnover
$=\quad \frac{\text { COP }}{\text { Average WIP Inventory }}$
(m) Inventory (WIP) Velocity =
$=\frac{\text { Average WIP Inventory }}{\text { Average Daily/Monthly/Weekly COP }} \quad$ Or
$=\frac{12 \text { Months/ } 52 \text { weeks/ } 365 \text { Days }}{\text { WIP Inventory Turnover Ratio }} \quad$ Or
$=\quad \frac{\text { Average WIP Inventory }}{\text { Annual COP }} \times 365 / 52 / 12$
(n) Inventory (RM) Turnover $=\frac{\text { Raw Material Consumed }}{\text { Average RM Inventory }}$
(o) Inventory (RM) Velocity
$=\quad \frac{\text { Average RM Inventory }}{\text { Average Daily/Monthly/Weekly RMC }} \quad$ Or
$=\frac{12 \text { Months/ } 52 \text { weeks/ } 365 \text { Days }}{\text { RM Inventory Turnover Ratio }} \quad$ Or
$=\quad \frac{\text { Average RM Inventory }}{\text { Annual RMC }} \times 365 / 52 / 12$
6. Liquidity/Short Term Solvency Ratios: These ratios are used to measure short term solvency of the firm.

(a) Current Ratio	$=$	$\frac{\text { Current Assets }}{\text { Current Liabilities }}$
(b) Quick/Acid test/Liquid Ratio	$=$	$\frac{\text { Quick/Liquid Assets }}{\text { Current Liabilities }}$
Quick Assets or Liquid Assets	$=$	Current Assets - Stock (AlI)-Prepaid
(c) Cash Ratio/Absolute Liquidity Ratio	$=\frac{\text { Cash and Cash Equivalent }}{\text { Current Liabilities }}$	
(d) Basic Defense Interval	$=\frac{\text { Cash and Cash Equivalent }}{\text { Daily Cash Operating Cost }}$	

(e) Net Working Capital Ratio $=\quad$| Current Assets - Current Liabilities |
| :--- |
| (Excluding short term bank borrowing) |

7. Long Term Solvency Ratios/Leverages Ratios: These ratios are used to measure long term solvency (stability) and structure of the firm.
(A) Capital Structure Ratios:
(a) Equity Ratio
$=\quad \frac{\text { Equity Fund }}{\text { Capital Employed }}$
(b) Debt Ratio
$=\quad \frac{\text { Long Term Debt/Total Debt/Total Outside Liabilities }}{\text { Capital Employed }}$
(c) Debt to Equity Ratio
$=\frac{\text { Long Term Debt/Total Debt/Total Outside Liabilities }}{\text { Equity Fund }}$
(d) Debt to Total Assets Ratio
$=\frac{\text { Long Term Debt/Total Debt/Total Outside Liabilities }}{\text { Total Assets }}$
(e) Capital Gearing Ratio
$=\frac{\text { Preference Share Capital + Debentures }+ \text { Other Borrowed Funds }}{\text { Equity Share Capital + Reserves \& Surplus - Losses }}$
(f) Proprietary Ratio $=\quad \frac{\text { Proprietary Fund }}{\text { Total Assets }}$
(B) Coverage Ratios:
(a) Interest Coverage Ratio $=\frac{\text { EBIT }}{\text { Interest }}$
(b) Preference Dividend Coverage Ratio $=\frac{\text { EAT }}{\text { Preference Dividend }}$
(c) Equity Dividend Coverage Ratio $=\frac{\text { EAT }- \text { Preference Dividend }}{\text { Equity Dividend }}$
(d) Fixed Charge Coverage Ratio $=\frac{\text { EBIT + Depreciation }}{\text { Interest + Repayment of Loan }}$
(e) Debt Service Coverage Ratio (DSCR) $=\frac{\text { Earning Avail. for Debt Services }}{\text { Interest + Instalments }}$

Notes:
> Equity Share Holders Fund or Net Worth: Equity Share Capital + Reserve and Surplus - Fictitious Assets.
> Shareholders Fund or Owners Fund or Proprietary Fund: Equity Share Holders' Fund + Preference Share Capital.
$>\quad$ Total Debt or Total Outside Liabilities includes Short and Long term borrowings.
> Total Assets must be excluding fictitious assets.
> Capital Employed:

Alternative 1: Liability Route: Shareholders Fund + Long Term Debt - Non Trade Investments Capital WIP.

Alternative 2: Assets Route: Fixed Assets + Long Term trade Investments + Working Capital.
$>\quad$ If one figure is opted from P / L and another from Balance Sheet then average of Balance Sheet figure shall be taken if possible.
$>\quad$ Sales must be excluding indirect tax (GST if any) and net of sales return.
> In case of Receivable turnover ratio:
(i) Credit Sales net of Return including GST is used
(ii) Debtors before Bad debt or Provision for Doubtful debt is used

Operating Expenses = Administration Expenses + Selling Expenses

BBQ 37
X Co. has made plans for the next year. It is estimated that the company will employ total assets of ₹ $8,00,000$; 50 per cent of the assets being financed by borrowed capital at an interest cost of 8 per cent per year. The direct costs for the year are estimated at ₹ $4,80,000$ and all other operating expenses are estimated at ₹ 80,000 . The goods will be sold to customers at 150 per cent of the direct costs. Tax rate is assumed to be 50 per cent.

You are required to calculate: (a) Operating profit margin (before tax), (b) Net profit margin (after tax); (c) Return on assets (on operating profit after tax); (d) Asset turnover and (e) Return on owners' equity.

Answer
$\begin{array}{llll}\text { (a) Operating Profit Margin= } & =\frac{\text { EBIT }}{\text { Sales }} \times 100 & =\frac{1,60,000}{7,20,000} \times 100= & 22.22 \% \\ \text { (b) Net Profit Margin } & =\frac{\text { EAT }}{\text { Sales }} \times 100 & =\frac{64,000}{7,20,000} \times 100= & 8.89 \% \\ \text { (c) Return on Assets } & =\frac{\text { EBIT }(1-\mathrm{t})}{\text { Assets }} & =\frac{1,60,000(1-.50)}{8,00,000}=10 \% \\ \text { (d) Assets turnover } & =\frac{\text { Sales }}{\text { Total Assets }} & =\frac{7,20,000}{8,00,000}=10.9 \text { times } \\ \text { (e) Return on Equity } & =\frac{\text { EAT }}{\text { Equity Fund }} \times 100 & =\frac{64,000}{4,00,000} \times 100=16 \%\end{array}$
The Net Profit is calculated as follows:

Particulars	₹
Sales Revenue (150\% of ₹ $4,80,000$)	7,20,000
Less: Direct Cost	4,80,000
Gross Profit	2,40,000
Less: Other operating expenses	80,000
Operating Profit/EBIT	1,60,000
Less: Interest on 8% Debt ($8,00,000 \times 50 \% \times 8 \%$)	32,000
EBT	1,28,000
Less: Taxes @ 50\%	64,000
EAT	64,000

BBQ 38

From the following information and ratios, PREPARE the Balance sheet as at $31^{\text {st }}$ March, 2023 and Income Statement for the year ended on that date for M/s Ganguly \& Co:

Average Stock	₹10 lakh
Current Ratio	$3: 1$
Acid Test Ratio	$1: 1$
PBIT to PBT	$2.2: 1$
Average Collection period (Assume 360 days in a year)	30 days
Stock Turnover Ratio (Use sales as turnover)	5 times
Fixed assets turnover ratio	0.8 times

Working Capital	₹10 lakh
Net profit Ratio	10%
Gross profit Ratio	40%
Operating expenses (excluding interest)	₹9 lakh
Long term loan interest	12%
Tax	Nil

Answer

Income Statement of M/S Ganguly \& Co.

	Particulars
Sales	
Less: Cost of Goods Sold	
Gross Profit	$50,00,000$
Less: Operating Expenses	
Less: Interest	$20,00,000)$
	Net Profit

Balance Sheet of M/S Ganguly \& Co.

Liabilities	\boldsymbol{F}	Assets	$₹$
Equity Share Capital	$22,50,000$	Fixed assets	$62,50,000$
Long term debt	$50,00,000$	Stock	$10,00,000$
Current Liabilities	$5,00,000$	Debtors	$4,16,667$
		Other Current Assets	83,333
	$\mathbf{7 7 , 5 0 , 0 0 0}$		$\mathbf{7 7 , 5 0 , 0 0 0}$

Working Notes:

1. Current Ratio $=\quad 3: 1$
CA
WC
$=\quad ₹ 10,00,000$
CA - CL
$=\quad ₹ 10,00,000$
3CL - CL
$=\quad ₹ 10,00,000$
2CL
$=\quad ₹ 10,00,000$
CL
$=\quad$ F5,00,000
CA
$=\quad ₹ 15,00,000$
2. Acid Test Ratio $=\quad$ CA - Stock / CL $=1: 1$

15,00,000 - Stock
$=\quad 5,00,000$
Stock
$=\quad ₹ 10,00,000$
3. Stock Turnover ratio (on sales)=

Sales
$=$
$=\quad$ ₹50,00,000
4. Gross Profit

Net profit (PBT)
5. PBIT/PBT
$=$
$=\quad ₹ 50,00,000 \times 40 \% \quad=\quad ₹ 20,00,000$
$=\quad ₹ 50,00,000 \times 10 \%=$ ₹5,00,000

PBIT
$=$

PBIT	=	F11,00,000		
Interest	=	₹ $11,00,000$ - ₹ $5,00,000$	=	₹ $6,00,000$
Long term loan	=	₹ $6,00,000 \div 0.12$	=	F50,00,000
Average collection period	=	30 days		
Receivables	=	(30/360) × ₹ 50,00,000	=	F4,16,667
Fixed Assets Turnover Ratio	=	0.8		
₹ $50,00,000$ / Fixed Assets	=	0.8		
Fixed Assets	$=$	₹62,50,000		

BBQ 39

From the following information, you are required to PREPARE a summarized Balance Sheet for Rudra Ltd. for the year ended 31 ${ }^{\text {st }}$ March, 2023:

```
Debt Equity Ratio
1:1
Current Ratio
Acid Test Ratio
3:1
8:3
Fixed Asset Turnover (on the basis of sales)
Stock Turnover (on the basis of sales) 6
Cash in hand
₹5,00,000
Stock to Debtor
1:1
Sales to Net Worth
Capital to Reserve
Gross Profit
COGS to Creditor
Interest for entire year is yet to be paid
```4

1:1
3:1
8:3
4
6
₹ \(5,00,000\)
1:1
4
1:2
20\% of Cost
10:1
on Long Term loan @ 10\%

\section*{Answer}

Balance Sheet of M/S Ganguly \& Co.
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{1}{|c|}{ Liabilities } & \(₹\) & \multicolumn{1}{c|}{ Assets } & \(₹\) \\
\hline Capital & \(10,00,000\) & Fixed assets & \(30,00,000\) \\
Reserves & \(20,00,000\) & Current Assets: & \\
Long Term Loan @ 10\% & \(30,00,000\) & Stock & \(20,00,000\) \\
Current Liabilities: & & Debtors & \(20,00,000\) \\
Creditors & \(10,00,000\) & Cash & \(5,00,000\) \\
Outstanding Interest & \(3,00,000\) & & \\
Other CL & \(2,00,000\) & & \(\mathbf{7 5 , 0 0 , 0 0 0}\) \\
\hline
\end{tabular}

\section*{Working Notes: Let sales be \(x\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1.} & Fixed Asset Turnover & = & 4 & = & x/Fixed Assets \\
\hline & Fixed Assets & = & \(\mathrm{x} / 4\) & & \\
\hline \multirow[t]{2}{*}{2.} & Stock Turnover & = & 6 & = & x/Stock \\
\hline & Stock & = & x/6 & & \\
\hline \multirow[t]{2}{*}{3.} & Sales to net worth & = & 4 & = & x/Net worth \\
\hline & Net worth & = & \(\mathrm{x} / 4\) & & \\
\hline
\end{tabular}
4. Debt: Equity

Long Term Loan/Net worth
Long term loan
5. Gross Profit to Cost

G P/ (Sales - G P)
G P
GP
1.2 GP

G P
G P
Cost of Goods Sold
6. COGS to creditors

COGS/Creditors
5/6x
Creditors
7. Stock/Debtor

Debtor
8. Current Ratio
(Stock + Debtors + Cash)/CL
\(\mathrm{x} / 6+\mathrm{x} / 6+5,00,000\)
\(\mathrm{x} / 3+5,00,000\)
\(\mathrm{x} / 9+5,00,000 / 3\)
9. CA

CA
10. Net worth + Long Term Loan + CL
\(x / 4+x / 4+x / 9+₹ 5,00,000 / 3\)
\(x / 4+x / 9-x / 3\)
\((9 x+4 x-12 x) / 36\)
\(\boldsymbol{x}\)
\(=\quad 1: 1\)
\(=\quad 1 / 1\)
\(=\) Net worth \(=x / 4\)
\(=\quad 20 \%\)
\(=20 \%\)
\(=\quad 0.2 \mathrm{x}-0.2 \mathrm{GP}\)
\(=\quad 0.2 \mathrm{x}\)
\(=\quad 0.2 \mathrm{x} / 1.2\)
\(=\quad x / 6\)
\(=x-x / 6=5 / 6 x\)
\(=10: 1\)
\(=10 / 1\)
\(=10\) Ceditors
\(=\quad \mathrm{x} / 12\)
\(=1\)
\(=\) Stock \(=\mathrm{x} / 6\)
\(=\quad 3: 1\)
\(=3\)
\(=3 \mathrm{CL}\)
\(=3 \mathrm{CL}\)
\(=\quad \mathrm{CL}\)
\(=3 C L=3(\mathrm{x} / 9+₹ 5,00,000 / 3)\)
\(=\quad x / 3+5,00,000\)
\(=\quad\) Fixed Asset + CA
\(=\quad \mathrm{x} / 4+\mathrm{x} / 3+₹ 5,00,000\)
\(=₹ 5,00,000-₹ 5,00,000 / 3\)
\(=\) ₹ \(3,33,333.33\)
\(=₹ 3,33,333.33 \times 36=\) ₹1,20,00,000
11. Now, from above calculations, we get,
\begin{tabular}{lllll}
Fixed Asset & \(=\) & \(x / 4\) & \(=\) & \(₹ 30,00,000\) \\
Stock & \(=\) & \(x / 6\) & \(=\) & \(₹ 20,00,000\) \\
Debtor & \(=\) & \(x / 6\) & \(=\) & \(F 20,00,000\) \\
Net Worth & \(=\) & \(x / 4\) & & \\
& & & &
\end{tabular}

Now, Capital to Reserve is \(1: 2\)
\begin{tabular}{lll}
Capital & \(=\) & \(₹ 10,00,000\) \\
Reserve & \(=\) & \(₹ 20,00,000\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Long Term Loan & = & \(\mathrm{x} / 4\) & = & F30,00,000 \\
\hline Outstanding Interest & = & ₹ \(30,00,000 \times 10 \%\) & = & F3,00,000 \\
\hline Creditors & = & \(\mathrm{x} / 12\) & = & F10,00,000 \\
\hline Current Liabilities & = & \multicolumn{3}{|l|}{Creditors + Outstanding Interest + Other CL} \\
\hline x/9 + 5,00,000/3 & = & \multicolumn{3}{|l|}{₹ \(10,00,000\) + ₹ \(3,00,000\) + Other CL} \\
\hline ₹ \(1,20,00,000 / 9+5,00,000 / 3\) & = & \multicolumn{3}{|l|}{₹ \(13,00,000\) + Other CL} \\
\hline Other CL & = & ₹2,00,000 & & \\
\hline
\end{tabular}

\section*{BBQ 40}

Following is the abridged Balance Sheet of Alpha Ltd:
\begin{tabular}{|l|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ Liabilities } & ₹ & \multicolumn{1}{|c|}{ Assets } & \(₹\) & \(₹\) \\
\hline Share Capital & \(1,00,000\) & Land and Buildings & & 80,000 \\
Profit and Loss Account & 17,000 & Plant and Machineries & 50,000 & \\
Current Liabilities & 40,000 & Less: Depreciation & 15,000 & 35,000 \\
\cline { 5 - 5 } & & & & \(1,15,000\) \\
& & Stock & 21,000 & \\
& & Receivables & 20,000 & \\
& & Bank & 1,000 & 42,000 \\
\cline { 5 - 5 } & & & & \(\mathbf{1 , 5 7 , 0 0 0}\) \\
\hline
\end{tabular}

With the help of the additional information furnished below, you are required to prepare trading and profit \& loss account and a balance sheet as at \(31^{\text {st }}\) march, 2023:
(1) The company went in for reorganisation of capital structure, with share capital remaining the same as follows:
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \% \\
\hline Share capital & \(50 \%\) \\
Other shareholders funds & \(15 \%\) \\
5\% Debentures & \(10 \%\) \\
Payables & \(25 \%\) \\
\hline & \(100 \%\) \\
\hline
\end{tabular}

Debentures were issued on \(1^{\text {st }}\) April, interest being paid annually on \(31^{\text {st }}\) March.
(2) Land and Buildings remained unchanged. Additional plant and machinery has been bought and a further
₹ 5,000 depreciation written off.
(The total fixed assets then constituted \(60 \%\) of total fixed and current assets.)
(3) Working capital ratio was \(8: 5\).
(4) Quick assets ratio was 1:1.
(5) The receivables (four-fifth of the quick assets) to sales ratio revealed a credit period of 2 months. There were no cash sales.
(6) Return on net worth was \(10 \%\).
(7) Gross profit was at the rate of \(15 \%\) of selling price.
(8) Stock turnover was eight times for the year.
(9) Ignore Taxation.

Projected Profit and Loss account for the year ended 31-03-2023
\begin{tabular}{|c|c|c|c|}
\hline Particulars & ₹ & Particulars & ₹ \\
\hline To Cost of Goods Sold & 2,04,000 & \multirow[t]{2}{*}{By Sales} & 2,40,000 \\
\hline \multirow[t]{2}{*}{To Gross profit (\(15 \%\) of ₹ \(2,40,000\))} & 36,000 & & \\
\hline & 2,40,000 & \multirow{5}{*}{By Gross Profit} & 2,40,000 \\
\hline To Administration and other expenses (b.f.) & 22,000 & & 36,000 \\
\hline To Interest on Debenture (5\% on ₹ 20,000) & 1,000 & & \\
\hline \multirow[t]{2}{*}{To Net Profit} & 13,000 & & \\
\hline & 36,000 & & 36,000 \\
\hline
\end{tabular}

Projected Balance Sheet as at 31 \({ }^{\text {st }}\) March, 2023
\begin{tabular}{|l|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ Liabilities } & \(\mathcal{F}\) & \multicolumn{1}{|c|}{ Assets } & \(₹\) & \(₹\) \\
\hline Share Capital & \(1,00,000\) & Land and Buildings & & 80,000 \\
Other shareholders funds & 30,000 & Plant and Machineries & 60,000 & \\
5\% Debentures & 20,000 & Less: Depreciation & 20,000 & 40,000 \\
\cline { 5 - 5 } & 50,000 & & & \(1,20,000\) \\
& & Stock & 30,000 & \\
& & Receivables & 40,000 & \\
& & Bank (b.f.) & 10,000 & 80,000 \\
\cline { 5 - 5 } & & & & \(\mathbf{2 , 0 0 , 0 0 0}\) \\
\hline
\end{tabular}

\section*{Working Notes:}

\section*{(1) Total Liabilities:}

Share capital \(=50 \%\) of total liabilities \(=\) ₹ \(1,00,000\)
Total Liabilities = ₹ \(1,00,000 \div 50 \%=₹ 2,00,000\)
(2) Classification of total liabilities:
\begin{tabular}{|l|c|r|}
\hline \multicolumn{1}{|c|}{ Particulars } & \% & \multicolumn{1}{|c|}{ (\()\)) } \\
\hline Share capital & \(50 \%\) & \(1,00,000\) \\
Other shareholders funds & \(15 \%\) & 30,000 \\
5\% Debentures & \(10 \%\) & 20,000 \\
Payables & \(25 \%\) & 50,000 \\
\hline & \(100 \%\) & \(2,00,000\) \\
\hline
\end{tabular}
(3) Fixed Assets:

Total liabilities \(=\) Total Assets \(=\) ₹2,00,000
Fixed Assets \(\quad=\quad 60 \%\) of total fixed assets and current assets
\(=\) ₹2,00,000 \(\times 60 \%=\quad=\quad\) ₹ \(1,20,000\)
(4) Calculation of Historical cost of Plant \& Machinery:
\begin{tabular}{|l|r|}
\hline \multicolumn{1}{|c|}{ Particulars } & \multicolumn{1}{|c|}{\(₹\)} \\
\hline Total fixed assets & \(1,20,000\) \\
Less: Land and Buildings & 80,000 \\
\cline { 2 - 2 } Plant and Machinery (after providing depreciation) & 40,000 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|}
\hline Depreciation on Machinery up to 31.03 .2018 & 15,000 \\
Add: Further depreciation & 5,000 \\
\cline { 2 - 2 } & 20,000 \\
\hline Historical Cost of Plant and Machinery \((40,000+20,000)\) & 60,000 \\
\hline
\end{tabular}
(5) Current Assets:
\begin{tabular}{rlll}
Current assets & \(=\) & Total assets - Fixed assets \\
& \(=\) & \(₹ 2,00,000-₹ 1,20,000\) & \(=\quad ₹ 80,000\)
\end{tabular}
(6) Calculation of Stock:
\begin{tabular}{rlll}
Quick ratio & \(=\frac{\text { Current assets-Stock }}{\text { Current liabilities }}\) & & \(=1\) \\
& \(=\frac{80,000-\text { Stock }}{50,000}\) & \(=\) & 1 \\
Stock & \(=\) & \(₹ 0,000-₹ 50,000\) & \\
& & \(=\) & \(₹ 30,000\)
\end{tabular}
(7) Receivables:

Receivables \(=4 / 5^{\text {th }}\) of quick assets
\(=(₹ 80,000-₹ 30,000) \times 4 / 5=\) ₹ 40,000
(8) Receivables turnover ratio:
\begin{tabular}{llll}
& \(=\frac{\text { Receivables }}{\text { Credit Sales }} \times 12\) Months & \(=\) & 12 months \\
Credit sales & \(=\frac{40,000}{\text { Credit Sales }} \times 12\) Months & \(=\) & 2 months \\
& \(40,000 \times 12 / 2\) & & \(=\quad ₹ 2,40,000\)
\end{tabular}
(9) Return on net worth (net profit):
\begin{tabular}{llll}
Net worth & \(=\) & \(₹ 1,00,000+₹ 30,000\) & \(=\) \\
Net profit & \(=\) & \(₹ 1,30,000 \times 10 \%\) & \(=\) \\
& & &
\end{tabular}

BBQ 41
The following accounting information and financial ratios of PQR Ltd. relate to the year ended \(31^{\text {st }}\) December, 2022:
\begin{tabular}{|l|r|}
\hline Accounting Information: & \\
\hline Gross profit & \(15 \%\) of sales \\
Net profit & \(8 \%\) of sales \\
Raw material consumed & 20\% of works cost \\
Direct wages & \(10 \%\) of works cost \\
Stock of raw materials & 3 months' usage \\
Stock of finished goods & \(6 \%\) of works cost \\
Debt collection period (All sales are on credit) & 60 days \\
\hline Financial Ratios: & \\
\hline Fixed assets to Sales & \(1: 3\) \\
Fixed assets to Current assets & \(13: 11\) \\
Current ratio & \(2: 1\) \\
Long term loan to Current liabilities & \(2: 1\) \\
Capital to Reserve and Surplus & \(1: 4\) \\
\hline
\end{tabular}

If value of fixed assets as on 31 st December, 2022 amounted to ₹ 26 lakhs, prepare a summarised profit and loss account of the company for the year ended \(31^{\text {st }}\) december, 2022 and also the balance sheet as
on \(31^{\text {st }}\) december, 2022.

\section*{Answer}

Profit and Loss account for the year ended 31.12.2022
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \(₹\) & Particulars & \(₹\) \\
\hline To Direct Materials & \(13,26,000\) & By Sales & \(78,00,000\) \\
To Direct Wages & \(6,63,000\) & & \\
To Works Overheads (b.f.) & \(46,41,000\) & & \\
To Gross profit (15\% of ₹78,00,000) & \(\mathbf{1 1 , 7 0 , 0 0 0}\) & & \(\mathbf{7 8 , 0 0 , 0 0 0}\) \\
\cline { 2 - 2 } & \(\mathbf{7 8 , 0 0 , 0 0 0}\) & \multirow{3}{*}{ By Gross Profit } & \(11,70,000\) \\
\cline { 2 - 2 } To Administration and Selling & \(5,46,000\) & & \\
expenses (b.f.) & & & \(\mathbf{1 1 , 7 0 , 0 0 0}\) \\
\hline
\end{tabular}

Balance Sheet as at 31st December, 2022
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Liabilities } & \(\mathcal{F}\) & \multicolumn{1}{c|}{ Assets } & \(₹\) \\
\hline Share Capital & \(3,00,000\) & Fixed Assets & \(26,00,000\) \\
Reserves and Surplus & \(12,00,000\) & Current Assets: & \\
Long term loans & \(22,00,000\) & Raw Material Stock & \(3,31,500\) \\
Current Liabilities & \(11,00,000\) & Finished Goods Stock & \(3,97,800\) \\
& & Receivables & \(12,82,192\) \\
& & Cash & \(1,88,508\) \\
& & & \(\mathbf{4 8 , 0 0 , 0 0 0}\) \\
\hline
\end{tabular}

\section*{Working Notes:}
(a) Calculation of Sales:
\(\frac{\text { Fixed Assets }}{\text { Sales }}=1 / 3\) or Sales \(=3 \times ₹ 26,00,000\)

Sales \(=\quad\) F78,00,000
(b) Calculation of Current Assets:
\begin{tabular}{llll}
Fixed Assets & \(=\) & \(13 / 11\) or \(\quad\) CA & \(=\quad ₹ 26,00,000 \times 11 / 13\) \\
\hline Current Assets \\
Current Assets & \(=\) & ₹22,00,000
\end{tabular}
(c) Calculation of Raw Material Consumption and Direct Wages:
\begin{tabular}{lllll}
Works Cost & \(=\) & Sales - Gross Profit & & \\
& \(=\) & \(78,00,000-15 \%\) of Sales & \(=\) & \(₹ 66,30,000\) \\
& & & \\
Raw Material Consumption & \(=\) & \(20 \%\) of ₹ \(66,30,000\) & \(=\) & \(₹ 13,26,000\) \\
Direct Wages & \(=\) & \(10 \%\) of ₹ \(66,30,000\) & \(=\) & \(₹ 6,63,000\)
\end{tabular}
(d) Calculation of Finished Goods Stock:

Finished Goods Stock \(=6 \%\) of ₹66,30,000 \(=\) ₹3,97,800
(e) Calculation of Raw Material Stock:

Raw Material Stock \(=\quad\) Raw Material Consumption \(\times 3 / 12\)
\(=\) ₹ \(13,26,000 \times 3 / 12=\) ₹3,31,500
(f) Calculation of Current Liabilities:
\begin{tabular}{llll}
Current Ratio & \(=\) & \(\frac{\text { Current Assets }}{\text { Current Liabilities }}\) & \(=\) \\
Current Liabilities & \(=\) & \(₹ 2,00,000 \div 2\) & \(=\)
\end{tabular}
(g) Calculation of Receivables:
\begin{tabular}{rll}
Receivables & \(=\quad\) Credit Sales \(\times \frac{\mathrm{ACP}}{365} \quad=\quad ₹ 78,00,000 \times \frac{60}{365}\) \\
& \(=\quad ₹ 12,82,192\)
\end{tabular}
(h) Calculation of Long Term Loan:
\begin{tabular}{lll}
\(\frac{\text { Long Term Loan }}{\text { Current Liabilities }}\) & \(=2\) & \\
Long Term Loan & \(=2 \times ₹ 11,00,000\) & \(=\quad ₹ 22,00,000\)
\end{tabular}
(i) Calculation of Cash Balance:

Current Assets \(\quad=\quad\) Cash + Stock + Receivables
Cash Balance \(=\quad ₹ 22,00,000-(₹ 3,97,800+₹ 3,31,500+₹ 12,82,192)\)
\(=\) ₹1,88,508
(j) Calculation of Net Worth:

Total Liabilities \(=\) Total Assets (Fixed Assets + Current Assets)
\(=\) ₹ \(22,00,000+₹ 26,00,000=\) ₹ \(48,00,000\)
Net Worth \(=\quad\) Total Liabilities - Long Term Loan - Current Liabilities
\(=\) ₹ \(48,00,000-₹ 22,00,000-₹ 11,00,000=\) F15,00,000
(k) Calculation of Capital, Reserve and Surplus:

Net Worth \(=\quad\) Share Capital + Reserve and surplus
Capital to Reserve \& Surplus = \(1: 4\)
Share Capital \(=\) ₹ \(15,00,000 \times 1 / 5=\) ₹ \(3,00,000\)
Reserve and Surplus \(=₹ 15,00,000 \times 4 / 5=₹ 12,00,000\)

\section*{BBQ 42}

Following information has been provided from the books of Laxmi Pvt. Ltd. for the year ending on \(31^{\text {st }}\) March, 2023:
\begin{tabular}{ll}
Working capital & \(₹ 4,80,000\) \\
Bank overdraft & \(₹ 80,000\) \\
Fixed assets to proprietary ratio & 0.75 \\
Reserves and Surplus & \(₹ 3,20,000\) \\
Current ratio & 2.5 \\
Liquid ratio & 1.5
\end{tabular}

You are required to prepare a summarised Balance Sheet as at 31st March, 2023 assuming that there is no long term debt.

Balance Sheet
As at 31.03.2023
\begin{tabular}{|l|c|l|c|}
\hline Liabilities & ₹ & \multicolumn{1}{c|}{ Assets } & \(₹\) \\
\hline Share Capital & \(16,00,000\) & Fixed Assets & \(14,40,000\) \\
Reserves and Surplus & \(3,20,000\) & Stock & \(3,20,000\) \\
Bank Overdraft & 80,000 & Other Current Assets & \(4,80,000\) \\
Sundry creditors & \(2,40,000\) & & \\
\cline { 2 - 2 } & \(\mathbf{2 2 , 4 0 , 0 0 0}\) & & \(\mathbf{2 2 , 4 0 , 0 0 0}\) \\
\hline
\end{tabular}

\section*{Working Notes:}
1. Current assets and Current liabilities computation:
\begin{tabular}{cll}
\(\frac{\mathrm{CA}}{\mathrm{CL}}\) & \(=2.5\) \\
CA & \(=2.5 \mathrm{CL}\) \\
& & \\
Working capital & \(=\mathrm{CA}-\mathrm{CL}\) & \\
\(4,80,000\) & & \(2.5 \mathrm{CL}-\mathrm{CL}\) \\
\(\boldsymbol{C L}\) & & \(3,20,000\) \\
CA & & \(3,20,000 \times 2.5\)
\end{tabular}
2. Computation of stock:
\begin{tabular}{rl}
Liquid ratio & \(=\) \\
& \(\frac{\text { Liquid Assets }}{\text { Current Liabilities }}\) \\
1.5 & \(=\) \\
Current Assets -Stock \\
\(3,20,000\) \\
\(1.5 \times 3,20,000\) & \(=\) \\
Stock & \(=3,00,000-\) Stock \\
&
\end{tabular}
3. Computation of Proprietary fund, Fixed assets, Capital and Sundry Creditor
\begin{tabular}{|c|c|c|c|c|}
\hline Fixed Assets & = & 0.75 & & \\
\hline \multicolumn{5}{|l|}{Proprietar y Fund} \\
\hline Fixed assets & = & 0.75 Proprietary fund & & \\
\hline Net working capital & = & 0.25 Proprietary fund & & \\
\hline 4,80,000 & = & 0.25 Proprietary fund & & \\
\hline Proprietary fund & = & \[
\frac{4,80,000}{0.25}
\] & & 19,20,000 \\
\hline Fixed assets & \(=\) & 0.75 Proprietary fund
\[
0.75 \times 19,20,000
\] & = & 14,40,000 \\
\hline Share Capital & \(=\)
\(=\) & Proprietary fund - R \& S
\[
19,20,000-3,20,000
\] & = & 16,00,000 \\
\hline Sundry creditors & \(=\)
\(=\) & CL - Bank overdraft
\[
3,20,000-80,000
\] & \(=\) & 2,40,000 \\
\hline
\end{tabular}

BBQ 43
The Balance Sheets of A Ltd. and B Ltd. as on 31 \({ }^{\text {st }}\) March 2023 are as follows:
\begin{tabular}{|c|c|c|}
\hline Particulars & A Ltd & B Ltd \\
\hline
\end{tabular}

\section*{Liabilities:}

Share Capital
Reserve and surplus
Secured Loans
Current Liabilities and provisions:
Sundry Creditors
Outstanding Expenses
Provision for Tax
Proposed Dividend
Unclaimed Dividend
Assets:
Fixed Assets (Net)
Investments
Inventory at Cost
Sundry Debtors
Cash \& Bank
\begin{tabular}{|c|c|}
& \\
\(40,00,000\) & \(40,00,000\) \\
\(32,30,000\) & \(25,00,000\) \\
\(25,25,000\) & \(32,50,000\) \\
& \\
\(15,00,000\) & \(14,00,000\) \\
\(2,00,000\) & \(3,00,000\) \\
\(3,00,000\) & \(3,00,000\) \\
\(6,00,000\) & - \\
15,000 & - \\
\hline \(\mathbf{1 , 2 3 , 7 0 , 0 0 0}\) & \(\mathbf{1 , 1 7 , 5 0 , 0 0 0}\) \\
\hline \(\mathbf{8 0 , 0 0 , 0 0 0}\) & \(\mathbf{5 0 , 0 0 , 0 0 0}\) \\
\(\mathbf{1 5 , 0 0 , 0 0 0}\) & - \\
\(23,00,000\) & \(45,00,000\) \\
- & \(\mathbf{1 7 , 0 0 , 0 0 0}\) \\
\(5,70,000\) & \(5,50,000\) \\
\hline \(\mathbf{1 , 2 3 , 7 0 , 0 0 0}\) & \(\mathbf{1 , 1 7 , 5 0 , 0 0 0}\) \\
\hline
\end{tabular}

\section*{Additional information available:}
(i) \(75 \%\) of the Inventory in A Ltd. readily saleable at cost plus \(20 \%\),
(ii) \(50 \%\) of Sundry Debtors of B Ltd. are due from C Ltd. which is not in a position to repay the amount B Ltd. agreed to accept 15\% debentures of C Ltd.
(iii) B Ltd. had also proposed \(15 \%\) dividend but that was not shown in the accounts.
(iv) At the year end, B Ltd. sold investments amounting to ₹ \(1,20,000\) and repaid Sundry Creditors.

On the basis of the given Balance Sheet and the additional information, you are required to evaluate liquidity of the companies. All working should form part of the answer.

Answer

\section*{CHAPTER 7}
1. Capital Budgeting Decisions: Capital budgeting decision refers to the decision in respect of purchase or sale of fixed assets and long term investment.
2. Capital Budgeting: Capital budgeting refers to application of appropriate capital budgeting technique (one or more) to evaluate any capital budgeting proposal and take capital budgeting decision.
3. Importance of Capital Budgeting Decisions:
> Involvement of Substantial Expenditure
> Long Term Effect/Growth
> Involvement of High Risk
> Irreversibility
> Complex Decisions
4. Capital Budgeting Techniques:

5. Book Profit VS Cash Flow:

Book Profit: It is also known as accounting profit.
Cash Flow: It is focused on cash inflow and outflow.
Proforma Book Profit and Cash Flow After Tax
\begin{tabular}{|c|c|}
\hline Particulars & ₹ \\
\hline Sales & XXX \\
\hline Less: Variable Cost (Always Cash) & (\(X X X X\) \\
\hline Contribution & XXX \\
\hline Less: Cash Fixed Cost & (XXX) \\
\hline Less: Depreciation (Non Cash Item) & (XXX) \\
\hline Profit Before Tax (Accounting or Book Profit) & XXX \\
\hline Less: Tax & (XXX) \\
\hline Profit After Tax (Accounting or Book Profit) & XXX \\
\hline Add: Depreciation (Non Cash Item) & (XXX) \\
\hline Cash Flow After Tax (CFAT)/Cash Receipts After Tax & XXX \\
\hline
\end{tabular}
6. Cash Flow \& Discounted Cash Flow (DCF):

Cash Flow: Cash flow without considering time value of money.
Discounted Cash Flow: Cash flow after considering time value of money.
Discounted Cash Flow (Formulae):
Year \(1=\frac{\mathrm{C}_{1}}{1+\mathrm{k}} \quad\) or \(\quad C_{1} \times\) PVIF or DF for year 1
Year \(2=\frac{\mathrm{C}_{2}}{(1+\mathrm{k})^{2}} \quad\) or \(\quad C_{2} \times\) PVIF or DF for year 2
Sum of Discounted Cash Flow (In Case of Equal Inflow Formula):
\(\Sigma\) Discounted Cash Flow \(=\quad\) Uniform Cash Flow \(\times\) PVIFA or Sum of DF/PVF
Notes:
> ARR Technique is based on Accounting/Book Profit
> Payback Period is based on Cash Flow (Non Discounted)
> Discounted Payback, NPV, PI and IRR Techniques are based on Discounted Cash Flow
> MIRR technique if based on Future/Compounded Cash Flow
> Discounted Cash Flow is also known as Present Value of Cash Flow
7. Accounting/Average Rate of Return (ARR): ARR is the rate of return in terms of average book profit on investment. It can be calculated by using one of the following three methods:

Formula 1: \(\quad\) ARR (Total Investment Basis) \(=\frac{\text { Average Profit p.a }}{\text { Initial Investment }} \times 100\)
Formula 2: ARR (Average Investment Basis) \(=\quad \frac{\text { Average Profit p.a. }}{\text { Average Investment }} \times 100\)
Formula 3: ARR (Annual Basis):
Step 1: Calculate Annual Rate of Return \(=\frac{\text { Profit for the Year }}{\text { Investment at the Beginning of Concern Year }} \times 100\)
Step 2: Calculate Average Rate of Return of All Annual ARR in Step 1

\section*{Notes:}
\(>\) Average Investment \(=1 / 2 \times\) (Initial Investment + Salvage) + Addl. WC (If Any)
8. Payback Period (Traditional): It is refers to the period within which entire amount of investment is expected to be recovered in form of Cash.

Situation 1: Uniform Cash Receipts: Payback Period \(=\frac{\text { Initial Investment }}{\text { Annual Cash Inflow }}\)
Situation 2: Unequal Cash Receipts:
Step 1: Calculate Cumulative Cash Inflow
Step 2: Calculate Payback Period
9. Discounted Payback Period: It is refers to the period within which entire amount of investment is expected to be recovered in form of Discounted Cash.

Step 1: Calculate Cumulative Discounted Cash Inflow
Step 2: Calculate Discounted Payback Period
10. Net Present Value (NPV): The net present value of a project is the amount the investment earns after paying cost of capital in each period.
\begin{tabular}{llll}
\(N P V\) & \(=P V\) of Inflow - PV of Outflow/Initial Investment & Or \\
\(N P V=(P I-1) \times P V\) of Outflow/Initial Investment &
\end{tabular}
11. Profitability Index (PI)/ Desirability Factor (DF)/ Present Value Index/ NPV Index Method:
\begin{tabular}{lll}
\(P I\) & \(=\quad P V\) of Inflow \(\div\) PV of Outflow/Initial investment & Or \\
\(P I \quad=\quad 1+\frac{\mathrm{NPV}}{\text { Inital Investment/PV of Outflow }}\) &
\end{tabular}
12. Internal Rate of Return (IRR): Internal rate of return refers to the actual rate of return generated by the project. Internal rate of return for an investment proposal is the discount rate that equates the present value of the expected cash inflows with the initial cash outflow. NPV is zero at IRR discount rate

Situation 1: One Point Inflow:
\[
\text { IRR } \quad=\quad \sqrt[n]{\frac{\text { Inflow }}{\text { Outflow }}}-1
\]

Situation 2: Multiple Point Inflow (Unequal Cash):
Step 1: Calculate one positive and one negative NPV by using random discount rate (Given in question)

Step 2: Calculate IRR: \(\quad\) IRR \(=\quad \mathrm{L}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}}(\mathrm{H}-\mathrm{L})\)
Where,
\begin{tabular}{lll}
\(L\) & \(=\) & Lower Discount Rate \\
\(H\) & \(=\) & Higher Discount Rate \\
\(N P V_{L}\) & \(=\) & \(N P V\) at Lower Discount Rate \\
\(N P V_{H}\) & \(=\) & \(N P V\) at Higher Discount Rate
\end{tabular}

Situation 3: Multiple Point Inflow (Equal Cash):
Step 1: Calculate PVIFA at IRR: \(\quad\) PVIFA \(_{\text {IRR }} \quad=\quad \frac{\text { Initial Investment }}{\text { Annual Cash Inflow }}\)
Step 2: Calculate IRR on the basis of PVIFA table:
(a) If matched in table : Matched PVIFA rate is IRR
(b) If not matched then:
(i) Calculate one positive and one negative NPV then
(ii) Calculate IRR:
\[
I R R=\quad \mathrm{L}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}}(\mathrm{H}-\mathrm{L})
\]
13. Modified Internal Rate of Return (MIRR): The MIRR is obtained by assuming a single outflow in the zero year and the terminal cash inflow.

Step 1: Calculate cumulative compounded value of intermediate cash inflow by using cost of capital as rate of compounding.

Step 2: Calculate MIRR: \(\quad\) MIRR \(=\sqrt[n]{\frac{\text { Cumulative Compounded Value }}{\text { Initial Investment }}}-1\)
14. Replacement Decision: Decision in respect of replacement of an existing working machine with new one having higher production capacity or lower operating cost or both.

Step 1: Calculate Initial Outflow:
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \(₹\) \\
\hline Purchase Cost of New Machine & XXX \\
Less: Sale Value of Old Machine & (XXX) \\
Less: Tax Saving on Loss on Sale of Old Machine & (XXX) \\
Add: Tax Payment on Profit on Sale of Old Machine & XXX \\
Add: Increase In Working Capital & XXX \\
Less: Decrease in Working Capital & InXX) \\
\cline { 2 - 3 } & Initial Outflow
\end{tabular}

Step 2: Calculate Incremental CFAT.
Step 3: Calculate Incremental Terminal Value (net of tax).
Step 4: Calculate Incremental NPV and Take Replacement Decision.
15. Capital Rationing: Capital rationing refers to the process of selection of optimal combination of projects out of many subject to availability of funds.

Situation 1: Projects are Divisible:
Step 1: \(\quad\) Calculate PI of all the available projects
Step 2: Give Rank to all projects on the basis of PI
Step 3: Select Projects on the basis of Rank
Situation 2: Projects are Indivisible:
Step 1: Calculate all possible combinations
Step 2: Select combination of projects having higher combined NPV
16. Unequal Life of Projects: In case of comparison between two projects having different life we can solve the problem by using Equivalent Annualized Criterion:

Step 1: Calculate NPV of the projects or PV of outflow of the projects.
Step 2: Calculate Equivalent Annualized NPV or Outflow:
Equivalent Annualised NPV or Outflow \(=\frac{\text { NPV or PV of Outflow }}{\text { PVIFA }}\)
Step 3: Select the proposal having higher annualised NPV or Lower annualised outflow.
Note: Such problems can also be solved by using Common Life/ Replacement Chain Method
17. Decision Under Various Techniques
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Techniques } & Yes & No \\
\hline ARR & ARR \(\geq\) Desired Return & ARR < Desired Return \\
Traditional Payback & Payback \(\leq\) Desired Payback & Payback \(>\) Desired Payback \\
Discounted Payback & Payback \(\leq\) Desired Payback & Payback \(>\) Desired Payback \\
NPV & NPV \(\geq 0\) & NPV \(<0\) \\
PI & \(P I \geq 1\) & \(P I<1\) \\
\(I R R\) & \(I R R \geq\) Cost of Capital & IRR < Cost of Capital \\
MIRR & \(M I R R \geq\) Cost of Capital & MIRR < Cost of Capital \\
\hline
\end{tabular}

\section*{18. Special Points:}
> Sunk Cost and Allocated Overheads are irrelevant in Capital Budgeting.
\(>\quad\) Opportunity Cost is considered in Capital Budgeting.
\(>\quad\) Working Capital introduced at the beginning of project (cash outflow) and recover (cash inflow) at the end of the project life.
> Running Cost : Always Cash Cost.
> Operating Cost: Variable Cost plus Fixed Cost (Including Depreciation) subject to operating cost must be > Depreciation.
\(>\) Depreciation : Only as per Tax is relevant.
> Advance Payment: Tax as per accrual basis
\(>\quad\) If nothing is specified: Depreciation as per books is assumed to be depreciation as per tax and Losses can be carry forwarded for tax benefit.

\section*{BBQ 44}

XYZ Ltd is planning to introduce a new product with a projected life of 8 years. The project to be set up in a backward region, qualifies for a one time (as its starting) tax free subsidy from the government of \(₹ 20,00,000\) equipment cost will be ₹ 140 lakhs and additional equipment costing ₹ \(10,00,000\) will be needed at the beginning of the third year. At the end of 8 years the original equipment will have no resale value but the supplementary equipment can be sold for ₹ \(1,00,000\). A working capital of ₹ \(15,00,000\) will be needed.

The sales volume over the eight years period has been forecasted as follows:
\begin{tabular}{cr}
Year & Units \\
1 & 80,000 \\
2 & \(1,20,000\) \\
\(3-5\) & \(3,00,000\) \\
\(6-8\) & \(2,00,000\)
\end{tabular}

A sale price of \(₹ 100\) per unit is expected and variable expenses will amount to \(40 \%\) of sales revenue. Fixed cash operating costs will amount to ₹ \(16,00,000\) per year. In addition an extensive advertising campaign will be implemented requiring annual outlays as follows:
\begin{tabular}{cc}
Year & (Fin lakhs) \\
1 & 30 \\
2 & 15 \\
\(3-5\) & 10 \\
\(6-8\) & 4
\end{tabular}

The company is subject to \(50 \%\) tax rate and considers \(12 \%\) to be an appropriate after tax cost of capital for this project. The company follows the straight line method of depreciation.

\section*{Should the project be accepted?}

\section*{Answer}

Net Present Value
\begin{tabular}{|c|l|c|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Particulars } & \(₹\) & DF @ 12\% & PV \\
\hline 0 & Initial outflows & \((1,35,00,000)\) & 1.000 & \((1,35,00,000)\) \\
& \((140-20+15)\) Lakhs & & & \\
1 & CFAT & \(2,00,000\) & 0.893 & \(1,78,600\) \\
2 & CFAT less Additional Equipment & \(24,50,000\) & 0.797 & \(19,52,650\) \\
& \((34,50,000-10,00,000)\) & & & \\
\(3-5\) & CFAT & \(85,25,000\) & 1.915 & \(1,63,25,375\) \\
\(6-8\) & CFAT & \(58,25,000\) & 1.363 & \(79,39,475\) \\
8 & Working Capital and Salvage & \(16,00,000\) & 0.404 & \(6,46,400\) \\
& \((15,00,000+1,00,000)\) & \(\mathbf{N P V}\) & \\
\hline \multicolumn{5}{|c|}{} \\
\hline
\end{tabular}

\section*{Company should accept the proposal having positive NPV of the project.}

\section*{Working Notes:}
1. Statement of CFAT
\begin{tabular}{|l|c|c|c|c|}
\hline Particulars & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3 - 5}\) & \(\mathbf{6 - 8}\) \\
\hline Units sold & 80,000 & \(1,20,000\) & \(3,00,000\) & \(2,00,000\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Sales @ ₹100 p.u. & \(80,00,000\) & \(1,20,00,000\) & \(3,00,00,000\) & \(2,00,00,000\) \\
Less: VC @ 40\% & \(32,00,000\) & \(48,00,000\) & \(1,20,00,000\) & \(80,00,000\) \\
\cline { 2 - 5 } Contribution & \(48,00,000\) & \(72,00,000\) & \(1,80,00,000\) & \(1,20,00,000\) \\
Less: Advertisement expenses & \((30,00,000)\) & \((15,00,000)\) & \((10,00,000)\) & \((4,00,000)\) \\
Less: Cash fixed cost & \((16,00,000)\) & \((16,00,000)\) & \((16,00,000)\) & \((16,00,000)\) \\
Less: Depreciation & \((15,00,000)\) & \((15,00,000)\) & \((16,50,000)\) & \((16,50,000)\) \\
\cline { 2 - 5 } PBT & \((13,00,000)\) & \(26,00,000\) & \(1,37,50,000\) & \(83,50,000\) \\
Less: Tax @ 50\% & - & \((6,50,000)\) & \((68,75,000)\) & \((41,75,000)\) \\
PAT & \((13,00,000)\) & \(19,50,000\) & \(68,75,000\) & \(41,75,000\) \\
Add: Depreciation & \(\mathbf{1 5 , 0 0 , 0 0 0}\) & \(\mathbf{1 5 , 0 0 , 0 0 0}\) & \(16,50,000\) & \(16,50,000\) \\
\cline { 2 - 6 } \(\boldsymbol{C F A T}\) & \(\mathbf{2 , 0 0 , 0 0 0}\) & \(\mathbf{3 4 , 5 0 , 0 0 0}\) & \(\mathbf{8 5 , 2 5 , 0 0 0}\) & \(\mathbf{5 8 , 2 5 , 0 0 0}\) \\
\hline
\end{tabular}

\section*{2. Depreciation:}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Main equipment (\(\boldsymbol{t}_{0}-t_{8}\))} & \multirow[t]{2}{*}{=} & Original Cost - Subsidy -Salvage & \multirow[t]{2}{*}{} & 1,20,00,000 \\
\hline & & Life of Equipment & & \multirow[t]{2}{*}{8 Years} \\
\hline & \(=\) & 15,00,000 & & \\
\hline \multirow[t]{3}{*}{Additional equipment (\(t_{3}-t_{8}\))} & = & Original Cost-Salvage & \multirow[t]{3}{*}{=} & \multirow[t]{3}{*}{\(\frac{9,00,000}{6 \text { Years }}\)} \\
\hline & & Life of Equipment & & \\
\hline & = & 1,50,000 & & \\
\hline Tax for year 2 & = & \(50 \%\) of (26,00,000-13,00,000) & \(=\) & 6,50,000 \\
\hline
\end{tabular}

Note: As per section 32 of Income Tax Act "Depreciation is not allowed on subsidized part of asset"

\section*{BBQ 45}

Navjeevani hospital is considering to purchase a machine for medical projectional radiography which is priced at \(₹ 2,00,000\). The projected life of the machine is 8 years and has an expected salvage value of \(₹ 18,000\) at the end of \(8^{\text {th }}\) year. The annual operating cost of the machine is \(₹ 22,500\). It is expected to generate revenues of \(₹ 1,20,000\) per year for eight years. Presently, the hospital is outsourcing the radiography work to its neighbour Test Center and is earning commission income of ₹ 36,000 per annum, net of taxes. Consider tax @30\%.

Analyse whether it would be profitable for the hospital to purchase the machine? Give your recommendation under:
(i) Net Present Value method,
(ii) Profitability Index method.

PV factors at 10\% are given below:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year 1 & Year 2 & Year 3 & Year 4 & Year 5 & Year 6 & Year 7 & Year 8 \\
\hline 0.909 & 0.826 & 0.751 & 0.683 & 0.621 & 0.564 & 0.513 & 0.467 \\
\hline
\end{tabular}

\section*{Answer}
(i) Net Present Value
\begin{tabular}{|c|l|c|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Particulars } & ₹ & DF @ 10\% & PV \\
\hline 0 & Initial outflows & \((2,00,000)\) & 1.000 & \((2,00,000)\) \\
\(1-8\) & Cash Flow After Tax & 39,075 & 5.334 & \(2,08,426\) \\
8 & Salvage & 18,000 & 0.467 & 8,406 \\
\hline \multicolumn{4}{|c|}{\(\mathbf{N P V}\)} & \(\mathbf{1 6 , 8 3 2}\) \\
\hline
\end{tabular}
(ii) Profitability Index \(=\frac{\mathrm{PV} \text { of Inflows }}{\mathrm{PV} \text { of Outflows }}=\frac{2,16,832}{2,00,000}=1.084\)

\section*{Working Notes:}

Calculation of CFAT:
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \(₹\) \\
\hline Sales & \(1,20,000\) \\
Less: Operating cost & 22,500 \\
Less: Depreciation \((2,00,000-18,000) \div 8\) years & 22,750 \\
\cline { 2 - 2 } Net Income & 74,750 \\
Less: Tax @ 30\% & 22,425 \\
PAT & 52,325 \\
Add: Depreciation & 22,750 \\
\cline { 2 - 2 } Cash inflows after tax per annum & 75,075 \\
Less: Loss of commission income & \(\mathbf{3 6 , 0 0 0}\) \\
\(\boldsymbol{N e t}\) CFAT & \(\mathbf{3 9 , 0 7 5}\) \\
\hline
\end{tabular}

Advise: Since the net present value (NPV) is positive and profitability index is also greater than 1 , the hospital may purchase the machine.

\section*{BBQ 46}

A chemical company is presently paying an outside firm ₹ 1 per gallon to dispose off the waste resulting from its manufacturing operations. At normal operating capacity, the waste is about 50,000 gallons per year.

After spending ₹ 60,000 on research, the company discovered that the waste could be sold for ₹ 10 per gallon if it was processed further. Additional processing would, however, require an investment of ₹ \(6,00,000\) in new equipment, which would have an estimated life of 10 years with no salvage value. Depreciation would be calculated by straight line method.

Except for the costs incurred in advertising ₹20,000 per year, no change in the present selling and administrative expenses is expected, if the new product is sold. The details of additional processing costs are as follows:
\begin{tabular}{lll}
Variable & \(:\) & ₹5 per gallon of waste put into process. \\
Fixed & \(:\) & ₹ 30,000 per year (Excluding Depreciation).
\end{tabular}

There will be no losses in processing, and it is assumed that the total waste processed in a given year will be sold in the same year. Estimates indicate that 50,000 gallons of the product could be sold each year.

The management when confronted with the choice of disposing off the waste or processing it further and selling it, seeks your advice. You should consider Present value of Annuity of ₹ 1 per year @ 15\% p.a. for 10 years as 5.019.

Which alternative would you recommend? Assume that the firm's cost of capital is 15\% and it pays on an average 50\% Tax on its income.

\section*{Answer}

Statement of NPV
\begin{tabular}{|c|l|c|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Particulars } & ₹ & DF @ 15\% & PV \\
\hline 0 & Initial outflows & \((6,00,000)\) & 1.000 & \((6,00,000)\) \\
\(1-10\) & Annual CFAT & \(1,55,000\) & 5.019 & \(7,77,945\) \\
\hline
\end{tabular}

\section*{Working Note:}

\section*{Calculation of CFAT}
\begin{tabular}{|c|c|}
\hline Particulars & F \\
\hline Sales value of waste (50,000 gallon \(\times\) ₹ 10) & 5,00,000 \\
\hline Add: Saving in Disposal cost (50,000 gallon \(\times\) ₹ 1) & 50,000 \\
\hline Less: Variable processing cost (50,000 gallon \(\times\) ₹5) & \((2,50,000)\) \\
\hline Less: Fixed processing cost (excluding depreciation) & \((30,000)\) \\
\hline Less: Advertisement cost & \((20,000)\) \\
\hline Less: Depreciation (\(6,00,000 \div 10\) years) & \((60,000)\) \\
\hline PBT & 1,90,000 \\
\hline Less: Tax @ 50\% & \((95,000)\) \\
\hline PAT & 95,000 \\
\hline Add: Depreciation & 60,000 \\
\hline Annual CFAT & 1,55,000 \\
\hline
\end{tabular}

Recommendation: Processing of waste is a better option as it gives a positive NPV.
Note: Research cost of 60,000 is not relevant for decision making as it is sunk cost.

\section*{BBQ 47}

Manoranjan Ltd is a News broadcasting channel having its broadcasting Centre in Mumbai. There are total 200 employees in the organisation including top management. As a part of employee benefit expenses, the company serves tea or coffee to its employees, which is outsourced from a third-party. The company offers tea or coffee three times a day to each of its employees. 120 employees prefer tea all three times, 40 employees prefer coffee all three times and remaining prefer tea only once in a day. The third-party charges ₹ 10 for each cup of tea and ₹ 15 for each cup of coffee. The company works for 200 days in a year.

Looking at the substantial amount of expenditure on tea and coffee, the finance department has proposed to the management an installation of a master tea and coffee vending machine which will cost \(₹ 10,00,000\) with a useful life of five years. Upon purchasing the machine, the company will have to enter into an annual maintenance contract with the vendor, which will require a payment of ₹ 75,000 every year. The machine would require electricity consumption of 500 units p.m. and current incremental cost of electricity for the company is ₹ 12 per unit. Apart from these running costs, the company will have to incur the following consumables expenditure also:
1. Packets of Coffee beans at a cost of \(₹ 90\) per packet.
2. Packet of tea powder at a cost of \(₹ 70\) per packet.
3. Sugar at a cost of \(₹ 50\) per Kg.
4. Milk at a cost of ₹ 50 per litre.
5. Paper cup at a cost of 20 paise per cup.

Each packet of coffee beans would produce 200 cups of coffee and same goes for tea powder packet. Each cup of tea or coffee would consist of 10 g of sugar on an average and 100 ml of milk. The company anticipate that due to ready availability of tea and coffee through vending machines its employees would end up consuming more tea and coffee.

It estimates that the consumption will increase by on an average \(20 \%\) for all class of employees. Also, the paper cups consumption will be \(10 \%\) more than the actual cups served due to leakages in them.

The company is in the \(25 \%\) tax bracket and has a current cost of capital at \(12 \%\) per annum. Straight line method of depreciation is allowed for the purpose of taxation.

You as a financial consultant is required to ADVISE on the feasibility of acquiring the vending machine.

\section*{PV factors @ 12\%:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & 1 & 2 & 3 & 4 & 5 \\
\hline \(\boldsymbol{P V F}\) & 0.8929 & 0.7972 & 0.7118 & 0.6355 & 0.5674 \\
\hline
\end{tabular}

\section*{Answer}

Statement of NPV
\begin{tabular}{|c|l|c|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Particulars } & ₹ & DF @ 12\% & PV \\
\hline 0 & Initial outflows & \((10,00,000)\) & 1.000 & \((10,00,000)\) \\
\(1-5\) & Annual CFAT & \(2,39,438\) & 3.6048 & \(8,63,126\) \\
\hline \multicolumn{3}{|c|}{ NPV } & \((1,36,874)\) \\
\hline
\end{tabular}

Since NPV of the machine is negative, it should not be purchased.

\section*{Working Note:}

Calculation of CFAT
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \(₹\) \\
\hline Saving in Existing Tea \& Coffee Charges & \(11,60,000\) \\
\((120 \times 10 \times 3 \times 200)+(40 \times 15 \times 3 \times 200)+(40 \times 10 \times 1 \times 200)\) & \((75,000)\) \\
Less: AMC of Machine & \((72,000)\) \\
Less: Electricity Charges \((500 \times 12 \times 12)\) & \((12,960)\) \\
Less: Coffee beans \((144 \times 90)\) & \((33,600)\) \\
Less: Tea powder \((480 \times 70)\) & \((62,400)\) \\
Less: Sugar \((1,248 \times 50)\) & \((6,24,000)\) \\
Less: Milk \((12,480 \times 50)\) & \((27,456)\) \\
Less: Paper cup \((1,37,280 \times 0.20) \quad 12,0,000)\) \\
Less: Depreciation \((10,00,000 \div 5\) years \()\) & 52,584 \\
& PBT \\
Less: Tax @ \(25 \%\) & PAT \\
Add: Depreciation & Annual CFAT
\end{tabular}

\section*{Computation of Qty of consumable:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. of Tea Cups & = & \multicolumn{3}{|l|}{\([(120 \times 3 \times 200\) days \()+(40 \times 1 \times 200\) days \() \times 1.2\)} & = & 96,000 \\
\hline No. of Coffee cups & = & \(40 \times 3 \times 200\) days \(\times 1.2\) & & & = & 28,800 \\
\hline No. of coffee beans packet & = & 28,800/200 & = & 144 & & \\
\hline No. of Tea Powder Packets & = & 96,000/200 & = & 480 & & \\
\hline Qty of Sugar & = & \((96,000+28,800) \times 10 / 1,000 \mathrm{~g}\) & = & 1,248 & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
Qty of Milk & \(=(96,000+28,800) \times 100 / 1,000 \mathrm{ml}\) \\
No. of paper cups & \(=12,480\) litres \\
(96,000 \(+28,800) \times 1.1\) & \(=1,37,280\)
\end{tabular}

\section*{BBQ 48}

Elite Cooker Company is evaluating three investment situations: (1) produce a new line of aluminum skillets, (2) expand its existing cooker line to include several new sizes, and (3) develop a new, higherquality line of cookers. If only the project in question is undertaken, the expected present values and the amounts of investment required are:
\begin{tabular}{|c|c|c|}
\hline Project & Investment required & PV of future cash flows \\
\hline 1 & \(₹ 2,00,000\) & \(₹ 2,90,000\) \\
2 & \(₹ 1,15,000\) & \(₹ 1,85,000\) \\
3 & \(₹ 2,70,000\) & \(₹ 4,00,000\) \\
\hline
\end{tabular}

If projects 1 and 2 are jointly undertaken, there will be no economies; the investments required and present values will simply be the sum of the parts. With projects 1 and 3 , economies are possible in investment because one of the machines acquired can be used in both production processes. The total investment required for projects 1 and 3 combined is \(₹ 4,40,000\). If projects 2 and 3 are undertaken, there are economies to be achieved in marketing and producing the products but not in investment. The expected present value of future cash flows for projects 2 and 3 is ₹ \(6,20,000\). If all three projects are undertaken simultaneously, the economies noted will still hold. However, a ₹ \(1,25,000\) extension on the plant will be necessary, as space is not available for all three projects.

\section*{Which project or projects should be chosen?}

\section*{Answer}

Statement of Cumulative NPV of Different Combinations
\begin{tabular}{|c|c|c|c|}
\hline Project & Investment required & PV offuture CF & Net Present Value \\
\hline 1 & \(₹ 2,00,000\) & \(₹ 2,90,000\) & \(₹ 90,000\) \\
2 & \(₹ 1,15,000\) & \(₹ 1,85,000\) & \(₹ 70,000\) \\
3 & \(₹ 2,70,000\) & \(₹ 4,00,000\) & \(₹ 1,30,000\) \\
1 and 2 & \(₹ 3,15,000\) & \(₹ 4,75,000\) & \(₹ 1,60,000\) \\
1 and 3 & \(₹ 4,40,000\) & \(₹ 6,90,000\) & \(₹ 2,50,000\) \\
2 and 3 & \(₹ 3,85,000\) & \(₹ 6,20,000\) & \(₹ 2,35,000\) \\
1,2 and 3 & \(₹ 6,80,000^{*}\) & \(₹ 9,10,000\) & \(₹ 2,30,000\) \\
(Refer working note) & & \\
\hline
\end{tabular}

Calculation of total investment required if all the three projects are undertaken simultaneously:
\(\begin{aligned} & \text { Total investment }=\quad \text { Investment in project } 1 \& 3+\text { Investment in project } 2+\text { Plant extension cost } \\ &=4,40,000+1,15,000+1,25,000= \\ & ₹ 6,80,000\end{aligned}\)
Advise: Projects 1 and 3 should be chosen, as they provide the highest net present value.

\section*{BBQ 49}

Alpha Limited is a manufacturer of computers. It wants to introduce artificial intelligence while making computers. The estimated annual saving from introduction of the artificial intelligence (AI) is as follows:
- Reduction of five employees with annual salaries of ₹ \(3,00,000\) each
- Reduction of ₹3,00,000 in production delays caused by inventory problem.
- Reduction in lost sales \(₹ 2,50,000\) and
- Gain due to timely billing ₹ \(2,00,000\)

The purchase price of the system for installation of artificial intelligence is ₹ \(20,00,000\) and installation cost is \(₹ 1,00,000.80 \%\) of the purchase price will be paid in the year of purchase and remaining will be paid in next year.

The estimated life of the system is 5 years and it will be depreciated on a straight-line basis. However, the operation of the new system requires two computer specialists with annual salaries of ₹5,00,000 per person.

In addition to above, annual maintenance and operating cost for five years are as below:
(Amount in ₹)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
\hline Maintenance \& Operating Cost & \(2,00,000\) & \(1,80,000\) & \(1,60,000\) & \(1,40,000\) & \(1,20,000\) \\
\hline
\end{tabular}

Maintenance and operating cost are payable in advance. The company's tax rate is \(30 \%\) and its required rate of return is \(15 \%\).
\begin{tabular}{|l|c|c|c|c|c|}
\hline Year & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
\hline PVIF \(_{0.10, \mathrm{t}}\) & 0.909 & 0.826 & 0.751 & 0.683 & 0.621 \\
\hline PVIF \(_{0.12, \mathrm{t}}\) & 0.893 & 0.797 & 0.712 & 0.636 & 0.567 \\
\hline PVIF \(_{0.15, \mathrm{t}}\) & 0.870 & 0.756 & 0.658 & 0.572 & 0.497 \\
\hline
\end{tabular}

\section*{Evaluate the project by using Net Present Value and Profitability Index.}

\section*{Answer}
(1) Net Present value (NPV)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Particulars & ₹ & PVIF @ 15\% & PV \\
\hline 0 & Initial Outflows: & & & \\
\hline & \(80 \%\) of Purchase price (20,00,000 \(\times 80 \%\)) & \((16,00,000)\) & 1.000 & \((16,00,000)\) \\
\hline & Installation cost & \((1,00,000)\) & 1.000 & \((1,00,000)\) \\
\hline 1 & 20\% of Purchase Cost & \((4,00,000)\) & 0.870 & \((3,48,000)\) \\
\hline \multicolumn{4}{|c|}{PV of Outflows} & 20,48,000 \\
\hline 0 & Maintenance \& Operating cost for year 1 & (2,00,000) & 1.000 & (2,00,000) \\
\hline 1 & CFAT & 8,81,000 & 0.870 & 7,66,470 \\
\hline 2 & CFAT & 8,95,000 & 0.756 & 6,76,620 \\
\hline 3 & CFAT & 9,09,000 & 0.658 & 5,98,122 \\
\hline 4 & CFAT & 9,23,000 & 0.572 & 5,27,956 \\
\hline 5 & CFAT & 10,37,000 & 0.497 & 5,15,389 \\
\hline \multicolumn{4}{|c|}{PV of Inflows} & 28,84,557 \\
\hline \multicolumn{4}{|c|}{NPV} & 8,36,557 \\
\hline
\end{tabular}

Advice: Accept the proposal having positive NPV.
(2) Profitability Index \begin{tabular}{rllll}
& \(=\) & PV of Inflows \(\div \mathrm{PV}\) of Outflows \\
& \(=\) & \(28,84,557 \div 20,48,000\)
\end{tabular}

Advice: Accept the proposal having PI higher than 1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Particulars & 1 & 2 & 3 & 4 & 5 \\
\hline Saving in employees salaries
\[
(₹ 3,00,000 \times 5)
\] & 15,00,000 & 15,00,000 & 15,00,000 & 15,00,000 & 15,00,000 \\
\hline + Reduction in prod. delays & 3,00,000 & 3,00,000 & 3,00,000 & 3,00,000 & 3,00,000 \\
\hline + Reduction in lost sales & 2,50,000 & 2,50,000 & 2,50,000 & 2,50,000 & 2,50,000 \\
\hline + Gain due to timely billing & 2,00,000 & 2,00,000 & 2,00,000 & 2,00,000 & 2,00,000 \\
\hline - Salaries computer specialist
(₹5,00,000 × 2) & \((10,00,000)\) & (10,00,000) & (10,00,000) & (10,00,000) & (10,00,000) \\
\hline - Maintenance \& Op. cost & \((2,00,000)\) & \((1,80,000)\) & \((1,60,000)\) & \((1,40,000)\) & \((1,20,000)\) \\
\hline \begin{tabular}{l}
- Depreciation \\
(21,00,000 \(\div 5\) years)
\end{tabular} & \((4,20,000)\) & \((4,20,000)\) & \((4,20,000)\) & \((4,20,000)\) & \((4,20,000)\) \\
\hline PBT & 6,30,000 & 6,50,000 & 6,70,000 & 6,90,000 & 7,10,000 \\
\hline - Tax @ 30\% & \((1,89,000)\) & \((1,95,000)\) & \((2,01,000)\) & \((2,07,000)\) & \((2,13,000)\) \\
\hline PAT & 4,41,000 & 4,55,000 & 4,69,000 & 4,83,000 & 4,97,000 \\
\hline + Depreciation & 4,20,000 & 4,20,000 & 4,20,000 & 4,20,000 & 4,20,000 \\
\hline + Maint. \& Op. cost (accrual) & 2,00,000 & 1,80,000 & 1,60,000 & 1,40,000 & 1,20,000 \\
\hline - Maint. \& Op. cost (Cash) & \((1,80,000)\) & \((1,60,000)\) & (1,40,000) & \((1,20,000)\) & - \\
\hline CFAT & 8,81,000 & 8,95,000 & 9,09,000 & 9,23,000 & 10,37,000 \\
\hline
\end{tabular}

\section*{BBQ 50}

APZ limited is considering selecting a machine between two machines ' \(A\) ' and ' \(B\) '. The two machines have identical capacity, do exactly the same job, but designed differently.

Machine A costs ₹ \(8,00,000\), having useful life of three years. It costs ₹ \(1,30,000\) per year to run. Machine \(B\) is an economic model costing ₹ \(6,00,000\), having useful life of two years. It costs \(₹ 2,50,000\) per year to run.

The cash flows of machine ' A ' and ' B ' are real cash flows. The costs are forecasted in rupees of constant purchasing power. Ignore taxes. The opportunity cost of capital is \(10 \%\).

The present value factors at 10\% are:
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Years } & \(\boldsymbol{t}_{\boldsymbol{1}}\) & \(\boldsymbol{t}_{\boldsymbol{2}}\) & \(\boldsymbol{t}_{\boldsymbol{3}}\) \\
\hline PVIF \(_{0.10 \mathrm{t}}\) & 0.9091 & 0.8264 & 0.7513 \\
\hline PVIFA \(_{0.10 .2}=1.7355\) & & & \\
\hline PVIFA \(_{0.10 .3}=2.4868\) & & & \\
\hline
\end{tabular}

Which machine would you recommend the company to buy?

\section*{Answer}

\section*{Statement Showing Evaluation of Two Machines}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & Machine ' \(\boldsymbol{A}\) ' & Machine \(\mathbf{' B}^{\prime}\) \\
\hline Initial outflow/ Purchase cost of machines & \(8,00,000\) & \(6,00,000\) \\
Annual running cost & \(1,30,000\) & \(2,50,000\) \\
Life of machines & 3 years & 2 years \\
PV of annual running cost & \(3,23,284\) & \(4,33,875\) \\
(Annual running cost \(\times\) PVIFA) & \((1,30,000 \times 2.4868)\) & \((2,50,000 \times 1.7355)\) \\
\cline { 2 - 3 } & & \(11,23,284\) \\
Present value of total outflow \\
(Initial outflow + PV of annual running cost) & & \(10,33,875\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline\(\div\) PVIFA & \(\div 2.4868\) & \(\div 1.7355\) \\
\cline { 2 - 3 } Equivalent Annual outflow & \(\mathbf{4 , 5 1 , 6 9 9}\) & \(\mathbf{5 , 9 5 , 7 2 2}\) \\
\hline
\end{tabular}

Select the Machine A having lower equivalent annualized outflow.

\section*{BBQ 51}

Hindlever Company is considering a new product line to supplement its range line. It is anticipated that the new product line will involve cash investments of ₹ \(7,00,000\) at time 0 and \(₹ 10,00,000\) in year 1 . After-tax cash inflows of ₹ \(2,50,000\) are expected in year 2 , ₹ \(3,00,000\) in year \(3, ₹ 3,50,000\) in year 4 and \(₹ 4,00,000\) each year thereafter through year 10 . Although the product line might be viable after year 10, the company prefers to be conservative and end all calculations at that time.
(a) If the required rate of return is 15 per cent, what is the net present value of the project? Is it acceptable?
(b) What would be the case if the required rate of return were 10 per cent?
(c) What is its internal rate of return?
(d) What is the project's payback period?

\section*{Answer}
(a) Statement of NPV
\begin{tabular}{|c|c|c|c|}
\hline Years & Cash Inflow (₹) & PVF @ 15\% & Present Value \\
\hline 0 & \((7,00,000)\) & 1.000 & \((7,00,000)\) \\
1 & \((10,00,000)\) & 0.870 & \((8,70,000)\) \\
2 & \(2,50,000\) & 0.756 & \(1,89,000\) \\
3 & \(3,00,000\) & 0.658 & \(1,97,400\) \\
4 & \(3,50,000\) & 0.572 & \(2,00,200\) \\
\(5-10\) & \(4,00,000\) & 2.164 & \(8,65,600\) \\
\hline \multicolumn{2}{|c|}{\(\mathbf{N P V}\)} & \(\mathbf{1 , 1 7 , 8 0 0)}\) \\
\hline
\end{tabular}
(b) Statement of NPV
\begin{tabular}{|c|c|c|c|}
\hline Years & ₹ & PVF @ 10\% & PV \\
\hline 0 & \((7,00,000)\) & 1.000 & \((7,00,000)\) \\
1 & \((10,00,000)\) & 0.909 & \((9,09,000)\) \\
2 & \(2,50,000\) & 0.826 & \(2,06,500\) \\
3 & \(3,00,000\) & 0.751 & \(2,25,300\) \\
4 & \(3,50,000\) & 0.683 & \(2,39,050\) \\
\(5-10\) & \(4,00,000\) & 2.975 & \(11,90,000\) \\
\hline \multicolumn{2}{|c|}{\(\boldsymbol{N P V}\)} & \(\mathbf{2 , 5 1 , 8 5 0}\) \\
\hline
\end{tabular}
(c) IRR \(\quad=\quad \mathrm{LR}+\frac{\mathrm{NPV}_{\mathrm{LR}}}{\mathrm{NPV}_{\mathrm{LR}}-\mathrm{NPV}_{\mathrm{HR}}} \times(\mathrm{HR}-\mathrm{LR})=10 \%+\frac{2,51,850}{2,51,850+1,17,800} \times(15 \%-10 \%)\)
\[
=\quad 13.41 \%
\]
(d) Payback Period \(=-7,00,000-10,00,000+2,50,000+3,00,000+3,50,000+4,00,000+\) 4,00,000
\(=6\) Years
BBQ 52
Following data has been available for a capital project:

Annual cost of saving
Useful life
Salvage value
Internal rate of return
Profitability index
₹ \(1,00,000\)
4 years
zero
12\%
1.064

You are required to calculate the following for this project:
(a) Cost of the project
(b) Cost of capital
(c) Net present value
(d) Payback period

PV factors at different rates are given below:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Discount Factor } & \multicolumn{4}{|c|}{ Years } \\
\cline { 2 - 5 } & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline \(12 \%\) & 0.893 & 0.797 & 0.712 & 0.636 \\
\hline \(11 \%\) & 0.901 & 0.812 & 0.731 & 0.659 \\
\hline \(10 \%\) & 0.909 & 0.826 & 0.751 & 0.683 \\
\hline \(9 \%\) & 0.917 & 0.842 & 0.772 & 0.702 \\
\hline
\end{tabular}

Answer
(a) Cost of the project:

At IRR,
\begin{tabular}{lll}
Present value of inflows & \(=\) & Present value of outflows \\
Present value of outflows & \(=\) & \begin{tabular}{l}
Annual cost of saving \(\times\) Cumulative discount factor \\
@ IRR 12\% for 4 years
\end{tabular} \\
& \(=\) & ₹1,00,000 \(\times 3.038\)
\end{tabular}
(b) Cost of Capital:

Cum DF @ cost of capital for 4 years \(=\frac{\text { Present Value of Inflows }}{\text { Annual Inflows }}=\frac{3,23,243.20}{1,00,000}\)
\(=3.232\)
From the discount factor table, at discount rate of 9\%, the cumulative discount factor for four years is \(3.233(0.917+0.842+0.772+0.702)\)

Hence, Cost of capital
\(=9 \%\)
(c) Net Present Value of cash inflows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PI} & \multirow[t]{2}{*}{=} & \multicolumn{3}{|l|}{PV of Inflows} \\
\hline & & PV of Outflows & & \\
\hline \multirow[t]{2}{*}{1.064} & \multirow[t]{2}{*}{=} & PV of Inflows & & \\
\hline & & 3,03,800 & & \\
\hline PV of Inflows & = & \(3,03,800 \times 1.064\) & = & ₹3,23,243 \\
\hline NPV & = & PV of inflows - PV of outf & & \\
\hline & = & ₹ \(3,23,243.20\) - ₹ \(3,03,800\) & \(=\) & ₹ \(19,443.20\) \\
\hline
\end{tabular}

\section*{Payback Period:}
\begin{tabular}{rl}
Payback period & \(=\frac{\text { Initial Outflow }}{\text { Equal Annual Cash Inflows }}=\frac{3,03,800}{1,00,000}\) \\
& \(=3.038\) years
\end{tabular}

\section*{BBQ 53}

Shiva Limited is planning its capital investment programme for next year. It has five projects all of which give a positive NPV at the company cut-off rate of 15 percent, the investment outflows and present values being as follows:
\begin{tabular}{|c|c|c|}
\hline Project Name & Initial Investment & NPV @ 15\% \\
\hline A & \(₹ 50,000\) & \(₹ 15,400\) \\
B & \(₹ 40,000\) & \(₹ 18,700\) \\
C & \(₹ 25,000\) & \(₹ 10,100\) \\
D & \(₹ 30,000\) & \(₹ 11,200\) \\
E & \(₹ 35,000\) & \(₹ 19,300\) \\
\hline
\end{tabular}

The company is limited to a capital spending of \(₹ 1,20,000\).
You are required to optimise the returns from a package of projects within the capital spending limit. The projects are independent of each other and are (a) divisible, (b) indivisible.

\section*{Answer}
(a) Statement of Rank and Selection of Projects
(Divisible Situation)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Projects & PI (1+ NPV/Investment) & Rank & Project Cost & Project (\%) & Investment \\
\hline A & \(1+15,400 / 50,000=1.31\) & 5 & \(₹ 50,000\) & - & - \\
B & \(1+18,700 / 40,000=1.47\) & 2 & \(₹ 40,000\) & \(100 \%\) & \(₹ 40,000\) \\
C & \(1+10,100 / 25,000=1.40\) & 3 & \(₹ 25,000\) & \(100 \%\) & \(₹ 25,000\) \\
D & \(1+11,200 / 30,000=1.37\) & 4 & \(₹ 30,000\) & \(66.67 \%\) & \(₹ 20,000(\mathrm{~b} . \mathrm{f})\) \\
E & \(1+19,300 / 35,000=1.55\) & 1 & \(₹ 35,000\) & \(100 \%\) & \(₹ 35,000\) \\
\hline \multicolumn{6}{|c|}{ Total Investment } \\
\hline
\end{tabular}

Optimum investment: 100\% of B, C, E and 2/3 D.
(b) Statement of Possible Combinations and Combined NPV (Indivisible Situation)
\begin{tabular}{|c|c|c|}
\hline Possible Combinations & Combined Investment & Combined NPV \\
\hline A + B + C & \(₹ 1,15,000\) & \(₹ 44,200\) \\
A + + D & \(₹ 1,20,000\) & \(₹ 45,300\) \\
A C + D & \(₹ 1,05,000\) & \(₹ 36,700\) \\
A C + E & \(₹ 1,10,000\) & \(₹ 44,800\) \\
A D E & \(₹ 1,15,000\) & \(₹ 45,900\) \\
B C + D & \(₹ 95,000\) & \(₹ 48,000\) \\
B + + E & \(₹ 1,00,000\) & \(₹ 49,200\) \\
B + + E & \(₹ 1,05,000\) & \(₹ 40,600\) \\
\hline
\end{tabular}

Invest in combination of B, D and E having highest combined NPV and invest remaining ₹15,000 elsewhere.

\section*{BBQ 54}

MNP Limited is thinking of replacing its existing machine by a new machine which would cost ₹ 60 lakhs. The company's current production is ₹ 80,000 units, and is expected to increase to \(1,00,000\) units, if the new machine is bought. The selling price of the product would remain unchanged at ₹ 200 per unit. The following is the cost of producing one unit of product using both the existing and new machine:
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \begin{tabular}{c}
Existing Machine \\
(80,000 units)
\end{tabular} & \begin{tabular}{c}
New Machine \\
\((\mathbf{1 , 0 0 , 0 0 0}\) units)
\end{tabular} & Difference \\
\hline Materials & 75.00 & 63.75 & \((11.25)\) \\
Wages and Salaries & 51.25 & 37.50 & \((13.75)\) \\
Supervision & 20.00 & 25.00 & 5.00 \\
Repairs and Maintenance & 11.25 & 7.50 & \((3.75)\) \\
Power and Fuel & 15.50 & 14.25 & \((1.25)\) \\
Depreciation & 0.25 & 5.00 & 4.75 \\
Allocated Corporate OH & 10.00 & 12.50 & 2.50 \\
\hline Total & \(\mathbf{1 8 3 . 2 5}\) & \(\mathbf{1 6 5 . 5 0}\) & \(\mathbf{(1 7 . 7 5)}\) \\
\hline
\end{tabular}

The existing machine has an accounting book value of \(₹ 1,00,000\), and it has been fully depreciated for tax purpose. It is estimated that machine will be useful for 5 years. The supplier of the new machine has offered to accept the old machine for \(₹ 2,50,000\). However, the market price of old machine today is \(₹ 1,50,000\) and it is expected to be ₹ 35,000 after 5 years. The new machine has a life of 5 years and a salvage value of ₹ \(2,50,000\) at the end of its economic life.

Assume corporate Income tax rate at 40\%, and depreciation is charged on straight line basis for Incometax purposes. Further assume that book profit is treated as ordinary income for tax purpose. The opportunity cost of capital of the Company is \(15 \%\).

\section*{Required:}
(i) Estimate net present value of the replacement decision.
(ii) Should Company go ahead with the replacement decision? Suggest.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year \((\boldsymbol{t})\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
\hline PVIF \(_{0.15, \mathrm{t}}\) & 0.8696 & 0.7561 & 0.6575 & 0.5718 & 0.4972 \\
PVIF \(_{0.20, \mathrm{t}}\) & 0.8333 & 0.6944 & 0.5787 & 0.4823 & 0.4019 \\
PVIF \(_{0.25, \mathrm{t}}\) & 0.8000 & 0.6400 & 0.5120 & 0.4096 & 0.3277 \\
PVIF \(_{0.30, \mathrm{t}}\) & 0.7692 & 0.5917 & 0.4552 & 0.3501 & 0.2693 \\
PVIF \(_{0.35, \mathrm{t}}\) & 0.7407 & 0.5487 & 0.4064 & 0.3011 & 0.2230 \\
\hline
\end{tabular}

\section*{Answer}
(i) Statement of NPV
\begin{tabular}{|c|l|c|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Particulars } & ₹ & DF @ 15\% & PV \\
\hline 0 & Initial outflows & \((58,50,000)\) & 1.0000 & \((58,50,000)\) \\
\(1-5\) & Cash Flow After Tax & \(22,84,000\) & 3.3522 & \(76,56,425\) \\
5 & Net Salvage 2,50,000 - 35,000 \((1-0.40)\) & \(2,29,000\) & 0.4972 & \(1,13,859\) \\
\hline \multicolumn{3}{|c|}{ NPV } & \(\mathbf{1 9 , 2 0 , 2 8 4}\) \\
\hline
\end{tabular}

Working Notes:

\section*{1. Calculation of initial outflow:}
\[
\begin{array}{lr}
\text { Cost of new machine } & ₹ 60,00,000 \\
\text { Less: Exchange value of old machine } & \text { (₹2,50,000) } \\
\text { Add: Tax payment on profit on exchange of old machine } & ₹ 1,00,000 \\
\quad(2,50,000-\text { Nil }) \times 40 \% & \\
\text { Initial outflow } & ₹ 58,50,000
\end{array}
\]
2. Calculation of incremental CFAT:
\begin{tabular}{lr}
Increase in sales \((200 \times 20,000\) units \()\) & \(₹ 40,00,000\) \\
Less: Increase in operating cost \((1,00,000 \times 148)-(80,000 \times 173)\) & \(₹ 9,60,000\) \\
(excluding Depreciation and Allocated overheads) & \\
Less: Increase in depreciation \([(60,00,00-2,50,000) \div 5]-\) Nil & \(₹ 11,50,000\) \\
Profit before tax & \(₹ 18,90,000\) \\
Less: Tax @ 40\% & \(₹ 7,56,000\) \\
Profit after tax & \(₹ 11,34,000\) \\
Add: Depreciation & \(₹ 11,50,000\) \\
Incremental CFAT & \(₹ 22,84,000\)
\end{tabular}
3. Calculation of Incremental Salvage:

Salvage of new machine (Salvage = WDV; no gain or loss)
₹2,50,000
Less: Salvage of old machine (Salvage > WDV)
Tax on gain \(40 \%\) of \(35,000(35,000-\mathrm{Nil})\)
₹ 35,000
₹ 14,000
₹ 21,000
Incremental Salvage

\section*{Notes:}
(a) The old machine could be sold for ₹ \(1,50,000\) in the market. Since exchange value is more than the market value, company will exchange it at \(₹ 2,50,000\).
(b) Old machine has fully depreciated for tax purpose, therefore depreciation of old machine as well as WDV are NIL.
(c) Allocated overheads are allocations from corporate office therefore they are irrelevant for computation of CFAT.
(ii) Advise: The company should go ahead with replacement project, since it has positive NPV.

BBQ 55
Xavly Ltd. has a machine which has been in operation for 3 years. The machine has a remaining estimated useful life of 5 years with no salvage value in the end. Its current market value is ₹ \(2,00,000\). The company is considering a proposal to purchase a new model of machine to replace the existing machine. The relevant information is as follows:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & Existing machine & New machine \\
\hline Cost of machine & ₹3,30,000 & ₹ \(10,00,000\) \\
Estimated life & 8 years & 5 years \\
Salvage value & Nil & \(₹ 40,000\) \\
Annual output & 30,000 units & 75,000 units \\
Selling price per unit & \(₹ 15\) & \(₹ 15\) \\
Annual operating hours & 3,000 & 3,000 \\
Material cost per unit & \(₹ 4\) & \(₹ 4\) \\
Labour cost per hour & \(₹ 40\) & \(₹ 70\) \\
Indirect cash cost per annum & \(₹ 50,000\) & \(₹ 65,000\) \\
\hline
\end{tabular}

The company uses written down value of depreciation @ \(20 \%\) and it has several other machines in the block of assets. The Income tax rate is 30 per cent and Xavly Ltd. does not make any investment, if it yields less than 12 per cent.

PV factors @12\%:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & 1 & 2 & 3 & 4 & 5 \\
\hline PVF & 0.893 & 0.797 & 0.712 & 0.636 & 0.567 \\
\hline
\end{tabular}

Advise Xavly Ltd. whether the existing machine should be replaced or not.

\section*{Answer}

Statement of NPV
\begin{tabular}{|c|l|c|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Particulars } & ₹ & DF @ 12\% & PV \\
\hline 0 & Initial outflows & \((8,00,000)\) & 1.000 & \((8,00,000)\) \\
1 & Incremental CFAT & \(3,21,000\) & 0.893 & \(2,86,653\) \\
2 & Incremental CFAT & \(3,11,400\) & 0.797 & \(2,48,186\) \\
3 & Incremental CFAT & \(3,03,720\) & 0.712 & \(2,16,249\) \\
4 & Incremental CFAT & \(2,97,576\) & 0.636 & \(1,89,258\) \\
5 & Incremental CFAT + Incremental Salvage & \(3,32,661\) & 0.567 & \(1,88,619\) \\
& \((2,92,661+40,000)\) & & & \(\mathbf{3 , 2 8 , 9 6 5}\) \\
\hline
\end{tabular}

Advise: The company should go ahead with replacement of machine, since it has positive NPV.

\section*{Working Notes:}
1. Calculation of initial outflow:

Cost of new machine
Less: Sales value of old machine
Initial outflow
₹ \(10,00,000\)
(₹2,00,000)
₹8,00,000
2. Increase in output \(=75,000\) units \(-30,000\) units \(=45,000\) units

\section*{3. Base for incremental Depreciation:}
\begin{tabular}{|c|c|}
\hline Particulars & ₹ \\
\hline \multicolumn{2}{|l|}{(A) WDV of Existing Machine:} \\
\hline Purchase price of existing machine & 3,30,000 \\
\hline Less: Depreciation year \(1 \quad(3,30,000 \times 20 \%)\) & \((66,000)\) \\
\hline Less: Depreciation year \(2 \quad(2,64,000 \times 20 \%)\) & \((52,800)\) \\
\hline Less: Depreciation year \(3 \quad(2,11,200 \times 20 \%)\) & \((42,240)\) \\
\hline WDV of Existing Machine (A) & 1,68,960 \\
\hline \multicolumn{2}{|l|}{(B) Depreciation Base of New Machine:} \\
\hline Purchase price of new machine & 10,00,000 \\
\hline Add: WDV of existing Machine & 1,68,960 \\
\hline Less: Sale value of existing machine & \((2,00,000)\) \\
\hline Depreciation Base of New Machine (B) & 9,68,960 \\
\hline (C) Base for incremental Depreciation (\(B-A\)) & 8,00,000 \\
\hline
\end{tabular}

\section*{4. Calculation of incremental CFAT:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Particulars & 1 & 2 & 3 & 4 & 5 \\
\hline Increase in Sales (45,000 \(\times\) ₹ 15) & 6,75,000 & 6,75,000 & 6,75,000 & 6,75,000 & 6,75,000 \\
\hline Less: Increase in Material cost (45,000 units \(\times\) ₹ 4) & \((1,80,000)\) & \((1,80,000)\) & \((1,80,000)\) & \((1,80,000)\) & \((1,80,000)\) \\
\hline Less: Increase in Labour cost \(\{3,000\) hours \(\times(70-40)\}\) & \((90,000)\) & \((90,000)\) & \((90,000)\) & \((90,000)\) & \((90,000)\) \\
\hline Less: Increase in Indirect cash cost
\[
(65,000-50,000)
\] & \((15,000)\) & \((15,000)\) & \((15,000)\) & \((15,000)\) & \((15,000)\) \\
\hline Less: Increase in Depreciation (Base: 8,00,000) & \((1,60,000)\) & \((1,28,000)\) & \((1,02,400)\) & \((81,920)\) & \((65,536)\) \\
\hline Incremental PBT & 2,30,000 & 2,62,000 & 2,87,600 & 3,08,080 & 3,24,464 \\
\hline Less: Tax @ 30\% & \((69,000)\) & \((78,600)\) & \((86,280)\) & \((92,424)\) & \((97,339)\) \\
\hline Incremental PAT & 1,61,000 & 1,83,400 & 2,01,320 & 2,15,656 & 2,27,125 \\
\hline Add: Incremental Depreciation & 1,60,000 & 1,28,000 & 1,02,400 & 81,920 & 65,536 \\
\hline Incremental CFAT & 3,21,000 & 3,11,400 & 3,03,720 & 2,97,576 & 2,92,661 \\
\hline
\end{tabular}

Notes: Since company has several machines in \(20 \%\) block of assets, there is no tax benefit or tax payment on loss or profit on sale of machine respectively because block will remain in existance.

\section*{BBQ 56}

XYZ Ltd. is presently all equity financed. The directors of the company have been evaluating investment in a project which will require ₹270 lakhs capital expenditure on new machinery. They expect the capital investment to provide annual cash flows of ₹42 lakhs indefinitely which is net of all tax adjustments. The discount rate which it applies to such investment decisions is \(14 \%\) net.

The directors of the company believe that the current capital structure fails to take advantage of tax benefits of debt and propose to finance the new project with undated perpetual debt secured on the company's assets. The company intends to issue sufficient debt to cover the cost of capital expenditure and the after tax cost of issue.

The current annual gross rate of interest required by the market on corporate undated debt of similar risk is \(10 \%\). The after tax costs of issue are expected to be ₹ 10 lakhs. Company's tax rate is \(30 \%\).

\section*{You are required to:}
(a) Calculate the adjusted present value of the investment,
(b) Calculate the adjusted discount rate and
(c) Explain the circumstances under which this adjusted discount rate may be used to evaluate future investments.

\section*{Answer}
(a) Calculation of Adjusted Present Value of Investment (APV):

Adjusted PV = Base Case PV + PV of financing decisions associated with the project

\section*{Base Case NPV for the project:}
\begin{tabular}{lll}
\((-) ₹ 270\) lakhs \(+(₹ 42\) lakhs \(/ 0.14)\) & \(=\) & \((-) ₹ 270\) lakhs \(+₹ 300\) lakhs \(=₹ 30\) lakhs \\
Issue costs & \(=\) & \(₹ 10\) lakhs \\
Thus, the amount to be raised & \(=\quad ₹ 270\) lakhs \(+₹ 10\) lakhs \(=\quad ₹ 280\) lakhs
\end{tabular}
\begin{tabular}{llll}
Annual tax relief on interest & \(=\) & ₹ \(280 \times 0.1 \times 0.3\) & \(=\) \\
₹ 8.4 lakhs p.a..
\end{tabular}
Therefore, \(A P V \quad=\quad\) Base case PV - Issue Costs + PV of Tax Relief on debt interest
\(=\) ₹30 lakhs - ₹10 lakhs + ₹84 lakhs = ₹104 lakhs
(b) Calculation of Adjusted Discount Rate (ADR):

Annual Income or Savings required to allow an NPV to zero

(c) Useable circumstances:

This ADR may be used to evaluate future investments only if the business risk of the new venture is identical to the one being evaluated here and the project is to be financed by the same method on the same terms. The effect on the company's cost of capital of introducing debt into the capital structure cannot be ignored.

BBQ 57
Using details given below, calculate MIRR considering 8\% cost of Capital.
\begin{tabular}{cc}
Year & Cash Flow \\
0 & (₹1,36,000) \\
1 & \(₹ 30,000\) \\
2 & \(₹ 40,000\) \\
3 & \(₹ 60,000\) \\
4 & \(₹ 30,000\) \\
5 & \(₹ 20,000\)
\end{tabular}

\section*{Answer}

Statement of Compounding Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline Years & & & ₹ & CVF @ 8\% & CV \\
\hline 1 & Cash inf & & 30,000 & 1.3605 & 40,815 \\
\hline 2 & Cash infl & & 40,000 & 1.2597 & 50,388 \\
\hline 3 & Cash inf & & 60,000 & 1.1664 & 69,984 \\
\hline 4 & Cash inf & & 30,000 & 1.0800 & 32,400 \\
\hline 5 & Cash inf & & 20,000 & 1.0000 & 20,000 \\
\hline \multicolumn{5}{|c|}{Compound Value of Cash Inflow} & 2,13,587 \\
\hline \multicolumn{6}{|l|}{Calculation of MIRR:} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Compound Factor}} & \multirow[t]{2}{*}{C} & Compound value of inflow & \(\underline{2,13,587}\) & \multirow[t]{2}{*}{1.5705} \\
\hline & & & Initial outflow & 1,36,000 & \\
\hline \multicolumn{2}{|c|}{MIRR} & \multicolumn{2}{|l|}{\(\sqrt[5]{1.5705}-1\)} & 9.45\% & \\
\hline
\end{tabular}

\section*{CHAPTER 8}

\section*{COST OF CAPITAL}
1. Cost of Capital: Cost of capital is the return expected by the providers of capital (i.e. shareholders, lenders and the debt-holders) to the business as a compensation for their contribution to the total capital. Cost of capital is also known as 'cut-off' rate, 'hurdle rate', 'minimum rate of return' etc.
2. Components of Cost of Capital:

3. Cost of Debt (Kd):

(a) Cost of Irredeemable Debenture:
\[
K_{d} \quad=\quad \frac{\mathrm{I}(1-\mathrm{t})}{\mathrm{NP}} \times 100
\]

Where,
\[
I \quad=\quad \text { Amount of Interest }
\]
\begin{tabular}{lll}
\(t\) & \(=\) & Tax rate \\
\(N P\) & \(=\) & Net Proceeds of Debenture or Current Market Price
\end{tabular}

Note: If Face Value of Debenture equal to Net Proceeds then
\[
K_{d} \quad=\quad \text { Rate of Interest }(1-t)
\]
(b) Cost of Redeemable Debenture (in Lump sum):

Approximation Method:
\[
K_{d}=\frac{\mathrm{I}(1-\mathrm{t})+\left(\frac{\mathrm{RV}-\mathrm{NP}}{\mathrm{n}}\right)}{\frac{\mathrm{RV}+\mathrm{NP}}{2}} \times 100 \quad \text { Or }=\quad \frac{\left(\mathrm{I}+\frac{\mathrm{RV}-\mathrm{NP}}{\mathrm{n}}\right)(1-\mathrm{t})}{\frac{R V+N P}{2}} \times 100
\]

Where \(I\) Amount of Interest.
RV \(=\quad\) Redemption value of Debenture
NP \(\quad=\quad\) Net Proceeds of Debenture or Current Market Price
\(n \quad=\quad\) Life of Debenture
Present Value Method (PV) / Yield to Maturity Method (YTM):
\[
K_{d} \quad=\quad \operatorname{IRR} \quad=\quad \mathrm{L}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})
\]
(c) Cost of Redeemable Debenture (in Instalments):
\[
K_{d} \quad=\quad I R R \quad=\quad \mathrm{L}+\frac{N P V_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})
\]
(d) Cost of Zero Coupon Bonds (ZCB):
\[
K_{d} \quad=\quad \sqrt[n]{\frac{\mathrm{RV}}{\mathrm{IP}}}-1
\]

Where I \(=\quad\) Amount of Interest.
RV \(\quad=\quad\) Redemption value of Debenture
IP \(=\quad\) Issue Price of Bond
\(n \quad=\quad\) Life of Bond
Notes:
\(>\quad\) In case of convertible debenture use convertible value in place of redemption value of debenture.
\(>\quad\) If nothing is specified, issue price assumed to be equal to Market value or face value.
\(>\quad\) If nothing is specified, redemption value assumed to be equal to face value.
\(>\quad\) If nothing is specified, floatation cost assumed to be linked with "face value or issue price whichever is higher".
> Price of debenture must be Ex-Interest price.
4. Cost of Preference Share Capital (\(K_{p}\)):

(a) Cost of Irredeemable Preference Share:
\[
K_{p} \quad=\quad \frac{\mathrm{PD}}{\mathrm{NP}} \times 100
\]

Where,
\begin{tabular}{lll}
PD & \(=\) & Amount of Preference Dividend \\
NP & \(=\quad\) Net Proceeds of Preference Share or Current Market Price
\end{tabular}

Note: If Face Value of Preference Share equal to Net Proceeds then
\[
K_{p} \quad=\quad \text { Rate of Pref erence Dividend }
\]
(b) Cost of Redeemable Preference Share (in Lump sum):

Approximation Method:
\[
K_{p} \quad=\quad \frac{\mathrm{PD}+\left(\frac{\mathrm{RV}-\mathrm{NP}}{\mathrm{n}}\right)}{\frac{\mathrm{RV}+\mathrm{NP}}{2}} \times 100
\]

Where,
\begin{tabular}{lll}
PD & \(=\) & Amount of Preference Dividend \\
\(R V\) & \(=\) & Redemption value of Preference Share \\
\(N P\) & \(=\) & Net Proceeds of Preference Share or Current Market Price \\
\(n\) & & Life of Preference Share
\end{tabular}

Present Value Method (PV) / Yield to Maturity Method (YTM):
\[
K_{p} \quad=\quad I R R \quad=\quad \mathrm{L}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})
\]
(c) Cost of Redeemable Preference Share (in Instalments):
\[
K_{d} \quad=\quad I R R \quad=\quad \mathrm{L}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})
\]

Note:
\(>\quad\) In case of convertible preference share use convertible value in place of redemption value.
\(>\quad\) If nothing is specified, issue price assumed to be equal Market value or face value.
\(>\quad\) If nothing is specified, redemption value assumed to be equal to face value.
\(>\quad\) If nothing is specified, floatation cost assumed to be linked with "face value or issue price whichever is higher".
\(>\quad\) Price of preference share must be Ex-Dividend price.
5. Cost of Equity Share Capital (\(K_{e}\)):

(a) Dividend Price/Yield Approach:
\[
K_{e} \quad=\quad \frac{\mathrm{D}}{\mathrm{P}_{0}} \times 100
\]

Where,
\[
\begin{array}{lll}
D & = & \text { Expected/Current Dividend } \\
P_{0} & = & \text { Current Market Price of Equity Share }
\end{array}
\]

Assumption: Constant Dividend
(b) Earning Price/Yield Approach:
\(K_{e} \quad=\quad \frac{\mathrm{E}}{\mathrm{P}_{0}} \times 100\)
Where,
\[
\begin{array}{lll}
E & = & \text { Expected/ Current EPS } \\
P_{0} & = & \text { Current Market Price of Equity Share }
\end{array}
\]

Assumption: Constant EPS
(c) Growth Approach or Gordon's Model:
\[
K_{e} \quad=\quad \frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g} \quad \text { or } \quad \frac{\mathrm{D}_{0}(1+\mathrm{g})}{\mathrm{P}_{0}}+\mathrm{g}
\]

Where,
\begin{tabular}{lll}
\(D_{1}\) & \(=\) & \(D_{0}(1+g) \quad=\quad\) Expected DPS \\
\(P_{0}\) & \(=\) & Current Market Price of Equity Share \\
\(g\) & \(=\) & Constant Growth Rate of Dividend
\end{tabular}

Note:
\(>\quad\) In case of fresh issue of Equity shares (New Shares), Net Proceeds from equity share \{(Issue price - Issue expenses/ Floatation cost) or (\(\left.\left.P_{o}-F\right)\right\}\) is used in place of current price of share.
\(>\quad\) If nothing is specified, floatation cost assumed to be linked with "face value or issue price whichever is higher".
\(>\quad\) Price of equity share must be Ex-Dividend price.
- Estimation of Growth Rate:
(a) Average Method:
\[
\text { Growth rate }=\sqrt[n]{\frac{D_{0}}{D_{n}}}-1
\]

Where,
\[
\begin{array}{lll}
D_{0} & = & \text { Current Dividend } \\
D_{n} & = & \text { Dividend in } n \text { years ago }
\end{array}
\]
(b) Gordon's Growth Model:
\[
g=b \times r
\]

Where,
\begin{tabular}{lll}
\(r\) & \(=\) & Rate of return on fund invested \\
\(b\) & \(=\) & Earning retention ratio
\end{tabular}
(d) Realised Yield Approach:

IRR Method:
\[
K_{e} \quad=\quad \operatorname{IRR} \quad=\quad \mathrm{L}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})
\]

Geometric Mean Method:
\[
K_{e} \quad=\quad \sqrt[n]{(1+\mathbf{Y} 1) \times(1+Y 2) \ldots . .(1+\mathbf{Y n})}-1
\]

Where,
\[
\begin{array}{lll}
n & = & \text { Number of years } \\
(1+Y 1) & = & \frac{\mathrm{D} 1+\mathrm{P} 1}{\mathrm{P} 0}
\end{array}
\]

Note: Geometric mean method can be used when MPS is given for each year.
(e) Capital Asset Pricing Model (CAPM):

Where,
\(K_{e} \quad=\quad R_{f}+\beta\left(R_{m}-R_{f}\right)\)
\(R_{f} \quad=\quad\) Risk Free Rate of Return \(R_{m} \quad=\quad\) Rate of Return on Market Portfolio \(R_{m}-R_{f} \quad=\quad\) Market Risk Premium \(\beta \quad=\quad\) Beta coefficient
6. Cost of Retained Earnings (\(K_{r}\)): After tax return to shareholder if he invest elsewhere.

Formulae:
\begin{tabular}{llll}
\(K_{r}\) & \(=\) & \(K_{e}\) & (of existing investors) \\
\(K_{r}\) & \(=\) & \(K_{e}\left(1-t_{p}\right)\) & (In case of personal tax) \\
\(K_{r}\) & \(=\) & \(K_{e}\left(1-t_{p}\right)(1-f)\) & (f is rate of floatation cost)
\end{tabular}
7. Weighted Average Cost of Capital (Ko): WACC is also known as the overall cost of capital of having capitalsfrom the different sources as explained above. WACC of a company depends on the capital structure of a company. Weighted average cost of capital is the weighted average after tax costs of the individual components of firm's capital structure. That is, the after tax cost of each debt and equity is calculated separately and added together to a single overall cost of capital. It can be calculated by using either Book Value weights or Market Value weights.

Proforma Statement of WACC
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
Capital Structure \\
\((a)\)
\end{tabular} & \begin{tabular}{c}
Amount \\
\((b)\)
\end{tabular} & \begin{tabular}{c}
Weight \\
\((c)\)
\end{tabular} & \begin{tabular}{c}
Specific Cost \\
\((d)\)
\end{tabular} & \begin{tabular}{c}
Cost of Capital \\
\((e)=c \times d\)
\end{tabular} \\
\hline Equity Share Capital & \(X X X\) & \(0 . X X X\) & \(0 . X X\) & \(0 . X X X\) \\
Retained Earnings & \(X X X\) & \(0 . X X X\) & \(0 . X X\) & \(0 . X X X\) \\
Preference Share Capital & \(X X X\) & \(0 . X X X\) & \(0 . X X\) & \(0 . X X X\) \\
Debentures & \(X X X\) & \(0 . X X X\) & \(0 . X X\) & \(0 . X X X\) \\
\hline Total & \(X X X\) & 1.000 & WACC & \(0 . X X X\) \\
\hline
\end{tabular}

Note: Market Value of equity has been apportioned in the ratio of Book Value of equity and retained earnings when Market Value weights are used.
8. Marginal Cost of Capital (MCC): The marginal cost of capital may be defined as the cost of raising an additional rupee of capital. Marginal cost of capital is derived, when the average cost of capital is calculated using the marginal weights.

\section*{BBQ 58}

A company issued \(10,000,15 \%\) Convertible debentures of \(₹ 100\) each with a maturity period of 5 years. At maturity the debenture holders will have the option to convert the debentures into equity shares of the company in the ratio of 1:10 (10 shares for each debenture). The current market price of the equity shares is ₹ 12 each and historically the growth rate of the shares are \(5 \%\) per annum.

Compute the cost of debentures assuming 35\% tax rate.

\section*{Answer}

\section*{Determination of Redemption value:}

\section*{Higher of}
(i) The cash value of debentures =
₹100
(ii) Value of equity shares =
\(=\quad 10\) shares \(\times ₹ 12(1+0.05)^{5}\)
\(=10\) shares \(\times ₹ 12 \times 1.276=\) ₹153.12
₹ 153.12 will be taken as redemption value as it is higher than the cash option and attractive to the investors.

\section*{Calculation of Cost of Convertible debenture:}

\section*{Alternative 1: Using approximation method:}
\[
K_{d}=\quad \frac{\mathrm{I}(1-\mathrm{t})+\frac{\mathrm{RV}-\mathrm{NP}}{\mathrm{n}}}{\frac{\mathrm{RV}+\mathrm{NP}}{2}} \times 100=\frac{15(1-0.35)+\frac{153.12-100}{5}}{\frac{153.12+100}{2}} \times 100=16.09 \%
\]

\section*{Alternative 2: Using present value method:}

Calculation of NPV at two discount rates:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \multirow{2}{*}{ Cash Flow } & \multicolumn{2}{|c|}{ Present Value } & \multicolumn{2}{c|}{ Present Value } \\
\cline { 3 - 5 } & & \(\mathbf{1 5 \%}\) & \(\boldsymbol{D C F}\) & \(\mathbf{2 0 \%}\) & \(\boldsymbol{D C F}\) \\
\hline 0 & 100 & 1.000 & \((100)\) & 1.000 & \((100)\) \\
\(1-5\) & 9.75 & 3.352 & 32.68 & 2.991 & 29.16 \\
5 & 153.12 & 0.497 & 76.10 & 0.402 & 61.55 \\
\cline { 3 - 4 } \(\boldsymbol{N P V}\) & & & \(\mathbf{+ 8 . 7 8}\) & & \(\mathbf{- 9 . 2 9}\) \\
\hline
\end{tabular}
\(\mathrm{IRR} / \mathrm{K}_{\mathrm{d}}=\quad \mathrm{LR}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})=15 \%+\frac{8.78}{8.78-(-9.29)} \times(20 \%-15 \%)=\mathbf{1 7 . 4 3 \%}\)

\section*{BBQ 59}

RBML is proposing to sell a 5 -year bond of ₹ 5,000 at 8 per cent rate of interest per annum. The bond amount will be amortised equally over its life.

What is the bond's present value for an investor if he expects a minimum rate of return of 6 per cent?

\section*{Answer}

The amount of interest will go on declining as the outstanding amount of bond will be reducing due to amortisation. The amount of interest for five years will be:
\begin{tabular}{lllll}
First year & \(:\) & \(₹ 5,000 \times 0.08\) & \(=\) & \(₹ 400\) \\
Second year & \(:\) & \((₹ 5,000-₹ 1,000) \times 0.08\) & \(=\) & \(₹ 320\)
\end{tabular}
\begin{tabular}{lllll}
Third year & \(:\) & \((₹ 4,000-₹ 1,000) \times 0.08\) & \(=\) & \(₹ 240\) \\
Fourth year & \(:\) & \((₹ 3,000-₹ 1,000) \times 0.08\) & \(=\) & \(₹ 160 ;\) and \\
Fifth year & \(:\) & \((₹ 2,000-₹ 1,000) \times 0.08\) & \(=\) & \(₹ 80\).
\end{tabular}

The outstanding amount of bond will be zero at the end of fifth year. Since RBML will have to return ₹ 1,000 every year, the outflows every year will consist of interest payment and repayment of principal:
\begin{tabular}{lllll}
First year & \(:\) & \(₹ 1,000+₹ 400\) & \(=\) & \(₹ 1,400\) \\
Second year & \(:\) & \(₹ 1,000+₹ 320\) & \(=\) & \(₹ 1,320\) \\
Third year & \(:\) & \(₹ 1,000+₹ 240\) & \(=\) & \(₹ 1,240\) \\
Fourth year & \(:\) & \(₹ 1,000+₹ 160\) & \(=\) & \(₹ 1,160 ;\) and \\
Fifth year & \(:\) & \(₹ 1,000+₹ 80\) & \(=\) & \(₹ 1,080\).
\end{tabular}

The above cash flows of all five years will be discounted with the cost of capital. Here the expected rate i.e. \(6 \%\) will be used. Value of the bond is calculated as follows:
\[
\begin{align*}
V_{B} & =\frac{1,400}{(1.06)^{1}}+\frac{1,320}{(1.06)^{2}}+\frac{1,240}{(1.06)^{3}}+\frac{1,160}{(1.06)^{4}}+\frac{1,080}{(1.06)^{5}} \\
& =₹ 1,320.75+₹ 1,174.80+₹ 1,041.14+₹ 918.88+₹ 807.05
\end{align*}
\]

\section*{BBQ 60}

Mr. Mehra had purchased a share of Alpha Limited for ₹ 1,000 . He received dividend for a period of five years at the rate of 10 percent. At the end of the fifth year, he sold the share of Alpha Limited for ₹ 1,128 .

You are required to compute the cost of equity as per realised yield approach.

\section*{Answer}

Calculation of NPV at two discount rates:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \multirow{2}{*}{ Cash Flow } & \multicolumn{2}{|c|}{ Present Value } & \multicolumn{2}{c|}{ Present Value } \\
\cline { 3 - 5 } & & \(\mathbf{1 1 \%}\) & DCF & \(\mathbf{1 3 \%}\) & \(\boldsymbol{D C F}\) \\
\hline 0 & 1,000 & 1.000 & \(1,000)\) & 1.000 & \((1,000)\) \\
\(1-5\) & 100 & 3.696 & 369.60 & 3.517 & 351.70 \\
5 & 1,128 & 0.593 & 668.90 & 0.543 & 612.50 \\
& & & +38.50 & & -35.80 \\
\hline
\end{tabular}

\section*{Calculation of IRR/Ke:}
\(\mathrm{K}_{\mathrm{e}}=\mathrm{LR}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})=11 \%+\frac{38.50}{38.50-(-35.80)} \times(13 \%-11 \%)=\mathbf{1 2 . 0 4} \%\)

\section*{BBQ 61}

Calculate the cost of equity from the following data using realized yield approach:
\begin{tabular}{cccccc}
Year & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
Dividend per share & 1.00 & 1.00 & 1.20 & 1.25 & 1.15 \\
Price per share (at the beginning) & 9.00 & 9.75 & 11.50 & 11.00 & 10.60
\end{tabular}

\section*{Answer}

In this questions we will first calculate yield for last 4 years and then calculate it geometric mean as follows:
\begin{tabular}{lllll}
\(1+\mathrm{Y}_{1}\) & \(=\frac{\mathrm{D}_{1}+\mathrm{P}_{1}}{\mathrm{P}_{0}}\) & \(=\frac{1+9.75}{9}\) & \(=\) & 1.1944 \\
\(1+\mathrm{Y}_{2}\) & \(=\) & \(\frac{\mathrm{D}_{2}+\mathrm{P}_{2}}{\mathrm{P}_{1}}\) & \(=\) & \(\frac{1+11.50}{9.75}\) \\
\(1+\mathrm{Y}_{3}\) & \(=\frac{\mathrm{D}_{3}+\mathrm{P}_{3}}{\mathrm{P}_{2}}\) & \(=\) & 1.2821 \\
\(1+\mathrm{Y}_{4}\) & \(=\) & \(\frac{1.2+11}{11.50}\) & \(=\) & 1.0609 \\
\(\mathrm{P}_{3}\) & & \(\frac{1.25+10.60}{11}\) & \(=\) & 1.0772
\end{tabular}

\section*{Geometric mean:}
\(\mathrm{K}_{\mathrm{e}} \quad=\quad\left[\left(1+\mathrm{Y}_{1}\right) \times\left(1+\mathrm{Y}_{2}\right) \times \ldots \ldots\left(1+\mathrm{Y}_{\mathrm{n}}\right)\right]^{1 / \mathrm{n}}-1\)
\(\mathrm{K}_{\mathrm{e}} \quad=\)
\([1.1944 \times 1.2821 \times 1.0609 \times 1.0772]^{1 / 4}-1=\)
0.15 or 15\%

BBQ 62
The Capital structure of Vikas Ltd. is as follows:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Sources of Fund } & Book Value & Market Value \\
\hline Equity Share Capital & \(₹ 10,00,000\) & \(₹ 20,00,000\) \\
Retained Earnings & \(₹ 5,00,000\) & Nil \\
14\% Preference Share Capital & \(₹ 7,00,000\) & \(₹ 7,00,000\) \\
12\% Debentures & \(₹ 6,00,000\) & \(₹ 6,00,000\) \\
\hline
\end{tabular}

After tax, cost of capital of these different sources is Equity share capital 18\%, Retained earnings \(15 \%\), Preference share capital \(14 \%\), and Debentures \(8 \%\). Calculate the weighted average cost of capital of the company on the basis of (a) Book Value Weights and (b) Market Value Weights.

\section*{Answer}
(a) Statement of WACC (Book Value Weights)
\begin{tabular}{|l|c|c|c|c|}
\hline Capital Structure & Amount & Weight & Specific Cost & Cost of Capital \\
\hline Equity Share Capital & \(10,00,000\) & 0.357 & 0.18 & 0.0643 \\
Retained Earnings & \(5,00,000\) & 0.179 & 0.15 & 0.0268 \\
14\% Preference Share Capital & \(7,00,000\) & 0.250 & 0.14 & 0.0350 \\
12\% Debentures & \(6,00,000\) & 0.214 & 0.08 & 0.0171 \\
\hline Total & \(\mathbf{2 8 , 0 0 , 0 0 0}\) & \(\mathbf{1 . 0 0 0}\) & WACC & \(\mathbf{0 . 1 4 3 2}\) \\
\hline
\end{tabular}
(b) Statement of WACC (Market Value Weights)
\begin{tabular}{|l|c|c|c|c|}
\hline Capital Structure & Amount & Weight & Specific Cost & Cost of Capital \\
\hline Equity Share Capital & \(* 13,33,333\) & 0.404 & 0.18 & 0.0727 \\
Retained Earnings & \(* 6,66,667\) & 0.202 & 0.15 & 0.0303 \\
14\% Preference Share Capital & \(7,00,000\) & 0.212 & 0.14 & 0.0297 \\
12\% Debentures & \(6,00,000\) & 0.182 & 0.08 & 0.0146 \\
\hline Total & \(\mathbf{3 3 , 0 0 , 0 0 0}\) & \(\mathbf{1 . 0 0 0}\) & WACC & \(\boldsymbol{0} .1473\) \\
\hline
\end{tabular}
*Market Value of equity has been apportioned in the ratio of Book Value of equity and retained earnings.

\section*{BBQ 63}

A company wants to raise additional finance of ₹ 5 crore in next year. The company expected to retain \(₹ 1\) crore in next year. Further details are as follows:
(i) The amount will be raised by equity and debt in the ratio of \(3: 1\).
(ii) The additional issue of equity shares will result in price per share being fixed at ₹ 25 .
(iii) The debt capital raised by way of term loan will cost \(10 \%\) for the first ₹ 75 lakh and \(12 \%\) for the next ₹50 lakh.
(iv) The net expected dividend on equity shares is ₹ 2.00 per share. The dividend is expected to grow at the rate of \(5 \%\).
(v) Income tax rate of \(25 \%\).

\section*{You are required:}
(a) To determine the amount of equity and debt for raising additional finance.
(b) To determine the post tax average cost of additional debt.
(c) To determine the cost of retained earning and cost of equity.
(d) To compute the overall weighted average cost of additional finance after tax.

\section*{Answer}
(a) Total capital required is ₹ 5 crore. With a debt-equity ratio of \(1: 3\). It means ₹ 1.25 crore is to be raised through debt and ₹ 3.75 crores through equity. Out of ₹ 3.75 crore, ₹ 1 crore are available in the form of retained earnings hence ₹ 2.75 crore will have to raise by issuing equity shares.
(b) Post tax average cost of additional debt:
\begin{tabular}{lllll}
\(\mathrm{K}_{\mathrm{d} 1}\) & \(=\mathrm{I}(1-\mathrm{t})\) & \(=10 \%(1-0.25)\) & \(=\) & \(7.5 \%\) \\
\(\mathrm{~K}_{\mathrm{d} 2}\) & \(=\mathrm{I}(1-\mathrm{t})\) & \(=12 \%(1-0.25)\) & \(=\) & \(\mathbf{9 \%}\) \\
Average \(\mathrm{K}_{\mathrm{d}}\) & \(=\mathrm{K}_{\mathrm{d} 1} \mathrm{~W}_{\mathrm{d} 1}+\mathrm{K}_{\mathrm{d} 2} \mathrm{~W}_{\mathrm{d} 2}\) & \(=\) & \(7.5 \% \times \frac{75}{125}+9 \% \times \frac{50}{125}\) & \(=\) \\
\end{tabular}
(c) Cost of retained earning \& cost of equity:
\[
\begin{aligned}
\mathrm{K}_{\mathrm{e}} & =\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g} & =\frac{2}{25}+0.05 \\
\mathrm{~K}_{\mathrm{r}} & =\mathrm{K}_{\mathrm{e}} & =13 \%
\end{aligned}
\]

\section*{(d) Overall cost of additional finance:}
\(\mathrm{K}_{0} \quad=\quad \mathrm{K}_{\mathrm{e}} \mathrm{W}_{\mathrm{e}}+\mathrm{K}_{\mathrm{r}} \mathrm{W}_{\mathrm{r}}+\mathrm{K}_{\mathrm{d}} \mathrm{W}_{\mathrm{d}}\)
\[
=13 \% \times \frac{275}{500}+13 \% \times \frac{100}{500}+8.10 \% \times \frac{125}{500} \quad=\quad 11.78 \%
\]

\section*{BBQ 64}

As a financial analyst of a large electronics company, you are required to determine the weighted average cost of capital of the company using (a) book value weights and (b) market value weights. The following information if available for your perusal.

The company's present book value capital structure is:
Debentures (\(₹ 100\) per debenture)
\begin{tabular}{ll}
Preference shares (₹100 per share) & \(₹ 2,00,000\) \\
Equity shares (₹10 per share) & \(₹ 10,00,000\)
\end{tabular}

All these securities are traded in capital markets. Recent price are:

Debentures
Preference shares
Equity shares
₹110 per debenture
₹ 120 per share
₹22 each

\section*{Anticipated external financing opportunities are:}
(i) ₹100 per debenture redeemable at par, \(11 \%\) coupon rate, \(4 \%\) floatation cost, 10 years of maturity, sale price, ₹100.
(ii) ₹100 per preference share redeemable at par, \(12 \%\) dividend rate, \(5 \%\) floatation cost, 10 years of maturity, sale price, ₹ 100 .
(iii) Equity share has ₹2 floatation cost and sale price per share of ₹ 22 .

In addition, the dividend expected on the equity share at the end of the year is ₹2 per share with annual growth of \(7 \%\). The firm has a practice of paying all earnings in the form of dividends. Corporate Incometax rate is \(35 \%\).

\section*{Answer}
(a) Calculation of Weighted Average Cost of Capital by Using Book Value Weight
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particular } & Book Value & Weight & Cost (K) & Weighted cost \\
\hline 11\% Debenture & \(8,00,000\) & 0.40 & \(7.70 \%\) & \(3.080 \%\) \\
12\% Preference share & \(2,00,000\) & 0.10 & \(12.82 \%\) & \(1.282 \%\) \\
Equity Share Capital & \(10,00,000\) & 0.50 & \(17.00 \%\) & \(8.500 \%\) \\
\hline \multicolumn{1}{|c|}{ Total } & \(\mathbf{2 0 , 0 0 , 0 0 0}\) & \(\mathbf{1 . 0 0}\) & WACC & \(\mathbf{1 2 . 8 6 2} \%\) \\
\hline
\end{tabular}
(b) Calculation of Weighted Average Cost of Capital by Using Market Value Weight
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particular } & Market value & Weight & Cost (K) & Weighted cost \\
\hline 11\% Debenture & \(8,80,000\) & 0.265 & \(7.70 \%\) & \(2.041 \%\) \\
12\% Preference share & \(2,40,000\) & 0.072 & \(12.82 \%\) & \(0.923 \%\) \\
Equity Share Capital & \(22,00,000\) & 0.663 & \(17.00 \%\) & \(11.271 \%\) \\
\hline \multicolumn{1}{|c|}{ Total } & \(\mathbf{3 3 , 2 0 , 0 0 0}\) & \(\mathbf{1 . 0 0 0}\) & WACC & \(\mathbf{1 4 . 2 3 5 \%}\) \\
\hline
\end{tabular}

\section*{Working notes:}
\[
\begin{array}{lll}
\mathrm{K}_{\mathrm{e}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}-\mathrm{F}} \mathrm{~g} & =\frac{2}{22-2}+0.07 & =17 \% \\
\mathrm{~K}_{\mathrm{d}} & =\frac{\mathrm{I}(1-\mathrm{t})+\left(\frac{\mathrm{RV}-\mathrm{NP}}{\mathrm{n}}\right)}{\frac{R V+N P}{2}} \times 100 & =\frac{11(1-0.35)+\left(\frac{100-96}{10}\right)}{\frac{100+96}{2}} \times 100 \\
K_{p}= & =7.70 \% \\
& =\frac{\mathrm{PD}+\left(\frac{\mathrm{RV}-\mathrm{NP}}{\mathrm{n}}\right)}{\frac{R V+N P}{2}} \times 100 & =\frac{12+\left(\frac{100-95}{10}\right)}{\frac{100+95}{2}} \times 100
\end{array}
\]

Calculate the WACC using the following data by using:
(a) Book value weights
(b) Market value weights

The capital structure of the company is as under:
\begin{tabular}{ll}
Debentures (₹100 per debenture) & \(₹ 5,00,000\) \\
Preference shares (₹100 per share) & \(₹ 5,00,000\) \\
Equity shares (₹10 per share) & \(₹ 10,00,000\)
\end{tabular}

The market prices of these securities are:

Debentures
Preference shares
Equity shares
₹105 per debenture
₹110 per share ₹24 each

\section*{Additional information:}
(i) ₹100 per debenture redeemable at par, \(10 \%\) coupon rate, \(4 \%\) floatation cost, 10 years of maturity. The market price per debenture is ₹ 105 .
(ii) ₹100 per preference share redeemable at par, \(5 \%\) coupon rate, \(2 \%\) floatation cost, 10 years of maturity.
(iii) Equity share has ₹4 floatation cost and market price per share of ₹24.

The next year expected dividend is ₹1 per share with annual growth of \(5 \%\). The firm has a practice of paying all earnings in the form of dividends. Corporate tax rate is \(30 \%\). Use YTM method to calculate cost of debentures and preference shares.

\section*{Answer}
(a) Calculation of Weighted Average Cost of Capital by Using Book Value Weight
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particular } & Book Value & Weight & Cost (K) & Weighted cost \\
\hline 10\% Debenture & \(5,00,000\) & 0.25 & \(6.89 \%\) & \(1.72 \%\) \\
5\% Preference share & \(5,00,000\) & 0.25 & \(4.09 \%\) & \(1.02 \%\) \\
Equity Share Capital & \(10,00,000\) & 0.50 & \(10.00 \%\) & \(5.00 \%\) \\
\hline \multicolumn{1}{|c|}{ Total } & \(\mathbf{2 0 , 0 0 , 0 0 0}\) & \(\mathbf{1 . 0 0}\) & WACC & \(\mathbf{7 . 7 4 \%}\) \\
\hline
\end{tabular}
(b) Calculation of Weighted Average Cost of Capital by Using Market Value Weight
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particular } & Market value & Weight & Cost & Weighted cost \\
\hline 10\% Debenture & \(5,25,000\) & 0.151 & \(6.89 \%\) & \(1.04 \%\) \\
5\% Preference share & \(5,50,000\) & 0.158 & \(4.09 \%\) & \(0.65 \%\) \\
Equity Share Capital & \(24,00,000\) & 0.691 & \(10.00 \%\) & \(6.90 \%\) \\
\hline \multicolumn{1}{|c|}{ Total } & \(\mathbf{3 4 , 7 5 , 0 0 0}\) & \(\mathbf{1 . 0 0 0}\) & WACC & \(\mathbf{8 . 5 9 \%}\) \\
\hline
\end{tabular}

\section*{Working notes:}
(a) \(K_{e} \quad=\quad \frac{\mathrm{D}_{1}}{\mathrm{P}_{0}-\mathrm{F}}+\mathrm{g}\)
\(=\frac{1}{24-4}+0.05 \quad=\quad 10 \%\)
(b) Cost of Debt \(\left(K_{d}\right)\) :

\section*{Calculation of \(\operatorname{IRR} / K_{d}\)}

Calculation of NPV at discount rate of 5\% and 7\%
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \multirow{2}{*}{ Cash Flow } & \multicolumn{2}{|c|}{ Present Value } & \multicolumn{2}{c|}{ Present Value } \\
\cline { 3 - 6 } & & \(\mathbf{5 \%}\) & \(\boldsymbol{D C F}\) & \(\mathbf{7 \%}\) & \(\boldsymbol{D C F}\) \\
\hline 0 & \(105-4 \%\) of 105 & 1.000 & \((100.80)\) & 1.000 & \((100.80)\) \\
\(1-10\) & \(10(1-0.30)\) & 7.722 & 54.05 & 7.024 & 49.17 \\
10 & 100 & 0.614 & 61.40 & 0.508 & 50.80 \\
\cline { 4 - 4 } NPV & & & +14.65 & & -0.83 \\
\hline
\end{tabular}
(c) Cost of Preference shares \(\left(K_{p}\right)\) :

\section*{Calculation of IRR/Kd}
\[
\begin{aligned}
\mathrm{IRR} / \mathrm{K}_{\mathrm{d}} & =\mathrm{LR}+\frac{\mathrm{NPV}_{\mathrm{L}}}{\mathrm{NPV}_{\mathrm{L}}-\mathrm{NPV}_{\mathrm{H}}} \times(\mathrm{H}-\mathrm{L})=3 \%+\frac{9.25}{9.25-(-7.79)} \times(5 \%-3 \%) \\
& =4.09 \%
\end{aligned}
\]

Calculation of NPV at discount rate of 3\% and 5\%
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \multirow{2}{*}{ Cash Flow } & \multicolumn{2}{|c|}{ Present Value } & \multicolumn{2}{c|}{ Present Value } \\
\cline { 3 - 6 } & & \(\mathbf{3 \%}\) & \(\boldsymbol{D C F}\) & \(\mathbf{5 \%}\) & \(\boldsymbol{D C F}\) \\
\hline 0 & \(110-2 \%\) of 110 & 1.000 & \((107.80)\) & 1.000 & \((107.80)\) \\
\(1-10\) & 5 & 8.530 & 42.65 & 7.722 & 38.61 \\
10 & 100 & 0.744 & 74.40 & 0.614 & 61.40 \\
& & & +9.25 & & -7.79 \\
\hline
\end{tabular}

\section*{BBQ 66}

Determine the cost of capital of Best Luck Limited using the book value (BV) and market value (MV) weights from the following information:
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ Sources of Fund } & \multicolumn{1}{c|}{ Book Value } & \multicolumn{1}{c|}{ Market Value } \\
\hline Equity Shares & \(₹ 1,20,00,000\) & \(₹ 2,00,00,000\) \\
Retained Earnings & \(₹ 30,00,000\) & Nil \\
Preference Shares & \(₹ 36,00,000\) & \(₹ 33,75,000\) \\
Debentures & \(₹ 9,00,000\) & \(₹ 10,40,000\) \\
\hline
\end{tabular}

\section*{Additional Information:}
1. Equity: Equity shares are quoted at \(₹ 130\) per share and a new issue priced at \(₹ 125\) per share will be fully subscribed; flotation costs will be ₹5 per share.
2. Dividend: During the previous 5 years, dividends have steadily increased from ₹ 10.60 to ₹ 14.19 per share. Dividend at the end of the current year is expected to be ₹15 per share.
3. Preference Shares: \(15 \%\) Preference shares with face value of \(₹ 100\) would realise ₹ 105 per share.
4. Debentures: The company proposes to issue 11 year \(15 \%\) debentures but the yield on debentures of similar maturity and risk class is \(16 \%\); flotation cost is \(2 \%\).
5. Tax: Corporate tax rate is \(35 \%\). Ignore dividend tax.

Floatation cost would be calculated on face value.

\section*{Answer}
(a) Calculation of Weighted Average Cost of Capital by Using Book Value Weight
\begin{tabular}{|c|c|c|c|c|}
\hline Particulars & Book Value & Weight (W) & Cost (K) & Weighted cost \\
\hline Equity Shares & \(₹ 1,20,00,000\) & 0.615 & 0.1850 & 0.1138 \\
Retained Earnings & \(₹ 30,00,000\) & 0.154 & 0.1800 & 0.0277 \\
Preference Shares & \(₹ 36,00,000\) & 0.185 & 0.1429 & 0.0264 \\
Debentures & \(₹ 9,00,000\) & 0.046 & 0.1095 & 0.0050 \\
\hline Total & ₹1,95,00,000 & \(\mathbf{1 . 0 0 0}\) & WACC & \(\mathbf{0 . 1 7 2 9}\) \\
\hline
\end{tabular}

\section*{(b) Calculation of Weighted Average Cost of Capital by Using Market Value Weight}
\begin{tabular}{|c|c|c|c|c|}
\hline Particulars & Market Value & Weight (W) & Cost (K) & Weighted cost \\
\hline *Equity Shares & \(₹ 1,60,00,000\) & 0.655 & 0.1850 & 0.1212 \\
*Retained Earnings & \(₹ 40,00,000\) & 0.164 & 0.1800 & 0.0295 \\
Preference Shares & \(₹ 33,75,000\) & 0.138 & 0.1429 & 0.0197 \\
Debentures & \(₹ 10,40,000\) & 0.043 & 0.1095 & 0.0047 \\
\hline Total & \(₹ 2,44,15,000\) & \(\mathbf{1 . 0 0 0}\) & WACC & \(\mathbf{0 . 1 7 5 1}\) \\
\hline
\end{tabular}

\section*{Working notes:}
\[
\begin{array}{rll}
\mathrm{K}_{\mathrm{e}} & =\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}-\mathrm{F}}+\mathrm{g} & =\frac{15}{125-5}+6 \% \\
\mathrm{~g} & =\sqrt[5]{\frac{14.19}{10.60}} & =6 \%
\end{array}
\]
\[
\mathrm{K}_{\mathrm{r}} \quad=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g} \quad=\frac{15}{125}+6 \% \quad=18 \%
\]
\[
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{PD}}{\mathrm{NP}} \times 100 \quad=\frac{15}{105} \times 100 \quad=14.29 \%
\]
\[
\text { MV of Debenture }=\frac{\text { Interest }}{\text { Market rate of Interest }} \quad=\quad \frac{15 \% \text { of } 100}{16 \%} \times 100 \quad=\quad \mathrm{F} 93.75
\]

NP of Debenture \(=\quad\) MV of Debenture - Floatation Cost
\[
=₹ 93.75-₹ 2(2 \% \text { of ₹ } 100)=₹ 91.75
\]
*Since yield on similar type of debentures is 16 per cent, the company would be required to offer debentures at discount.
\begin{tabular}{lll}
Market value of Equity Shares & \(=\) & \(₹ 2,00,00,000 \times 120 / 150=\) \\
Market value of Retained Earnings & \(=\quad ₹ 2,00,00,000 \times 30 / 150\) & \(=\quad ₹ 40,00,00,000\)
\end{tabular}

BBQ 67
ABC Ltd. has the following capital structure, which is considered to be optimum at on \(31^{\text {st }}\) March, 2022:
\begin{tabular}{ll}
\(14 \%\) debenture & \(₹ 30,000\) \\
\(11 \%\) preference share capital & \(₹ 10,000\) \\
Equity share capital \((10,000\) shares \()\) & \(₹ 1,60,000\)
\end{tabular}

The company's share has a current market price of ₹ 23.60 per share. The expected dividend per share in next year is 50 percent of the 2021 EPS. The EPS of last 10 years is as follows. The past trends are expected to continue:
\(\begin{array}{lllllllllll}\text { Year } & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 \\ \text { EPS (₹) } & 1.00 & 1.10 & 1.21 & 1.33 & 1.46 & 1.61 & 1.77 & 1.95 & 2.15 & 2.36\end{array}\)
The company issued new debentures carrying \(16 \%\) rate of interest and the current market price of debenture is ₹96. Preference shares ₹ 9.20 (with dividend of ₹ 1.1 per share) were also issued. The company is in \(50 \%\) tax bracket.
(i) Calculate the after tax (a) Cost of New Debts, (b) Cost of New Preference Share, and (c) Cost of New Equity Share (assuming new equity from retained earnings).
(ii) Calculate the marginal cost of capital when no new share was issued.
(iii) Determine the amount that can be spent for capital investment before new ordinary shares must be sold. Assuming that retained earnings for next year's investment are \(50 \%\) of 2021.
(iv) Compute marginal cost of capital when the fund exceeds the amount calculated in (iii), assuming new equity is issued at ₹ 20 per share?

\section*{Answer}

\section*{(i) (a) After tax cost of new debt}
\[
\mathrm{K}_{\mathrm{d}}=\frac{\mathrm{I}(1-\mathrm{t})}{\mathrm{NP}} \times 100=\frac{16(1-.50)}{96} \times 100=8.33 \%
\]
(b) After tax cost of new preference shares
\[
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{PD}}{\mathrm{NP}} \times 100=\frac{1.10}{9.20} \times 100=11.96 \%
\]
(c) Cost of new equity or cost of retained earnings
\[
\mathrm{K}_{\mathrm{r}} \quad=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0} \text { (old) }}+\mathrm{g} \quad=\frac{2.36 \times 50 \%}{23.60}+0.10=15 \%
\]
(ii) MCC (Kon when no new equity share was issued:
\(\mathrm{K}_{\mathrm{d}} \mathrm{W}_{\mathrm{d}}+\mathrm{K}_{\mathrm{p}} \mathrm{W}_{\mathrm{p}}+\mathrm{K}_{\mathrm{r}} \mathrm{W}_{\mathrm{r}}=8.33 \% \times .15+11.96 \% \times .05+15 \% \times .80=13.85 \%\)
(iii) The company can pay the following amount before issue of new shares:
\begin{tabular}{lll}
Equity (retained earnings in this case) & \(=80 \%\) of the total capital \\
Therefore, investment before new issue & \(=\frac{11,800}{80 \%}=\mathbf{F} 14,750\)
\end{tabular}
Retained earnings \(=₹ 2.36 \times 50 \% \times 10,000=₹ 11,800\)
(iv) MCC (Ko) when funds exceeds \(\mathfrak{₹} 14,750\)
\(\mathrm{K}_{\mathrm{d}} \mathrm{W}_{\mathrm{d}}+\mathrm{K}_{\mathrm{p}} \mathrm{W}_{\mathrm{p}}+\mathrm{K}_{\mathrm{e}} \mathrm{W}_{\mathrm{e}}=\quad 8.33 \% \times .15+11.96 \% \times .05+15.90 \% \times .80=\mathbf{1 4 . 5 7} \%\)
If the company pay more than \(₹ 14,750\), it will have to issue new shares. The cost of new issue of ordinary share is:
\[
\mathrm{K}_{\mathrm{e}} \quad=\quad \frac{\mathrm{D}_{1}}{\mathrm{P}_{0}(\text { new })}+\mathrm{g} \quad=\frac{1.18}{20}+0.10 \quad=15.90 \%
\]

WN: Calculation of growth:
Growth from year 2012 to \(2013=(1.10-1.00) \div 1.00=10 \%\)

\section*{CHAPTER 9}
1. Capital Structure Theories:

2. Net Income Approach (NI): According to this approach, capital structure decisions are relevant to the value of the firm. An increase in financial leverage (Debt Proportion) will lead to decline in the weighted average cost of capital (WACC), while the value of the firm as well as market price of ordinary share will increase.

As per NI Approach:
\(>\quad K_{d}\) and \(K_{e}\) will remain constant.
\(>K_{o}\) will decrease with the help of use of Debt.
\(>\quad\) MV of Equity and Firm will increase with the help of use of Debt.

\section*{Formulae:}
Value of Share \((S) \quad=\quad \frac{(\mathrm{EBIT}-\mathrm{I})(1-\mathrm{t})}{\mathrm{K}_{\mathrm{e}}} \quad\) Or \(=V-D\)

Value of Debt (D) = Face Value of Debt

Value of Firm (V)
\[
=\quad S+D
\]
\[
\text { Or }=\frac{\operatorname{EBIT}(1-t)}{K_{0}}
\]
\begin{tabular}{llll}
Cost of Capital \(\left(K_{o}\right)\) & \(=\) & \(\frac{\operatorname{EBIT}(1-\mathrm{t})}{\mathrm{V}} \times 100 \quad\) Or \(=K_{e} W_{e}+K_{d} W_{d}\) \\
Cost of Equity \(\left(K_{e}\right)\) & \(=\) & \(\frac{(\text { EBIT }-\mathrm{I})(1-\mathrm{t})}{\mathrm{S}} \times 100\)
\end{tabular}

Note: \(\quad K_{e}\) and \(K_{o}\) of unlevered firm are same.
3. Traditional Approach: This approach favours that as a result of financial leverage up to some point, cost of capital comes down and value of firm increases. However, beyond that point, reverse trends emerge.

As per Traditional Approach:
\(>K_{d}, K_{e}, K_{o}\) and MV of Equity and MV of Firm are variable
> Company has to select capital structure with lowest \(K_{o}\) or highest MV of Firm

4. Net Operating Income Approach (NOI): According to this approach, capital structure decisions of the firm are irrelevant. Any change in the leverage will not lead to any change in the total value of the firm and the market price of shares, as the overall cost of capital is independent of the degree of leverage.

As per NOI Approach:
\(>K_{d}, K_{o}\) and MV of Firm will remain constant in case of without tax structure.
\(>K_{d}\) will remain constant in case of with tax structure, with the increase in Debt, MV of firm will increase and \(K_{o}\) will decrease.

Value of Firms as per NOI Approach:
Step 1: Calculate Value of Unlevered Firm: Value of Unlevered Firm \(\left(V_{U}\right)=\frac{\operatorname{EBIT}(1-t)}{K_{0}}\)
Step 2: Calculate Value of Levered Firm: Value of Levered Firm \(\left(V_{L}\right)=\quad V_{U}+\boldsymbol{D T}\)
5. Modiglani-Miller Approach (MM): The NOI approach is definitional or conceptual and lacks behavioral significance. However, Modigliani-Miller approach provides behavioral justification for constant overall cost of capital and therefore, total value of the firm.

Assumptions of MM Approach:
> Capital markets are perfect
> All information is freely available
> There are no transaction costs
> All investors are rational
> Firms can be grouped into 'Equivalent risk classes'
> Non-existence of corporate taxes
Note: Solution of practical problems are same under NOI and MM Approaches
6. The Trade Off Theory:

7. Pecking Order Theory:

8. Arbitrage Process: Capital structure arbitrage refers to a strategy used by companies and individual where they take advantage of the existing market mispricing across all securities to make profits. In this strategy, there is buying share of undervalued firms and sell shares of overvalued firm. The main objective is to make use of the pricing inefficiency to make a profit. There is anticipation that the pricing difference, will at some point cancel out or reach at equilibrium.

Situation 1: When Levered firm is overvalued (\(V_{L}>V_{\text {UL }}\)):
Step 1: Sell shares of levered firm
Step 2: Borrow in same Debt-Equity ratio
Step 3: Purchase same shareholding in unlevered firm to earn same return with lower investment

\section*{Or}

Purchase shares of unlevered firm with full available funds to increase in income.

Situation 2: When Unlevered firm is overvalued (\(V_{U L}>V_{L}\)):
Step 1: Sell shares of unlevered firm
Step 2: Purchase same shareholding and debt in Debt-Equity ratio in levered firm to earn same return with lower investment

Or
Purchase shares and debt in Debt-Equity ratio of levered firm with full available funds to increase in income.

\section*{BBQ 68}

X Ltd. and Y Ltd. are identical except that the former uses debt while the latter does not. Thus levered firm has issued \(10 \%\) Debentures of ₹ \(9,00,000\). Both the firms earn EBIT of \(20 \%\) on total assets of \(₹ 15,00,000\). Assuming tax rate is \(50 \%\) and capitalization rate is \(15 \%\) for an all equity firm.
(i) Compute the value of the two firms using NI approach.
(ii) Compute the value of the two firms using NOI approach.
(iii) Calculate the overall cost of capital, \(\mathrm{K}_{0}\) for both the firms using NOI approach.

\section*{Answer}
(i) Calculation of Value of firms by NI Approach:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \(\boldsymbol{X L t d}\) (₹) & \(\boldsymbol{Y}\) Ltd (\(₹\)) \\
\hline EBIT (20\% of ₹15,00,000) & \(3,00,000\) & \(3,00,000\) \\
Less: Interest on Debt & 90,000 & - \\
\cline { 2 - 3 } Profit Before Tax & \(2,10,000\) & \(3,00,000\) \\
Less: Tax @ 50\% & \(1,05,000\) & \(1,50,000\) \\
\cline { 2 - 3 } Profit After Tax & \(1,05,000\) & \(1,50,000\) \\
Equity Capitalization rate & \(15 \%\) & \(15 \%\) \\
\hline Market Value of Equity \(\left(\right.\) PAT \(\left.\div \mathrm{K}_{\mathrm{e}}\right)\) & \(7,00,000\) & \(10,00,000\) \\
Value of debt & \(9,00,000\) & - \\
\hline Total Value of the Firm & \(\mathbf{1 6 , 0 0 , 0 0 0}\) & \(\mathbf{1 0 , 0 0 , 0 0 0}\) \\
\hline
\end{tabular}
(ii) Values of the firm as per NOI Approach:
\(\begin{aligned} \text { Value of unlevered firm (Y Ltd) } & =\frac{\operatorname{EBIT}(1-t)}{K_{o}}=\frac{3,00,000(1-0.30)}{0.15} \\ & =\{10,00,000\end{aligned}\)

Value of levered firm (X Ltd) \(=\quad\) Value of unlevered firm + Debt \(\times\) tax
\(=\) ₹ \(10,00,000+9,00,000 \times 50 \%=14,50,000\)
This value of ₹ \(14,50,000\) can be bifurcated into Debt of ₹ \(9,00,000\) and Equity of ₹ \(5,50,000\).
(iii) Calculation of \(K_{o}\) under NOI Approach:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{Y} \mathbf{L t d}\left(K_{o}\right)\) & = & \(\mathrm{K}_{\mathrm{e}}\) & & & 15\% \\
\hline \multirow[t]{3}{*}{X Ltd (\(K_{o}\))} & = & \multicolumn{4}{|l|}{\(\mathrm{K}_{\mathrm{e}} \mathrm{W}_{\mathrm{e}}+\mathrm{K}_{\mathrm{d}} \mathrm{W}_{\mathrm{d}}\)} \\
\hline & = & \[
19.1 \% \times \frac{5,50,00}{14,50,0}
\] & & ,000 & \\
\hline & \multicolumn{5}{|l|}{Or} \\
\hline \multirow[t]{2}{*}{X Ltd (\(K_{o}\))} & = & \[
\frac{\operatorname{EBIT}(1 \mathrm{t})}{\mathrm{V}} \times 100
\] & = & \multicolumn{2}{|l|}{3,00,000(1-0.50)} \\
\hline & \(=\) & 10.34\% & & & \\
\hline
\end{tabular}

\section*{Working Notes:}

Calculation of \(K_{e}\) of X Ltd:
\(\mathrm{K}_{\mathrm{e}}\)
\[
\begin{aligned}
& =\quad \frac{\text { Earning for Equity }}{\text { Market value of Equity }} \times 100=\quad \frac{(3,00,000-90,000)(1-0.50)}{5,50,000} \times 100 \\
& =\quad \mathbf{1 9 . 1 0 \%}
\end{aligned}
\]

\section*{BBQ 69}

Blue Ltd., an all equity financed company is considering the repurchase of ₹ 275 lakhs equity shares and to replace it with \(15 \%\) debentures of the same amount. Current market value of the company is ₹ 1,750 lakhs with its cost of capital of \(20 \%\). The company's Earnings before Interest and Taxes (EBIT) are expected to remain constant in future years. The company also has a policy of distributing its entire earnings as dividend. Assuming the corporate tax rate as \(30 \%\).

You are required to calculate the impact on the following on account of the change in the capital structure as per Modigliani and Miller (MM) Approach:
(1) Market value of the company,
(2) Overall cost of capital, and
(3) Cost of equity.

\section*{Answer}
(1) Market Value (MV) of Blue Ltd:
\begin{tabular}{rl}
MV before repurchase \(\left(\mathrm{V}_{\mathrm{UL}}\right)\) & \(=\) \\
1,750 Lakhs \\
MV after repurchase \(\left(\mathrm{V}_{\mathrm{L}}\right)\) & \(=\) \\
& \(=\mathrm{V}_{\mathrm{UL}}+\) Debt \(\times \mathrm{Tax}\) \\
& \(1,750 \mathrm{~L}+275 \mathrm{~L} \times 30 \%\) \\
Impact on MV of firm & \(=1,832.50 \mathrm{~L}-1,750 \mathrm{~L}\) \\
& \(=\) \\
& Increase by 82.50 Lakhs
\end{tabular}

\section*{(2) Overall cost of capital:}

WACC before repurchase = \(20 \%\)
WACC after repurchase \(=\frac{\text { EBIT }(1-\mathrm{t})}{\text { Value of firm }} \times 100=\frac{500 \mathrm{~L}(1-0.30)}{1,832.50 \mathrm{~L}} \times 100\)
\[
=\quad 19.10 \%
\]

Impact on Cost of capital \(=20 \%-19.10 \%=\) Decrease by \(\mathbf{0 . 9 0} \%\)
(3) Cost of Equity:
\begin{tabular}{ll}
\(\mathrm{K}_{\mathrm{e}}\) before repurchase & \(=20 \%\) \\
\(\mathrm{~K}_{\mathrm{e}}\) after repurchase & \(=\frac{(\mathrm{EBIT}-\mathrm{I})(1-\mathrm{t})}{\text { MV of Equity }} \times 100=\frac{(500 \mathrm{~L}-15 \% \text { of } 275 \mathrm{~L})(1-0.30)}{1,557.50 \mathrm{~L}} \times 100\) \\
& \(=20.62 \%\) \\
Impact on \(\mathrm{K}_{\mathrm{e}}\) & \(=20.62 \%-20 \%=\) Increase by \(\mathbf{0 . 6 2 \%}\)
\end{tabular}

\section*{Workings notes:}
\(\begin{array}{ll}\text { MV of Equity (before repurchase) } & =\frac{\mathrm{EAT}}{\mathrm{K}_{\mathrm{e}}} \\ 1,750 \text { Lakhs } & =\frac{\mathrm{EAT}}{0.20}\end{array}\)
EAT \(=1,750\) Lakhs \(\times 20 \%=350 \mathrm{~L}\)
\begin{tabular}{llll}
EBIT & \(=\) & EAT \(\div(1-\mathrm{t})\) \\
& \(=\) & \(350 \mathrm{~L} \div(1-0.3)\) \\
MV of Equity (after repurchase) & \(=\) & Value of firm - Value of Debt & \\
& \(=\) & \(1,832.50 \mathrm{~L}-275 \mathrm{~L}=\) & \\
& & \(=1,557.5 \mathrm{~L}\)
\end{tabular}

BBQ 70
ABC Ltd. with EBIT of ₹ \(3,00,000\) is evaluating a number of possible capitals below. Which of the capital structure will you recommend, and why?
\begin{tabular}{|c|c|c|c|}
\hline Capital Structure & Debt & \(\boldsymbol{K}_{\boldsymbol{d}}\) & \(\boldsymbol{K}_{\boldsymbol{e}}\) \\
\hline I & \(₹ 3,00,000\) & \(10 \%\) & \(12.00 \%\) \\
II & \(₹ 4,00,000\) & \(10 \%\) & \(12.50 \%\) \\
III & \(₹ 5,00,000\) & \(11 \%\) & \(13.50 \%\) \\
IV & \(₹ 6,00,000\) & \(12 \%\) & \(15.00 \%\) \\
V & \(₹ 7,00,000\) & \(14 \%\) & \(18.00 \%\) \\
\hline
\end{tabular}

\section*{Answer}

Statement of \(K_{o}\) and Value of Firm
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & Plan I & Plan II & Plan III & Plan IV & Plan \(\boldsymbol{V}\) \\
\hline EBIT & \(3,00,000\) & \(3,00,000\) & \(3,00,000\) & \(3,00,000\) & \(3,00,000\) \\
Less: Interest & 30,000 & 40,000 & 55,000 & 72,000 & 98,000 \\
\cline { 2 - 6 } Net profit & \(2,70,000\) & \(2,60,000\) & \(2,45,000\) & \(2,28,000\) & \(2,02,000\) \\
\(\div \mathrm{K}_{\mathrm{e}}\) & 0.12 & 0.125 & 0.135 & 0.15 & 0.18 \\
Market value of Equity (E) & \(22,50,000\) & \(20,80,000\) & \(18,14,815\) & \(15,20,000\) & \(11,22,222\) \\
Market value of Debt (D) & \(3,00,000\) & \(4,00,000\) & \(5,00,000\) & \(6,00,000\) & \(7,00,000\) \\
\hline Market value offirm (V) & \(\mathbf{2 5 , 5 0 , 0 0 0}\) & \(\mathbf{2 4 , 8 0 , 0 0 0}\) & \(\mathbf{2 3 , 1 4 , 8 1 5}\) & \(\mathbf{2 1 , 2 0 , 0 0 0}\) & \(\mathbf{1 8 , 2 2 , 2 2 2}\) \\
\hline \multicolumn{1}{|c|}{\(\boldsymbol{K}_{\boldsymbol{o}}(\boldsymbol{E B I T} \div \boldsymbol{V})\)} & \(\mathbf{1 1 . 7 6 \%}\) & \(\mathbf{1 2 . 1 0} \%\) & \(\mathbf{1 2 . 9 5 \%}\) & \(\mathbf{1 4 . 1 5 \%}\) & \(\mathbf{1 6 . 4 6 \%}\) \\
\hline
\end{tabular}

The capital structure (Plan I) having \(₹ 3,00,000\) of debt has the lowest cost of capital consequently the highest market value, should be accepted.

\section*{BBQ 71}

Alpha Limited and Beta Limited are identical except for capital structures. Alpha Ltd. has 50 per cent debt and 50 per cent equity, whereas Beta Ltd. has 20 per cent debt and 80 per cent equity. (All percentages are in market value terms). The borrowing rate for both companies is 8 per cent in a no-tax world, and capital markets are assumed to be perfect.
(a) (i) If you own 2 per cent of the shares of Alpha Ltd., determine your return if the company has net operating income of \(₹ 3,60,000\) and the overall capitalisation rate of the company, \(\mathrm{K}_{0}\) is 18 per cent?
(ii) Calculate the implied required rate of return on equity?
(b) Beta Ltd. has the same net operating income as Alpha Ltd. (i) Determine the implied required equity return of Beta Ltd.? (ii) Analyse why does it differ from that of Alpha Ltd.?

\section*{Answer}
(a) Value of the Alpha Ltd.
\[
\begin{aligned}
& =\frac{\mathrm{NOI}}{\mathrm{~K}_{\mathrm{o}}}=\frac{3,60,000}{18 \%}=₹ 20,00,000 \\
& =50 \% \text { of ₹ } 20,00,000
\end{aligned}
\]
(i) Return on Shares on Alpha Ltd
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & \(₹\) \\
\hline Net Operating income & \(3,60,000\) \\
Less: Interest on Debt @ 8\% on ₹10,00,0,00 (50\% of ₹ \(20,00,000)\) & 80,000 \\
\cline { 2 - 2 } Earnings for Equity Investors & \(2,80,000\) \\
\hline Return on 2\% Shares (2\% of ₹2,80,000) & \(\mathbf{5 , 6 0 0}\) \\
\hline
\end{tabular}
(ii) Implied required rate of return on Equity \(=\frac{2,80,000}{10,00,000} \times 100=28 \%\)
(b) (i) Return on Shares on Beta Ltd
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Particulars} & & ₹ \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Net Operating income \\
Less: Interest on Debt@ 8\% on ₹4,00,0,00 (20\% of ₹ \(20,00,000\)) \\
Earnings for Equity Investors
\end{tabular}}} & & 3,60,000 \\
\hline & & & & 32,000 \\
\hline & & & & 3,28,000 \\
\hline Value of Shares of Beta Ltd. & = & 80\% of ₹ \(20,00,000\) & \(=\) & ₹16,00,000 \\
\hline Implied required rate of return on Equity & = & \(\frac{3,28,000}{16,00,000} \times 100\) & = & 20.50\% \\
\hline
\end{tabular}
(ii) It is lower than the Alpha Ltd. because Beta Ltd. uses less debt in its capital structure. As the equity capitalization is a linear function of the debt-to-equity ratio when we use the net operating income approach, the decline in required equity return offsets exactly the disadvantage of not employing so much in the way of "cheaper" debt funds.

\section*{BBQ 72}

There are two company N Ltd. and M Ltd., having same earnings before interest and taxes i.e. EBIT of ₹ 20,000 . M Ltd. is a levered company having a debt of ₹ \(1,00,000 @ 7 \%\) rate of interest. The cost of equity of N Ltd. is \(10 \%\) and of M Ltd. is \(11.50 \%\).

Compute how arbitrage process will be carried on?

\section*{Answer}
\[
\begin{aligned}
& \text { Value of Equity (S) = } \frac{\text { NOI-Interest }}{\text { Cost of Equity }} \\
& \begin{array}{rlrl}
\mathrm{S}_{\mathrm{N}} & =\frac{20,000}{10 \%} & =\text { ₹2,00,000 } \\
\mathrm{S}_{\mathrm{M}} & =\frac{20,000-7,000}{11.50 \%} & =\text { ₹1,13,043 } \\
\mathrm{V}_{\mathrm{N}} & =\mathfrak{F} 2,00,000 & \\
\mathrm{~V}_{\mathrm{M}} & & & \\
& & \mathrm{~S}_{\mathrm{M}}+\mathrm{D} & \\
& & \text { ₹ } 1,13,043+₹ 1,00,000 & =
\end{array}
\end{aligned}
\]

\section*{Arbitrage Process:}

If you have \(10 \%\) shares of M Ltd., your value of investment in equity shares is \(10 \%\) of ₹ \(1,13,043\) i.e. \(₹ 11,304.30\) and return will be \(10 \%\) of (\(₹ 20,000-₹ 7,000)=₹ 1,300\).

Strategy (Same return with lower investnent):

Sell your \(10 \%\) share of levered firm for ₹ \(11,304.30\) and borrow \(10 \%\) of levered firms debt i.e. \(10 \%\) of ₹ \(1,00,000\) and invest the money i.e. \(10 \%\) in unlevered firms stock:
\begin{tabular}{|c|c|c|c|c|}
\hline Total resources /Money we have & = & ₹ \(11,304.30\) + ₹ 10,000 & = & ₹ \(21,304.30\) \\
\hline Invest in 10\% shares of Unlevered firm & = & 10\% of ₹ \(2,00,000\) & = & ₹ 20,000 \\
\hline Surplus cash available with you & = & ₹ \(21,304.3\) - ₹ 20,000 & = & ₹1,304.30 \\
\hline Your return & \(=\)
\(=\)
\(=\) & \multicolumn{3}{|l|}{\begin{tabular}{l}
10\% EBIT of unlevered firm - Interest \\
\(10 \%\) of ₹ \(20,000-7 \%\) of ₹ 10,000 \\
₹2,000 - ₹700 \\
₹1,300
\end{tabular}} \\
\hline
\end{tabular}

\section*{Conclusion:}

Your return is same i.e. ₹ 1,300 which you are getting from \(N\) Ltd. before investing in \(M\) Ltd. but still you have ₹ \(1,304.3\) excess money available with you. Hence, you are better off by doing arbitrage.

\section*{BBQ 73}

There are two companies U Ltd. and L Ltd., having same NOI of ₹ 20,000 except that L Ltd. is a levered company having a debt of ₹ \(1,00,000\) @ \(7 \%\) and cost of equity of U Ltd. \& L Ltd. are \(10 \%\) and \(18 \%\) respectively.

\section*{Compute how arbitrage process will work.}

\section*{Answer}

\section*{Calculation of Value of firms:}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Particulars } & U Ltd. (₹) & L Ltd. (₹) \\
\hline EBIT & 20,000 & 20,000 \\
Less: Interest @ 7\% of ₹1,00,000 & - & 7,000 \\
\cline { 2 - 3 }\(\quad\) Earning available to Equity Shareholders & 20,000 & 13,000 \\
Equity Capitalization rate & \(10 \%\) & \(18 \%\) \\
\cline { 2 - 3 } Market Value of Equity (Earning for Equity \(\div \mathrm{K}_{\mathrm{e}}\)) & \(2,00,000\) & 72,222 \\
Value of Debt & - & \(1,00,000\) \\
\hline Value of the Firm & \(\mathbf{2 , 0 0 , 0 0 0}\) & \(\mathbf{1 , 7 2 , 2 2 2}\) \\
\hline
\end{tabular}

Assume you have \(10 \%\) shares of unlevered firm:
\begin{tabular}{llll}
Investment & \(=\) & \(=\) & \(₹ 20,000\) \\
Return & \(=\) & \(10 \%\) of \(₹ 2,00,000\) & \(=\) \\
\(₹ 2,000\)
\end{tabular}

\section*{Strategy (Same return with lower investnent):}

Sell your shares in unlevered firm for ₹ 20,000 and buy \(10 \%\) shares of levered firm's equity plus debt:
\begin{tabular}{|c|c|c|c|c|}
\hline Investment in shares of L Ltd. & = & \(10 \%\) of ₹ 72,222 & = & ₹ 7,222 \\
\hline Investment in debt of L Ltd. & = & 10\% of ₹ \(1,00,000\) & = & ₹ 10,000 \\
\hline Total investment & & & = & ₹17,222 \\
\hline Surplus cash available & = & ₹ 20,000 - ₹ 17,222 & = & ₹ 2,778 \\
\hline
\end{tabular}

Your return in L Ltd.
\[
\begin{aligned}
& =10 \% \text { of Earning available for Equity + Interest on Debt } \\
& =\quad 10 \% \text { of } ₹ 13,000+7 \% \text { of } ₹ 10,000 \quad=\quad ₹ 2,000 \\
& =\quad ₹ 1,300+₹ 700 \quad
\end{aligned}
\]

In both the cases the return received is \(₹ 2,000\) and still you have excess cash of \(₹ 2,778\). Hence, you are better off. In the above solution we have not invested entire amount received from "sale of shares of Unlevered company". Alternatively, we could have invested entire amount in Levered company. In that case annual earnings would have increased.

\section*{CHAPTER 10}
1. Theories of Dividend:

2. Modigliani and Miller (MM) Hypothesis (1961): MM approach is in support of the irrelevance of dividends i.e. firm's dividend policy has no effect on either the price of a firm's stock or its cost of capital.

Assumptions:
> Perfect capital markets
\(>\) No taxes or no tax discrimination
> Fixed investment policy
> No floatation or transaction cost
\(>\) Risk of uncertainty does not exist

Steps in Practical Problems:
Step 1: Calculate \(P_{1}\) :
\[
P_{1}=P_{0}\left(1+K_{e}\right)-D_{1}
\]

Step 2: Calculate New Shares (\(\Delta n\)) required to be issued:
\[
\Delta n=\frac{\text { Funds Required }}{P_{1}}=\frac{I-(E-D)}{P_{1}}
\]

Step 3: Calculate Value of Firm (\(n \boldsymbol{P}_{0}\)):
\[
n P_{0}=\frac{(n+\Delta n) P_{1}-I+E}{1+K_{e}}
\]
3. Walter Model: Walter approach is in support of the relevance of dividends i.e. firm's dividend policy has effect on either the price of a firm's stock or its cost of capital.

Assumptions:
\(>\) All investment proposals of the firm are to be financed through retained earnings only
\(>\) 'r' rate of return \& ' \(\mathbf{K}_{e}\) ' cost of capital are constant
> Perfect capital markets
\(>\) No taxes or no tax discrimination between dividend income and capital appreciation (capital gain)
> No floatation or transaction cost
> The firm has perpetual life
Formula:
\[
\text { Market Price of Share }(P) \quad=\quad \frac{D+\frac{r}{K_{e}}(E-D)}{K_{e}}
\]

Where,
\begin{tabular}{lll}
\(P\) & \(=\) & Market Price of the share \\
\(E\) & \(=\) & Earnings per share \\
\(D\) & \(=\) & Dividend per share \\
\(K_{e}\) & \(=\) & Cost of equity/ rate of capitalization/ discount rate \\
\(R\) & \(=\) & Internal rate of return/ return on investment
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline Company & 'r'VS ' \(K_{e}{ }^{\prime}\) & \multicolumn{1}{c|}{ Optimum Dividend Payout } \\
\hline Growth & \(r>K_{e}\) & Zero \\
\hline Constant & \(r=K_{e}\) & Every payout ratio is optimum \\
\hline Decline & \(r<K_{e}\) & \(100 \%\) \\
\hline
\end{tabular}
4. Gordon's Model: According to Gordon's model dividend is relevant and dividend policy of a company affects its value.

Assumptions:
\(>\) Firm is an all equity firm.
> IRR will remain constant.
\(>K_{e}\) will remains constant.
\(>\) Retention ratio (b) is constant i.e. constant dividend payout ratio will be followed
\(>\) Growth rate \((g=b r)\) is also constant.
\(>K_{e}>g\)
\(>\) All investment proposals of the firm are to be financed through retained earnings only.
Formulae of MPS \{Gordon's Model or Dividend Discount Model (DDM)\}:
Situation 1: Zero Growth or Constant Dividend:
\[
P_{0} \quad=\quad \frac{D}{K_{e}}
\]

Situation 2: Constant Growth:
\[
P_{0} \quad=\quad \frac{D_{1}}{K_{e}-g} \quad \text { or } \quad=\quad \frac{D_{0}(1+g)}{K_{e}-g}
\]
\[
g \quad=\quad b(\text { earning retention ratio }) \times r(\text { IRR or ROE })
\]

Situation 3: Variable Growth:

\section*{> Phase 1: Very High Growth}
> Phase 2: High Growth
> Phase 3: Average Growth equal to industry
\(P_{0} \quad=\quad\) Present Value of all future benefit from share
Note: Calculation of Intrinsic value of share and MPS of share are same
\begin{tabular}{|l|c|l|}
\hline Company & \(r^{\prime} \mathrm{VS}{ }^{\prime} \mathrm{K}_{e}{ }^{\prime}\) & \multicolumn{1}{c|}{ Optimum Dividend Payout } \\
\hline Growth & \(r>K_{e}\) & Zero \\
\hline Constant & \(r=K_{e}\) & Every payout ratio is optimum \\
\hline Decline & \(r<K_{e}\) & \(100 \%\) \\
\hline
\end{tabular}
5. Traditional Model: According to the traditional position expounded by Graham \& Dodd, the stock market places considerably more weight on dividends than on retained earnings. Their view is expressed quantitatively in the following valuation model:
\[
P=m\left(D+\frac{E}{3}\right)
\]

Where,
\begin{tabular}{lll}
\(P\) & \(=\) & Market price per share \\
\(D\) & \(=\) & Dividend per share \\
\(E\) & \(=\) & Earnings per share \\
\(M\) & \(=\) & a multiplier
\end{tabular}
6. John Linter's Model: Linter's model has two parameters:
> The target payout ratio,
> The spread at which current dividends adjust to the target.
\(D_{1}=\quad D_{o}+\left[(E P S \times\right.\) Target payout \(\left.)-D_{o}\right] \times A f\)

Where,
\begin{tabular}{lll}
\(D_{1}\) & \(=\) & Dividend in year 1 \\
\(D_{o}\) & \(=\) & Dividend in year 0 (last year dividend) \\
EPS & \(=\) & Earnings per share \\
Af & \(=\) & Adjustment factor or Speed of adjustment
\end{tabular}

\section*{BBQ 74}

AB Engineering ltd. belongs to a risk class for which the capitalization rate is \(10 \%\). It currently has outstanding 10,000 shares selling at \(₹ 100\) each. The firm is contemplating the declaration of a dividend of ₹5 per share at the end of the current financial year. It expects to have a net income of ₹ \(1,00,000\) and has a proposal for making new investments of ₹2,00,000.

\section*{Required:}
1. Calculate value of firm when dividends are not paid.
2. Calculate value of firm when dividends are paid.

\section*{Answer}

\section*{1. Value of the firm when dividends are not paid:}

Step 1: Calculate price at the end of the period:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ke & \(=\) & 10\%, & \(\mathrm{P}_{0}\) & \(=\) & ₹ 100 , & \(\mathrm{D}_{1}\) & = & 0 \\
\hline \(\mathrm{P}_{\text {o }}\) & = & \[
\frac{\mathrm{P}_{1}+\mathrm{D}_{1}}{1+\mathrm{K}_{\mathrm{e}}}
\] & & & & & & \\
\hline ₹100 & = & \(\frac{\mathrm{P}_{1}+0}{1+0.10}\) & or & & & \(\mathrm{P}_{1}\) & \(=\) & ₹110 \\
\hline
\end{tabular}

Step 2: No. of shares required to be issued:
\[
\text { No. of shares } \Delta \mathrm{n}=\quad \frac{\text { Funds requied-(E-D) }}{\text { Price at } \operatorname{end}\left(\mathrm{P}_{1}\right)} \quad=\quad \frac{2,00,000-(1,00,000-0)}{110}=\mathbf{9 0 9 . 0 9} \text { shares }
\]

Step 3: Calculation of value of firm:
\[
\begin{aligned}
\mathrm{nP}_{\mathrm{o}} & =\frac{(\mathrm{n}+\Delta \mathrm{n}) \mathrm{P}_{1}-\mathrm{I}+\mathrm{E}}{1+\mathrm{K}_{\mathrm{e}}} \\
\mathrm{nP}_{\mathrm{o}} & =\frac{(10,000+909.09) 110-2,00,000+1,00,000}{(1+.10)}
\end{aligned}
\]

\section*{2. Value of the firm when dividends are paid:}

Step 1: Calculate price at the end of the period:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ke & \(=\) & 10\%, & \(\mathrm{P}_{0}\) & = & ₹ 100 , & \(\mathrm{D}_{1}\) & = & ₹5 \\
\hline \(\mathrm{P}_{\text {o }}\) & = & \[
\frac{\mathrm{P}_{1}+\mathrm{D}_{1}}{1+\mathrm{K}_{\mathrm{e}}}
\] & & & & & & \\
\hline ₹100 & \(=\) & \(\frac{\mathrm{P}_{1}+5}{1+0.10}\) & or & & & \(\mathrm{P}_{1}\) & = & ₹105 \\
\hline
\end{tabular}

Step 2: No. of shares required to be issued:
No. of shares \(\Delta \mathrm{n}=\quad \frac{\text { Funds requied-(E-D) }}{\text { Price at } \operatorname{end}\left(\mathrm{P}_{1}\right)} \quad=\quad \frac{2,00,000-(1,00,000-50,000)}{105}=\mathbf{1 , 4 2 8 . 5 7}\) shares
Step 3: Calculation of value of firm:
```

$n P_{0} \quad=\quad \frac{(n+\Delta n) \mathrm{P}_{1}-\mathrm{I}+\mathrm{E}}{1+\mathrm{K}_{\mathrm{e}}}$
$\mathrm{nP}_{\mathrm{o}}=\frac{(10,000+1,428.57) 105-2,00,000+1,00,000}{(1+.10)}=\mathrm{F} 10,00,000$

```

Thus, it can be seen that the value of the firm remains the same in either case.

\section*{BBQ 75}

Ordinary shares of a listed company are currently trading at ₹ 10 per share with two lakh shares outstanding. The company anticipates that its earnings for next year will be ₹ \(5,00,000\). Existing cost of capital for equity shares is \(15 \%\). The company has certain investment proposals under discussion which will cause an additional 26,089 ordinary shares to be issued if no dividend is paid or an additional 47,619 ordinary shares to be issued if dividend is paid. Applying the MM hypothesis on dividend decisions.

Calculate the amount of investment and dividend that is under consideration by the company.

\section*{Answer}

\section*{1. Calculation of Investment:}

When no dividend is paid:
\[
\begin{aligned}
\text { No. of shares } \Delta \mathrm{n} & =\frac{\text { Funds requied-(E-D) }}{\text { Price at } \operatorname{end}\left(\mathrm{P}_{1}\right)}=\frac{I-(5,00,000-0)}{11.50} \\
26,089 \times ₹ 11.50 & =\mathrm{I}-₹ 5,00,000 \\
\mathrm{I} & =₹ 8,00,024
\end{aligned}
\]

\section*{Working Note:}

When expected dividends are not declared:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ke & = & 15\%, & \(\mathrm{P}_{0}\) & = & ₹ 10, & \(\mathrm{D}_{1}\) & = & ₹0 \\
\hline \(\mathrm{P}_{\text {o }}\) & = & \[
\frac{\mathrm{P}_{1}+\mathrm{D}_{1}}{1+\mathrm{K}_{\mathrm{e}}}
\] & & & & & & \\
\hline ₹10 & = & \(\frac{\mathrm{P}_{1}+0}{1+0.15}\) & & or & & \(\mathrm{P}_{1}\) & \(=\) & ₹11.50 \\
\hline
\end{tabular}

\section*{2. Calculation of Dividend:}

When dividend is paid:
\begin{tabular}{ll}
\(\mathrm{P}_{\mathrm{o}}\) & \(=\frac{\mathrm{P}_{1}+\mathrm{D}_{1}}{1+\mathrm{K}_{\mathrm{e}}}\) \\
\(₹ 10\) & \(=\frac{\mathrm{P}_{1}+\mathrm{D}_{1}}{1+0.15}\)
\end{tabular}\(\quad\) or \(\quad \mathrm{P}_{1}=\) ₹ \(11.50-D_{1}\)

Now,
\begin{tabular}{ll}
No. of shares \(\Delta \mathrm{n}\) & \(=\frac{\mathrm{I}(\mathrm{E}-\mathrm{D})}{\mathrm{P}_{1}}=\frac{8,00,024-\left(5,00,000-2,00,000 \mathrm{D}_{1}\right)}{P_{1}}\) \\
\(47,619 \times \mathrm{P}_{1}\) & \(=3,00,024+2,00,000 \mathrm{D}_{1}\) \\
\(47,619 \times\left(11.50-\mathrm{D}_{1}\right)\) & \(=5,47,619-47,619 \mathrm{D}_{1}=\quad 3,00,024+2,00,000 \mathrm{D}_{1}\) \\
\(2,47,619 \mathrm{D}_{1}\) & \(=2,47,595\) \\
\(\mathrm{D}_{1}\) & \(=\mathbf{1} 1.00\) per share
\end{tabular}

\section*{BBQ 76}

The following figures are collected from the annual report of XYZ Ltd.:
\begin{tabular}{|l|r|}
\hline Net Profit & ₹30 lakhs \\
Outstanding 12\% preference shares & ₹100 lakhs \\
No. of Equity shares & 3 lakhs \\
Return on Investment & \(20 \%\) \\
Cost of capital i.e. \(\left(\mathrm{K}_{\mathrm{e}}\right)\) & \(16 \%\) \\
\hline
\end{tabular}

What should be the approximate dividend payout ratio so as to keep the share price at \(\boldsymbol{F}^{4} 2\) by using Walter model?

\section*{Answer}
\[
\begin{array}{llll}
\text { EPS }=\frac{\text { PAT-Preference Dividend }}{\text { No of Equity Shares }} & =\frac{30,00,000-12 \% \text { of } 1,00,00,000}{3,00,000} & =\text { ₹ } 6 \\
P & =\frac{D+(E-D) \times \frac{\mathrm{r}}{\mathrm{~K}_{e}}}{\mathrm{~K}_{\mathrm{e}}} & =\frac{\mathrm{D}+(6-\mathrm{D}) \times \frac{0.20}{0.16}}{0.16} & =42 \\
6.72=\frac{0.16 \mathrm{D}+1.2-0.20 \mathrm{D}}{0.16} & & & \\
1.0752=1.2-0.04 \mathrm{D} & \text { or } & \mathrm{D} & =3.12
\end{array}
\]

\section*{Dividend Payout ratio:}
\[
=\frac{\mathrm{DPS}}{\mathrm{EPS}} \times 100 \quad=\frac{3.12}{6} \times 100 \quad=52 \%
\]

BBQ 77
The following information is supplied to you:
\begin{tabular}{|l|r|}
\hline Total Earnings & ₹2,00,000 \\
No. of equity shares (of ₹100 each) & 20,000 \\
Dividend paid & \(₹ 1,50,000\) \\
Price/Earnings ratio & 12.5 \\
\hline
\end{tabular}

\section*{Applying Walter's Model:}
1. Ascertain whether the company is following an optimal dividend policy.
2. Find out what should be the \(P / E\) ratio at which the dividend policy will have no effect on the value of the share.
3. Will your decision change, if the \(\mathrm{P} / \mathrm{E}\) ratio is 8 instead of 12.5 ?

Answer
1. \(\mathrm{K}_{\mathrm{e}}=\frac{1}{\mathrm{PE}}=\frac{1}{12.5}=8 \%\)
\(r=\frac{\text { Total Earnings }}{\text { Total Funds }} \times 100=\frac{2,00,000}{20,000 \text { Shares } \times 100 \text { per share }} \times 100=10 \%\)
\(r>K_{e}\), Therefore as per Walter model optimum dividend payout is Nil and company is paying dividend to shareholders means company is not following optimum dividend policy.
2. The P/E ratio at which the dividend policy will have no effect on the value of the share is such at which the \(\mathrm{k}_{\mathrm{e}}\) would be equal to the rate of return (r) of the firm.
\(\begin{array}{llll}\mathrm{K} \mathrm{e} & =\mathrm{r} & =10 \% & \\ \mathrm{PE} & =\frac{1}{\mathrm{Ke}} & =\frac{1}{.10} & =10 \text { times }\end{array}\)
3. If the \(P / E\) is 8 instead of 12.5 , then the \(K_{e}\) which is the inverse of \(P / E\) ratio, would be 12.5 :
\(\mathrm{K}_{\mathrm{e}}=\frac{1}{\mathrm{PE}} \quad=\frac{1}{8}=12.5 \%\)
In such a situation \(K_{e}>r\) and optimum dividend payout will be 100\%.
BBQ 78
The following figures are collected from the annual report of XYZ Ltd.:
\begin{tabular}{|l|r|}
\hline Net Profit & \(₹ 30,00,000\) \\
Outstanding 12\% Preference Shares & \(₹ 1,00,00,000\) \\
No. of Equity Shares & \(3,00,000\) \\
Return on Investment & \(20 \%\) \\
Cost of Capital & \(16 \%\) \\
\hline
\end{tabular}

Calculate price per share using Gordon's Model when dividend payout is (1) 25\%, (2) 50\% and (3) \(100 \%\).

Answer
Calculation of Price of Share as per Gordon model:
\[
\mathrm{P}_{\mathrm{o}} \quad=\quad \frac{D_{1}}{K_{e}-g}
\]
(1) When \(25 \%\) payout \(=\frac{6 \times 0.25}{0.16-0.15}=\) ₹150
(2) When \(50 \%\) payout \(=\frac{6 \times 0.50}{0.16-0.10}=\) F50
(3) When \(100 \%\) payout \(=\frac{6 \times 1.00}{0.16-0.00}=\) F37.50

\section*{Working note:}
(a) Growth \(=\mathrm{b} \times \mathrm{r}\)
\begin{tabular}{llll}
When \(25 \%\) payout & \(=\) & \(20 \% \times .75\) & \(=\) \\
\(15 \%\) \\
When \(50 \%\) payout & \(=\) & \(10 \% \times .50\) & \(=\) \\
When \(100 \%\) payout & \(=\) & \(20 \% \times .00\) & \(=\)
\end{tabular} \(0 \%\)
(b) Earning Per Share \(=(\mathrm{PAT}-\mathrm{PD}) \div\) Number of shares
\[
=\quad(30,00,000-12 \% \text { of } 1,00,00,000) \div 3,00,000 \quad=\quad ₹ 6
\]

\section*{BBQ 79}

A\&R Ltd. is a large-cap multinational company listed in BSE in India with a face value of ₹ 100 per share. The company is expected to grow @ \(15 \%\) p.a. for next four years then \(5 \%\) for an indefinite period. The shareholders expect \(20 \%\) return on their share investments. Company paid ₹ 120 as dividend per share for the FY 2022-23. The shares of the company traded at an average price of \(₹ 3,122\) on last day.

Find out the intrinsic value of per share and state whether shares are overpriced or under-priced.

\section*{Answer}

Calculation of Present Value or Current Market Value or Intrinsic Value of Share
\begin{tabular}{|c|l|c|c|}
\hline Year & \multicolumn{1}{|c|}{ Expected benefits } & PVF @ 20\% & DCF \\
\hline 1 & \(120.00+15 \%=₹ 138.00\) & 0.833 & 114.95 \\
2 & \(138.00+15 \%=₹ 158.70\) & 0.694 & 110.14 \\
3 & \(158.70+15 \%=₹ 182.50\) & 0.579 & 105.67 \\
4 & \(182.50+15 \%=₹ 209.88\) & 0.482 & 101.16 \\
\((5\) to \(\infty)\) & \(\mathrm{P}_{4}=₹ 1,469.16\) & 0.482 & 708.13 \\
\hline \multicolumn{2}{|r|}{ Present value of all future benefits or Intrinsic value of Share } & \(₹ 1,140.05\) \\
\hline
\end{tabular}
\[
P_{4} \quad=\frac{D_{5}}{K_{e}-g}=\frac{209.88+5 \%}{20 \%-5 \%} \quad=\quad ₹ 1,469.16
\]

Intrinsic value of share is \(₹ 1,140.05\) as compared to latest market price of \(₹ 3,122\). Market price of a share is overpriced by ₹ \(1,981.95\).

\section*{BBQ 80}

The earning per share of a company is ₹ 30 and dividend payout is \(60 \%\). Multiplier is 2 .

\section*{Determine the price per share as per Graham \& Dodd model.}

\section*{Answer}

Price per share \((P)=M(D+E / 3)\)
\(P=2(30 \times 0.60+30 / 3)\)
\(\mathrm{P}=2(18+10)=\) ₹56

\section*{BBQ 81}

The dividend payout ratio of H Ltd. is \(40 \%\). If the company follows traditional approach to dividend policy with a multiplier of 9 , what will be the \(\mathrm{P} / \mathrm{E}\) ratio.

\section*{Answer}

Since the dividend payout ratio is \(40 \%\)
\[
\begin{array}{ll}
D & =40 \% \text { of E i.e. } 0.4 \mathrm{E} \\
P & =M(D+E / 3)=9(D+E / 3)=9(0.4 E+E / 3)
\end{array}
\]
\(P=9(0.4 \mathrm{E}+\mathrm{E} / 3)=9\left(\frac{1.2 \mathrm{E}+\mathrm{E}}{3}\right)=3(2.2 \mathrm{E})=6.6 \mathrm{E}\)
\(\mathrm{P} / \mathrm{E}\) ratio \(=\frac{\mathrm{MPS}}{\mathrm{EPS}}=\frac{\mathrm{P}}{\mathrm{E}}=\frac{6.6 \mathrm{E}}{\mathrm{E}}=6.6\) times

\section*{BBQ 82}

Given the last year's dividend is ₹9.80, speed of adjustment \(=45 \%\), target payout ratio \(60 \%\) and EPS for current year ₹20.

Calculate current year's dividend using Linter's model.
Answer
\[
\begin{aligned}
\mathrm{D}_{1} & =\mathrm{D}_{0}+\left[(\text { EPS } \times \text { Target payout })-\mathrm{D}_{0}\right] \times \mathrm{Af} \\
& =9.80+[(20 \times 60 \%)-9.80] \times 0.45
\end{aligned} \quad=\quad ₹ 10.79
\]```

