CA Foundation – Mathematics, Stats and LR | Revision Notes | Equations & Matrices

EQUATIONS - BASICS

Equation Means	mathematical statement of equality	
Identity Equation	If equality is true for all the values of variable, ex. $2x + 3 = x + x + 3$	
Conditional Equation	If the equality is true for certain value of the variable ex. $2x + 1 = 3$	
Solution or Root	It is the value of variable that satisfies the equation	
Degree	Highest power of variable in equation	

SIMPLE EQUATION

Typo	Linear equation with	Linear equation with	Quadratic	Cubic
Туре	one unknown	two unknowns	Equation	Equation
Form	ax + b = 0, where a and b are constants	ax + by + c = 0 a,b,c are constants	$ax^2 + bx + c = 0$ a,b,c are constants with a $\neq 0$	$ax^3 + bx^2 + cx + d = 0$
Degree	1 (One)	1	2	3
Roots	1 (One)	1 each for both	2 (α, β)	3
Remarks	NA	Need minimum two equations to get roots	Trial Error/ Formula based	Trial and Error
Methods for solution	NA	1. Elimination 2. Cross Multiplication	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	NA
	•			

LINEAR EQUATIONS WITH TWO UNKNOWNS

Elimination	Eliminate one variable by algebraic operations on given equations, and	
	then calculate the value of variable that remains. Using this value, find	
	out the value of other root.	
Cross Multiplication	$a_1x + b_1y + c_1 = 0, a_2x + b_2y + c_2 = 0$	
_	Solution is given by:	
	x y 1	
	$\overline{b_1c_2 - b_2c_1} - \overline{c_1a_2 - c_2a_1} - \overline{a_1b_2 - a_2b_1}$	

OUADRATIC FOUATION

QUADRATIC EQUATION			
Formula	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Sum of Roots	$\alpha + \beta = -\frac{b}{a} = \frac{\text{coefficient of } x}{\text{coefficient of } x^2}$		
Product of Roots	$\alpha \times \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$		
How to construct a quadratic equation	x^2 – (sum of roots: $\alpha + \beta$) x + Product of Roots: $\alpha \times \beta = 0$		
	Condition	Nature of Roots	
	$b^2 - ac = 0$	Real and Equal ($\alpha = \beta$)	
Nature of Roots	$b^2 - ac > 0$	Real and Unequal	
	$b^2 - ac < 0$	Imaginary	
	$b^2 - ac$ is a perfect square	Real, Unequal and Rational	
	$b^2 - ac > 0$ but not perfect square	Real, Unequal and Irrational	
Irrational Roots	If one root is $(m + \sqrt{n})$, then other root will be $(m - \sqrt{n})$		

CA Foundation – Mathematics, Stats and LR | Revision Notes | Equations & Matrices

MATRICES

.		
Matrix	A rectangular array of numbers (real/complex) with m rows and n columns	
Order of Matrix	Order is m × n where m= no. of rows and n = no. of columns	
Row Matrix	Matrix having only one row [1 4 2]	
Column Matrix	Matrix having only one column $\begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$	
Zero/ Null Matrix	If all the elements of matrix (any order) are zero $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	
Square Matrix	If in a matrix, no. of columns = no. of rows $\begin{bmatrix} 1 & 3 \\ 9 & 2 \end{bmatrix}$	
Rectangular Matrix	If in a matrix, no. of columns \neq no. of rows $\begin{bmatrix} 1 & 3 & 2 \\ 9 & 2 & 5 \end{bmatrix}$	
Leading Diagonal	Diagonal elements starting from top left to bottom right	
Diagonal Matrix	A square matrix where all the elements except leading diagonal elements are zero. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	
Scalar Matrix	A diagonal square matrix where all the leading elements are equal $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$	
Unit Matrix	A scalar matrix whose leading diagonal elements are equal to $1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
Upper Triangle Matrix	A matrix whose all the elements below the leading diagonal are zero $\begin{bmatrix} 3 & 4 & 5 \\ 0 & 1 & 9 \\ 0 & 0 & 5 \end{bmatrix}$	
Lower Triangle Matrix	A matrix whose all the elements above the leading diagonal are zero $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ 2 & 8 & 5 \end{bmatrix}$	
Sub Matrix	Sub Matrix The matrix obtained by deleting one or more rows or columns or both of a matrix is called its sub matrix.	
Equal Matrices	Two matrices are are equal matrices if order of both is same and corresponding elements are same	
Addition/ Subtraction	All the corresponding elements will be added/ subtracted to make a new matrix. (only possible when both matrix are of same order)	
Properties of Addition/ Subtraction	a . $A+B = B+A$ [Commutative], b . $(A+B)+C = A+(B+C)$ [Associative], c . $k(A+B) = kA + kB$, k is constant	
Multiplication	Multiplication of two matrices is possible only when no. of columns of first matrix = no. of rows of second matrix. <i>[To understand how to do multiplication – refer page 2.40 Example 3]</i>	
Properties of Multiplication	a. In general, $A \times B \neq B \times A$, b. $(A \times B) \times C = A \times (B \times C)$ if defined, c. $A(B+C) = AB + AC$ also, $(A+B)C = AC+BC$, d. if $AB = AC$ then $B \neq C$ in general, e. $A \times O = O$ [O means null matrix], f. $A \times I = IA = O$ [I means Unit Matrix],	

CA Foundation – Mathematics, Stats and LR | Revision Notes | Equations & Matrices

Transpose of a Matrix	A matrix obtained by changing rows and columns of a matrix A is called as Transpose Matrix of A . It is denoted by - A^T or A '	
Properties of Transpose	a. $A = (A')'$ b. $(A+B)' = A' + B'$ c. $(KA)' = K.A'$ d. $(AB)' = B' \times A'$	
Symmetric Matrix	If after transposing also there is no change in matrix. A'=A	
Skew Symmetric	If after transposing a matrix, it becomes its negative. A'=–A	

DETERMINANTS

Determinants	It is a valuation of a matrix using some rules. It only applies for square matrix	
Denote	It is denoted by det A or A or A	
2 × 2 Matrix	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (ad - bc)$	
3 × 3 Matrix	$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$	
Minor	M _{ij} =Minor of the element located in i th row and j th column. It is equal to determinant of sub matrix obtained after i th row and j th column	
Cofactor	$C_{ij} = (-1)^{i+j} M_{ij}$	
3 × 3 Formula using Cofactors	$a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$	
Properties	a. Δ remains unaltered if its rows or columns are interchanged.b. Δ change its sign if two rows or columns interchangesc. If any two rows or columns of a determinant are identical, then $\Delta = 0$ b. Δ change its sign if two rows or 	
Singular Matrix	if det A = 0, then singular matrix otherwise non-singular matrix	
Adjoint Matrix	Adjoint of A Matrix is the transpose of the Cofactor Matrix	
Inverse Matrix	If A is a square matrix, and det A \neq 0 (non-singular), then $A^{-1} = \frac{1}{ A } \times Adj. A$	
Cramer's rule to find solution of linear eq. in 3 variables	$x = \frac{\Delta x}{\Delta}$, $y = \frac{\Delta y}{\Delta}$, $z = \frac{\Delta z}{\Delta}$, provided $\Delta \neq 0$ [Δx means determinant of matrix by replacing first column of matrix with RHS values of equations] See Example	
Properties of Cramer's	a. If $\Delta \neq 0$, the system has unique solutionb. If $\Delta = 0$ and atleast one of $\Delta x, \Delta y, \Delta z \neq 0$, then system has no solution and it is inconsistentc. If $\Delta = 0$ and all of $\Delta x, \Delta y, \Delta z \neq 0$, then system may or may not have solution,. If it has solution, equations are dependent and there will be infinite no. of solutions. If it doesn't have solution, equations are inconsistent.	