AMENDMENTS IN EIS

CHAPTER-1 AUTOMATED BUSINESS PROCESSES

1. Explain the link of various business processes with vision and mission.

The key guiding factor for any business process shall be top management vision and mission. This vision and mission shall be achieved through implementing Operational Support and Management services. These are referred to as categories of business process.

Example representing all categories of Business Processes

	Nature of		
S.No.	Business	Description of decision	
	Decision		
1	Vision and	One of Asia's largest dairy product companies decided in 2005 to	
	Mission	increase its turnover by 2X in next ten years. The present turnover	
		was Rs. 10,000/- Crores.	
2	Management	The top management sat down and listed activates to be done to	
	Process	achieve the said turnover. This included:	
		- Enter into new markets. It was decided to have an all India	
		presence. At present the company products were being sold	
		across 20 out of 25 states and all state capital excluding the four	
		metros, namely Delhi, Mumbai, Chennai and Kolkata.	
		- Launch new products. Presently the company was mainly selling	
		milk products. Few new products that were decided to be sold in	
		future included; Biscuits, Toast, Atta, Packaged Drinking Water.	
		- Acquire existing dairies in markets where company had no	
		presence.	
3	Support Process	For all activities to be done as envisioned by top management, a	
		huge effort was needed on human resources front. This included -	
		- Defining and creating a new management structure	
		- Performing all human resource activities as listed above.	
4	Operational	Post the management processes, it is on the operational managers	
	Process	to implement the decisions in actual working form. It is here	
		where the whole hard job is done.	

- 2. Explain various types of risks.
 - The risks broadly can be categorized as follows:
- **A. Business Risks:** Businesses face all kinds of risks related from serious loss of profits to even bankruptcy and are discussed below:
 - Strategic Risk: These are the risks that would prevent an organization from accomplishing its objectives (meeting its goals). Examples include risks related to strategy, political, economic, regulatory, and global market conditions; also, could include reputation risk, leadership risk, brand risk, and changing customer needs
 - Financial Risk: Risk that could result in a negative financial impact to the
 organization (waste or loss of assets). Examples include risks from volatility in
 foreign currencies, interest rates, and commodities; credit risk, liquidity risk, and
 market risk.
 - Regulatory (Compliance) Risk: Risk that could expose the organization to fines
 and penalties from a regulatory agency due to non-compliance with laws and
 regulations. Examples include Violation of laws or regulations governing areas
 such as environmental, employee health and safety, protection of personal data in
 accordance with global data protection requirements and local tax or statutory
 laws.
 - Operational Risk: Risk that could prevent the organization from operating in the
 most effective and efficient manner or be disruptive to other operations. Examples
 include risks related to the organization's human resources, business processes,
 technology, business continuity, channel effectiveness, customer satisfaction,
 health and safety, environment, product/service failure, efficiency, capacity, and
 change integration.
 - Hazard Risk: Risks that are insurable, such as natural disasters; various insurable liabilities; impairment of physical assets; terrorism etc.
 - Residual Risk: Any risk remaining even after the counter measures are analyzed and implemented is called Residual Risk. An organization's management of risk should consider these two areas: Acceptance of residual risk and Selection of safeguards. Even when safeguards are applied, there is probably going to be some residual risk. The risk can be minimized, but it can seldom be eliminated. Residual risk must be kept at a minimal, acceptable level. As long as it is kept at an acceptable level, (i.e. the likelihood of the event occurring or the severity of the consequence is sufficiently reduced) the risk can be managed.

- B. Technology Risks (covered in chapter 5)
- C. Data Risks (covered in chapter 3)
- 3. Explain several terms like Assets, Vulnerability, Threat, Exposure, Counter Measure, Risk, etc.

Risk Management and Related Terms

Various terminologies relating to risk management are given as follows:

Risk Management: Risk Management is the process of assessing risk, taking steps to reduce risk to an acceptable level and maintaining that level of risk. Risk management involves identifying, measuring, and minimizing uncertain events affecting resources.

Asset: Asset can be defined as something of value to the organization; e.g., information in electronic or physical form, software systems, employees. Irrespective the nature of the assets themselves, they all have one or more of the following characteristics:

- They are recognized to be of value to the organization.
- They are not easily replaceable without cost, skill, time, resources or a combination.
- They form a part of the organization's corporate identity, without which, the organization may be threatened.
- Their data classification would normally be Proprietary, Highly confidential or even Top Secret.

It is the purpose of Information Security Personnel to identify the threats against the risks and the associated potential damage to, and the safeguarding of Information Assets.

Vulnerability: Vulnerability is the weakness in the system safeguards that exposes the system to threats. It may be a weakness in information system/s, cryptographic system (security systems), or other components (e.g. system security procedures, hardware design, internal controls) that could be exploited by a threat. Vulnerabilities potentially "allow" a threat to harm or exploit the system. For example, vulnerability could be a poor access control method allowing dishonest employees (the threat) to exploit the system to adjust their own records. Some examples of vulnerabilities are given as follows:

- Leaving the front door unlocked makes the house vulnerable to unwanted visitors.
- Short passwords (less than 6 characters) make the automated information system vulnerable to password cracking or guessing routines.

Missing safeguards often determine the level of vulnerability. Determining vulnerabilities involves a security evaluation of the system including inspection of safeguards, testing, and penetration analysis.

Normally, vulnerability is a state in a computing system (or set of systems), which must have at least one condition, out of the following:

- 'Allows an attacker to execute commands as another user' or
- 'Allows an attacker to access data that is contrary to the specified access restrictions for that data' or
- 'Allows an attacker to pose as another entity' or
- 'Allows an attacker to conduct a denial of service'.

Threat: Any entity, circumstance, or event with the potential to harm the software system or component through its unauthorized access, destruction, modification, and/or denial of service is called a Threat. It is an action, event or condition where there is a compromise in the system, its quality and ability to inflict harm to the organization. Threat has capability to attack on a system with intent to harm. It is often to start threat modeling with a list of known threats and vulnerabilities found in similar systems. Every system has a data, which is considered as a fuel to drive a system, data is nothing but assets. Assets and threats are closely correlated. A threat cannot exist without a target asset. Threats are typically prevented by applying some sort of protection to assets.

Exposure: An exposure is the extent of loss the enterprise has to face when a risk materializes. It is not just the immediate impact, but the real harm that occurs in the long run. For example loss of business, failure to perform the system's mission, loss of reputation, violation of privacy and loss of resources etc.

Likelihood: Likelihood of the threat occurring is the estimation of the probability that the threat will succeed in achieving an undesirable event. The presence, tenacity and strengths of threats, as well as the effectiveness of safeguards must be considered while assessing the likelihood of the threat occurring.

Attack: An attack is an attempt to gain unauthorized access to the system's services or to compromise the system's dependability. In software terms, an attack is a malicious intentional fault, usually an external fault that has the intent of exploiting vulnerability in the targeted software or system. Basically, it is a set of actions designed to compromise CIA (Confidentiality, Integrity or Availability), or any other desired feature of an information system. Simply, it is the act of trying to defeat Information Systems (IS) safeguards. The type of attack and its degree of success determines the consequence of the attack.

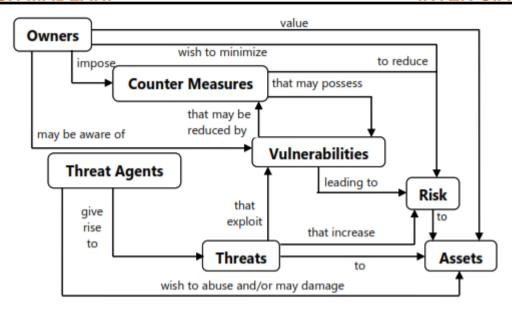


Fig. 1.4.1: Risk and Related Terms

Counter Measure: An action, device, procedure, technique or other measure that reduces the vulnerability of a component or system is referred as Counter Measure. For example, well known threat 'spoofing the user identity', has two countermeasures:

- Strong authentication protocols to validate users; and
- Passwords should not be stored in configuration files instead some secure mechanism should be used.
 - Similarly, for other vulnerabilities, different countermeasures may be used.
 - The relationship and different activities among these terms may be understood by the Fig.

Concludingly, Risk can be defined as the potential harm caused if a threat exploits a particular vulnerability to cause damage to an asset, and Risk Analysis is defined as the process of identifying security risks and determining their magnitude and impact on an organization. Risk Assessment includes the following:

- Identification of threats and vulnerabilities in the system;
- Potential impact or magnitude of harm that a loss of CIA, would have on enterprise operations or enterprise assets, should an identified vulnerability be exploited by a threat; and

New technology provides the potential for dramatically enhanced business performance, improved and demonstrated information risk reduction and security measures. Technology can also add real value to the organization by contributing to interactions with the trading partners, closer customer relations, improved competitive advantage and protected reputation.

4. Explain various Risk Management Strategies

When risks are identified, and analyzed, it is not always appropriate to implement controls to counter them. Some risks may be minor, and it may not be cost effective to implement expensive control processes for them. Risk management strategy is explained and illustrated below:

- Tolerate/Accept the risk. One of the primary functions of management is managing risk. Some risks may be considered minor because their impact and probability of occurrence is low. In this case, consciously accepting the risk as a cost of doing business is appropriate, as well as periodically reviewing the risk to ensure its impact remains low.
- Terminate/Eliminate the risk. It is possible for a risk to be associated with the use of a
 technology, supplier, or vendor. The risk can be eliminated by replacing the technology
 with more robust products and by seeking more capable suppliers and vendors.
- Transfer/Share the risk. Risk mitigation approaches can be shared with trading partners and suppliers. A good example is outsourcing infrastructure management. In such a case, the supplier mitigates the risks associated with managing the IT infrastructure by being more capable and having access to more highly skilled staff than the primary organization. Risk also may be mitigated by transferring the cost of realized risk to an insurance provider.
- Treat/mitigate the risk. Where other options have been eliminated, suitable controls
 must be devised and implemented to prevent the risk from manifesting itself or to
 minimize its effects.
- **Turn back.** Where the probability or impact of the risk is very low, then management may decide to ignore the risk.

CHAPTER-2 FINANCIAL AND ACCOUNTING SYSTEMS

1. Explain difference between Installed and Cloud Based Applications.

Cloud Applications: These days many organizations do not want to install Financial Applications on their own IT infrastructure. For many organizations, the thought process is that it is not their primary function to operate complex IT systems and to have a dedicated IT team and hardware which requires hiring highly skilled IT resources and to maintain the hardware and software to run daily operations. The costs may become prohibitive. Thus, organizations increasingly are hosting their applications on Internet and outsource the IT functions. There are many methods through which this can be achieved. Most common among them being SaaS – Software as a Service or IaaS – Infrastructure as a Service.

Table 2.2.5: Installed and Cloud Based Applications

Particulars	Installed Application	Cloud Based Application
Installation	As software is installed on hard disc of	Installation on user computer is not
and	the computer used by user, it needs to	required. Update and maintenance
Maintenance	be installed on every computer one by	are defined responsibility of
	one. This may take lot of time. Also,	service provider.
	maintenance and updating of software	
	may take lot time and efforts.	
Accessibility	As software is installed on the hard disc	As software is available through
	of the user's computer, user needs to go	online access, to use the software a
	the computer only, i.e. the computer	browser and an internet
	where software is installed, to use the	connection is needed. It can be used
	software. It cannot be used from any	from any computer in the world.
	computer.	Access to the software becomes
		very easy. Also, it can be used 24 x
		7.
Mobile	Using the software through mobile	Mobile application becomes very
Application	application is difficult in this case.	easy as data is available 24x7. As
		technology evolves mobile
		technology is becoming an industry
		norm. That makes cloud based
		application future oriented.
Data Storage	Data is physically stored in the	Data is not stored in the user's

	premises of the user, i.e. on the hard	server computer. It is stored on a
	disc of the user's server computer.	web server. Ownership of data is
	Hence user will have full control over	defined in Service Level Agreement
	the data.	(SLA). SLA defines the rights,
		responsibilities and authority of
		both service provider and service
		user.
Data Security	As the data is in physical control of the	Data security is a challenge in case
	user, user shall have the full physical	of cloud based application as the
	control over the data and he/she can	data is not in control of the user or
	ensure that it is not accessed without	owner of data. As time evolves;
	proper access.	SLAs provides for details of back-
		up, disaster recovery alternatives
		being used by service provider.
Performance	A well written installed application	Access is dependent on speed of
	shall always be faster than web	internet. Slow internet slows
	application, reason being data is picked	access to information and may slow
	from local server without internet.	operations.
Flexibility	It shall have more flexibility and	The success of cloud based
	controls as compared to web	applications is that they allow
	application. It is very easy to write	flexibility against both capital
	desktop applications that take	expenditure (CAPEX) and
	advantage of the user's hardware (such	Operating Expense (OPEX) to the
	as: scanners, cameras, Wi-Fi, serial	user. User can scale up operations
	ports, network ports, etc.). Installed	as per need.
	applications have this dis-advantage of	
	higher capital expenditure (CAPEX) in	
	comparison to cloud based application.	

2. Explain benefits of an ERP System

• Information integration: The reason ERP systems are called integrated is because they possess the ability to automatically update data between related business functions and components. For example - one needs to only update the status of an order at one place in the order-processing system; and all the other components will automatically get

updated.

- Reduction of lead-time: The elapsed time between placing an order and receiving it is known as the Lead-time. The ERP Systems by virtue of their integrated nature with many modules like Finance, Manufacturing, Material Management Module etc.; the use of the latest technologies like EFT (Electronic Fund Transfer), EDI (Electronic Data Interchange) reduce the lead times and make it possible for the organizations to have the items at the time they are required.
- On-time Shipment: Since the different functions involved in the timely delivery of the finished goods to the customers- purchasing, material management production, production planning, plant maintenance, sales and distribution are integrated and the procedures automated; the chances of errors are minimal and the production efficiency is high. Thus, by integrating the various business functions and automating the procedures and tasks the ERP system ensures on-time delivery of goods to the customers.
- Reduction in Cycle Time: Cycle time is the time between placement of the order and delivery of the product. In an ERP System; all the data, updated to the minute, is available in the centralized database and all the procedures are automated, almost all these activities are done without human intervention. This efficiency of the ERP systems helps in reducing the cycle time.
- Improved Resource utilization: The efficient functioning of the different modules in the ERP system like manufacturing, material management, plant maintenance, sales and distribution ensures that the inventory is kept to a minimum level, the machine down time is minimum and the goods are produced only as per the demand and the finished goods are delivered to the customer in the most efficient way. Thus, the ERP systems help the organization in drastically improving the capacity and resource utilization.
- Better Customer Satisfaction: Customer satisfaction means meeting or exceeding customers 'requirements for a product or service. With the help of web-enabled ERP systems, customers can place the order, track the status of the order and make the payment sitting at home. Since all the details of the product and the customer are available to the person at the technical support department also, the company will be able to better support the customer.
- Improved Supplier Performance: ERP systems provide vendor management and procurement support tools designed to coordinate all aspects of the procurement process. They support the organization in its efforts to effectively negotiate, monitor and control procurement costs and schedules while assuring superior product quality. The supplier management and control processes are comprised of features that will help the

organization in managing supplier relations, monitoring vendor activities and managing supplier quality.

- **Increased Flexibility:** ERP Systems help the companies to remain flexible by making the company information available across the departmental barriers and automating most of the processes and procedures, thus enabling the company to react quickly to the changing market conditions.
- Reduced Quality Costs: Quality is defined in many different ways- excellence, conformance to specifications, fitness for use, value for the price and so on. The ERP System's central database eliminates redundant specifications and ensures that a single change to standard procedures takes effect immediately throughout the organization. The ERP systems also provide tools for implementing total quality management programs within an organization.
- Better Analysis and Planning Capabilities: Another advantage provided by ERP Systems is the boost to the planning functions. By enabling the comprehensive and unified management of related business functions such as production, finance, inventory management etc. and their data, it becomes possible to utilize fully many types of Decision Support Systems (DSS) and simulation functions, what-if analysis and so on; thus, enabling the decision-makers to make better and informed decisions.
- Improved information accuracy and decision-making capability: The three fundamental characteristics of information are accuracy, relevancy and timeliness. The information needs to be accurate, relevant for the decision-maker and available to the decision-makers when he requires it. The strength of ERP Systems- integration and automation help in improving the information accuracy and help in better decision-making.
- Use of Latest Technology: ERP packages are adapted to utilize the latest developments in Information Technology such as open systems, client/server technology, Cloud Computing, Mobile computing etc. It is this adaptation of ERP packages to the latest changes in IT that makes the flexible adaptation to changes in future development environments possible.

3. Explain Risks and corresponding Controls related to People Issues

Table 2.3.1(A): Risks and corresponding Controls related to People Issues

Aspect	Risk Associated	Control Required	
Change	Change will occur in the employee's job	Proper training of the users with	
Management	profile in terms of some jobs becoming	well documented manuals.	
	irrelevant and some new jobs created.	Practical hands on training of the	

		ERP System should be provided so
		that the transition from old system
		to ERP system is smooth and hassle
		free.
	The way in which organization functions	It requires ensuring that a project
	will change, the planning, forecasting	charter or mission statement
	and decision-making capabilities will	exists. The project requirements
	improve, information integration	are to be properly documented and
	happening etc.	signed by the users and senior
		management.
	Changing the scope of the project is	This requires clear defining of
	another problem.	change control procedures and
		holds everyone to them.
Training	Since the greater part of the raining	Training is a project-managed
	takes place towards the end of the ERP	activity and shall be imparted to
	implementation cycle, management may	the users in an organization by the
	curtail the training due to increase in the	skilled consultants and
	overall cost budget.	representatives of the hardware
		and package vendors.
Staff	As the overall system is integrated and	This can be controlled and
Turnover	connected with each other department,	minimized by allocation of
	it becomes complicated and difficult to	employees to tasks matching their
	understand. Employee turnover –	skill-set; fixing of compensation
	qualified and skilled personnel leaving	package and other benefits
	the company - during the	accordingly- thus keeping the
	implementation and transition phases	employees happy and content and
	can affect the schedules and result in	minimizing the staff turnover.
	delayed implementation and cost	
	overrun.	
Тор	ERP implementation will fail if the top	The ERP implementation shall be
Management	management does not provide the	started only after the top
Support	support and grant permission for the	management is fully convinced and
Jupport		
	availability of the huge resources that	assure of providing the full
C 1	are required during the transition.	support.
Consultants	These are experts in the implementation	The consultants should be

of the ERP package and might not be	assigned a liaison officer – a senior
familiar with the internal workings and	manager – who can familiarize
organizational culture.	them with the company and its
	working.

2. Process Risks: One of the main reason for ERP implementation is to improve, streamline and make the business process more efficient, productive and effective.

Table 2.3.1(B): Risks and corresponding Controls related to Process Risks

Aspect	Risk Associated	Control Required	
Program	There could be a possibility of an	This requires bridging the information	
Management	information gap between day-to-	gap between traditional ERP-based	
	day program management	functions and high value operational	
	activities and ERP-enabled	management functions, such	
	functions like materials and	applications can provide reliable real-	
	procurement planning, logistics	tics time information linkages to enable	
	and manufacturing.	high-quality decision making.	
Business	BPR means not just change - but	This requires overhauling of	
Process	dramatic change and dramatic	organizational structures,	
Reengineering	improvements.	management systems, job	
(BPR)		descriptions, performance	
		measurements, skill development.,	
		training and use of IT.	

Technological Risks: The organizations implementing ERP systems should keep abreast of the latest technological developments and implementation which is required to survive and thrive.

Table 2.3.1(C): Risks and corresponding Controls related to Technological Risks

Aspect	Risk Associated	Control Required
Software	ERP systems offer a myriad of	Care should be taken to incorporate
Functionality	features and functions, however, not	the features that are required by
	all organizations require those many	the organization and supporting
	features. Implementing all the	additional features and
	functionality and features just for the	functionality that might be required
	sake of it can be disastrous for an	at a future date.
	organization.	

Technological	With the advent of more efficient	This requires critical choice of
Obsolescence	technologies every day, the ERP	technology, architecture of the
	system also becomes obsolete as time	product, ease of enhancements,
	goes on.	ease of upgrading, quality of vendor
		support.
Enhancement	ERP Systems are not upgraded and	Care must be taken while selecting
and Upgrades	kept up-to-date. Patches and	the vendor and upgrade/support
	upgrades are not installed and the	contracts should be signed to
	tools are under utilised.	minimize the risks.
Application	These processes focus on the	By bringing to the light the sheer
Portfolio	selection of new business	number of applications in the
Management	applications and the projects	current portfolio, IT organizations
	required delivering them.	can begin to reduce duplication and
		complexity.

4. Other Implementation Issues: Many times, ERP implementations are withdrawn because of the following factors.

Table 2.3.1(D): Risks and corresponding Controls related to some other implementation issues

Aspect	Risk Associated	Control Required
Lengthy	ERP projects are lengthy that takes	Care must be taken to keep the
implementation	anywhere between 1 to 4 years	momentum high and
time	depending upon the size of the	enthusiasm live amongst the
	organization. Due to technological	employees, so as to minimize
	developments happening every day, the	the risk.
	business and technological environment	
	during the start and completion of the	
	project will never be the same.	
	Employee turnover is another problem.	
Insufficient	The budget for ERP implementation is	It is necessary to allocate
Funding	generally allocated without consulting	necessary funds for the ERP
	experts and then implementation is	implementation project and
	stopped along the way, due to lack of	then allocate some more for
	funds.	contingencies.
Data Safety	As there is only one set of data, if this	Back up arrangement needs to

	data is lost, whole business may come to	be very strong. Also, strict
	stand still.	physical control is needed for
		data.
Speed of	As data is maintained centrally,	This can be controlled by
Operation	gradually the data size becomes more	removing redundant data, using
	and more and it may reduce the speed of	techniques like data
	operation.	warehousing and updating
		hardware on a continuous basis.
System Failure	As everybody is connected to a single	This can be controlled and
	system and central database, in case of	minimized by having proper
	failure of system, the whole business	and updated back up of data as
	may come to stand still may get affected	well as alternate hardware /
	badly.	internet arrangements. In case
		of failure of primary system,
		secondary system may be used.
Data Access	Data is stored centrally and all the	Access rights need to be defined
	departments access the central data.	very carefully and to be given on
	This creates a possibility of access to	"Need to know" and Need to do"
	non-relevant data.	basis only.

5. Post Implementation issues: ERP operation and maintenance requires a lifelong commitment by the company management and users of the system.

Table 2.3.1(E): Risks and corresponding Controls related to post-implementation issues

Aspect	Risk Associated	Control Required
Lifelong	Even after the ERP implementation, there will	This requires a strong level
commitment	always be new modules/versions to install,	of commitment and
	new persons to be trained, new technologies to	consistency by the
	be embraced, refresher courses to be	management and users of
	conducted and so on.	the system.

4. Explain features of Controlling Module.

• Cost Element Accounting: This component provides overview of the costs and revenues that occur in an organization. The cost elements are the basis for cost accounting and enable the user the ability to display costs for each of the accounts that have been assigned to the cost element. Examples of accounts that can be assigned are Cost Centres,

Internal Orders, WBS (work breakdown structures).

- Cost Centre Accounting: This provides information on the costs incurred by the business. Cost Centres can be created for such functional areas as Marketing, Purchasing, Human Resources, Finance, Facilities, Information Systems, Administrative Support, Legal, Shipping/Receiving, or even Quality. Some of the benefits of Cost Centre Accounting are that the managers can set budget/cost Centre targets; Planning; Availability of Cost allocation methods; and Assessments/Distribution of costs to other cost objects.
- Activity-Based-Accounting: This analyse cross-departmental business processes and allows for a process-oriented and cross functional view of the cost centres.
- Internal Orders: Internal Orders provide a means of tracking costs of a specific job, service, or task. These are used as a method to collect those costs and business transactions related to the task. This level of monitoring can be very detailed but allows management the ability to review Internal Order activity for better decision making purposes.
- **Product Cost Controlling:** This calculates the costs that occur during the manufacture of a product or provision of a service and allows the management the ability to analyse their product costs and to make decisions on the optimal price(s) to market their products.
- **Profitability Analysis:** This allows the management to review information with respect to the company's profit or contribution margin by individual market segment.
- **Profit Centre Accounting:** This evaluates the profit or loss of individual, independent areas within an organization.

CHAPTER-3 INFORMATION SYSTEMS AND ITS COMPONENTS

1. Explain benefits of Big Data Processing.

- a) Ability to process Big Data brings in multiple benefits, such as-
 - Businesses can utilize outside intelligence while taking decisions.
 - Access to social data from search engines and sites like Facebook, Twitter are enabling organizations to fine tune their business strategies.
 - Early identification of risk to the product/services, if any

b) Improved customer service

Traditional customer feedback systems are getting replaced by new systems
designed with Big Data technologies. In these new systems, Big Data and natural
language processing technologies are being used to read and evaluate consumer
responses.

c) Better operational efficiency

• Integration of Big Data technologies and data warehouse helps an organization to offload infrequently accessed data, this leading to better operational efficiency.

CHAPTER-4

E-COMMERCE, M-COMMERCE AND EMERGING TECHNOLOGIES

1. Explain various types of E-Commerce Business Models

A Business Model can be defined as the organization of product, service and information flows, and the sources of revenues and benefits for suppliers and customers. An e-business model is the adaptation of an organization's business model to the internet economy. A Business Model is adopted by an organization as a framework to describe how it makes money on a sustainable basis and grows. A business model also enables a firm to analyze its environment more effectively and thereby exploit the potential of its markets; better understand its customers; and raise entry barriers for rivals. E-business models utilize the benefits of electronic communications to achieve the value adding processes. Some of the e-markets are explained below in the Table 4.1.2:

Table 4.1.2: Various e-Markets

S.	e-Market	Description
No.		
1	e-Shops	An e-shop is a virtual store front that sells products and services
		online. Orders are placed and payments made. They are convenient
		way of effecting direct sales to customers; allow manufacturers to
bypass intermedi		bypass intermediate operators and thereby reduce costs and delivery
		times. Examples - <u>www.sonicnet.com</u> , www.wforwomen.com
2	e-Malls	The e-mall is defined as the retailing model of a shopping mall, a
		conglomeration of different shops situated in a convenient location in
		e-commerce.
3	e-auctions	Electronic auctions provide a channel of communication through
		which the bidding process for products and services can take place
		between competing buyers. Example – www.onsale.com
4	Portals	Portals are the channels through which websites are offered as
		content. The control of content can be a source of revenue for firms
		through charging firms for advertising or charging consumers a
		subscription for access.
5	Buyer	The Buyer Aggregator brings together large numbers of individual
privilege of large volume		buyers so that they can gain the types of savings that are usually the
		privilege of large volume buyers. In this, the firm collects the
		information about goods/service providers, make the providers their
		partners, and sell their services under its own brand. Example -

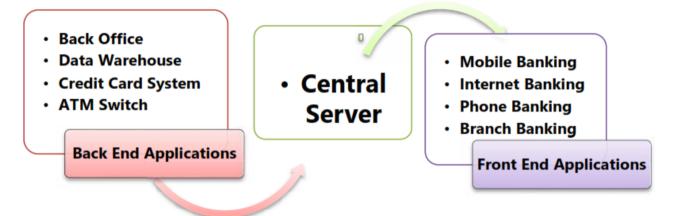
		www.zomato.com		
6	Virtual	Virtual Community is a community of customers who share a		
	Communities	common interest and use the internet to communicate with each		
		other. Amazon.com provides websites for the exchange of		
		information on a wide range of subjects relating to their portfolio of		
		products and services. Virtual communities benefit from network		
		externalities whereby the more people who join and contribute to		
		the community, the greater the benefits that accrue, but without any		
		additional cost to participants.		
7	e-marketing	e-marketing is the use of electronic communications technology such		
		as the internet, to achieve marketing objectives. Of course,		
		information on websites also empowers customers and helps them		
		achieve their objectives. For example, they can compare prices of		
		products by rival firms. The internet changes the relationship		
		between buyers and sellers because market information is available		
		to all parties in the transaction.		
8	e-procurement	e-procurement is the management of all procurement activities via		
		electronic means. Business models based on e-procurement seek		
		efficiency in accessing information on suppliers, availability, price,		
		quality and delivery times as well as cost savings by collaborating		
		with partners to pool their buying power and secure best value deals.		
		E-procurement infomediaries specialize in providing up-to-date and		
		real-time information on all aspects of the supply of materials to		
		businesses.		
9	e-distribution	The e-distribution model helps distributors to achieve efficience		
		savings by managing large volumes of customers, automating orders,		
		communicating with partners and facilitating value-adding services		
		such as order tracking through each point in the supply chain. An		
		example of a firm specializing in e-distribution is wipro.com		
		(<u>www.wipro.com</u>) who use the internet to provide fully integrated e-		
		businessmen abled solutions that help to unify the information flows across all the major distribution processes including sales and		
		marketing automation, customer service, warehouse logistics,		
		purchasing and inventory management, and finance.		
		purchasing and inventory management, and infance.		

The e-business models relating to e-business markets can be summarized as given below in the Table 4.1.3.

Table 4.1.3: Some Business Models for E-Commerce

Models	Definition	e-business markets	Examples
Business-to	Generally, this supports the	e-shops, e-malls, e-	www.cisco.com
Consumer	activities within the customer	auctions, buyer	www.amazon.com
(B2C)	chain in that it focuses on sell-	aggregators, portals	
	side activities.	etc.	
Business-to-	This supports the supply chain	e-auctions, e-	www.emall.com
Business	of organizations that involves	procurement, e-	
(B2B)	repeat commerce between a	distribution, portals,	
	company and its suppliers or	e-marketing etc.	
	other partners.		
Consumer-	This supports the community	e-auctions, virtual	www.eBay.com
to-Consumer	plan surrounding the	communities etc.	
(C2C)	organization and can be seen		
	as a commercial extension of		
	community activities.		

2. Explain applications of Internet Of Things.


These applications have been added. Earlier are already covered in the book.

- Wearables: Just like smart homes, wearables remain another important potential IoT application like Apple smartwatch.
- Smart City: Smart cities, like its name suggests, is a big innovation and spans a wide variety of use cases, from water distribution and traffic management to waste management and environmental monitoring.
- Smart Grids: Smart grids are another area of IoT technology that stands out. A smart grid basically promises to extract information on the behaviors of consumers and electricity suppliers in an automated fashion to improve the efficiency, economics, and reliability of electricity distribution.
- Industrial Internet of things: One way to think of the Industrial Internet is by looking at connected machines and devices in industries such as power generation, oil, gas, etc. for monitoring and improving control efficiency. With an IoT enabled system, factory equipment that contains embedded sensors communicate data about different parameters, such as pressure, temperature, and utilization of the machine. The IoT system can also process workflow and change equipment settings to optimize performance.

- Connected Car: Connected car technology is a vast and an extensive network of multiple sensors, antennas, embedded software, and technologies that assist in communication to navigate in our complex world.
- Connected Health (Digital Health/Telehealth/Telemedicine): IoT has various applications in healthcare, which are from remote monitoring equipment to advance and smart sensors to equipment integration. It has the potential to improve how physicians deliver care and keep patients safe and healthy.
- Smart Retail: Retailers have started adopting IoT solutions and using IoT embedded systems across several applications that improve store operations, increasing purchases, reducing theft, enabling inventory management, and enhancing the consumer's shopping experience.
- Smart Supply Chain: Supply chains have already been getting smarter for a couple of years. Offering solutions to problems like tracking of goods while they are on the road or in transit or helping suppliers exchange inventory information are some of the popular offerings.

CHAPTER-5 CORE BANKING SYSTEMS

1. Explain working of Core Banking Systems through Front End and Back End Applications

Key Modules of CBS

- Back Office: The Back Office is the portion of a company made up of administration and support personnel, who are not client-facing. Back office functions include settlements, clearances, record maintenance, regulatory compliance, accounting, and IT services. Back Office professionals may also work in areas like monitoring employees' conversations and making sure they are not trading forbidden securities on their own accounts.
- Data Warehouse: Banking professionals use data warehouses to simplify and standardize the way they gather data and finally get to one clear version of the truth. Data warehouses take care of the difficult data management digesting large quantities of data and ensuring accuracy and make it easier for professionals to analyze data.
- Credit-Card System: Credit card system provides customer management, credit card
 management, account management, customer information management and general
 ledger functions; provides the online transaction authorization and service of the bank
 card in each transaction channel of the issuing bank; Support in the payment application;
 and at the same time, the system has a flexible parameter system, complex organization
 support mechanism and product factory based design concept to speed up product time
 to market.
- Automated Teller Machines (ATM): An Automated Teller Machine (ATM) is an
 electronic banking outlet that allows customers to complete basic transactions without
 the aid of a branch representative or teller. Anyone with a credit card or debit card can
 access most ATMs. ATMs are convenient, allowing consumers to perform quick, self-serve
 transactions from everyday banking like deposits and withdrawals to more complex

transactions like bill payments and transfers.

- Central Server: Initially, it used to take at least a day for a transaction to get reflected in the real account because each branch had their local servers, and the data from the server in each branch was sent in a batch to the servers in the data center only at the end of the day (EOD). However, nowadays, most banks use core banking applications to support their operations creating a Centralized Online Real-time Exchange (or Environment) (CORE). This means that all the bank's branches access applications from centralized data centers/servers, therefore, any deposits made in any branch are reflected immediately and customer can withdraw money from any other branch throughout the world.
- Mobile Banking & Internet Banking: Mobile Banking and Internet banking are two
 sides of the same coin. The screens have changes, the sizes have become smaller and
 banking has become simpler. Mobile banking is a much latest entrant into the digital
 world of banking.
 - Internet Banking also known as Online Banking, is an electronic payment system that enables customers of a bank or other financial institution to conduct a range of financial transactions through the financial institution's website. The online banking system offers over 250+ services and facilities that give us real-time access to our bank account. We can make and receive payments to our bank accounts, open Fixed and Recurring Deposits, view account details, request a cheque book and a lot more, while you are online.
 - Mobile Banking is a service provided by a bank or other financial that allows its customers to conduct financial institution that allows its customers to conduct financial transactions remotely using a mobile device such as a Smartphone or tablet. Unlike the related internet banking, it uses software, usually called an app, provided by the financial institution for the purpose. Mobile banking is usually available on a 24-hour basis.
 - o **Phone Banking:** It is a functionality through which customers can execute many of the banking transactional services through Contact Centre of a bank over phone, without the need to visit a bank branch or ATM. Registration of Mobile number in account is one of the basic perquisite to avail Phone Banking. The use of telephone banking services, however, has been declining in favor of internet banking. Account related information, Cheque Book issue request, stop payment of cheque, Opening of Fixed deposit etc. are some of the services that can be availed under Phone Banking.

- Branch Banking: CBS are the bank's centralized systems that are responsible for ensuring seamless workflow by automating the frontend and backend processes within a bank. CBS enables single-view of customer data across all branches in a bank and thus facilitate information across the delivery channels. The branch confines itself to the following key functions:
 - o Creating manual documents capturing data required for input into software;
 - o Internal authorization;
 - o Initiating Beginning-Of-Day (BOD) operations;
 - o End-Of-Day (EOD) operations; and
 - o Reviewing reports for control and error correction.

2. Explain Risks associated with CBS.

- (a) Operational Risk: It is defined as a risk arising from direct or indirect loss to the bank which could be associated with inadequate or failed internal process, people and systems. Operational risk necessarily excludes business risk and strategic risk. The components of operational risk include transaction processing risk, information security risk, legal risk, compliance risk and people risk.
- (b) Credit Risk: It is the risk that an asset or a loan becomes irrecoverable in the case of outright default, or the risk of an unexpected delay in the servicing of a loan. Since bank and borrower usually sign a loan contract, credit risk can be considered a form of counterparty risk.
- (c) Market Risk: Market risk refers to the risk of losses in the bank's trading book due to changes in equity prices, interest rates, credit spreads, foreign-exchange rates, commodity prices, and other indicators whose values are set in a public market. To manage market risk, banks deploy several highly sophisticated mathematical and statistical techniques
- (d) Strategic Risk: Strategic risk, sometimes referred to as business risk, can be defined as the risk that earnings decline due to a changing business environment, for example new competitors or changing demand of customers.
- (e) Compliance Risk: Compliance risk is exposure to legal penalties, financial penalty and material loss an organization faces when it fails to act in accordance with industry laws and regulations, internal policies or prescribed best practices.
- (f) IT Risk:

Already covered in chapter-5.

Prevention of Money Laundering Act (PMLA)

Only relevant sections pertaining to the topic are discussed below:

CHAPTER II OFFENCE OF MONEY-LAUNDERING

Section 3. Offence of money-laundering

Whosoever directly or indirectly attempts to indulge or knowingly assists or knowingly is a party or is actually involved in any process or activity connected with the 17 proceeds of crime including its concealment, possession, acquisition or use and projecting or claiming it as untainted property shall be guilty of offence of money-laundering.

CHAPTER IV OBLIGATIONS OF BANKING COMPANIES, FINANCIAL INSTITUTIONS AND INTERMEDIARIES

Section 12. Reporting entity to maintain records.

- (1) Every reporting entity shall—
 - (a) maintain a record of all transactions, including information relating to transactions covered under clause (b), in such manner as to enable it to reconstruct individual transactions;
 - (b) furnish to the Director within such time as may be prescribed, information relating to such transactions, whether attempted or executed, the nature and value of which may be prescribed;
 - (c) Omitted
 - (d) Omitted
 - (e) maintain record of documents evidencing identity of its clients and beneficial owners as well as account files and business correspondence relating to its clients.

[Note: Clauses (c) and (d) have been omitted]

- (2) Every information maintained, furnished or verified, save as otherwise provided under any law for the time being in force, shall be kept confidential.
- (3) The records referred to in clause (a) of sub-section (1) shall be maintained for a period of five years from the date of transaction between a client and the reporting entity.
- (4) The records referred to in clause (e) of sub-section (1) shall be maintained for a period of five years after the business relationship between a client and the reporting entity has ended or the account has been closed, whichever is later.
- (5) The Central Government may, by notification, exempt any reporting entity or class of reporting entities from any obligation under this Chapter.

Section 13. Powers of Director to impose fine.

(1) The Director may, either of his own motion or on an application made by any authority, officer or person, make such inquiry or cause such inquiry to be made, as he thinks fit to

be necessary, with regard to the obligations of the reporting entity, under this Chapter.

- (1A) If at any stage of inquiry or any other proceedings before him, the Director having regard to the nature and complexity of the case, is of the opinion that it is necessary to do so, he may direct the concerned reporting entity to get its records, as may be specified, audited by an accountant from amongst a panel of accountants, maintained by the Central Government for this purpose.
- (1B) The expenses of, and incidental to, any audit under sub-section (1A) shall be borne by the Central Government.
- (2) If the Director, in the course of any inquiry, finds that a reporting entity or its designated director on the Board or any of its employees has failed to comply with the obligations under this Chapter, then, without prejudice to any other action that may be taken under any other provisions of this Act, he may—
 - (a) issue a warning in writing; or
 - (b) direct such reporting entity or its designated director on the Board or any of its employees, to comply with specific instructions; or
 - (c) direct such reporting entity or its designated director on the Board or any of its employees, to send reports at such interval as may be prescribed on the measures it is taking; or
 - (d) by an order, impose a monetary penalty on such reporting entity or its designated director on the Board or any of its employees, which shall not be less than ten thousand rupees but may extend to one lakh rupees for each failure.
- (3) The Director shall forward a copy of the order passed under subsection (2) to every banking company, financial institution or intermediary or person who is a party to the proceedings under that sub-section.
 - **Explanation** For the purpose of this section, "accountant" shall mean a chartered accountant within the meaning of the Chartered Accountants Act, 1949 (38 of 1949).

CHAPTER X MISCELLANEOUS

Section 63. Punishment for false information or failure to give information, etc.

- (1) Any person willfully and maliciously giving false information and so causing an arrest or a search to be made under this Act shall on conviction be liable for imprisonment for a term which may extend to two years or with fine which may extend to fifty thousand rupees or both.
- (2) If any person -
 - (a) being legally bound to state the truth of any matter relating to an offence under section 3, refuses to answer any question put to him by an authority in the exercise

of its powers under this Act; or

- (b) refuses to sign any statement made by him in the course of any proceedings under this Act, which an authority may legally require to sign; or
- (c) to whom a summon is issued under section 50 either to attend to give evidence or produce books of account or other documents at a certain place and time, omits to attend or produce books of account or documents at the place or time, he shall pay, by way of penalty, a sum which shall not be less than five hundred rupees but which may extend to ten thousand rupees for each such default or failure.
- (3) No order under this section shall be passed by an authority referred to in sub-section (2) unless the person on whom the penalty is proposed to be imposed is given an opportunity of being heard in the matter by such authority.
- (4) Notwithstanding anything contained in clause (c) of sub-section (2), a person who intentionally disobeys any direction issued under section 50 shall also be liable to be proceeded against under section 174 of the Indian Penal Code (45 of 1860).

Section 70. Offences by companies.

- (1) Where a person committing a contravention of any of the provisions of this Act or of any rule, direction or order made there under is a company, every person who, at the time the contravention was committed, was in charge of, and was responsible to the company, for the conduct of the business of the company as well as the company, shall be deemed to be guilty of the contravention and shall be liable to be proceeded against and punished accordingly:
 - Provided that nothing contained in this sub-section shall render any such person liable to punishment if he proves that the contravention took place without his knowledge or that he exercised all due diligence to prevent such contravention.
- (2) Notwithstanding anything contained in sub-section (1), where a contravention of any of the provisions of this Act or of any rule, direction or order made there under has been committed by a company and it is proved that the contravention has taken place with the consent or connivance of, or is attributable to any neglect on the part of any director, manager, secretary or other officer of any company, such director, manager, secretary or other officer shall also be deemed to be guilty of the contravention and shall be liable to be proceeded against and punished accordingly.