CA Foundation – Mathematics, Stats and LR | Revision Notes | Correlation and Regression

CORRELATION

Bi-Variate	When data are c	ollocted on t	wo discr	crote variables simultaneously, they are known				
Data	When data are collected on two discrete variables simultaneously, they are known as Bi-Variate data							
Bi-Variate								
Distribution	Distribution of Bi-Variate data is called as Bivariate Distribution							
Distribution								
	Meaning F	leaning Frequency distribution involving two discrete variables.						
	Marginal I	If we make a separate distribution from bi-variate frequency						
D'W '	Distribution d	listribution	where w	we take aggregate of only one variable at a				
Bi-Variate				arginal distributions = 2				
Frequency								
Distribution								
	ii	interval of another variable. Total no. of conditional						
	d	listribution	s = m + 1	• n (<i>m</i> = no. of rows, <i>n</i> = no. of columns)				
		<u> </u>						
	While studying t	wo variables	s at the s	same time, if it is found that the change in one				
	variable leads to change in the other variable either directly or inversely, then the							
Correlation	two variables are	<u>e known to b</u>	be associa	ciated or correlated.				
Correlation	Positive Correla	ation	If two v	variables move in the same direction				
	Negative Correl	ation	If two v	variables move in the opposite direction				
	No Correlation		If no ch	change due to each other				
				h (A Dranav				
			ila that	t represents the nature/ direction and/or				
	magnitude of cor	relation.						
	Method Helps in obtaining							
	Scatter Diagram 19 510			5				
Measure of	Karl Pearson's I			Direction as well as strength of correlation.				
Correlation	moment correlation coefficient							
	Spearman's ran	k correlation		Direction as well as strength of correlation.				
	co-efficient			Useful for attributes.				
	Co-efficient of c	oncurrent		Direction as well as strength of correlation.				
	deviations		Only preferred for direction and not					
			ma	nagnitude. Quickest method.				
				Low Degree of				
	Perfect Posi	Porto	ect Negativ	tive Positive Correlation Low Degree of				
	Y Correlation	• Y↑Corre		Y↑ Y↑ Negative Correlation				
	•	•.		•••				
	•		••					
			۰.					
	•							
	0	x o						
<u>Scatter</u>								
Diagram	High Degree of High Degree of							
Diagrain	Positive Correlation Negative Correlationy							
	Y↑ Y↑ No Correlation Y↑ No Correlation							
		•						
				· · · · · · · · · · · · · · · · · · ·				
		$\rightarrow +$						
	0	x ol		x _o xo				

	Defined as	the ratio of covariance between the two variables to the product of the standard deviations of the two variables			
	Main Formula	$r_{xy} = \frac{Cov(x,y)}{\sigma_x \cdot \sigma_y}$			
	Formula for Covariance	$Cov(x,y) = \frac{\Sigma(x-\bar{x})(y-\bar{y})}{n} or \frac{\Sigma xy}{n} - \bar{x}.\bar{y}$			
Karl Pearson's Product moment correlation coefficient	Formula for Standard Deviation σ_x or σ_y	$\sigma_x = \sqrt{\frac{\Sigma(x-\bar{x})^2}{n}} or \sqrt{\frac{\Sigma x^2}{n} - (\bar{x})^2}$			
	Properties	$ \begin{array}{l} \rightarrow & \mbox{It is a unit-free measurement} \\ \rightarrow & \mbox{Value of r lies from -1 to +1 both inclusive} \\ \rightarrow & \mbox{Change of origin or Scale} \\ \hline \hline \\ \hline $			
	Applied tofind the level of agreement (or disagreement) betwee two judges so far as assessing a qualitation characteristic is concerned				
Spearman's Rank Correlation coefficient	Main Formula	$r_R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$, here d means difference in ranks $\Sigma \frac{(t^3 - t)}{12}$ here t is a tie length and we need to do			
	Adjustment Value in case of Tie Rank	$\Sigma \frac{(t^3-t)}{12}$ here t is a tie length and we need to do summation of all ties			
	Formula in case of Tie length	$r_R = 1 - \frac{6(\Sigma d^2 + \text{value of adjustment})}{n(n^2 - 1)}$			
	Use	A very simple and casual method of finding correlation when we are not serious about the magnitude of the two variables			
Co-efficient of concurrent deviations	Steps in this method	This method involves in attaching a positive sign for a x-value (except the first) if this value is more than the previous value and assigning a negative value if this value is less than the previous value. Applies to both variable and then these signs are compared. If signs match – pair is counted as concurrent deviation.			
	Formula	$r_{c} = \pm \sqrt{\pm \frac{2c - m}{m}}$ Here, m = total no. of deviations (it is one less than total no. of pairs under observation i.e m=n-1), c = no. of concurrent deviations, r_{c} also lies between -1 and 1 incl.			

CA Foundation – Mathematics, Stats and LR | Revision Notes | Correlation and Regression

Regression Analysis	Estimation of one variable for a given value of another variable on the basis of an average mathematical relationship between the two variables				
	Line Re		egression line of Y on X		
Estimation of Y (when it is dependent on X)	Pogrossion		coefficient of Y on X denoted by b_{yx}		
	Form		$Y - \overline{Y} = \boldsymbol{b}_{yx} (X - \overline{X}),$ we means of X series and Y series		
Estimation of X (when it is dependent on Y)			egression line of X on Y		
	Regression Coefficient	Regression C	oefficient of X on Y denoted by $m{b}_{xy}$		
	Form		$X - \overline{X} = b_{xy} (Y - \overline{Y}),$ we means of X series and Y series		
Important Theory Points	Whenlinearrelationshipexistsbetween two variables (i.e. correlationis perfect, $r_{xy} = -1$ or $+ 1$)Whennolinearrelationshipexist		The linear equation so arrived can be used both ways for Y on X and X on Y. It means regression lines are identical.		
	between two variab	les	In that case, we need to estimate the regression lines with the help of Method of Least Squares The minimisation of vertical distances in the scatter diagram is to be done		
	To derive regression	n line of x on yent	The minimisation of horizontal distances in the scatter diagram is to be done		
Regression Coefficient	Defined as the ratio of		Covariance between two variables Variance of Independent variable		
	Regression Coefficient of Y on X		$b_{yx} = r. \frac{\sigma_y}{\sigma_x}$ or $b_{yx} = \frac{Cov(x,y)}{\sigma_x^2}$		
	Regression Coef	ficient of X on Y	$b_{xy} = r. \frac{\sigma_x}{\sigma_y}$ or $b_{xy} = \frac{Cov(x,y)}{{\sigma_y}^2}$		
	r used here is Karl Pearson's Correlation Coefficient				
Properties of Regression lines and coefficient	Change of origin		The regression coefficients remain unchanged		
	Change of scale		: If original pair is X, Y and modified pair is U, V where		
			$U = \frac{X - m}{p} \text{ and } V = \frac{Y - n}{q}, \text{ then}$ $b_{vu} = b_{yx} \frac{q}{p}, b_{uv} = b_{xy} \frac{p}{q}$		
	Intersection of two regression lines		Two regression (if not identical) will intersect at the point (\bar{x}, \bar{y}) [means]		
	Relation betweer regression o		$r = \pm \sqrt{\pm b_{xy} \times b_{yx}}$ $b_{xy}, b_{yx} \text{ and } r \text{ all will have same sign}$		

 ${f 3}$ YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: pranavpopat, Twitter: @pranav_2512

CA Foundation – Mathematics, Stats and LR | Revision Notes | Correlation and Regression

Coefficient of Determination	Coefficient of Determin	ation	r^2 (square of correlation coefficient)	
	Interpretation of value		It explains the percentage of variation in dependent variable due to variation in independent variable	
	Example: if $r_{xy} = 0.8$, then $r^2 = 0.64$		It means 64% of variation in x is due to variation in y and remaining 36% due to other factors. It shows the reliability of correlation coefficient.	
Probable Error	Formula	Probable Error [P.E] = $\frac{2}{3} \times \text{Standard Error}$		
	Standard Error		$\frac{1-r^2}{\sqrt{n}}$	
	Use	Probable Error is used to test the reliability of $m{r}$		
		If r is l	ess than PE	The value of r is not significant. Not reliable
	Test	-	eater than six les of PE	The value of r is significant and there is evidence of correlation

4 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: pranavpopat, Twitter: @pranav_2512