Chapter 6 - Sequence and Series

FREE
 FAST
 TRACK
 Lectures:
 https://www.youtube.com/watch?v=ZZpvRpkgmaE\&list=PLAKrxMrPL3f wOSJWxnr8j0C9a4si2Dfdz

Lecture 1 of Sequence and Series: https://youtu.be/d2ImTctYMR8
Lecture 2 of Sequence and Series: https://youtu.be/LzpooC2IMXM

Unit 1 - Arithmetic Progression

Arithmetic Progression

A sequence of numbers is known as an Arithmetic Progression if the difference between two consecutive terms is the same. For example,

1. $2,4,6,8,10 \ldots$ is an arithmetic progression as the difference between any two consecutive terms is the same, i.e. 2 .
2. $1,5,9,13 \ldots$ is an arithmetic progression as the difference between any two consecutive terms is the same, i.e. 4.

Since the difference between any two consecutive terms in an A.P. is the same, i.e. common, it is known as the common difference.

The $n^{\text {th }}$ term of an A.P. is given by:
$t_{n}=a+(n-1) d$
Here,
$t_{n}=n^{\text {th }}$ term
$a=$ first term
$d=$ common difference

Questions to be Solved from Scanner

1. Page 3.360 - Question 88
2. Page 3.322 - Question 27 - Homework
3. Page 3.357 - Question 85
4. Page 3.354 - Question 79 - Homework
5. Page 3.347 - Question 69
6. Page 3.334 - Question 47
7. Page 3.324 - Question 30
8. Page 3.321 - Question 25 - Homework
9. Page 3.306 - Question 6
10. Page 3.325 - Question 32 - Homework

Arithmetic Mean

If we select any three consecutive terms from an A.P., the middle term is known as the Arithmetic Mean. If there are three consecutive terms t_{1}, t_{2}, and t_{3}, the term t_{2} is known as the arithmetic mean, and is given by $\frac{t_{1}+t_{3}}{2}$.

Questions to be Solved from Scanner

1. Page 3.317 - Question 21
2. Page 3.338 - Question 54
3. Page 3.329 - Question 40 - Homework
4. Page 3.357 -Question 84 - Homework
5. Page 3.328-Question 37 -Homework

Sum of the First n Terms

The sum of n terms of an A.P. is given by the formula:
$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$.
Questions to be Solved from Scanner

1. Page 3.331 - Question 42
2. Page 3.330 - Question 41 - Homework
3. Page 3.368 - Question 97
4. Page 3.363 - Question 91
5. Page 3.359 - Question 87 - Homework
6. Page 3.356 - Question 83
7. Page 3.346 - Question 68
8. Page 3.356 - Question 82
9. Page 3.354 - Question 80
10. Page 3.351 - Question 75 - Homework
11. Page 3.351 - Question 74 - Homework
12. Page 3.345 - Question 67
13. Page 3.344 - Question 64 - Homework
14. Page 3.339 - Question 56 - Homework
15. Page 3.337 - Question 53
16. Page 3.337 - Question 52 - Homework
17. Page 3.337 - Question 51
18. Page 3.335 - Question 49 - Homework
19. Page 3.333 - Question 45 - Homework
20. Page 3.332 - Question 44 - Homework
21. Page 3.327 - Question 35 - Homework
22. Page 3.319 - Question 23 - Homework
23. Page 3.316 - Question 19 - Homework
24. Page 3.315 - Question 17
25. Page 3.311 - Question 13 - Homework
26. Page 3.311 - Question 12 - Homework
27. Page 3.310 - Question 11
28. Page 3.308 - Question 9 - Homework
29. Page 3.302 - Question 1 - Homework

If the common difference is not given but the first and the last terms are given, the sum can be calculated using the formula:
$S_{n}=\frac{n}{2}(a+l)$, where l is the last term.

Questions to be Solved from Scanner

1. Page 3.303-Question 3

Unit 2 - Geometric Progression

A sequence of numbers is known as a Geometric Progression if the ratio between two consecutive terms is the same. For example,

1. $5,15,45,135, \ldots$ is a geometric progression as the ratio between any two consecutive terms is the same, i.e. 3. $\left(\frac{15}{5}=3, \frac{45}{15}=3\right.$, etc. $)$
2. $1,1 / 2,1 / 4,1 / 9, \ldots$ is a geometric progression as the ratio between any two consecutive terms is the same, i.e. $1 / 2 .\left(\frac{1 / 2}{1}=1 / 2, \frac{1 / 4}{1 / 2}=1 / 2\right.$, etc. $)$

Since the ratio between any two consecutive terms in a G.P. is the same, i.e. common, it is known as the common ratio.

The $n^{\text {th/ }}$ term of a G.P. is given by:
$t_{n}=a r^{n-1}$
Here,
$t_{n}=n^{\text {th }}$ term
$a=$ first term
$r=$ common ratio

Questions to be Solved from Scanner

1. Page 3.367 - Question 96
2. Page 3.358 - Question 86
3. Page 3.338 - Question 55
4. Page 3.320 - Question 24

Geometric Mean

If we select any three consecutive terms from a G.P., the middle term is known as the Geometric Mean. If there are three consecutive terms t_{1}, t_{2}, and t_{3}, the term t_{2} is known as the geometric mean. There are two methods of calculating the geometric mean:

1. If there are three consecutive terms t_{1}, t_{2}, and t_{3}, the term t_{2} is the geometric mean and is given by $\sqrt{t_{1} \times t_{3}}$. For example, the Geometric Mean between the numbers 3 and 27 is given by $\sqrt{3 \times 27}=9$.
2. Geometric mean is also calculable as the $n^{\text {th }}$ root of the product of n numbers. For example, if I ask you to calculate the geometric mean between 3 and 27, it obviously implies that there are three numbers in total. Therefore, $n=3$. Also, we know that the G.M. is 9 (as
calculated above). Now, let's check whether 9 is equal to the $n^{\text {th }}$ root of the product of n numbers. $(3 \times 9 \times 27)^{\frac{1}{3}}=9$. Therefore, it is clear that the geometric mean can also be calculated as the $n^{\text {th }}$ root of the product of n numbers.

Questions to be Solved from Scanner

1. Page 3.368 - Question 98
2. Page 3.347 - Question 70 - Homework
3. Page 3.339 - Question 57
4. Page 3.329 - Question 39 - Homework
5. Page 3.328 - Question 38
6. Page 3.326 - Question 34
7. Page 3.322 - Question 28 - Homework

Sum of the First n Terms

The sum of n terms of a G.P. is given by the formula:

1. When $r<1, S_{n}=a\left(\frac{1-r^{n}}{1-r}\right)$
2. When $r>1, S_{n}=a\left(\frac{r^{n}-1}{r-1}\right)$
3. When $r=1$, it becomes an A.P. with $d=0$, and the sum is calculated using the formula: $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$. For example, to calculate the sum of series $2,2,2, \ldots$ to 11 terms, we have $a=2 ; d=0 ; n=11$; and the sum is given by $\frac{11}{2} \times\{(2 \times 2)+(11-1) 0\}=22$.

Questions to be Solved from Scanner

1. Page 3.366 - Question 95
2. Page 3.353 - Question 78
3. Page 3.344 - Question 65
4. Page 3.321 - Question 26

Sum of Infinite Terms of a G.P.

The sum of infinite terms of a G.P. is given by the formula:

1. When $r<1, S_{\infty}=\frac{a}{1-r}$
2. When $r \geq 1, S_{\infty}=\infty$

Questions to be Solved from Scanner

1. Page 3.365 - Question 94
2. Page 3.363 - Question 92
3. Page 3.341 - Question 59
4. Page 3.336 - Question 50
5. Page 3.333 - Question 46
6. Page 3.327 - Question 36
7. Page 3.324 - Question 31
8. Page 3.323 - Question 29
9. Page 3.304 - Question 4
10. Page 3.362 - Question 90
11. Page 3.331 - Question 43

Unit 3 - Special Series

Following are some of the Standard Results:

1. Sum of first n natural or counting numbers $(1+2+3+4+\ldots+n)=\frac{n(n+1)}{2}$
2. Sum of first n odd numbers $\{1+3+5+\ldots+(2 n-1)\}=n^{2}$
3. Sum of the Squares of first n natural numbers $\left(1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}\right)=\frac{n(n+1)(2 n+1)}{6}$
4. Sum of the Cubes of first n natural numbers $\left(1^{3}+2^{3}+3^{3}+4^{3}+\ldots+n^{3}\right)=\left\{\frac{n(n+1)}{2}\right\}^{2}$
5. Sum of the series such as: $1+11+111+\ldots$ to n terms, or $2+22+222+\ldots$ to n terms, or $3+33+333+\ldots$ to n terms, and so on: $\frac{\text { Number }}{9} \times\left\{\frac{10\left(10^{n}-1\right)}{9}-n\right\}$. For example:
a. $1+11+111+\ldots$ to n terms $=\frac{1}{9} \times\left\{\frac{10\left(10^{n}-1\right)}{9}-n\right\}$
b. $2+22+222+\ldots$ to n terms $=\frac{2}{9} \times\left\{\frac{10\left(10^{n}-1\right)}{9}-n\right\}$
c. $3+33+333+\ldots$ to n terms $=\frac{3}{9} \times\left\{\frac{10\left(10^{n}-1\right)}{9}-n\right\}$

Questions to be Solved from Scanner
a. Page 3.355 - Question 81
b. Page 3.345 - Question 66
c. Page 3.340 - Question 58
d. Page 3.307 - Question 8
6. Sum of the series $0.1+0.11+0.111+\ldots$ to n terms $=\frac{1}{9} \times\left[n-\left\{\frac{1-(0.1)^{n}}{9}\right\}\right]$.

Example: Calculate the sum of $0.7+0.77+0.777+\ldots$ to n terms.
Solution:
$0.7+0.77+0.777+\ldots$ to n terms $=7 \times(0.1+0.11+0.111+\ldots$ to n terms $)$
Therefore, $0.7+0.77+0.777+\ldots$ to n terms $=\frac{7}{9} \times\left[n-\left\{\frac{1-(0.1)^{n}}{9}\right\}\right]$

Similarly, sum of series $0.2+0.22+0.222+\ldots$ to n terms $=\frac{2}{9} \times\left[n-\left\{\frac{1-(0.1)^{n}}{9}\right\}\right]$
Sum of series $0.4+0.44+0.444+\ldots$ to n terms $=\frac{4}{9} \times\left[n-\left\{\frac{1-(0.1)^{n}}{9}\right\}\right]$.

Questions to be Solved from Scanner

a. Page 3.314 - Question 16
7. Sum of an Arithmetico-Geometric Series to infinity $=\frac{a b}{1-r}+\frac{d b r}{(1-r)^{2}}$.

Where, $a=t_{1}$ of the A.P.; $b=t_{1}$ of the G.P.
For example, the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \infty$ is an Arithmetico-Geometric series. The numerators $1,4,7,10, \ldots$ are in A.P., with $a=1$, and $d=3$. The denominators $1,5,5^{2}$, $5^{3}, \ldots$ are in G.P., with $b=1$, and $r=5$. However, since this G.P. is in the denominator, the common ratio of the entire series will be $1 / 5$. Therefore, we have $a=1, b=1, d=3$, and r $=1 / 5$. Putting these values in the formula $S_{\infty}=\frac{a b}{1-r}+\frac{d b r}{(1-r)^{2}}$, we have:

$$
S_{\infty}=\frac{1 \times 1}{1-(1 / 5)}+\frac{3 \times 1 \times(1 / 5)}{\{1-(1 / 5)\}^{2}}=\frac{35}{16}
$$

8. The $n^{\text {th }}$ element of the sequence $-1,2,-4,8, \ldots$ is $(-1)^{n} .2^{n-1}$
