CA INTERMEDIATE

COST
 \&
 MANAGEMENT ACCOUNTING
 Volume 2

By
CA Namit Arora Sir

This book is dedicated to my Niece CANDY

PREFACE TO THIS EDITION

This is a comprehensive book having thoroughly explained concepts with lucid and systematic presentation of the subject matter. All attempts are made in this book to keep concept easier to understand and remember with 100\% coverage of institute materials.

A special attention is given to presentation keeping in mind the examination needs to the student. The book is primarily written exclusively for CA - Inter.

For any suggestion please mail me at canamitarora@gmail.com

A word to the students

My dear student, hard work is the key to success. Though smart work is publicized in today's world but to be smart, you have to work hard. So always be attentive in class and have thorough revision after the class. It is also important to be motivated and inspired for working hard. The key for success is:
"Work hard in class, be attentive, grab the concepts
\& Work smart during revision, select important questions for next revision."

INDEX

S. NO.	CHAPTERS NAME	PAGE NO.	WEIGHTAGE
0	INTRODUCTION	0.1-0.2	-
1	MATERIAL COST	1.1-1.40	5-10
2	EMPLOYEE COST	2.1-2.24	5-10
3	OVERHEADS-ABSORPTION COSTING METHOD	3.1-3.35	5-10
4	COST SHEET \& UNIT COSTING	4.1-4.30	10
5	JOB AND BATCH COSTING	5.1-5.20	5-10
6	ACTIVITY BASED COSTING	6.1-6.29	10
7	DIRECT EXPENSES	7.1-7.2	-
8	SERVICE COSTING	8.1-8.45	10
9	PROCESS \& OPERATION COSTING	9.1-9.46	10
10	JOINT \& BY PRODUCTS	10.1-10.23	5-10
11	BUDGETS \& BUDGETARY CONTROL	11.1-11.30	5-10
12	STANDARD COSTING	12.1-12.44	5-10
13	MARGINAL COSTING	13.1-13.45	10
14	COST ACCOUNTING SYSYTEM	14.1-14.20	5-10
15	RECONCILIATION	15.1-15.14	5-10

CHAPTER 9

PROCESS \& OPERATION COSTING

NORMAL PROCESS ACCOUNT

BQ 1

A product passes through three processes A, B, and C. The normal wastage and actual output of each process is as follows:

Process	Actual Output	Normal Loss
Process A	9,500 units	3%
Process B	9,100 units	5%
Process C	8,100 units	8%

Wastage of Process A was sold 25 Paise per unit, that of Process B at 50 Paise per unit and that of Process C at $₹ 1$ per unit. 10,000 units were issued to Process A in the beginning of October 2023 at a cost of ₹ 1 per unit the other expenses were as follows:

Name of Expenses	Process A ($)^{\text {) }}$	Process B ()	Process C (${ }^{\text {\% }}$
Sundry Materials	1,000	1,500	500
Labour	5,000	8,000	6,500
Direct expenses	1,050	1,188	2,009

Selling and distribution expenses are ₹850 and sale value per unit is ₹6.00.

Prepare all accounts.

Answer

Process A Account

Particulars	Units	₹	Particulars	Units	₹
To Units Introduced	10,000	10,000	By Normal Loss A/c	300	75
To Sundry Materials		1,000	(3\% @ ₹ $0.25 /$ unit)		
To Labour		5,000	By Process B A/c	9,500	16,625
To Direct expenses		1,050	@ ₹ 1.75 per unit		
			By Abnormal Loss A/c @	200	350
	10,000	17,050		10,000	17,050

$N C P U=\frac{\text { Total Cost }- \text { Sale value of Normal Loss Units }}{\text { Total Units-Normal Loss Units }}=\frac{17,050-75}{10,000-300}=$ ₹ 1.75 per unit
Process B Account

Particulars	Units	₹	Particulars	Units	₹
To Process A A/c	9,500	16,625	By Normal Loss A/c	475	238
To Sundry Materials		1,500	(5\% @ ₹0.50/unit)		
To Labour		8,000	By Process C A/c		
To Direct expenses		1,188	@ ₹3 per unit		
To Abnormal Gain A/c @	75	225			
₹3 per unit					
	$\mathbf{9 , 5 7 5}$	$\mathbf{2 7 , 5 3 8}$		$\mathbf{9 , 5 7 5}$	$\mathbf{2 7 , 5 3 8}$

$\boldsymbol{N C P U}=\frac{\text { Total Cost }- \text { Sale value of Normal Loss Units }}{\text { Total Units-Normal Loss Units }}=\frac{27,313-238}{9,500-475}=$ ₹3 per unit

Process C Account	
Particulars	
To Process B A/c	
To Sundry Materials	
To Labour	
To Direct expenses	

Normal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process A A/c	300	75	By Cash A/c:		
To Process B A/c	475	238	Process A	300	75
To Process C A/c	728	728	Process B	400	200
			Process C	728	728
			By Abnormal Gain A/c	75	38
	$\mathbf{1 , 5 0 3}$	$\mathbf{1 , 0 4 1}$		$\mathbf{1 , 5 0 3}$	$\mathbf{1 , 0 4 1}$

Abnormal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process A A/c	200	350	By Cash A/c:		
To Process C A/c	272	1,156	Process A	200	50
			Process C	272	272
				184	
		472	$\mathbf{1 , 5 0 6}$		$\mathbf{4 7 2}$
			$\mathbf{1 , 5 0 6}$		

Abnormal Gain Account

| Particulars | Units | $₹$ | Particulars | Units | $₹$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| To Normal Loss A/c | 75 | 38 | By Process B A/c | 75 | 225 |
| To Costing P/L A/c | | 187 | | | |
| | $\mathbf{7 5}$ | $\mathbf{2 2 5}$ | | $\mathbf{7 5}$ | $\mathbf{2 2 5}$ |

Costing Profit and Loss Account

Particulars	Units	$\boldsymbol{₹}$	Particulars	Units	\boldsymbol{F}
To Process C A/c	8,100	34,425	By Sales A/c	8,100	48,600
To Selling Expenses		850	$(8,100 \times 6.00)$		
To Abnormal Loss A/c		1,184	By Abnormal Gain A/c		187
To Profit (b.f.)		12,328			
	$\mathbf{8 , 1 0 0}$	$\mathbf{4 8 , 7 8 7}$		$\mathbf{8 , 1 0 0}$	$\mathbf{4 8 , 7 8 7}$

BQ 2

A product passes through three processes. The output of each process is treated as the raw material of the next process to which it is transferred and output of the third process is transferred to finished stock.

Name of Expenses	Process I ($₹$)	Process II ($₹$)	Process III ($₹$)
Materials issued	40,000	20,000	10,000
Labour	6,000	4,000	1,000
Manufacturing overheads	10,000	10,000	15,000

10,000 units have been issued to the Process-I and after processing, the output of each process is as under:

Process	Actual Output	Normal Loss
Process I	9,750 units	2%
Process II	9,400 units	5%
Process III	8,000 units	10%

No stock of materials or of work-in-process was left at the end. Calculate the cost of the finished articles.

Answer

Process I Account

Particulars	Units	₹	Particulars	Units	₹
To Materials	10,000	40,000	By Normal Loss	200	
To Labour		6,000	(2% of 10,000 units)		
To Manufacturing OH		10,000	By Abnormal Loss A/c	50	286
			By Process II Account @ ₹5.7142 per unit	9,750	55,714
	10,000	56,000		10,000	56,000

Cost per unit of completed units and abnormal loss:

$$
=\frac{\text { Total Cost }}{\text { Inputs }- \text { Normal Loss }}=\frac{56,000}{10,000-200}=
$$

₹5.7142

Process II Account

Particulars	Units	₹	Particulars	Units	₹
To Process I A/c	9,750	55,714	By Normal Loss	488	-
To Materials		20,000	(5\% of 9,750 units)		
To Labour		4,000	By Process III Account	9,400	91,051
To Manufacturing OH		10,000	@ ₹9.6862 per unit		
To Abnormal Gain	$\mathbf{1 3 8}$	1,337			
	$\mathbf{9 , 8 8 8}$	$\mathbf{9 1 , 0 5 1}$		$\mathbf{9 , 8 8 8}$	$\mathbf{9 1 , 0 5 1}$

Cost per unit of completed units and abnormal gain:

$$
=\quad \frac{\text { Total Cost }}{\text { Inputs }- \text { Normal Loss }}=\frac{89,714}{9,750-488} \quad=\quad \text { ₹9.6862 }
$$

Process III Account

Particulars	Units	₹	Particulars	Units	₹
To Process II A/c	9,400	91,051	By Normal Loss	940	-
To Materials		10,000	(10\% of 9,400 units)		
To Labour		1,000	By Abnormal Loss A/c	460	6,364
To Manufacturing OH		15,000	By Finished Goods A/c	8,000	1,10,687
	9,400	1,17,051		9,400	1,17,051

Cost per unit of completed units and abnormal loss:

$$
=\quad \frac{\text { Total Cost }}{\text { Inputs }- \text { Normal Loss }}=\frac{1,17,051}{9,400-940}=₹ 13.8358
$$

BQ 3

From the following data, prepare process accounts indicating the cost of each process and the total cost. The total units that pass through each process were 240 for the period.

Name of Expenses	Process I	Process II	Process C III
Materials $(₹)$	$1,50,000$	50,000	20,000
Labour $(₹)$	80,000	$2,00,000$	60,000
Other Expenses $(₹)$	26,000	72,000	25,000

Indirect expenses amounting to ₹85,000 may be apportioned on the basis of wages. There was no opening or closing stock.

Answer

Process I Account

Particulars	Per Unit	Total	Particulars	Per Unit	Total
To Materials	625	$1,50,000$	By Process II Account	1,150	$2,76,000$
To Labour	333.33	80,000	(transfer to Process-II)		
To Other Expenses	108.33	26,000			
To Indirect Expenses	83.34	20,000			
	$\mathbf{1 , 1 5 0}$	$\mathbf{2 , 7 6 , 0 0 0}$		$\mathbf{1 5 0}$	

Process II Account

Particulars	Per Unit	Total	Particulars	Per Unit	Total
To Process I Account	1,150	$2,76,000$	By Process III Account	2,700	$6,48,000$
To Materials	208.33	50,000	(transfer to Process-III)		
To Labour	833.33	$2,00,000$			
To Other Expenses	300	72,000			
To Indirect Expenses	208.34	50,000		$\mathbf{2 , 7 0 0}$	$\mathbf{6 , 4 8 , 0 0 0}$
	$\mathbf{2 , 7 0 0}$	$\mathbf{6 , 4 8 , 0 0 0}$			

Process III Account

Particulars	Per Unit	Total	Particulars	Per Unit	Total
To Process II Account	2,700	$6,48,000$	By Finished Stock A/c	3,200	$7,68,000$
To Materials	83.33	20,000	(transferred)		
To Labour	250	60,000			
To Other Expenses	104.17	25,000			
To Indirect Expenses	62.50	15,000		$\mathbf{3 , 2 0 0}$	$\mathbf{7 , 6 8 , 0 0 0}$
	$\mathbf{3 , 2 0 0}$	$\mathbf{7 , 6 8 , 0 0 0}$			

Working Notes:

Calculation of apportionment of Indirect Expenses:

Process $\boldsymbol{I}=\frac{\text { Indirect Expenes }}{\text { Total Labour Cost }} \times$ Labour cost of Process $I=\frac{85,000}{3,40,000} \times 80,000=\mathbf{2 0 , 0 0 0}$
Process $\boldsymbol{I}=\frac{\text { Indirect Expenes }}{\text { Total Labour Cost }} \times$ Labour cost of Process II $=\frac{85,000}{3,40,000} \times 2,00,000=\mathbf{5 0 , 0 0 0}$
Process $\boldsymbol{I}=\frac{\text { Indirect Expenes }}{\text { Total Labour Cost }} \times$ Labour cost of Process III $=\frac{85,000}{3,40,000} \times 60,000=\mathbf{1 5 , 0 0 0}$

BQ 4

A product passes through three processes A, B and C. 10,000 units at a cost of ₹ 1.10 per unit were issued to process A. The other direct expenses were as follows:

Details	Process $\boldsymbol{A}(₹)$	Process $\boldsymbol{B}(\geqslant)$	Process $\boldsymbol{C}(\geqslant)$
Sundry Materials	1,500	1,500	1,500
Direct Labour	4,500	8,000	6,500
Direct Expenses	1,000	1,000	1,503

The scrap of process A was 5% and in process B 4% on input. The scrap of process A as sold at ₹ 0.25 per units and that of process B at $₹ 0.50$ per unit and that of process C at $₹ 1.00$ per unit.

The overhead charges were 160% of direct labour. The final product was sold at ₹ 10 per unit fetching a profit of 20% on sales.

Prepare all the three process accounts and find out the number of units of scrap in process C.

[Output: Process A ₹ 25,075 ; Process B ₹48,185; Process C $\mathbf{C} 67,392$; Units scraped in Process C 696]

BQ 5

RST Limited processes Product Z through two distinct processes - Process-I and Process-II. On completion, it is transferred to finished stock. From the following information for the year 2022-23, prepare Process-I A/c, Process-II A/c, Finished Stock A/c and Income Statement:

Particulars	Process-I	Process-II
Raw materials used	7,500 units	-
Raw materials cost per unit	$₹ 60$	-
Transfer to next process/finished stock	7,050 units	6,525 units
Normal loss (on inputs)	5%	10%
Direct wages	$₹ 1,35,750$	$₹ 1,29,250$
Direct expenses	60% of Direct wages	65% of Direct wages
Manufacturing overheads	20% of Direct wages	15% of Direct wages
Realisable value of scrap per unit	$₹ 12.50$	$₹ 37.50$

6,000 units of finished goods were sold at a profit of 15% on cost. Assume that there was no opening or closing stock of work-in-process.

Answer

Process-I Account

Particulars	Units	₹	Particulars	Units	₹
To Raw Materials used	7,500	4,50,000	By Normal Loss	375	4,688
To Direct Wages		1,35,750	(5% of 7,500 units) $\times 12.5$		
To Direct Expenses		81,450	By Process-II Account	7,050	6,82,402
To Manufacturing OH		27,150	(₹96.7947 × 7,050 units) By Abnormal Loss A/c (₹96.7947 $\times 75$ units)	75	7,260
	7,500	6,94,350		7,500	6,94,350

$\boldsymbol{N C P U}=\frac{\text { Total Cost }- \text { Realisable Value of Normal Loss Units }}{\text { Inputs Units }- \text { Normal Loss Units }}=\frac{6,94,350-4,688}{7,500-375}=$
₹96.7947

Process-II Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process-I A/c	7,050	$6,82,402$	By Normal Loss	705	26,438
To Direct Wages		$1,29,250$	(10\% of 7,050 units) $\times 37.5$		
To Direct Expenses		84,013	By Finished Stock A/c	6,525	$9,13,823$
To Manufacturing OH		19,387	(₹140.0495 $\times 6,525$ units)		
To Abnormal Gain A/c	180	25,209			
(₹140.0495 $\times 180$ units)	$\mathbf{7 , 2 3 0}$	$\mathbf{9 , 4 0 , 2 6 1}$		$\mathbf{7 , 2 3 0}$	$\mathbf{9 , 4 0 , 2 6 1}$

$\boldsymbol{N C P U}=\quad \frac{\text { Total Cost }- \text { Realisable Value of Normal Loss Units }}{\text { Inputs Units }- \text { Normal Loss Units }}=\frac{9,15,052-26,438}{7,050-705}=₹ 140.0495$
Finished Goods Stock Account

Particulars	Units	₹	Particulars	Units	F
To Process-II A/c	6,525	9,13,823	$\begin{aligned} & \hline \begin{array}{l} \text { By Cost of Sales } \\ \text { (₹ } 140.0495 \times 6,000 \\ \text { units }) \\ \text { By Balance } \mathrm{c} / \mathrm{d} \\ \hline \end{array}{ }^{2} \end{aligned}$	6,000	8,40,297
				525	73,526
	6,525	9,13,823		6,525	9,13,823

Income Statement

Particulars	₹	Particulars	₹
To Cost of Sales ($₹ 140.0495 \times 6,000$ units)	8,40,297	$\begin{aligned} & \hline \text { By Sales } \\ & \text { (₹8,40,297 } \times 115 \% \text {) } \end{aligned}$	9,66,342
To Abnormal Loss [(₹96.7947-₹12.50) × 75 units]	6,322	By Abnormal Gain [(₹140.0495-₹37.50) $\times 180$ units]	18,459
To Net Profit	1,38,182		
	9,84,801		9,84,801

PROCESS ACCOUNT WITH ROYALTY

BQ 6

The input to a purifying process was 16,000 kgs of basic material purchased @ ₹ 1.20 per kg Process wages amounted to ₹ 720 and overhead was applied @ 240% of the labour cost. Indirect materials of negligible weight were introduced into the process at a cost of ₹ 336 . The actual output from the process weighted $15,000 \mathrm{kgs}$. The normal yield of the process is 92%. Any difference in weight between the input of basic material and output of purified material (Product) is sold @ ₹ 0.50 per kg.

The process is operated under a license which provides for the payment of royalty @ ₹ 0.15 per kg of the purified material produced.

Prepare:

(a) Purifying Process Account
(b) Normal Wastage Account
(c) Abnormal Wastage/Yield Account
(d) Royalty Payable Account

Answer

(a) Purifying Process Account

(b) Normal Wastage Account

Particulars	Kgs.	₹	Particulars	Kgs.	₹
To Purifying Process A/c	1,280	640	By Cash A/c @ ₹0.50 per kg	1,000	500
			By Abnormal Gain A/c	280	140
	$\mathbf{1 , 2 8 0}$	$\mathbf{6 4 0}$		$\mathbf{1 , 2 8 0}$	$\mathbf{6 4 0}$

(c) Abnormal Yield Account

Particulars	Kgs.	₹	Particulars	Kgs.	$₹$
To Normal Wastage A/c	280	140	By Purifying Process A/c	280	448
To Royalty Payable A/c (280×0.15)		42			
To Costing P/L A/c		266			
	$\mathbf{2 8 0}$	$\mathbf{4 4 8}$		$\mathbf{2 8 0}$	$\mathbf{4 4 8}$

(d) Royalty Payable Account

Particulars	Kgs.	\boldsymbol{F}	Particulars	Kgs.	$₹$
To Bank A/c	15,000	2,250	By Purifying Process A/c By Abnormal yield A/c	14,720 280	2,208 42
	$\mathbf{1 5 , 0 0 0}$	$\mathbf{2 , 2 5 0}$		$\mathbf{1 5 , 0 0 0}$	$\mathbf{2 , 2 5 0}$

PROCESS ACCOUNT WITH BY PRODUCTS

BQ 7

M Ltd. produces a product X, which passes through three processes, I, II and III. In Process III a by-product arises, which after further processing at a cost of ₹85 per unit, product Z is produced. The information related for the month of August is as follows:

Details	Process I	Process II	Process III
Normal loss	5%	10%	5%
Materials introduced (7,000 units)	$1,40,000$	-	-
Other materials added	62,000	$1,36,000$	84,200
Direct wages	42,000	54,000	48,000
Direct Expenses	14,000	16,000	14,000

Production overhead for the month is $₹ 2,88,000$, which is absorbed as a percentage of direct wages. The scrapes are sold at ₹ 10 per unit. Product Z can be sold at ₹ 135 per unit with a selling cost of ₹ 15 per unit. There is not stock at the beginning and end of the month.

No. of units produced:

Process I	6,600 units;
Process II	5,200 units,
Process III	4,800 units and
Product Z	600 units

You are required to prepare accounts for:

(1) Process I, II and III
(2) By product process.
(1) Process I Account

Particulars	Units	\mathcal{F}	Particulars	Units	$₹$
To Materials	7,000	$1,40,000$	By Normal Loss	350	3,500
To Other materials		62,000	(5\% @ ₹10 per unit)		
To Direct wages		42,000	By Process II Account	6,600	$3,35,955$
To Direct expenses		14,000	@ ₹50.9022 per unit		
To Production OH		84,000	By Abnormal Loss (200\% of ₹42,000)		
	@ ₹50.9022 per unit	50	2,545		
	$\mathbf{7 , 0 0 0}$	$\mathbf{3 , 4 2 , 0 0 0}$		$\mathbf{7 , 0 0 0}$	$\mathbf{3 , 4 2 , 0 0 0}$

Production OH Rate $=\quad$ (Production $0 H \div$ Direct wages) $\times 100$
$=[2,88,000 \div(42,000+54,000+48,000)] \times 100=200 \%$
$\boldsymbol{N C P U}=\frac{\text { Total Cost }- \text { Sale value of Normal Loss Units }}{\text { Total Units-Normal Loss Units }}=\frac{3,42,000-3,500}{7,000-350}=$ F50.9022 p.u.
Process II Account

Particulars	Units	₹	Particulars	Units	₹
To Process I Account	6,600	$3,35,955$	By Normal Loss	660	6,600
To Other materials		$1,36,000$	(10\% @ ₹10 per unit)		
To Direct wages		54,000	By Abnormal Loss	740	80,149
To Direct expenses		16,000	@ ₹108.3089 per unit		
To Production OH		$1,08,000$	By Process III Account	5,200	$5,63,206$
(200\% of ₹54,000)			@ ₹ 108.3089 per unit		
		$\mathbf{6 , 4 9 , 9 5 5}$		$\mathbf{6 , 6 0 0}$	$\mathbf{6 , 4 9 , 9 5 5}$

$N C P U=\frac{\text { Total Cost - Sale value of Normal Loss Units }}{\text { Total Units-Normal Loss Units }}=\frac{6,49,955-6,600}{6,600-660}=\mathfrak{₹} 108.3089 \mathrm{p} . \boldsymbol{u}$.

Process III Account

Particulars	Units	₹	Particulars	Units	$₹$
To Process II Account	5,200	$5,63,206$	By Normal Loss	260	2,600
To Other materials		84,200	(5\% @ ₹10 per unit)		
To Direct wages		48,000	By By-Product Z		
To Direct expenses		14,000	@ ₹35 (135-85-15) p.	600	21,000
To Production OH	96,000	u. By Product X (200\% of ₹16,000)			4,800
To Abnormal Gain A/c					
@ ₹180.1396 per unit					

$\boldsymbol{N C P U}$	$=\frac{\text { Total Cost }- \text { Sale value of Normal Loss Units }- \text { Net realisable value of By Product Z }}{\text { Total Units-Normal Loss Units-By product units }}$
	$=\frac{8,05,406-2,600-21,000}{5,200-260-600}=$ ₹180.1396 p. u.

(2) By-Product Process Account

Particulars	Units	₹	Particulars	Units	₹
To Process III Account	600	21,000	By Product Z @ ₹135 p. u.	600	81,000
To Processing cost		51,000			
@ ₹85 p. u.					
To Selling exp @ ₹15 p. u.		9,000		$\mathbf{6 0 0}$	$\mathbf{8 1 , 0 0 0}$

BQ 8

A product passes through three processes A, B and C . The details of expenses incurred on the three processes during the year 2023 were as under:

Details	Process \boldsymbol{A}	Process \boldsymbol{B}	Process \boldsymbol{C}
Units introduced (cost per unit ₹50)	1,000	-	-
Sundry Materials	$₹ 1,000$	$₹ 1,500$	$₹ 500$
Labour	$₹ 2,600$	$₹ 8,000$	$₹ 6,392$
Direct Expenses	$₹ 600$	$₹ 1,815$	$₹ 2,720$
Selling price per unit of output	$₹ 70$	$₹ 100$	$₹ 200$

Actual output of the three processes was-Process A: 930 units; Process B: 540 units; and process C: 210 units. Two-third of output of Process A and one-half of the output of Process B was passed on to the next process and the balance was sold. The entire output of process C was sold.

The normal loss of the three processes, calculated on the input of every process was: Process A: 5\% Process B: 15% and Process C: 20%. The loss of Process A was sold at ₹ 1 per unit that of Process B at ₹ 3 per unit and that of Process C at $₹ 6$ per unit.

Selling and distribution expenses during the year were ₹ 9,000 . These are not allocable to the processes but to be considered while drawing the income statement.

Prepare the three process accounts and a statement of income.
[A: 930 units, ₹53,010; B 540 units, ₹47,520; C 210 units, ₹32,130; Net Profit ₹7,243]

INPUT - OUTPUT RATIO

BQ 9

An article passes through three successive operations from raw material stage to the finished goods stage. The following data are available from the production records for the month of March:

Operation	No. of pieces (Input)	No. of pieces (Rejected)	No. of pieces (Output)
1	$1,80,000$	60,000	$1,20,000$
2	$1,98,000$	18,000	$1,80,000$
3	$1,44,000$	24,000	$1,20,000$

(1) Determine the input required to be introduced in the first operation in no. of pieces in order to obtain finished output of 500 pieces after the last operation.
(2) Calculate the cost of raw material required to produce one piece of finished product. If the weight of the finished piece is 0.5 Kg . and the price of raw material is ₹ 80 per kg .

Answer

(1) Determination the input required to obtain finished output of 500 pieces after the last operation:

Particulars	No. of pieces
Output required after operation 3	500
Add: Rejection in operation 3 (20\%)	100
Output required after operation 2	600
Add: Rejection in operation 2 (10\%)	60
Output required after operation 1	660
Add: Rejection in operation 1 (50\%)	330
Input required in operation 1	$\mathbf{9 9 0}$

(2) Calculation of cost of raw material:

To get a finished piece of 0.5 kg of output, the weight of input required $=\frac{990}{500} \times 0.5 \mathrm{~kg}$
$\begin{array}{ll}= & 0.99 \mathrm{Kg} \text { raw material } \\ = & 0.99 \times ₹ 80 \\ = & ₹ 79.20\end{array}$

Working Note:

Statement of production

Operation	Input	Rejections		Output
		Total	\% of output	
1	$1,98,000$	18,000	50%	$1,20,000$
2	$1,44,000$	24,000	10%	$1,80,000$
3		20%	$1,20,000$	

EQUIVALENT PRODUCTION (CLOSING WIP ONLY)

BQ 10

An English willow company who manufactures cricket bat buys wood as its direct material. The Forming department processes the cricket bats and the cricket bats are then transferred to the Finishing department where stickers are applied. The Forming department began manufacturing 10,000 initial bats during the month of December for the first time and their cost is as follows:

$$
\begin{array}{ll}
\text { Direct material } & ₹ 33,000 \\
\text { Conversion costs } & ₹ 17,000 \\
\text { Total } & ₹ 50,000
\end{array}
$$

A total of 8,000 cricket bats were completed and transferred to the Finishing department, the rest 2,000 were still in the Forming process at the end of the month. All of the forming departments direct material were placed, but, on average, only 25% of the conversion costs was applied to the ending work in progress inventory.

Calculate:

(A) Equivalent units of production for each cost.
(B) The Conversion cost per Equivalent units.
(C) Cost of closing work in process (WIP) and finished products.

Answer

(A) Statement of Equivalent Production

Particulars	Units	Materials		Conversion Cost	
		$\%$	Eq. Unit	$\%$	Eq. Unit
Finished Output	8,000	100	8,000	100	8,000
Closing WIP	2,000	100	2,000	25	500
Total	$\mathbf{1 0 , 0 0 0}$	-	$\mathbf{1 0 , 0 0 0}$	-	$\mathbf{8 , 5 0 0}$

(B) Statement of Cost per Equivalent Unit

Elements	Cost	Eq. Units	Cost Per Unit
Materials	33,000	10,000	$₹ 3.30$
Conversion Cost	17,000	8,500	$₹ 2.00$
Total cost per unit		$₹ 5.30$	

(C) Statement Showing Cost of Finished Output and Closing WIP

Particulars	Elements	Equivalent Units	Cost Per Unit	Total (())
Finished Output	All	8,000	5.30	$\mathbf{4 2 , 4 0 0}$
Closing WIP				
	Materials	2,000	3.30	6,600
	Conversion Cost	500	2.00	1,000
			$\mathbf{7 , 6 0 0}$	

BQ 11

AB Ltd. is engaged in the process engineering industry. During the month of April 2023, 2,000 units were introduced in Process X . The normal loss is estimated at 5% of input.

At the end of the month 1,400 units had been produced and transferred to Process $\mathrm{Y} ; 460$ were incomplete units and 140 units had to be scrapped at the end of the process. The incomplete units reached the following degree of completion:

$$
\text { Materials: } 75 \% \quad \text { Labour: } 50 \% \quad \text { Overheads: } 50 \%
$$

Following are the further details regarding Process X :

Cost of 2,000 units introduced	$₹ 58,000$
Additional materials consumed	$₹ 14,400$
Direct labour	$₹ 33,400$
Allocated overheads	$₹ 16,700$

Note: The scrapped units fetched ₹10 each

Required:

(A) Statement of Equivalent Production;
(C) Statement of Evaluation;
(B) Statement of Cost;
(D) Process X Account.

Answer

(A) Statement of Equivalent Production

Particulars	Units	Materials		Labour \& Overhead	
		$\%$	Eq. Unit	\%	Eq. Unit
Normal Loss	100	-	-	-	-
Abnormal Loss	40	100	40	100	40
Transfer to Process Y	1,400	100	1,400	100	1,400
Closing WIP	460	75	345	50	230
Total	$\mathbf{2 , 0 0 0}$	-	$\mathbf{1 , 7 8 5}$	-	$\mathbf{1 , 6 7 0}$

(B) Statement of Cost

Elements	Cost	Eq. Units	Cost Per Unit
Materials	$58,000+14,400-1,000=71,400$	1,785	$₹ 40.00$
Labour	33,400	1,670	$₹ 20.00$
Overheads	16,700	1,670	$₹ 10.00$
Total cost per unit		$₹ 70.00$	

(C) Statement of Evaluation

Particulars	Elements	Equivalent Units	Cost Per Unit	Total (₹)
Abnormal Loss	Materials	40	40	1,600
	Labour	40	20	800
	Overhead	40	10	400
				2,800
		1,400	40	56,000

	Labour	1,400	20	28,000
	Overhead	1,400	10	14,000
				98
	Materials	345	40	13,800
	Labour	230	20	4,600
	Overhead	230	10	2,300

(D) Process X Account

Particulars	Units	₹	Particulars	Units	₹
To Units Introduced	2,000	58,000	By Normal wastage	100	1,000
To Materials		14,400	(5\% @ ₹ 10 per unit)		
To Labour		33,400	By Abnormal Loss A/c	40	2,800
To Overheads		16,700	By Closing WIP	460	20,700
			By Process Y Account	1,400	98,000
	2,000	1,22,500		2,000	1,22,500

BQ 12

C Limited manufactures a range of products and the data below refer to one product which goes through one process only. The company operates a thirteen four weekly reporting system for process and product costs and the data given below relate to period 10 . There was no opening work-in-progress stock.

5,000 units of materials input
Further direct materials added
Direct wages incurred
Production overheads
Normal loss
at ₹ 2.94 per unit
13,830
6,555
7,470
3% of input

Closing work-in-progress was 800 units but these were incomplete, having reached the following percentage of completion for each of the elements of cost listed.

Direct materials added	75%	Direct wages	50%
Production overhead	25%		

270 units were scrapped after a quality control check when the units were at the following degrees of completion:

Direct materials added	$66-2 / 3 \%$	Direct wages
Production overhead	$16-2 / 3 \%$	$33-1 / 3 \%$

Units scrapped regardless of the degree of completion are sold for ₹1.00 each and it is company policy to credit the process account with the scrap value of normal loss units.

You are required to prepare the Period 10 accounts for the:

(i) Process account; and
(ii) Abnormal gain or loss.

Answer

Process Account

Particulars	Units	₹	Particulars	Units	$₹$
To Units Introduced	5,000	14,700	By Normal Loss	150	150
To Direct Materials		13,830	By Abnormal Loss A/c	120	696
To Labour		6,555	By Finished Goods	3,930	36,549
To Production OH		7,470	By Closing WIP	800	5,160
	$\mathbf{5 , 0 0 0}$	$\mathbf{4 2 , 5 5 5}$		$\mathbf{5 , 0 0 0}$	$\mathbf{4 2 , 5 5 5}$

Abnormal Loss A/c

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process A/c	120	696	By Cash A/c	120	120
				By Profit and Loss A/c	
	$\mathbf{1 2 0}$	$\mathbf{6 9 6}$		$\mathbf{1 2 0}$	$\mathbf{6 9 6}$

Working Notes:

Statement of Equivalent Production (Process I)

Particulars	Units	Materials 1		Materials 2		Labour		Overhead	
		\%	E. Unit						
Normal Loss	150	-	-	-	-	-	-	-	-
Abnormal Loss	120	100	120	66.67	80	33.33	40	16.67	20
Finished Units	3,930	100	3,930	100	3,930	100	3,930	100	3,930
Closing WIP	800	100	800	75	600	50	400	25	200
Total	$\mathbf{5 , 0 0 0}$	-	$\mathbf{4 , 8 5 0}$	-	$\mathbf{4 , 6 1 0}$	-	$\mathbf{4 , 3 7 0}$	-	$\mathbf{4 , 1 5 0}$

Statement of Cost

Elements	Cost	Equivalent Units	Cost Per Unit
Materials 1	$14,700-150=14,550$	4,850	3.00
Materials 2	13,830	4,610	3.00
Labour	6,555	4,370	1.50
Overheads	7,470	4,150	1.80
Total cost per unit			9.30

Statement of Evaluation

Particulars	Elements	Equivalent Units	Cost Per Unit	Total
Finished Units	Materials 1	3,930	3.00	11,790
	Materials 2	3,930	3.00	11,790
	Labour	3,930	1.50	5,895
	Overhead	3,930	1.80	7,074
				36,549
Abnormal Loss	Materials 1	120	3.00	360
	Materials 2 Labour Overhead	80	3.00	240
		40	1.50	60
		20	1.80	36
				696
Closing WIP	Materials 1 Materials 2 Labour Overhead	800	3.00	2,400
		600	3.00	1,800
		400	1.50	600
		200	1.80	360
				5,160

BQ 13

A Company produces a component, which passes through two processes. During the month of April, materials for 40,000 components were put into Process I of which 30,000 were completed and transferred to Process II. Those not transferred to Process II were 100% complete as to materials cost and 50% complete as to labour and overheads cost.

The Process I costs incurred were as follows:
Direct Materials
₹ $6,00,000$
Direct Wages
₹7,00,000
Factory Overheads
₹ $4,90,000$

Of those transferred to Process II, 28,000 units were completed and transferred to finished goods stores. There was a normal loss with no salvage value of 200 units in Process II. There were 1,800 units, remained unfinished in the process with 100% complete as to material and 25% complete as regard to wages and overheads.

Costs incurred in Process II are as follows:

Packing Materials	$₹ 1,60,000$
Direct Wages	$₹ 1,42,250$
Factory Overheads	$₹ 1,70,700$

Packing material cost is incurred at the end of the second process as protective packing to the completed units of production.

Required:

(i) Prepare Statement of Equivalent Production, Cost Per unit and Process I A/c
(ii) Prepare State of Equivalent Production, Cost per Unit and Process II A/C

Answer
Statement of Equivalent Production (Process I)

Particulars	Units	Materials			Labour \& Overhead	
		$\%$	Eq. Unit	\%	Eq. Unit	
Transfer to Process II	30,000	100	30,000	100	30,000	
Closing WIP	10,000	100	10,000	50	5,000	
Total	$\mathbf{4 0 , 0 0 0}$	-	$\mathbf{4 0 , 0 0 0}$	-	$\mathbf{3 5 , 0 0 0}$	

Statement of Cost (Process I)

Elements	Cost	Equivalent Units	Cost Per Unit
Direct Materials	$6,00,000$	40,000	15.00
Direct Wages	$7,00,000$	35,000	20.00
Factory Overheads	$4,90,000$	35,000	14.00
Total cost per unit			49.00

Statement of Apportionment of Cost (Process I)

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Transfer to Process II	Materials, Labour,	30,000	49.00	$\mathbf{1 4 , 7 0 , 0 0 0}$
	Overhead			
	Materials	10,000	15.00	$1,50,000$
	Closing WIP		5,000	$20.00+14.00$
			$1,70,000$	

Process I Account

Particulars	Units	₹	Particulars	Units	₹
To Direct Materials	40,000	$6,00,000$	By Process II A/c	30,000	$14,70,000$
To Direct Labour		$7,00,000$	By Closing WIP	10,000	$3,20,000$
To Overhead		$4,90,000$			
	$\mathbf{4 0 , 0 0 0}$	$\mathbf{1 7 , 9 0 , 0 0 0}$		$\mathbf{4 0 , 0 0 0}$	$\mathbf{1 7 , 9 0 , 0 0 0}$

Statement of Equivalent Production (Process II)

Particulars	Units	Materials		Labour \& Overhead	
		$\%$	Eq. Unit	$\%$	Eq. Unit
Normal Loss	200	-	-	-	-

Units Completed	28,000	100	28,000	100	28,000
Closing WIP	1,800	100	1,800	25	450
Total	$\mathbf{3 0 , 0 0 0}$	-	$\mathbf{2 9 , 8 0 0}$	-	$\mathbf{2 8 , 4 5 0}$

Statement of Cost (Process II)

Elements	Cost	Equivalent Units	Cost Per Unit
Direct Materials	$14,70,000$	29,800	49.3289
Direct Wages	$1,42,250$	28,450	5.0000
Factory Overheads	$1,70,700$	28,450	6.0000
			$\mathbf{6 0 . 3 2 8 9}$

Statement of Apportionment of Cost (Process II)

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Completed Add: Packing Expenses (Only at completed units) Closing WIP	$\begin{gathered} \hline \text { All } \\ \\ \text { Materials } \\ \text { Labour, Overhead } \end{gathered}$	28,000	60.3289	16,89,209
				1,60,000
				18,49,209
		$\begin{gathered} 1,800 \\ 450 \end{gathered}$	49.3289	$88,791$
				93,741

Process II Account

Particulars	Units	$\boldsymbol{₹}$	Particulars	Units	$₹$
To Process I A/c	30,000	$14,70,000$	By Normal loss	200	-
To Direct Labour		$1,42,250$	By Finished Stock	28,000	$18,49,209$
To Overhead		$1,70,700$	By Closing WIP	1,800	93,741
To Packing Materials		$1,60,000$			
	$\mathbf{1 9 , 4 2 , 9 5 0}$		$\mathbf{3 0 , 0 0 0}$	$\mathbf{1 9 , 4 2 , 9 5 0}$	

EQUIVALENT PRODUCTION (OPENING AND CLOSING WIP)

BQ 14

Hill manufacturing Ltd uses process costing to manufacture Water density sensors for hydro sector. The following information pertains to operations for the month of May.

Particulars	Units
Beginning WIP, May 1	16,000
Started in production during May	$1,00,000$
Completed production during May	92,000
Ending work in progress, May 31	24,000

The beginning work in progress was 60% complete for materials and 20% complete for conversion costs. The ending inventory was 90% complete for material and 40% complete for conversion costs.

Costs pertaining to the month of May are as follows:
Beginning inventory costs are material ₹ 27,670 , direct labour ₹ 30,120 and factory overhead ₹ 12,720 . Cost incurred during May are material used, ₹ $4,79,000$, direct labour ₹ $1,82,880$, factory overheads ₹ $3,91,160$.

Calculate:

(a) Using the FIFO method, the equivalent units of production for material.
(b) Cost per equivalent unit for conversion cost.
(a) Statement of Equivalent Production

Particulars	Units	Materials		Conversion cost	
		$\%$	Eq. Unit	$\%$	Eq. Unit
Opening units:					
Used for Completed Units	16,000	40%	6,400	80%	12,800
Units Introduced:					
Used for Completed Units	76,000	100	76,000	100	76,000
Used for Closing WIP	24,000	90	21,600	40	9,600
Total	$\mathbf{1 , 1 6 , 0 0 0}$	-	$\mathbf{1 , 0 4 , 0 0 0}$	-	$\mathbf{9 8 , 4 0 0}$

(b) Statement of Cost per Equivalent Unit for Conversion Cost

Elements	Amount $(₹)$	Equivalent Units	Cost Per Unit
Conversion Cost	$1,82,880+3,91,160$ $=5,74,040$	98,400	$₹ 5.8337$

BQ 15

The following data are available in respect of process 1 for March 2023:

1. Opening stock of work in process 800 units at a total cost of $₹ 4,000$.
2. Degree of completion of opening work in progress:

Materials	100%
Labour	60%
Overheads	60%

3. Input of materials at a total cost of $₹ 36,800$ for 9,200 units.
4. Direct wages incurred
₹16,740
5. Production overhead ₹8,370
6. Unit scrapped 1,200 units. The state of completion of these units was:

Materials	100%
Labour	80%
Overheads	80%

7. Closing work in progress 900 units. The stage of completion of these units was:

Materials
100\%
Labour
70\%
Overheads 70\%
8. 7,900 units were completed and transferred to the next process.
9. Normal loss is 8% of the total input.
10. Scrap value is ₹ 4 per unit.

You are required to:

(A) Compute equivalent production.
(B) Calculate the cost per equivalent unit for each element.
(C) Calculate the value of abnormal loss (or gain) closing work in progress and the units transferred to the next process by using FIFO Method.
(D) Show the process account for March 2023.

Answer
(A) Statement of Equivalent Production

Particulars	Units	Materials		Labour \& $\mathbf{O H}$	
		$\%$	Eq. Unit	$\%$	Eq. Unit
Opening units: Used for Completed Units	800	-	-	40	320

Units Introduced:					
Used for Completed Units	7,100	100	7,100	100	7,100
Used for Closing WIP	900	100	900	70	630
Normal Loss	800	-	-	-	-
Abnormal Loss	400	100	400	80	320
Total	$\mathbf{1 0 , 0 0 0}$	-	$\mathbf{8 , 4 0 0}$	-	$\mathbf{8 , 3 7 0}$

(B) Statement of Cost

Elements	Cost	Equivalent Units	Cost Per Unit
Materials	$36,800-3,200=33,600$	8,400	$₹ 4.00$
Labour	16,740	8,370	$₹ 2.00$
Overheads	8,370	8,370	$₹ 1.00$
Total cost per unit			$₹ 7.00$

(C) Statement of Valuation of Abnormal Loss, Closing WIP, and Units Transferred to Next Process

Particulars	Elements	Eq. Units	Cost per unit	Total
Units Transferred: Current Period Cost	Materials Labour, OH			
		7,100	4.00	28,400
		7,420	$2.00+1.00$	22,680
Add: Cost of Opening WIP (Used in completed units)				4,000
	Materials Labour, OH		$\begin{gathered} 4.00 \\ 2.00+1.00 \end{gathered}$	54,660
Closing WIP		900		3,600
		630		1,890
Abnormal Loss	Materials Labour, OH			5,490
		400	4.00	1,600
		320	$2.00+1.00$	960
				2,560

(D) Process Account For March 2023

Particulars	Units	$₹$	Particulars	Units	$₹$
To Opening WIP	800	4,000	By Normal loss	800	3,200
To Materials	9,200	36,800	By Abnormal Loss	400	2,560
To Labour		16,740	By Next Process A/c	7,900	54,660
To Overhead		8,370	By Closing WIP	900	5,490
	$\mathbf{1 0 , 0 0 0}$	$\mathbf{6 5 , 9 1 0}$		$\mathbf{1 0 , 0 0 0}$	$\mathbf{6 5 , 9 1 0}$

BQ 16

The following data pertains to process for March, 2023 of Beta Ltd.

Opening work in progress
Degree of completion: Material
Labour and overhead
Input of materials
Direct labour
Overheads
Closing work in progress
Degree of completion: Materials
Labour and overhead
Normal progress loss
Scrap value
Unit transferred to the next process

1,500 units at ₹ 15,000
100\%,
33-1/3
18,500 units at $₹ 52,000$
₹14,000
₹ 28,000
5,000 units
90\%
30\%
10% of total Input
₹2.00 per unit
15,000 units

You are required to:

(a) Compute equivalent units of production using FIFO Method.
(b) Compute cost per equivalent units for each cost element i.e. material labour and overheads.
(c) Compute the cost of finished output, closing work in progress and abnormal gain.
(d) Prepare the process and other accounts.

Answer

(a) Statement of Equivalent Production

Particulars	Units	Materials		Labour \& OH	
		$\%$	Eq. Unit	$\%$	Eq. Unit
Opening units:					
Used for Completed Units	1,500	-	-	$66-2 / 3$	1,000
Units Introduced:					
Used for Completed Units	13,500	100	13,500	100	13,500
Used for Closing WIP	5,000	90	4,500	30	1,500
Normal Loss	2,000	-	-	-	-
Total	$\mathbf{2 2 , 0 0 0}$	-	$\mathbf{1 8 , 0 0 0}$	-	$\mathbf{1 6 , 0 0 0}$
Less: Abnormal Gain	$(2,000)$	100	$(2,000$	100	$(2,000)$
Net Total	$\mathbf{2 0 , 0 0 0}$	-	$\mathbf{1 6 , 0 0 0}$	-	$\mathbf{1 4 , 0 0 0}$

(b) Statement of Cost

Elements	Cost	Equivalent Units	Cost Per Unit
Materials	$52,000-4,000=48,000$	16,000	$₹ 3.00$
Labour	14,000	14,000	$₹ 1.00$
Overheads	28,000	14,000	$₹ 2.00$
Total cost per unit			$₹ 6.00$

(c) Statement of Evaluation

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Transferred: Current Period Cost	Materials Labour, Overhead			
		$\begin{aligned} & 13,500 \\ & 14,500 \end{aligned}$	$\begin{gathered} 3.00 \\ 1.00+2.00 \end{gathered}$	40,500
				43,500
Add: Cost of Opening WIP				15,000
	Materials Labour, Overhead		$\begin{gathered} 3.00 \\ 1.00+2.00 \end{gathered}$	99,000
Closing WIP		4,500		13,500
		1,500		4,500
Abnormal Gain	All			18,000
		2,000	6.00	12,000

(d) Process Account

Particulars	Units	\mathcal{F}	Particulars	Units	$₹$
To Opening WIP	1,500	15,000	By Normal loss	2,000	4,000
To Input of Materials	18,500	52,000	By Next Process A/c	15,000	99,000
To Direct Labour		14,000	By Closing WIP	5,000	18,000
To Overhead		28,000			
To Abnormal Gain	2,000	12,000			
	$\mathbf{2 2 , 0 0 0}$	$\mathbf{1 , 2 1 , 0 0 0}$		$\mathbf{2 2 , 0 0 0}$	$\mathbf{1 , 2 1 , 0 0 0}$

BQ 17

Opening Work-in-progress	2,000 units
Materials (100\% complete)	₹7,500
Labour (60\% complete)	₹3,000

Overhead (60% complete) ₹1,500
Units introduced into this process
Closing Work-in-progress
Stage of completion is estimated to be:
Material
Labour
Overhead
Transferred to next process
The process costs for the period are:
Materials
Labour
Overheads

100\%
50\%
50\%
8,000 units
2,000 units

8,000 units
₹ $1,00,000$
₹78,000
₹39,000

From the following details prepare:

(a) Statement of Equivalent Production,
(b) Statement of Cost and
(c) Statement of Apportionment of Cost as per Weighted Average Cost basis.

Answer

(a) Statement of Equivalent Production

Particulars	Units	Materials		Labour \& Overhead	
		$\%$	Eq. Unit	$\%$	Eq. Unit
Units Transferred	8,000	100	8,000	100	8,000
Closing WIP	2,000	100	2,000	50	1,000
Total	$\mathbf{1 0 , 0 0 0}$	-	$\mathbf{1 0 , 0 0 0}$	-	$\mathbf{9 , 0 0 0}$

(b) Statement of Cost

Elements	Cost	Equivalent Units	Cost Per Unit
Materials	$7,500+1,00,000=1,07,500$	10,000	$₹ 10.75$
Labour	$3,000+78,000=81,000$	9,000	$₹ 9.00$
Overheads	$1,500+39,000=40,500$	9,000	$₹ 4.50$
Total cost per unit			$₹ 24.25$

(c) Statement of Apportionment of Cost

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units transferred	All	8,000	24.25	$\mathbf{1 , 9 4 , 0 0 0}$
Closing WIP	Materials	2,000		10.75
	Labour \& Overhead	1,000	$9.00+4.50$	21,500
				$\mathbf{3 5 , 0 0 0}$

BQ 18

Following information is available regarding Process A for the month of February:

Production Records:

Units in process as on $1^{\text {st }}$ Feb 4,000
(All materials used, 25% complete for labour and overhead)
New units introduced
16,000
Units completed
14,000
Units in process as on $28^{\text {th }} \mathrm{Feb}$ 6,000
(All materials used, $33-1 / 3 \%$ complete for labour and overhead)

Cost Records:

Work-in-process as on $1^{\text {st }}$ Feb

Materials	$₹ 6,000$
Labour	$₹ 1,000$
Overhead	$₹ 1,000$
Total	$₹ 8,000$

Cost during the month

Materials	₹25,600
Labour	₹15,000
Overhead	₹15,000
Total	₹55,600

Presuming that average method of inventory is used, prepare:
(i) Statement of equivalent production.
(ii) Statement showing cost for each element.
(iii) Statement of apportionment of cost.
(iv) Process cost account for Process A.

Answer

Statement of Equivalent Production

Particulars	Units	Materials			Labour \& Overhead	
		$\%$	Eq. Unit	$\%$	Eq. Unit	
Units Completed	14,000	100	14,000	100	14,000	
Closing WIP	6,000	100	6,000	$33-1 / 3$	2,000	
Total	$\mathbf{2 0 , 0 0 0}$	-	20,000	-	$\mathbf{1 6 , 0 0 0}$	

Statement of Cost

Elements	Total Cost	Equivalent Units	Cost Per Unit
Materials	$6,000+25,600=31,600$	20,000	1.58
Labour	$1,000+15,000=16,000$	16,000	1.00
Overheads	$1,000+15,000=16,000$	16,000	1.00
		3.58	

Statement of Apportionment of Cost

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Completed	Materials,	14,000	3.58	$\mathbf{5 0 , 1 2 0}$
Closing WIP	Labour, Overhead			
	Materials	6,000	1.58	9,480
	Labour, Overhead	2,000	$1.00+1.00$	4,000
			$\mathbf{1 3 , 4 8 0}$	

Process Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Opening WIP	4,000	8,000	By Completed Units	14,000	50,120
To Materials	16,000	25,600	By Closing WIP	6,000	13,480
To Labour		15,000			
To Overhead		15,000			
	$\mathbf{2 0 , 0 0 0}$	$\mathbf{6 3 , 6 0 0}$		$\mathbf{2 0 , 0 0 0}$	$\mathbf{6 3 , 6 0 0}$

BQ 19

Following details are related to the work done in Process 'A' of XYZ Company during the month of March, 2024:

Opening work-in-progress
Materials
Labour
Overheads
Materials introduced in Process ' A '
Materials
Direct labour
Overheads
Units scrapped
Degree of completion:
Materials
Labour and overheads 80\%
Closing work-in-progress

Degree of completion:

Materials 100\%
Labour and overhead 80\%
Units finished and transferred to Process ' B '
Normal loss to total input including opening work-in-progress
Scrapped units fetch

100\%

2,000 units

2,000 units

₹ 80,000
₹ 15,000
₹ 45,000
38,000 units
₹ $14,80,000$
₹3,59,000
₹ $10,77,000$
3,000 units
,000

35,000 units
5\%
₹20 per unit

You are required to prepare

1. Statement of equivalent production;
2. Statement of cost;
3. Statement of distribution cost; and
4. Process ' A ' Account, Normal and Abnormal Loss Accounts.

Answer

1. Statement of Equivalent Production (Average Cost Method)

Particulars	Total Units	Materials		Processing Cost	
		\%	Unit	\%	Unit
Units Completed	35,000	100	35,000	100	35,000
Normal loss	2,000	-	-	-	-
Abnormal Loss	1,000	100	1,000	80	800
Closing WIP	2,000	100	2,000	80	1,600
Total	$\mathbf{4 0 , 0 0 0}$	-	$\mathbf{3 8 , 0 0 0}$	-	$\mathbf{3 7 , 4 0 0}$

2. Statement of Cost

Elements	Total Cost	Equivalent Units	Cost Per Unit
Materials	$80,000+14,80,000-40,000=15,20,000$	38,000	40.00
Labour	$15,000+3,59,000=3,74,000$	37,400	10.00
Overheads	$45,000+10,77,000=11,22,000$	37,400	30.00
			$\mathbf{8 0 . 0 0}$

3. Statement of Evaluation

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Completed	Materials, Labour, Overheads	35,000	80.00	$\mathbf{2 8 , 0 0 , 0 0 0}$
Abnormal Loss	Materials			
	Labour, Overheads	1,000	40.00	40,000
		800	$10.00+30.00$	32,000
				$\mathbf{7 2 , 0 0 0}$
	Materials	2,000	40.00	80,000
	Labour, Overheads	1,600	$10.00+30.00$	64,000
			$\mathbf{1 , 4 4 , 0 0 0}$	

4. Process A Account

Particulars	Units	₹	Particulars	Units	₹
To Opening WIP	2,000	1,40,000	By Normal Loss	2,000	40,000
To Direct Materials	38,000	14,80,000	By Process B A/c	35,000	28,00,000
To Direct Labour		3,59,000	By Abnormal Loss A/c	1,000	72,000
To Overhead		10,77,000	By Closing WIP	2,000	1,44,000
	40,000	30,56,000		40,000	30,56,000

Normal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process A A/c	2,000	40,000	By Cash A/c	2,000	40,000
	$\mathbf{2 , 0 0 0}$	$\mathbf{4 0 , 0 0 0}$		$\mathbf{2 , 0 0 0}$	$\mathbf{4 0 , 0 0 0}$

Abnormal Loss Account

Particulars	Units	\mathcal{F}	Particulars	Units	\boldsymbol{F}
To Process A A/c	1,000	72,000	By Cash A/c	1,000	20,000
			By Costing P\&L A/c		72,000
	$\mathbf{1 , 0 0 0}$	$\mathbf{7 2 , 0 0 0}$	(b.f.)	$\mathbf{1 , 0 0 0}$	$\mathbf{7 2 , 0 0 0}$

BQ 20

'Healthy Sweets' is engaged in the manufacturing of jaggery. Its process involve sugarcane crushing for juice extraction, then filtration and boiling of juice along with some chemicals and then letting it cool to cut solidified jaggery blocks.

The main process of juice extraction (Process I) is done in conventional crusher, which is then filtered and boiled (Process II) in iron pots. The solidified jaggery blocks are then cut, packed and dispatched. For manufacturing 10 kg of jaggery, 100 kg of sugarcane is required, which extracts only 45 litre of juice.

Following information regarding Process - I has been obtained from the manufacturing department of

 Healthy Sweets for the month of January, 2023:Opening work-in process (4,500 litre)

Sugarcane	₹50,000
Labour	₹15,000
Overheads	$₹ 45,000$

Sugarcane introduced for juice extraction ($1,00,000 \mathrm{~kg}$)
₹5,00,000
Direct Labour
₹ $2,00,000$
Overheads
₹6,00,000
Abnormal Loss
$1,000 \mathrm{~kg}$
Degree of completion:

Sugarcane	
Labour and overheads	100%
Closing work-in process	80%
Degree of completion:	9,000 litre
\quad Sugarcane	100%
\quad Labour and overheads	80%
Extracted juice transferred for filtering and boiling	
(Consider mass of 1 litre of juice equivalent to 1 kg)	39,500 litre

You are required to prepare using average method:

1. Statement of equivalent production,
2. Statement of cost,
3. Statement of distribution cost, and
4. Process I Account.

Answer

1. Statement of Equivalent Production (Average Cost Method)

Particulars	Total Units	Materials		Labour \& OH	
		\%	Unit	\%	Unit
Units Completed	39,500	100	39,500	100	39,500
Normal loss	55,000	-	-	-	-
Abnormal Loss	1,000	100	1,000	80	800
Closing WIP	9,000	100	9,000	80	7,200
Total	$\mathbf{1 , 0 4 , 5 0 0}$	-	$\mathbf{4 9 , 5 0 0}$	-	$\mathbf{4 7 , 5 0 0}$

2. Statement of Cost

Elements	Total Cost	Equivalent Units	Cost Per Unit
Materials	$50,000+5,00,000=5,50,000$	49,500	11.111
Labour	$15,000+2,00,000=2,15,000$	47,500	4.526
Overheads	$45,000+6,00,000=6,45,000$	47,500	13.579
			$\mathbf{2 9 . 2 1 6}$

3. Statement of Distribution of Cost

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Completed	All	39,500	29.216	$\mathbf{1 1 , 5 4 , 0 3 2}$
Abnormal Loss	Materials	1,000	11.111	11,111
	Labour, Overheads	800	$4.526+13.579$	14,484
				$\mathbf{2 5 , 5 9 5 + 1 8}$
	Materials	9,000	11.111	99,999
	Labour, Overheads	7,200	$4.526+13.579$	$\mathbf{1 , 3 0 , 3 5 6}$
			$\mathbf{2 , 3 0 , 3 5 5}$	

4. Process I Account

Particulars	Units	₹	Particulars	Units	₹
To Opening WIP	4,500	1,10,000	By Normal Loss @ ${ }^{\text {a }}$ \%	55,000	-
To Sugarcane introduced	1,00,000	5,00,000	of 1,00,000 kgs.		
To Direct Labour		2,00,000	By Process II A/c	39,500	11,54,032
To Overhead		6,00,000	By Abnormal Loss A/c	1,000	25,613
			By Closing WIP	9,000	2,30,355
	1,04,500	14,10,000		1,04,500	14,10,000

Cost of opening work-in-process (1,000 units 60% complete)
Cost of units introduced during the period (10,000 units)
Transferred to next process
Closing work-in-process (75% complete)
Normal loss
Scraps realise
Scraps
₹ $1,10,000$
₹ $19,30,000$
9,000 units
800 units
10% of total input
$₹ 10$ per unit
100% complete

Compute equivalent production and cost per equivalent unit and also evaluate the Output, Closing WIP and Abnormal loss using (1) FIFO method and (2) Weighted average method.

Answer

(1) FIFO Method:

(a) Statement of Equivalent Production

Particulars	Units	Total Cost	
		$\%$	Eq. Unit
Opening units:			
Used for Units transferred	1,000	40	400
Units Introduced:			
Used for Units transferred	800	100	8,000
Used for Closing WIP	1,100	75	600
Normal Loss	-	-	
Abnormal Loss	100	100	100
	$\mathbf{1 1 , 0 0 0}$	-	$\mathbf{9 , 1 0 0}$

(b) Statement of Cost

Elements	Cost	Equivalent Units	Cost Per Unit
Total Current period Cost	$19,30,000-1,100 \times 10$ $=19,19,000$	9,100	$₹ 210.8791$

(c) Statement of Evaluation

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Transferred: Current Period Cost Add: Cost of Opening WIP	All	8,400	210.8791	$\begin{gathered} 17,71,384 \\ 1,10,000 \\ \hline \end{gathered}$
				18,81,384
Closing WIP	All	600	210.8791	1,26,528
Abnormal Loss	All	100	210.8791	21,088

(2) Weighted Average Method:
(a) Statement of Equivalent Production

Particulars	Units	Total Cost		
		$\%$	Eq. Unit	
Normal Loss	1,100	-	-	
Abnormal Loss	100	100	100	
Units transferred	9,000	100	9,000	
Closing WIP	800	75	600	
		$\mathbf{1 1 , 0 0 0}$	-	$\mathbf{9 , 7 0 0}$

(b) Statement of Cost

Elements	Cost (Current + Opening WIP)	Equivalent Units	Cost Per Unit
Total Cost	$19,30,000+1,10,000-1,100 \times 10$ $\quad 20,29,000$	9,700	$₹ 209.1752$

(c) Statement of Evaluation

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Transferred	All	9,000	209.1752	$\mathbf{1 8 , 8 2 , 5 7 7}$
Closing WIP	All	600	209.1752	$\mathbf{1 , 2 5 , 5 0 5}$
	Abnormal Loss	100	209.1752	$\mathbf{2 0 , 9 1 8}$

INTER PROCESS PROFIT

BQ 22

A Ltd. produces product AXE which passes through two processes before it is completed and transferred to finished stock. The following data relate to October 2023.

	Process I	Process II	Finished Stock
Opening stock	7,500	9,000	22,500
Direct materials	15,000	15,750	
Direct wages	11,200	11,250	
Factory overheads	10,500	4,500	
Closing stock	3,700	4,500	11,250
Inter - process profit included in opening stock	Nil	1,500	8,250

Output of process I is transferred to Process II at 25% profit on the transfer price. Output of Process II is transferred to finished stock at 20% profit on the transfer price. Stock in process is valued at prime cost. Finished stock is valued at the price at which it is received from process II. Sales during the period are $₹ 1,40,000$. Prepare Process accounts and finished goods account showing the profit element at each stage.

Answer

Process I A/c

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
Opening Stock	7,500	7,500	-	Process II A/c	54,000	40,500	13,500
Direct Materials	15,000	15,000	-	Closing Stock	3,700	3,700	-
Direct Wages	11,200	11,200	-				
Prime Cost	33,700	33,700	-				
Factory OH	10,500	10,500	-				
Total Cost	44,200	44,200	-				
Profit	13,500	-	13,500				
	$\mathbf{5 7 , 7 0 0}$	$\mathbf{4 4 , 2 0 0}$	$\mathbf{1 3 , 5 0 0}$		$\mathbf{5 7 , 7 0 0}$	$\mathbf{4 4 , 2 0 0}$	$\mathbf{1 3 , 5 0 0}$

Process II A/c

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
Opening Stock	9,000	7,500	1,500	Finished Stock	$1,12,500$	75,750	36,750
Process II A/C	54,000	40,500	13,500	A/c			

Direct Materials	15,750	15,750	-	Closing Stock	4,500	3,750	${ }^{*} 750$
Direct Wages	11,250	11,250	-				
Prime Cost	90,000	75,000	15,000				
Factory OH	4,500	4,500	-				
Total Cost	94,500	79,500	15,000				
Profit	22,500	-	22,500				
	$\mathbf{1 , 1 7 , 0 0 0}$	$\mathbf{7 9 , 5 0 0}$	$\mathbf{3 7 , 5 0 0}$		$\mathbf{1 , 1 7 , 0 0 0}$	$\mathbf{7 9 , 5 0 0}$	$\mathbf{3 7 , 5 0 0}$

Finished Stock A/c

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
Opening Stock	22,500	14,250	8,250	Costing P\&L A/c	1,40,000	82,425	57,575
Process II A/c	1,12,500	75,750	36,750	Closing Stock	11,250	7,575	*3,675
Profit	16,250	-	16,250				
	1,51,250	90,000	61,250		1,51,250	90,000	61,250

* Stock reserve in closing stock of Process II $=15,000 / 90,000 \times 4,500=750$
* Stock reserve in closing stock of FG $=\quad 36,750 / 1,12,500 \times 11,250=3,675$

PAST YEAR QUESTIONS

PYQ 1

M J Pvt. Ltd. produces a product "SKY" which passes through two processes, viz. Process A and Process B. The details for the year ending $31^{\text {st }}$ March, 2014 are as follows:

40,000 units introduced at a cost of	$₹ 3,60,000$	-
Materials Consumed	$₹ 2,42,000$	$₹ 2,25,000$
Direct Wages	$₹ 2,58,000$	$₹ 1,90,000$
Manufacturing Expenses	$₹ 1,96,000$	$₹ 1,23,720$
Output in Units	37,000	27,000
Normal Wastage of Input	5%	10%
Scrap Value (per unit)	$₹ 15$	$₹ 20$
Selling Price (per unit)	$₹ 37$	$₹ 61$

Additional Information:

(a) 80% of the output of Process A, was passed on to the next process and the balance was sold. The entire output of Process B was sold.
(b) Indirect expenses for the year was ₹ $4,48,080$.
(c) It is assumed that Process A and Process B are not responsibility centre.

Required:

(i) Prepare Process A and Process B Account.
(ii) Prepare Profit \& Loss Account showing the net profit/net loss for the year.
[(8 Marks) May 2014]

Answer

(i) Process A Account

Particulars	Units	$\boldsymbol{₹}$	Particulars	Units	$₹$
To Units Introduced	40,000	$3,60,000$	By Normal Loss	2,000	30,000
To Materials Consumed		$2,42,000$	(5\% @ ₹15 per unit)		
To Direct Wages		$2,58,000$	By Abnormal Loss A/c	1,000	27,000
To Manufacturing Exps		$1,96,000$	By Process B Account	29,600	$7,99,200$
			By Profit and Loss A/c	7,400	$1,99,800$
		$\mathbf{4 0 , 0 0 0}$	$\mathbf{1 0 , 5 6 , 0 0 0}$		$\mathbf{1 0 , 0 0 0}$

Normal cost per unit $=\frac{\text { Total cos } \mathrm{t} \text {-scrap of normal loss }}{\text { Total units -normal loss units }} \quad=\quad \frac{10,56,000-30,000}{40,000-2,000}=\mathbb{F} 27.00$
Process B Account

Particulars	Units	₹	Particulars	Units	$₹$
To Process A Account	29,600	$7,99,200$	By Normal Loss	2,960	59,200
To Materials Consumed		$2,25,000$	(10\% @ ₹20 per unit)		
To Direct Wages		$1,90,000$	By Profit and Loss A/c	27,000	$12,96,000$
To Manufacturing Exps		$1,23,720$			
To Abnormal Gain	360	17,280			
	$\mathbf{2 9 , 9 6 0}$	$\mathbf{1 3 , 5 5 , 2 0 0}$		$\mathbf{2 9 , 9 6 0}$	$\mathbf{1 3 , 5 5 , 2 0 0}$

$$
\text { Normal cost per unit }=\frac{\text { Total cos } t-\text { scrap of normal loss }}{\text { Total units - normal loss units }}=\frac{13,37,920-59,200}{29,600-2,960}=
$$

₹48.00
(ii) Profit and Loss Account

Particulars	Units	₹	Particulars	Units	₹
To Process A A/c To Process B A/c To Indirect Expenses To Abnormal Loss A/c $(27,000-1,000$ units $\times 15$)	7,400	1,99,800	By Sales:		
	27,000	12,96,000	Process A	7,400	2,73,800
		4,48,080	Process B	27,000	16,47,000
		12,000	By Abnormal Gain A/c (17,280-360 units×20)		10,080
			By Net Loss		25,000
	34,400	19,55,880		34,400	19,55,880

PYQ 2

The following information relate to process A:
(1) Opening work-in process

Degree of completion:

Materials 100\%
Labour and Overhead 60\%
(2) Input 1,82,000 units at
₹7,37,500
(3) Labour paid
₹ $3,40,600$
(4) Overheads incurred
₹ $1,70,300$
(5) Units scrapped

14,000
Degree of completion:
Material 100\%
Labour and overhead 80\%
(6) Closing work-in-process

18,000 units
Degree of completion:

$$
\text { Material } 100 \%
$$

Labour and overhead
70\%
(7) 1,58,000 units were completed and transferred to next process.
(8) Normal loss is 5% of total input including opening work-in-process
(9) Scrap value is ₹5 per unit to be adjusted out of direct material cost.

You are required to compute on the basis FIFO method:

(a) Equivalent production,
(b) Cost per unit.
(c) Value of Units transferred to next process.
[(8 Marks) Nov 2014]

Answer

(a) Statement of Equivalent Production

Particulars	Units	Materials		Labour \& OH	
		\%	E. Units	\%	E. Units
Opening units:					
Used for Completed Units	8,000	-	-	40	3,200
Current Units:					
Used for Completed Units	1,50,000	100	1,50,000	100	1,50,000
Used for Closing WIP	18,000	100	18,000	70	12,600
Normal Loss	9,500		-	-	-
(1,90,000 $\times 5 \%$)					
Abnormal Loss	4,500	100	4,500	80	3,600
Total	1,90,000	-	1,72,500	-	1,69,400

(b) Statement of Cost Per Unit

Elements	Cost	Equivalent Units	Cost Per Unit
Materials	$7,37,500-47,500(9,500 \times 5)$		
Labour	$6,90,000$	$1,72,500$	4.0000
Overhead	$3,40,600$	$1,69,400$	2.0106
	$1,70,300$	$1,69,400$	1.0053
Total Cost Per Unit			$\mathbf{7 . 0 1 5 9}$

(c) Statement Showing Value Units Transferred to Next Process

Particulars	Elements	Equivalent Units	Cost Per Unit	$₹$
Current period work	Materials	$1,50,000$	4.00	$6,00,000$
	Labour and OH	$1,53,200$	$2.0106+1.0053$	$4,62,036$
Add: Cost of Opening WIP				75,000
Value of Units Transferred				$\mathbf{1 1 , 3 7 , 0 3 6}$

PYQ 3

The following information is furnished by ABC Company for Process - II of its manufacturing activity for the month of April 2015:
(1) Opening work-in process
(2) Units transferred from Process - I
(3) Expenses debited to Process - II:

Consumables ₹1,57,200
Labour
Overheads
(4) Units transferred to Process - III
(5) Closing WIP

Degree of completion:
Consumables 80\%
Labour 60\%
Overheads 60\%
(6) Units scrapped
(7) Scrapped units were sold at
(8) Normal loss

Nil

55,000 units at $₹ 3,27,800$

2,000 units
₹5 per unit
4% of units introduced

You are required to

(a) Prepare a Statement of Equivalent Production.
(b) Determine the cost per unit.
(c) Determine the value of WIP and units transferred to Process - III.
[(8 Marks) Nov 2015]
Answer
(a) Statement of Equivalent Production

Particulars	Units	Materials 1		Material 2		Labour \& OH	
		$\%$	E. Units	$\%$	E. Units	\%	E. Units
Normal Loss (55,000 $\times 4 \%)$	2,200	-	-	-	-	-	-
Units transferred to Process - III	51,000	100	51,000	100	51,000	100	51,000
Units in Closing WIP	2,000	100	2,000	80	1,600	60	1,200
Less: Abnormal Gain	(200)	100	(200)	100	(200)	100	(200)
Total	$\mathbf{5 5 , 0 0 0}$	-	$\mathbf{5 2 , 8 0 0}$	-	$\mathbf{5 2 , 4 0 0}$	-	$\mathbf{5 2 , 0 0 0}$

(b) Statement of Cost Per Unit

Elements	Cost	Equivalent Units	Cost Per Unit
Materials 1	$3,27,800-11,000(2,200 \times 5)=3,16,800$	52,800	6.00
Materials 2	$1,57,200$	52,400	3.00
Labour	$1,04,000$	52,000	2.00
Overhead	52,000	52,000	1.00
			$\mathbf{1 2 . 0 0}$

(c) Statement Showing Value of WIP and Units Transferred to Process - III

Particulars	Elements	Equivalent Units	Cost Per Unit	$₹$
1. Closing WIP	Materials 1	2,000	6.00	12,000
		Materials 2	1,600	3.00
	Labour	1,200	2.00	2,800
	Overheads	1,200	1.00	1,200
				$\mathbf{2 0 , 4 0 0}$
			12.00	$\mathbf{6 , 1 2 , 0 0 0}$

PYQ 4

KMR Limited produces product AY, which passes through three processes 'XM', 'YM' and 'ZM'. The output of process 'XM' and 'YM' is transferred to next process at cost plus 20% each on transfer price and the output of process 'ZM' is transferred to finished stock at a profit of 25% on transfer price. The following information are available in respect of the year ending 31st March, 2017:

Details	Process XM	Process YM	Process ZM	Finished Stock
Opening Stock	30,000	54,000	80,000	90,000
Materials	$1,60,000$	$1,30,000$	$1,00,000$	-
Wages	$2,50,000$	$2,16,000$	$1,84,000$	-
Manufacturing Overheads	$1,92,000$	$1,44,000$	$1,33,000$	-
Closing Stock	40,000	64,000	78,000	$1,00,000$
Inter process profit included in Op. Stock	NIL	8,000	20,000	40,000

Stock in process is valued at prime cost. The finished stock is valued at the price at which it is received from process 'ZM'. Sales of the finished stock during the period was ₹ $28,00,000$.

You are required to prepare:

(i) All process accounts and

(ii) Finished Stock A/c showing profit element at each stage.
[(8 Marks) May 2017]
Answer
(i) Process XM A/c

Particulars	Cost	Profit	Total	Particulars	Cost	Profit	Total
Opening Stock	30,000	-	30,000	Process YM A/c	$5,92,000$	$1,48,000$	$7,40,000$
Materials	$1,60,000$	-	$1,60,000$	Closing Stock	40,000	-	40,000
Wages	$2,50,000$	-	$2,50,000$				
Prime Cost	$4,40,000$	-	$4,40,000$				
Factory OH	$1,92,000$	-	$1,92,000$				
Total Cost	$6,32,000$	-	$6,32,000$				
	-	$\mathbf{1 , 4 8 , 0 0 0}$	$1,48,000$				
	$\mathbf{6 , 3 2 , 0 0 0}$	$\mathbf{1 , 4 8 , 0 0 0}$	$\mathbf{7 , 8 0 , 0 0 0}$		$\mathbf{6 , 3 2 , 0 0 0}$	$\mathbf{1 , 4 8 , 0 0 0}$	$\mathbf{7 , 8 0 , 0 0 0}$

Process YM A/c

Particulars	Cost	Profit	Total	Particulars	Cost	Profit	Total
Opening Stock	46,000	8,000	54,000	Process ZM	$10,72,758$	$4,52,242$	$15,25,000$
Process XM	$5,92,000$	$1,48,000$	$7,40,000$	A/c			
Materials	$1,30,000$	-	$1,30,000$	Closing	55,242	8,758	64,000
Wages	$2,16,000$	-	$2,16,000$	Stock			
Prime Cost	$9,84,000$	$1,56,000$	$11,40,000$				
Factory OH	$1,44,000$	-	$1,44,000$				
Total Cost	$11,28,000$	$1,56,000$	$12,84,000$				
Profit	-	$3,05,000$	$3,05,000$				
	$\mathbf{1 1 , 2 8 , 0 0 0}$	$\mathbf{4 , 6 1 , 0 0 0}$	$\mathbf{1 5 , 8 9 , 0 0 0}$		$\mathbf{1 1 , 2 8 , 0 0 0}$	$\mathbf{4 , 6 1 , 0 0 0}$	$\mathbf{1 5 , 8 9 , 0 0 0}$

Profit element in closing stock $=\frac{1,56,000}{11,40,000} \times 64,000=8,758$
Process ZM A/c

Particulars	Cost	Profit	Total	Particular	Cost	Profit	Total
Opening Stock	60,000	20,000	80,000	Finished	$14,91,258$	$11,00,742$	$25,92,000$
Process ZM	$10,72,758$	$4,52,242$	$15,25,000$	Stock A/c			
Materials	$1,00,000$	-	$1,00,000$	Closing	58,500	19,500	78,000
Wages	$1,84,000$	-	$1,84,000$	Stock			
Prime Cost	$14,16,758$	$4,72,242$	$18,89,000$				
Factory OH	$1,33,000$	-	$1,33,000$				
Total Cost	$15,49,758$	$4,72,242$	$20,22,000$				
Profit	-	$6,48,000$	$6,48,000$				
	$\mathbf{1 5 , 4 9 , 7 5 8}$	$\mathbf{1 1 , 2 0 , 2 4 2}$	$\mathbf{2 6 , 7 0 , 0 0 0}$		$\mathbf{1 5 , 4 9 , 7 5 8}$	$\mathbf{1 1 , 2 0 , 2 4 2}$	$\mathbf{2 6 , 7 0 , 0 0 0}$

Profit element in closing stock $=\frac{4,72,242}{18,89,000} \times 78,000=19,500$
(ii) Finished Stock A/c

Particulars	Cost	Profit	Total	Particulars	Cost	Profit	Total
Opening Stock	50,000	40,000	90,000	Costing	$14,83,725$	$13,16,275$	$28,00,000$
Process ZM	$14,91,258$	$11,00,742$	$25,92,000$	P/L A/c			
Profit							

$$
\text { Profit element in closing stock } \quad=\quad \frac{11,00,742}{25,92,000} \times 1,00,000=42,467
$$

PYQ 5

ABC Ltd. produces an item which is completed in three processes $-\mathrm{X}, \mathrm{Y}$ and Z . the following information is furnished for the month of March, 2018:

Opening work-in process	5,000 units
Materials	$₹ 35,000$
Labour	$₹ 13,000$
Overheads	$₹ 25,000$
Units introduced into process X	55,000 units
Materials	$₹ 20,20,000$
Labour	$₹ 8,00,000$
Overheads	$₹ 13,30,000$

Units scrapped Degree of completion: Material Labour and overhead	5,000 units
Closing work-in-process	100%
Degree of completion:	60%
\quad Material	5,000 units
Labour and overhead	100%
Units finished and transferred to Process Y	60%

Normal loss is 5\% of total input including opening work-in-process, scrap units fetch ₹20 per unit.

Presuming average method of inventory is used, prepare:

(1) Statement of Equivalent production,
(2) Statement of Cost for each element,
(3) Statement of distribution of cost,
(4) Abnormal loss account.
[(8 Marks) May 2018]

Answer

(1) Statement of Equivalent Production

Particulars	Input	Particulars	Output	Materials		Conversion Cost	
				Unit	$\%$	Unit	
Opening WIP	5,000	Transfer to Process Y	50,000	100	50,000	100	50,000
Fresh Units	55,000	Normal Loss	3,000	-	-	-	-
		(5\% of 60,000)					
		Abnormal Loss	2,000	100	2,000	60	1,200
		Closing WIP	5,000	100	5,000	60	3,000
Total	$\mathbf{6 0 , 0 0 0}$	Total	$\mathbf{6 0 , 0 0 0}$	-	$\mathbf{5 7 , 0 0 0}$	-	$\mathbf{5 4 , 2 0 0}$

(2) Statement of Cost

Elements	Cost	Equivalent Units	Cost Per Unit
Materials	$35,000+20,20,000-60,000(3,000 \times 20)$	57,000	35.00
Labour	$=19,55,000$		
Overhead	$13,000+8,00,000=8,13,000$	54,200	15.00
	$25,000+13,30,000=13,55,000$	54,200	25.00
			75.00

(3) Statement of Distribution of Cost

Particulars	Elements	Equivalent Units	Cost Per Unit	₹
Units transferred to Process Y Abnormal Loss	All (M, L, OH)	50,000	75.00	37,50,000
	Materials	2,000	35.00	70,000
	Labour \& OH	1,200	40.00	48,000
				1,18,000
Closing WIP	Materials Labour \& OH	$\begin{aligned} & 5,000 \\ & 3,000 \end{aligned}$	$\begin{aligned} & 35.00 \\ & 40.00 \end{aligned}$	1,75,000
				1,20,000
				2,95,000

(4) Abnormal Loss A/c

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process X A/c	2,000	$1,18,000$	By Cash @ ₹20 p.u.	2,000	40,000
			By P/L A/c		78,000
	$\mathbf{2 , 0 0 0}$	$\mathbf{1 , 1 8 , 0 0 0}$		$\mathbf{2 , 0 0 0}$	$\mathbf{1 , 1 8 , 0 0 0}$

PYQ 6

Alpha Ltd. is engaged in the production of a product A which passes through 3 different process - Process P , Process Q and Process R. the following data relating to cost and output is obtained from the books for the month of April, 2017:

Particulars	Process \boldsymbol{P}	Process \boldsymbol{Q}	Process \boldsymbol{R}
Direct Materials	38,000	42,500	42,880
Direct Labour	30,000	40,000	50,000

Production overheads of ₹90,000 were recovered as a percentage of direct labour. 10,000 kg of raw material @ ₹ 5 per kg. was issued to Process P. There was no stock of material or work in process. There is normal wastage, in processing of 10%. The scrap value of wastage is ₹ 1 per kg.

The entire output of each process transferred to next process and finally to warehouse as Process P $=9,000 \mathrm{~kg}$, Process $\mathrm{Q}=8,200 \mathrm{~kg}$ and Process $\mathrm{R}=7,300 \mathrm{~kg}$.
The company fixes selling price of the end product in such a way so as to yield a profit of 25% on selling price.
Prepare Process P, Q and R accounts. Also calculate selling price per unit of end product.
[(10 Marks) May 2018]

Answer

1. Process P Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Input	10,000	50,000	By Normal Loss	1,000	1,000
To Direct Materials		38,000	(10\% of 10,000 units)		
To Direct Labour		30,000	By Process Q Account @	9,000	$1,39,500$
To Manufacturing OH		22,500	₹15.50 per unit		
(75\% of 30,000)				$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 , 4 0 , 5 0 0}$
		$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 , 4 0 , 5 0 0}$		

Cost per unit of completed units	$=\quad \frac{\text { Total Cost }- \text { Realisable Value of Normal Loss Units }}{\text { Inputs Units }- \text { Normal Loss Units }}$
	$=\quad 1,40,500-1,000 / 10,000-1,000 \quad=\quad ₹ 15.50$

2. Process Q Account

Particulars	Units	₹	Particulars	Units	₹
To Process P A/c	9,000	1,39,500	By Normal Loss	900	900
To Direct Materials		42,500	(10% of 9,000 units)		
To Direct Labour		40,000	By Process R Account @	8,200	2,54,200
To Manufacturing OH (75% of 40,000)		30,000	₹ 31.00 per unit		
To Abnormal Gain	100	3,100			
	9,100	2,55,100		9,100	2,55,100
Cost per unit of comple		2,52,00	900/9,000-900	=	1.00

3. Process R Account

Particulars	Units	₹	Particulars	Units	₹		
To Process Q A/c	8,200	2,54,200	By Normal Loss	820	820		
To Direct Materials		42,880	(10% of 8,200 units)				
To Direct Labour		50,000	By Abnormal Loss A/c	80	4,160		
To Manufacturing OH (75% of 50,000)		37,500	By Finished Goods @ ₹52.00 per unit	7,300	3,79,600		
	8,200	3,84,580		8,200	3,84,580		
Cost per unit of completed units		3,84,580-820/8,200-820		=	52.00		
4. Selling price of end product		Cost per unit + Profit @ 25% on Sales or $1 / 3$ on Cost $52.00+52.00 \times 1 / 3=$ ₹ 69.33					

Working note:

Calculation of recovery rate of overheads:

$$
\begin{aligned}
\text { Recovery rate } & =\frac{\text { Total Overheads }}{\text { Total Labour Cost }} \times 100=\frac{90,000}{1,20,000} \times 100 \\
& =75 \% \text { of labour cost }
\end{aligned}
$$

PYQ 7

Following detail have been provided by M/s AR Enterprises:

- Opening work-in process
- Units introduced during the year
- Cost of process (for the period)
- Transferred to next process
- Closing work-in-process
- Normal loss is estimated at 12% of total input including opening work-in-process
- Scrap realize
$₹ 50$ per unit (100% complete)

Using FIFO method, compute:

(1) Equivalent production,
(2) Cost per equivalent unit.
[(5 Marks) Nov 2018]

Answer

(1) Statement of Equivalent Production

Particulars	Units	Materials, Labour \& OH	
		\%	E. Units
Opening Units:			
Used to produce Units transferred to Next Process	3,000	30	900
Used to produce Units transferred to Next Process	12,000	100	12,000
Normal loss (12% of 20,000)	2,400	-	-
Abnormal loss $(3,000+17,000-2,400-15,000-2,200)$	400	100	400
Closing WIP	2,200	80	1,760
Total	20,000	-	15,060

(2) Statement of Cost Per Equivalent Unit

Elements	Cost	Equivalent Units	Cost Per Unit
Materials, Labour and Overheads	$33,12,720-2,400 \times 50$ $=31,92,720$	15,060	$\mathbf{2 1 2 . 0 0}$

PYQ 8

A company manufacturing chemical solution that passes through a number of processes uses FIFO method to value WIP and Finished goods. At the end of the month of September, a fire occurred in the factory and some papers containing records of the process operations for the month were destroyed. The company desires to prepare process account for the month during which the fire occurred. Some information could be gathered as to operating activities as under:

- Opening work-in process at the beginning of the month of 1,100 litres, 40% complete for labour and 60% for overheads. Opening WIP was valued at ₹48,260.
- Closing WIP at the end of the month was 220 litres, 40% complete for labour and 30% for overheads.
- Normal loss is 10% of input and total losses during the month were 2,200 litres partly due to fire damage. Assume degree of completion of abnormal loss is 100%.
- Output sent to Finished goods warehouse was 5,900 litres.
- Losses have a scrap value of ₹20 per litre.
- All raw materials are added at the commencement of the process.
- The cost per equivalent unit (litre) is ₹53 for the month consisting:

Raw materials	₹35
Labour	₹ 8
Overheads	₹ 10
Total	₹53

You are required to:

(1) Calculate the quantity (in litres) of raw materials input during the month.
(2) Calculate the quantity (in litres) of normal loss and abnormal loss/gain experienced in the month.
(3) Calculate the value of raw materials, labour and overheads added to the process during the month.
(4) Prepare process account for the month.
[(8 Marks) Nov 2018]

Answer

(1) Calculation of quantity of raw materials input during the month:

Raw materials input = Output of Finished goods + Closing WIP + Losses - Opening WIP

$$
=5,900+220+2,200-1,100 \quad=\quad 7,220 \text { litres }
$$

(2) Calculation of quantity of normal loss and abnormal loss or gain:

Normal loss	$=$	10% of Input $=$	10% of 7,220	$=$	722 litres
Abnormal loss	$=$	Actual loss - Normal loss		$=$	$\mathbf{1 , 4 7 8}$ litres

(3) Statement of Material, Labour and Overheads added during the month

Particulars	Materials	Labour	Overheads
Cost per equivalent units	35	8	10
Number of equivalent units	6,498	7,026	6,784
Cost of equivalent units	$2,27,430$	56,208	67,840
Add: Scrap value of normal loss units (722×20)	14,440	-	-
Total value added	$\mathbf{2 , 4 1 , 8 7 0}$	$\mathbf{5 6 , 2 0 8}$	$\mathbf{6 7 , 8 4 0}$

(4) Process A / c

Particulars	Units	₹	Particulars	Units	₹
To Opening WIP	1,100	48,260	By Normal Loss	722	14,440
To Materials	7,220	$2,41,870$	By Finished Output	5,900	$3,12,340$
To Labour		56,208	By Abnormal Loss	1,478	78,334
To Overheads		67,840	By WIP Closing	220	9,064
					$\mathbf{8 , 3 2 0}$
		$\mathbf{8 , 3 2 0}$	$\mathbf{4 , 1 4 , 1 7 8}$		$\mathbf{4 , 1 4 , 1 7 8}$

Working Note:

(a) Statement of Equivalent Production

Particulars	Units	Materials		Labour		Overheads	
		\%.	E. Units	\%	E. Units	\%	E. Units
Opening Units:							
Used for Completed Units	1,100	-	-	60	660	40	440
Current Units:							
Used for Completed Units	4,800	100	4,800	100	4,800	100	4,800
Normal loss	722	-	-	-	-	-	-
Abnormal loss	1,478	100	1,478	100	1,478	100	1,478
Closing WIP	220	100	220	40	88	30	66
Total	$\mathbf{8 , 3 2 0}$	-	$\mathbf{6 , 4 9 8}$	-	$\mathbf{7 , 0 2 6}$	-	$\mathbf{6 , 7 8 4}$

(b) Statement of Evaluation

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Completed: Current period cost	Materials Labour Overheads	$\begin{aligned} & 4,800 \\ & 5,460 \\ & 5,240 \end{aligned}$	$\begin{gathered} 35 \\ 8 \\ 10 \end{gathered}$	
				1,68,000
				43,680
				52,400
Add: Cost of Opening WIP				48,260
				3,12,340
Abnormal Loss	All	1,478	53	78,334
Closing WIP	Materials Labour Overheads	$\begin{gathered} 220 \\ 88 \\ 66 \end{gathered}$	$\begin{gathered} 35 \\ 8 \\ 10 \end{gathered}$	7,700
				704
				660
				9,064

PYQ 9

KT Ltd. produces a product EMM which passes through two processes before it is completed and transferred to finished stock. The following data relate to May 2019:

Particulars	Process		Finished Stock
	$\boldsymbol{A}(\mathbb{Y})$	$\boldsymbol{B}(₹)$	(₹)
Opening Stock	5,000	5,500	10,000
Direct Materials	9,000	9,500	
Direct Wages	5,000	6,000	
Factory Overheads	4,600	2,030	
Closing Stock	2,000	2,490	5,000
Inter-process profit included in opening stock	-	1,000	4,000

Output of Process A is transferred to Process B at 25% profit on the transfer price and output of Process B is transferred to finished stock at 20% profit on the transfer price. Stock in process is valued at
prime cost. Finished stock is valued at the price at which it is received from Process B. Sales during the period are ₹ 75,000 .

Prepare the Process cost accounts and Finished stock account showing the profit element at each stage.
[(10 Marks) May 2019]

Answer

Process A A/c

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
Opening Stock	5,000	5,000	-	Process B A/c	28,800	21,600	7,200
Materials	9,000	9,000	-	Closing Stock	2,000	2,000	-
Wages	5,000	5,000	-				
Prime Cost	19,000	19,000	-				
Factory OH	4,600	4,600	-				
Process Cost	23,600	23,600	-				
Profit	7,200	-	7,200				
	$\mathbf{3 0 , 8 0 0}$	$\mathbf{2 3 , 6 0 0}$	$\mathbf{7 , 2 0 0}$		$\mathbf{3 0 , 8 0 0}$	$\mathbf{2 3 , 6 0 0}$	$\mathbf{7 , 2 0 0}$

Process B A/c

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
Opening Stock	5,500	4,500	1,000	Finished Stock	61,675	41,550	20,125
Process A A/c	28,800	21,600	7,200	A/c			
Materials	9,500	9,500	-	Closing Stock	2,490	2,080	410
Wages	6,000	6,000	-				
Prime Cost	49,800	41,600	8,200				
Factory OH	2,030	2,030	-				
Process Cost	51,830	43,630	8,200				
Profit	12,335	-	12,335				
	$\mathbf{6 4 , 1 6 5}$	$\mathbf{4 3 , 6 3 0}$	$\mathbf{2 0 , 5 3 5}$		$\mathbf{6 4 , 1 6 5}$	$\mathbf{4 3 , 6 3 0}$	$\mathbf{2 0 , 5 3 5}$

Finished Stock A/c

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
Opening Stock	10,000	6,000	4,000	Costing P \& L	75,000	44,189	30,818
Process B A/c	61,675	41,550	20,125	A/c			
Profit (b.f.)	8,325	-	8,325	Closing Stock	5,000	3,361	1,632
	$\mathbf{8 0 , 0 0 0}$	$\mathbf{4 7 , 5 5 0}$	$\mathbf{3 2 , 4 5 0}$		$\mathbf{8 0 , 0 0 0}$	$\mathbf{4 7 , 5 5 0}$	$\mathbf{3 2 , 4 5 0}$

${ }^{*}$ Stock reserve in closing stock of Process B
\quad * Stock reserve in closing stock of FG

PYQ 10

A product passes through two distinct processes before completion. Following information are available in this respect:

Raw materials used
Raw material cost (per unit)
Transfer to next process/Finished goods
Normal loss (on inputs)
Direct wages
Direct expenses
Manufacturing overheads
Realisable value of scrap (per unit)

Process 1

10,000 units
₹75
9,000 units
5\%
₹ $3,00,000$
50% of direct wages
25\% of direct wages
₹13.50

Process 2

8,200 units
10\%
₹5,60,000
65% of direct wages 15% of direct wages ₹145

8,000 units of finished goods were sold at a profit of 15% on cost. There was no opening and closing stock of work-in-progress.

Prepare:

(1) Process 1 and process 2 account
(2) Finished goods account
(3) Normal loss account
(4) Abnormal loss account
(5) Abnormal gain account
[(10 Marks) Nov 2019]

Answer

(1) Process 1 Account

Particulars	Units	₹	Particulars	Units	₹
To Raw Materials	10,000	7,50,000	By Normal Loss A/c (5\% @ ₹13.50 per unit) By Process 2 A/c @ ₹133.50 per unit By Abnormal Loss A/c @ ₹133.50 per unit	500	6,750
To Direct Wages		3,00,000			
To Direct Expenses (50\% of Direct Wages)		1,50,000		9,000	12,01,500
To Manufacturing OH		75,000		500	66,750
	10,000	12,75,000		10,000	12,75,000

$\boldsymbol{N C P U}=\frac{\text { Total Cost - Sale value of Normal Loss Units }}{\text { Total Units-Normal Loss Units }}=\frac{12,75,000-6,750}{10,000-500}=\quad$ ₹ 133.50 p.u.
Process 2 Account

Particulars	Units	₹	Particulars	Units	$₹$
To Process 1 A/c	9,000	$12,01,500$	By Normal Loss A/c	900	$1,30,500$
To Direct Wages		$5,60,000$	(10\% @ ₹145 per unit)		
To Direct Expenses		$3,64,000$	By Finished Goods A/c (65\% of Direct Wages)		84,000
To Manufacturing OH		8,200	$21,04,667$		
(15\% of Direct Wages)					
To Abnormal Gain A/c @ ₹256.67 per unit	100	25,667			
				$\mathbf{9 , 1 0 0}$	$\mathbf{2 2 , 3 5 , 1 6 7}$

$N C P U=\frac{\text { Total Cost - Sale value of Normal Loss Units }}{\text { Total Units-Normal Loss Units }}=\frac{22,09,500-1,30,500}{9,000-900}=₹=$ 256.67 p.u.
(2) Finished Goods Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process 2 A/c	8,200	$21,04,667$	By Cost of Sales	8,000	$20,53,333$
				By Balance c / d	200
	$\mathbf{8 , 2 0 0}$	$\mathbf{2 1 , 0 4 , 6 6 7}$		$\mathbf{8 , 2 0 0}$	$\mathbf{2 1 , 0 4 , 6 6 7}$

(3) Normal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process 1 A/c	500	6,750	By Cash A/c:		
To Process 2 A/c	900	$1,30,500$	Process 1	500	6,750
			Process 2	800	$1,16,000$
			By Abnormal Gain A/c	100	14,500
	$\mathbf{1 , 4 0 0}$	$\mathbf{1 , 3 7 , 2 5 0}$		$\mathbf{1 , 4 0 0}$	$\mathbf{1 , 3 7 , 2 5 0}$

(4) Abnormal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process 1 A/c	500	$\mathbf{6}, 750$	By Cash A/c		
	By Costing P/L A/c	500	6,750		
	$\mathbf{5 0 0}$	$\mathbf{6 6 , 7 5 0}$		$\mathbf{5 0 0}$	$\mathbf{6 6 , 0 0 0}$

(5) Abnormal Gain Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Normal Loss A/c	100	14,500	By Process 2 A/c	100	25,667
		11,167			
	$\mathbf{1 0 0}$ Costing P/L A/c	$\mathbf{2 5 , 6 6 7}$		$\mathbf{1 0 0}$	$\mathbf{2 5 , 6 6 7}$

PYQ 11

Following details are related to the work done in Process I by ABC Ltd. during the month of May, 2019:
Opening work-in-progress
Materials Labour Overheads

Materials introduced in Process I
Materials
Direct labour
Overheads
Units scrapped

Degree of completion:

Materials
Labour and overheads
Closing work-in-progress
Degree of completion:
Materials
100\%
Labour and overhead
50\%
Units finished and transferred to Process II

Normal loss:

4\% of total input including opening work-in-progress Scrapped units fetch ₹ 62.50 per piece.

Prepare:

1. Statement of equivalent production,
2. Statement of cost per equivalent unit,
3. Process I Account,
4. Normal Loss Account and,
5. Abnormal Loss Account.

Answer

1. Statement of Equivalent Production (Average Cost Method)

Particulars	Total Units	Materials		Processing Cost	
		\%	Unit	\%	Unit
Units Completed	36,000	100	36,000	100	36,000
Normal loss	1,800	-	-	-	-
Abnormal Loss	3,000	100	3,000	70	2,100
Closing WIP	4,200	100	4,200	50	2,100
Total	$\mathbf{4 5 , 0 0 0}$	-	$\mathbf{4 3 , 2 0 0}$	-	$\mathbf{4 0 , 2 0 0}$

2. Statement of Cost per Equivalent Unit

Elements	Total Cost	Equivalent Units	Cost Per Unit
Materials	$1,80,500+36,04,000-1,12,500=$	43,200	85.00
Labour	$36,72,000$	40,200	12.00
Overheads	$32,400+4,50,000=4,82,400$	40,200	40.00
	$90,000+15,18,000=16,08,000$		$\mathbf{1 3 7 . 0 0}$

3. Process I Account

Particulars	Units	₹	Particulars	Units	$₹$
To Opening WIP	3,000	$3,02,900$	By Normal Loss	1,800	$1,12,500$
To Direct Materials	42,000	$36,04,000$	By Process II A/c	36,000	$49,32,000$
To Direct Labour		$4,50,000$	By Abnormal Loss A/c	3,000	$3,64,200$
To Overhead		$\mathbf{1 5 , 1 8 , 0 0 0}$	By Closing WIP	4,200	$4,66,200$
	$\mathbf{5 8 , 7 4 , 9 0 0}$		$\mathbf{4 5 , 0 0 0}$	$\mathbf{5 8 , 7 4 , 9 0 0}$	

4. Normal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process I A/c	1,800	$1,12,500$	By Cash A/c	1,800	$1,12,500$
	$\mathbf{1 , 8 0 0}$	$\mathbf{1 , 1 2 , 5 0 0}$		$\mathbf{1 , 1 2 , 5 0 0}$	

5. Abnormal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process I A/c	3,000	$3,64,200$	By Cash A/c	By Costing P/L A/c	3,000
					$1,87,500$
	$\mathbf{3 , 0 0 0}$	$\mathbf{3 , 6 4 , 2 0 0}$		$\mathbf{3 , 0 0 0}$	$\mathbf{3 , 6 4 , 2 0 0}$

Working note:
Statement of Evaluation

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units Completed	Materials, Labour, Overheads	36,000	137.00	$\mathbf{4 9 , 3 2 , 0 0 0}$
Abnormal Loss	Materials	3,000	85.00	$2,55,000$
	Labour, Overheads	2,100	$12.00+40.00$	$1,09,200$
				$3,64,200$
	Materials	4,200	85.00	$3,57,000$
	Labour, Overheads	2,100	$12.00+40.00$	$1,09,200$
			$\mathbf{4 , 6 6 , 2 0 0}$	

PYQ 12

MNO Ltd has provided following details:

- Opening work in progress is 10,000 units at ₹50,000 (Material 100\%, Labour and overheads 70% complete).
- Input of materials is 55,000 units at $₹ 2,20,000$. Amount spent on Labour and Overheads is $₹ 26,500$ and ₹ 61,500 respectively.
- 9,500 units were scrapped; degree of completion for material 100% and for labour \& overheads 60%.
- Closing work in progress is 12,000 units; degree of completion for material 100% and for labour \& overheads 90%.
- Finished units transferred to next process are 43,500 units.
- Normal loss is 5% of total input including opening work in progress. Scrapped units would fetch ₹8.50 per unit.

You are required to prepare using FIFO method:

(1) Statement of Equivalent production
(2) Abnormal Loss Account
[(5 Marks) Jan 2021]

Answer

(1) Statement of Equivalent Production (FIFO Method)

Particulars	Units	Materials		Labour \& OH	
		\%	E. Units	\%	Enits
Opening Units:					
Used for Completed Units	10,000	-	-	30	3,000
Current Units:					
Used for Completed Units	33,500	100	33,500	100	33,500
Normal loss (5\% of 65,000)	3,250	-	-	-	-
Abnormal loss	6,250	100	6,250	60	3,750
Closing WIP	12,000	100	12,000	90	10,800
Total	$\mathbf{6 5 , 0 0 0}$	-	$\mathbf{5 1 , 7 5 0}$	-	$\mathbf{5 1 , 0 5 0}$

(2) Abnormal Loss Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process A/c	6,250	29,698	By Cash A/c	6,250	53,125
To Costing P/L A/c		23,427			
	$\mathbf{6 , 2 5 0}$	$\mathbf{5 3 , 1 2 5}$		$\mathbf{6 , 2 5 0}$	$\mathbf{5 3 , 1 2 5}$

Working notes:

(a) Statement of Cost per Equivalent Unit

Elements	Total Cost	Equivalent Units	Cost Per Unit
Materials	$2,20,000-(3,250 \times 8.50)=1,92,375$	51,750	3.7174
Labour	26,500	51,050	0.5191
Overheads	61,500	51,050	1.2047
			$\mathbf{5 . 4 4 1 2}$

(b) Valuation of Abnormal loss $\begin{aligned} & =(6,250 \times 3.7174)+[3,750 \times(0.5191+1.2047)] \\ & = \\ & \mathbf{2 9 , 6 9 8}\end{aligned}$

PYQ 13

A manufacturing unit manufactures a product 'XYZ' which passes through three Processes: X, Y and Z . the following data is given:

Particulars	Process \boldsymbol{X}	Process \boldsymbol{Y}	Process \boldsymbol{Z}
Material consumed (in ₹)	2,600	2,250	2,000
Direct wages (in ₹)	4,000	3,500	3,000

(a) The total production overhead of ₹ 15,750 was recovered @ 150% of direct wages.
(b) 15,000 units at ₹2 each were introduced to process ' X '.
(c) The output of each process passes to the next process and finally, 12,000 units were transferred finished stock account from process ' Z '.
(d) No stock of materials or work in progress were left at the end.

The following additional information if given:

Process	\% of wastage to normal input	Value of scrap per unit ($₹$)
X	6%	1.10
Y	$?$	2.00
Z	5%	1.00

You are required to:

(1) Find out the percentage of wastage in process ' Y ' given that the output of process ' Y ' is transferred to process 'Z' at ₹ 4 per unit.
(2) Prepare process accounts for all the three processes X, Y and Z .
[(10 Marks) July 2021]

Answer

(1) Calculation of percentage of wastage in process Y :

Let scrap units in process Y be ' x '

Cost per unit in process Y	$=$	$\frac{\text { Total cost- sale of scrap }}{\text { total units - Normal loss units }}$	$=\frac{52,610-2 \mathrm{x}}{14,100-\mathrm{x}} \quad=\mathrm{₹} 4$
$4(14,100-\mathrm{x})$	$=$	$52,610-2 \mathrm{x}$	
$56,400-4 \mathrm{x}$	$=$	$52,610-2 \mathrm{x}$	
3,790	$=$	x	
x	$3,790 \div 2$		
Percentage of wastage	$=$	$(1,895 \div 14,100) \times 100$	$=13.895$ units

(2) Process X Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Units introduced	15,000	30,000	By Normal Loss	900	990
To Material consumed		2,600	(6\% of 15,000 units)		
To Direct wages		4,000	By Process Y Account	14,100	41,610
To Production overheads		6,000			
(150\% of 4,000)	$\mathbf{1 5 , 0 0 0}$	$\mathbf{4 2 , 6 0 0}$		$\mathbf{1 5 , 0 0 0}$	$\mathbf{4 2 , 6 0 0}$

Process Y Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Process X A/c	14,100	41,610	By Normal Loss	1,895	3,790
To Material consumed		2,250	By Process Z Account		
To Direct wages		3,500	@₹4 per unit	12,205	48,820
To Production overheads		5,250			
(150\% of 3,500)					
	$\mathbf{1 4 , 1 0 0}$	$\mathbf{5 2 , 6 1 0}$		$\mathbf{1 4 , 1 0 0}$	$\mathbf{5 2 , 6 1 0}$

Process Z Account

Particulars	Units	₹	Particulars	Units	₹
To Process Y A/c To Material consumed To Direct wages To Production overheads (150% of 3,000) To Abnormal gain @ ₹ 4.977 per unit	12,205	48,820	By Normal Loss (5\% of 12,205 units) By Finished stock Account @ ₹ 4.977 per unit	$\begin{gathered} 610 \\ 12,000 \end{gathered}$	610 59,725
		2,000			
		3,000			
		4,500			
	405	2,015			
	12,610	60,335		12,610	60,335
Cost per unit $=\quad \frac{\mathrm{To}}{\text { total }}$	cost - sale	sap	$\frac{58,320-610}{12,205-610}$	F4.977	unit

PYQ 14

A product passes through Process-I and Process-II. Particulars pertaining to the Process I are: Materials issued to Process I amounted to ₹ 80,000 , Wages ₹ 60,000 and manufacturing overheads were ₹ 52,500 . Normal Loss anticipated was 5% of input. 9,650 units of output were produced and transferred out from Process I to Process II. Input raw materials issued to Process I were 10,000 units. There were no opening stocks. Scrap has realizable value of ₹ 5 per unit.

You are required to prepare:

1. Process I Account
2. Abnormal Gain Account
[(5 Marks) Dec 2021]

Answer

1. Process I Account

Particulars	Units	₹	Particulars	Units	₹
To Raw Material Issued To Wages To Manufacturing OH To Abnormal Gain A/c @ ₹ 20 per unit	10,000	80,000	By Normal Loss A/c (5\% @ ₹5 per unit) By Process II A/c @ ₹ 20 per unit	500	2,500
		60,000			
		52,500		9,650	1,93,000
	150	3,000			
	10,150	1,95,500		10,150	1,95,500

$\boldsymbol{N C P U}=\quad \frac{\text { Total Cost }- \text { Sale value of Normal Loss Units }}{\text { Total Units }- \text { Normal Loss Units }}=\frac{1,92,500-2,500}{10,000-500}=\quad$ ₹20 per unit

2. Abnormal Gain Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Normal Loss A/c	150	750	By Process I A/c	150	3,000
To Costing P/L A/c		2,250			
	$\mathbf{1 5 0}$	$\mathbf{3 , 0 0 0}$		$\mathbf{1 5 0}$	$\mathbf{3 , 0 0 0}$

PYQ 15

STG Limited is a manufacturer of Chemical 'GK', which is required for industrial use. The complete production operation requires two processes. The raw material first passes through Process I, where Chemical ' G ' is produced. Following data is furnished for the month April 2022:

Particulars	(in kgs.)
Opening work-in-progress quantity (Material 100% and conversion 50% complete)	9,500

Material input quantity	$1,05,000$
Work Completed quantity	83,000
Closing work-in-progress quantity	16,500
(Material 100% and conversion 60% complete)	

You are further provided that:

Particulars	(in ₹)
Opening work-in-progress cost:	Material cost
	Processing cost
Material input cost	29,500
Processing cost	14,750

Normal process loss may be estimated to be 10% of material input. It has no realizable value. Any loss over and above normal loss is considered to be 100% complete in material and processing.

The Company transfers 60,000 kgs. of output (Chemical G) from Process I to Process II for producing Chemical 'GK'. Further materials are added in Process II which yield 1.20 kg . of Chemical 'GK' for every kg. of Chemical ' G ' introduced. The chemicals transferred to Process II for further processing are then sold as Chemical 'GK' for ₹10 per kg. Any quantity of output completed in Process I, are sold as Chemical 'G' @ ₹9 per kg.

The monthly costs incurred in Process II (other than the cost of Chemical ' G ') are:
Input $60,000 \mathrm{~kg}$. of Chemical ' G ':
Materials Cost ₹85,000
Processing Costs ₹50,000

You are required:

(a) Prepare Statement of Equivalent production and determine the cost per kg. of Chemical ' G ' in Process I using the weighted average cost method.
(b) Prepare a statement showing cost of Chemical 'G' transferred to Process II, cost of abnormal loss and cost of closing work-in progress.
(c) STG is considering the option to sell $60,000 \mathrm{~kg}$. of Chemical 'G' of Process I without processing it further in Process-II. Will it be beneficial for the company over the current pattern of processing $60,000 \mathrm{~kg}$ in process-II?
[(10 Marks) May 2022]
Answer
(a) Statement of Equivalent Production (Average Cost Method)

Particulars	Units	Materials		Processing Cost	
		$\%$	Unit	$\%$	Unit
Units Completed	83,000	100	83,000	100	83,000
Normal loss (10\% of 10,500)	10,500	-	-	-	-
Closing WIP	16,500	100	16,500	60	9,900
Abnormal Loss	4,500	100	4,500	100	4,500
$(9,500+1,05,000-83,000-16,500-10,500)$					
Total	$\mathbf{1 , 1 4 , 5 0 0}$	-	$\mathbf{1 , 0 4 , 0 0 0}$	-	$\mathbf{9 7 , 4 0 0}$

Statement of Cost per Equivalent Unit

Elements	Total Cost	Equivalent Units	Cost Per Unit
Materials	$29,500+3,34,500=3,64,000$	$1,04,000$	3.50

Processing Cost	$14,750+2,53,100=2,67,850$	97,400	2.75
		$\mathbf{6 . 2 5}$	

(b) Statement Showing Cost of Chemical 'G' transferred to Process II, Cost of Abnormal Loss and Cost of Closing work-in progress

Particulars	Elements	Eq. Units	Cost Per Unit	Total
Units transferred (60,000 units)	All	60,000	6.25	3,75,000
Abnormal Loss	All	4,500	6.25	28,125
Closing WIP	Materials Processing Cost	$\begin{gathered} 16,500 \\ 9,900 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 2.75 \end{aligned}$	$\begin{array}{r} 57,750 \\ 27,225 \\ \hline \end{array}$
				84,975

(c) Further Processing Decision:

Incremental revenue	Incremental cost	Situation	Decision
$(60,000 \times 1.2 \mathrm{kgs} \times ₹ 10)-(60,000 \times ₹ 9)$ $=₹ 1,80,000$	$₹ 85,000+₹ 50,000$ $=₹ 1,35,000$	$\mathrm{IR}>\mathrm{IC}$	Yes

Advise: Additional net profit on further processing in Process II is $45,000(1,80,000-1,35,000)$. Therefore, it is advisable to process further chemical ' G '.

PYQ 16

N Ltd. produces a product which passes through two processes - Process-I and Process-II. The company has provided following information related to the Financial Year 2021-22.

Particulars	Process-I	Process-II
Raw Material @ ₹65 per unit	6,500 units	-
Direct Wages	$₹ 1,40,000$	$₹ 1,30,000$
Direct Expenses	30% of Direct wages	35% of Direct wages
Manufacturing Overheads	$₹ 21,500$	$₹ 24,500$
Realisable value of scrap per unit	$₹ 4.00$	$₹ 16.00$
Normal Loss	250 units	500 units
Units transferred to Process II / finished stock	6,000 units	5,500 units
Sales	-	5,000 units

There was no opening or closing stock of work-in-progress.
You are required to prepare:
(a) Process-I Account
(b) Process-II Account
(c) Finished Stock Account
[(10 Marks) Nov 2022]

Answer

(a) Process-I Account

Particulars	Units	$₹$	Particulars	Units	$₹$
To Raw Materials used	6,500	$4,22,500$	By Normal Loss	250	1,000
To Direct Wages		$1,40,000$			
To Direct Expenses		42,000	By Process-II Account @ ₹100 per unit By Abnormal Loss A/c @ ₹100	6,000	$6,00,000$
(30\% of ₹1,40,000)					
To Manufacturing $0 H$					

$\boldsymbol{N C P U}=\frac{\text { Total Cost -Realisable Value of Normal Loss Units }}{\text { Inputs Units }- \text { Normal Loss Units }}=\frac{6,26,000-1,000}{6,500-250}=\boldsymbol{₹} 100$ p.u.
(b) Process-II Account

Particulars	Units	₹	Particulars	Units	$₹$
To Process-I A/c	6,000	$6,00,000$	By Normal Loss	500	8,000
To Direct Wages		$1,30,000$	By Finished Stock A/c @	5,500	$7,92,000$
To Direct Expenses		45,500	₹144 per unit		
(35\% of ₹1,30,000)		24,500			
To Manufacturing OH					
		$\mathbf{8 , 0 0 , 0 0 0}$		$\mathbf{6 , 0 0 0}$	$\mathbf{8 , 0 0 , 0 0 0}$

$\boldsymbol{N C P U}=\frac{\text { Total Cost }- \text { Re alisable Value of Normal Loss Units }}{\text { Inputs Units }- \text { Normal Loss Units }}=\frac{8,00,000-8,000}{6,000-500}=\mathfrak{₹} 144$ p.u.
(c) Finished Stock Account

Particulars	Units	₹	Particulars	Units	F
To Process-II A/c	5,500	7,92,000	By COS @ ₹144 per unit By Balance c/d	5,000	7,20,000
				500	72,000
	5,500	7,92,000		5,500	7,92,000

SUGGESTED REVISION FOR EXAM:

$B Q: \quad 1,4,5,7,8,11,12,13,15,17,20,22$

PYQ: 4, 8

METHODS OF APPORTIONMENT OF JOINT COST

BQ 1

A coke manufacturing company produces the following products by using 5,000 tonnes of coal @ ₹ 1,100 per ton into a common process.

Coke	3,500 tonnes
Tar	1,200 tonnes
Sulphate of ammonia	52 tonnes
Benzol	48 tonnes

Apportion the joint cost amongst the products on the basis of the physical unit method.

Answer

Statement Showing Apportionment of Joint Cost

Particulars	Coke	Tar	Ammonia	Benzol
Number of units (Quantity in Tonnes)	3,500	1,200	52	48
Apportionment of Joint Cost (₹55,00,000 in proportion of units)	$\mathbf{₹ 4 0 , 1 0 , 4 1 7}$	$\mathbf{₹ 1 3 , 7 5 , 0 0 0}$	₹59,583	₹55,000

BQ 2
Find out cost of joint products A, B and C using average unit cost method from the following data:
Pre-separation Joint Cost
Production data:

Products	Unit Produced
A	500
B	200
C	300
	$\mathbf{1 , 0 0 0}$

Answer
Average unit cost $=\frac{\text { Total Joint Cost }}{\text { Total Units }}=\frac{60,000}{1,000}=\mathrm{F} 60$ per unit
Joint Cost:
Product $\boldsymbol{A}=500$ Units \times ₹ $60=$ ₹30,000
Product $\boldsymbol{B}=200$ Units $\times ₹ 60=₹ 12,000$
Product $C=300$ Units $\times ₹ 60=₹ 18,000$

BQ 3

An entity incurs a joint cost of ₹ 64,500 in producing two products A (200 units), B (200 units) and earns a sales revenue of ₹ 86,000 by selling @ ₹ 170 per unit of product A and product B @ ₹ 260 per unit.

Apportion the joint cost on the basis of Market value at the point of separation.
Answer

Statement Showing Apportionment of Joint Cost

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Number of units	200	200
Market value at separation point per unit	$₹ 170$	$₹ 260$
Total market value at separation point	$₹ 34,000$	$₹ 52,000$
		₹25,500
Apportionment of Joint Cost $₹ 64,500$ in 34:52		₹39,000

BQ 4

An entity incurs a joint cost of ₹ 64,500 in producing two products A (200 units), B (200 units) and sale price of the products A and B after further processing are ₹200 and ₹300 respectively.

Apportion the joint cost on the basis of Market value after further processing.

Answer

Statement Showing Apportionment of Joint Cost

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Number of units	200	200
$\begin{array}{l}\text { Market value after further processing per unit } \\ \text { Total market value after further processing }\end{array}$	$\begin{array}{c}₹ 200 \\ \text { ₹ }\end{array}$	₹ 300000

BQ 5

An entity incurs a joint cost of ₹ 64,500 in producing two products A (200 units), B (200 units) and earns a sales revenue of ₹ 86,000 by selling @ ₹ 170 per unit of product A and product B @ ₹ 260 per unit. Further processing costs for products A and B are ₹ 4,000 and $₹ 32,000$ respectively.

Apportion the joint cost on the basis of Net Realisable Value at Split-off Point Method.

Answer

Statement Showing Apportionment of Joint Cost

Particulars	Product A	Product B
Number of units	200	200
Market value after further processing	₹ 34,000	₹52,000
Less: Further processing cost	₹ 4,000	₹ 32,000
Net Realisable Value (NRV)	₹30,000	F20,000
Apportionment of Joint Cost $₹ 64,500$ in $30: 20$	F38,700	₹25,800

BQ 6

Find out the cost of joint products A and B using contribution margin method from the following data: Sales:

Product A	100 kg @ ₹ 60 per kg.
Product B	$120 \mathrm{~kg} @$ ₹ 30 per kg.

Joint costs
Marginal cost ₹ 4,400
Fixed cost ₹ 3,900

Statement Showing Apportionment of Joint Cost

Particulars	Product A	Product B
Number of units (Quantity in Kgs.)	100	120
Variable Joint Cost ₹4,400 in 100 : 120	₹2,000	₹2,400
Sales	₹6,000	₹3,600
Less: Variable joint cost	₹2,000	₹2,400
Contribution	F4,000	₹1,200
Fixed Joint Cost $₹ 3,900$ in $40: 12$	F3,000	F900
Total Joint Cost	₹5,000	₹3,300

BQ 7

From the following details apportion ₹37,500 joint cost.

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Sale value after further processing	50,000	80,000
Profit	10%	20%
Selling expenses	5%	5%
Further cost	25,000	40,000

Answer
Statement Showing Apportionment of Joint Cost

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Sale value after further processing	50,000	80,000
Less: Profit	$(5,000)$	$(16,000)$
Less: Selling expenses	$(2,500)$	$(4,000)$
Less: Further cost	$(25,000)$	$(40,000)$
	$\mathbf{₹ 1 7 , 5 0 0}$	$\mathbf{₹} 20,000$

BQ 8

From the following details apportion $\mathcal{F}^{39,000}$ joint cost using gross constant margin method.

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Sale value after further processing	60,000	70,000
Selling expenses	5%	5%
Further cost	20,000	45,000

Answer

Statement Showing Apportionment of Joint Cost

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Sale value after further processing	60,000	70,000
Less: Profit @ 15\%	$(9,000)$	$(10,500)$
Less: Selling expenses	$(3,000)$	$(3,500)$
Less: Further cost	$(20,000)$	$(45,000)$
	$\mathbf{F} 28,000$	$\mathbf{F} 11,000$

Calculation of Constant \% of Profit/Margin:

Particulars		Total
Total sale value	$(60,000+70,000)$	$1,30,000$
Less: Total selling expenses	$(3,000+3,500)$	$(6,500)$
Less: Total further cost	$(20,000+45,000)$	$(65,000)$
Less: Total joint cost		$(39,000)$

Total Profit	₹ 19,500
\% of Profit $[(19,500 \div 1,30,000) \times 100]$	15%

BQ 9

Bright Chemicals Ltd. electrolyses common salt to obtain three joint products - caustic soda, chlorine and hydrogen. During a costing period, the expenditure relating to the inputs for the common process amounted to ₹ $3,50,000$. After separation expenses amounting to ₹ $1,60,000$, ₹ 75,000 and ₹ 10,000 were incurred for caustic soda, chlorine and hydrogen respectively.

The entire production was sold and ₹ $3,75,000$, ₹ $2,50,000$ and $₹ 60,000$ were realised for caustic soda, chlorine and hydrogen respectively. The selling expenses were estimated at 5% of realizations sale. The management expected profits @ $15 \%, 10 \%$ and 5% of realization from sale of caustic soda, chlorine, and hydrogen respectively.

Draw a columnar statement showing the apportionment of joint costs and the profitability of each product.

Answer

Statement Showing Apportionment of Joint Cost

Particulars	Soda	Chlorine	Hydrogen
Sale value after further processing	3,75,000	2,50,000	60,000
Less: Estimated profit @ 15\%, 10\% and 5\% on sales	56,250	25,000	3,000
Less: Selling expenses @ 5\% of sales	18,750	12,500	3,000
Less: Further cost	1,60,000	75,000	10,000
Estimated Joint Cost	₹1,40,000	₹1,37,500	F44,000
Joint Cost ${ }^{3} 3,50,000$ in 1,400 : 1,375 : 440	₹1,52,411	₹1,49,689	F47,900
Profit (Sales-Selling expenses-Further cost-Actual Joint cost)	F43,839	₹12,811	(${ }^{\text {9000) }}$

FURTHER PROCESSING DECISION

BQ 10

From the following details advise whether products should be processed further or not:

	Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}	Product \boldsymbol{C}
Sale value:	After further processing	$1,50,000$	$2,40,000$	70,000
	At separation point	80,000	$1,50,000$	50,000
Selling expenses:	After further processing	20,000	30,000	12,000
	At separation point	15,000	20,000	7,000
Further cost		30,000	80,000	35,000

Answer

Statement Showing Further Processing Decision

Product	Calculation Incremental Revenue and Cost		Status	Decision
A	$\begin{aligned} & \text { IR }=1,50,000-80,000 \\ & \text { IC }=30,000+(20,000-15,000) \end{aligned}$	$\begin{aligned} & =70,000 \\ & =35,000 \end{aligned}$	IR > IC	Yes
B	$\begin{aligned} & \text { IR }=2,40,000-1,50,000 \\ & \text { IC }=80,000+(30,000-20,000) \end{aligned}$	$\begin{aligned} & =90,000 \\ & =90,000 \end{aligned}$	IR = IC	Indifferent
C	$\begin{aligned} & \text { IR }=70,000-50,000 \\ & I C=35,000+(12,000-7,000) \\ & \hline \end{aligned}$	$\begin{aligned} & =20,000 \\ & =40,000 \end{aligned}$	IR < IC	No

BQ 11

Sellwell Ltd. operates a chemical process which produces four products A, B, C and D from a basis raw material. The company's budget for a month is as under:

Raw materials consumption	$:$		$₹ 17,520$
Initial processing wages	$:$		$₹ 16,240$
Initial processing overheads			$₹ 16,240$
			₹50,000
Product	Production (in kgs)	Sales (in ₹)	Separate costs (in ₹)
A	16,000	$1,09,600$	28,800
B	200	5,600	Nil
C	2,000	30,000	16,000
D	360	21,600	6,600

The company presently intends to sell product B at the point of split off without further processing. The remaining products A, C and D are to be further processed and sold. However, the management has been advised that it would be possible to sell all the four products at the split off point without further processing and if this course was adopted. The selling prices would be as under:

Product	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
Selling Price Per $\mathrm{Kg}(\mathrm{in} \mathrm{₹})$	4.00	28.00	8.00	40.00

The joint costs are to be apportioned on the basis of the sales value realisation at the point of split-off.

You are required to:

(a) Prepare a statement showing the apportionment of joint costs.
(b) Prepare a statement showing the product wise and total budgeted profit or loss based on the proposal to sell product B at the split-off point and products A, C and D after further processing.
(c) Prepare a statement to show the product wise and total profit or loss if the alternative strategy to sell all the products at split off stage was adopted.
(d) Recommend any other alternative which, in your opinion, can increase the total profit. Further calculate the total profit as also the product wise profit or loss based on your recommendation.
[(a) 32,000; 2,800; 8,000; 7,200 (b) 48,800; 2,800; 6,000; 7,800; 65,400 (c) 32,000; 2,800; 8,000; 7,200; 50,000 (d) B \& C should be sold at split off point and A and D after further processing; 48,800; 2,800; 8,000; 7,800; 67,400]

BQ 12

A company purchases raw materials worth ₹ 11.04 lakhs and processes them into four products P, Q, R and S, which have a unit sale value of ₹ 3 , ₹ 9 , ₹ 16 and $₹ 60$ respectively at split-off point, as they could be sold as such to other processors. However, during a year, the company decided to further process and sell products P, Q and S, while R was not to be processed further but sold at split-off point to other processors. The processing of raw materials into the four products cost ₹28 lakhs to the company. The other data for the year were as under:

Product	Output (in units)
P	$10,00,000$
Q	20,000
R	10,000
S	18,000

Sales (in ₹)

46,00,000
4,00,000
1,60,000
12,00,000

Separate costs (in ₹)
12,00,000
2,40,000
NIL
40,000

You are required to work out the following information for managerial decision-making:
(a) If the joint costs are allocated amongst the four products on the basis of Net realizable value at splitoff point, what would be the company's annual income?
(b) If the company had sold off all the other three products at split-off stage, identify the increase or decrease in the company's annual income as compared to (a above.
(c) What sales strategy could the company have planned to maximize its profits in the year?
(d) Identify the net increase in income if the strategy at (c) is adopted, as compared to (a) above.

Answer

(a) Statement Showing Annual Income (Net Realisable Value Method)

Products	P (${ }^{\text {) }}$	Q (${ }^{\text {) }}$	R (${ }^{\text {) }}$	S (\%)	Total (${ }^{\text {) }}$
Sales value after further processing	46,00,000	4,00,000	1,60,000	12,00,000	63,60,000
Less: Further cost	12,00,000	2,40,000		40,000	14,80,000
Net Realisable Value	34,00,000	1,60,000	1,60,000	11,60,000	48,80,000
Joint Cost (in NRV proportion)	27,20,000	1,28,000	1,28,000	9,28,000	39,04,000
Sales value after further processing	46,00,000	4,00,000	1,60,000	12,00,000	63,60,000
Less: Further cost	12,00,000	2,40,000	-	40,000	14,80,000
Less: Joint cost	27,20,000	1,28,000	1,28,000	9,28,000	39,04,000
Annual Income	6,80,000	32,000	32,000	2,32,000	9,76,000

$\begin{aligned} \text { Joint cost } & =\quad \text { Raw material cost }+ \text { Processing cost (excluding material cost) } \\ & =11,04,000+28,00,000 \quad 39,04,000\end{aligned}$
(b) Statement Showing Annual Income
(When all products are sold at split off stage)

Products	P (\%)	Q (${ }^{\text {) }}$)	R ($)^{\text {) }}$	S (${ }^{\text {P }}$	Total (7)
Number of units	10,00,000	20,000	10,000	18,000	-
Sale price per unit at split off stage	₹3	₹9	₹16	₹60	-
Sales value at split off stage	30,00,000	1,80,000	1,60,000	10,80,000	44,20,000
Less: Joint cost	27,20,000	1,28,000	1,28,000	9,28,000	39,04,000
Annual Income	2,80,000	52,000	32,000	1,52,000	5,16,000
Increase/(Decrease) in Income (5,16,000-9,76,000)					$(4,60,000)$

(c) Strategy to maximize profits: Best production plan will be to sell P and S after further processing and Q and R at the point of split off.
(d) Statement Showing Net Increase in Income (If strategy is adopted)

Products	P (${ }^{\text {) }}$	Q (${ }^{\text {) }}$	R ($)^{\text {) }}$	S (l)	Total (\%)
Sales value	46,00,000	1,80,000	1,60,000	12,00,000	63,60,000
Less: Further cost	12,00,000	-	-	40,000	14,80,000
Less: Joint cost	27,20,000	1,28,000	1,28,000	9,28,000	39,04,000
Annual Income	6,80,000	52,000	32,000	2,32,000	9,96,000
Net Increase in Income (9,96,000-9,76,000)					20,000

BQ 13

'Buttery Butter' is engaged in the production of Buttermilk, Butter and Ghee. It purchases processed cream and let it through the process of churning until it separates into buttermilk and butter. For the month of January, 2023, 'Buttery Butter' purchased 50 Kilolitre processed cream @ ₹ 100 per 1,000 ml. Conversion cost of ₹ $1,00,000$ were incurred upto the split off point, where two saleable products were produced i.e. buttermilk and butter. Butter can be further processed into Ghee.

The January, 2023 production and sales information is as follows:

Products	Production (in Kilolitre/tonne)	Sales Quantity (in Kilolitre/tonne)	Selling price per Litre/Kg (₹)
Buttermilk	28	28	30
Butter	20	-	-
Ghee	16	16	480

All 20 tonne of butter were further processed at an incremental cost of ₹ $1,20,000$ to yield 16 Kilolitre of Ghee. There was no opening or closing inventories of buttermilk, butter or ghee in January, 2023.

Required:

(a) Show how joint cost would be apportioned between Buttermilk and Butter under Estimated Net Realisable Value method.
(b) 'Healthy Bones' offers to purchase 20 tonne of butter in February at $₹ 360$ per kg. In case 'Buttery Butter' accepts this offer, no Ghee would be produced in February. Suggest whether 'Buttery Butter' shall accept the offer affecting its operating income or further process butter to make Ghee itself?

Answer

(a) Statement Showing Apportionment of Joint Cost
(Estimated Net Realisable Value Method)

Particulars	Buttermilk Amount (₹)	Butter Amount (₹)
Sales Value	$8,40,000$	$76,80,000$
Less: Post split-off cost (Further processing cost)	$(₹ 30 \times 28 \times 1000)$	$(₹ 480 \times 16 \times 1000)$
Net Realisable Value	-	$(1,20,000)$
Apportionment of Joint Cost of ₹51,00,000 in ratio of 1:9	$8,40,000$	$75,60,000$
	$\mathbf{5 , 1 0 , 0 0 0}$	$\mathbf{4 5 , 9 0 , 0 0 0}$

$$
\text { Joint cost }=(₹ 100 \times 50 \times 1000)+₹ 1,00,000=₹ 51,00,000
$$

(b) Further processing of Butter into Ghee decision:

Incremental revenue	$=$	$₹ 480 \times 16 \times 1000-₹ 360 \times 20 \times 1000=$	$₹ 4,80,000$	
Incremental cost	$=$	$₹ 1,20,000$	$=$	$₹ 3,60,000$

The operating income of 'Buttery Butter' will be reduced by ₹ $3,60,000$ in February if it sells 20 tonne of Butter to 'Healthy Bones', instead of further processing of Butter into Ghee for sale. Thus, 'Buttery Butter' is advised not to accept the offer and further process butter to make Ghee itself.

BQ 14

Inorganic Chemicals purchases salt and processes it into more refined products such as Caustic Soda, Chlorine and PVC (Polyvinyl chloride). During the month of July, Inorganic Chemicals purchased Salt for ₹ 40,000 . Conversion costs of $₹ 60,000$ were incurred upto the split off point, at which time two saleable products were produced viz. Caustic soda and Chlorine. Chlorine can be further processed in PVC. The July production and sales information is as follows:

	Production (tonnes)	Sales Quantity (tonnes)	Selling price (per tonne)
Caustic Soda	1,200	1,200	$₹ 50$
Chlorine	800	-	-
PVC	500	500	$₹ 200$

All 800 tonnes of Chlorine were further processed at an incremental cost of ₹ 20,000 to yield 500
tonnes of PVC. There were no by products or scrap from this further processing of Chlorine. There were no beginning or ending inventories of Caustic Soda, Chlorine or PVC in July.

There is an active market for Chlorine. Inorganic Chemicals could have sold all its July production of Chlorine at ₹ 75 a tonne.

Required

1. To calculate how the joint cost of $₹ 1,00,000$ would be allocated between Caustic Soda and Chlorine under each of the following methods:
(a) Sales value at split off point;
(b) Physical unit method; and
(c) Estimated NRV.
2. Lifetime Swimming Pool Products offers to purchase 800 tonnes of Chlorine in August at $₹ 75$ per ton. This sale would mean that no PVC would be produced in August. Explain how would accepting the offer affect August's operating income?

Answer

1. Statement Showing Allocation of Joint Cost

Particulars	Joint Products	
	Caustic Soda	Chlorine
(a) Allocation of joint cost on the basis of sale value at split off point: Sale Value of production at split off (production \times sales price) Share of joint cost of ₹ $1,00,000$ in ratio ($60: 60$)	$\begin{gathered} \hline 1,200 \times 50) \\ 60,000 \\ \mathbf{5 0 , 0 0 0} \\ \hline \end{gathered}$	$\begin{gathered} \hline(800 \times 75) \\ 60,000 \\ \mathbf{5 0 , 0 0 0} \\ \hline \end{gathered}$
(b) Allocation of joint cost on ten basis of physical measure: Output at split off point Share of joint cost of ₹ $1,00,000$ in ratio ($12: 8$)	$\begin{gathered} \text { 1,200 tonnes } \\ \mathbf{6 0 , 0 0 0} \end{gathered}$	$\begin{gathered} 800 \text { tonnes } \\ \mathbf{4 0 , 0 0 0} \end{gathered}$
(c) Allocation of joint cost on the basis of estimated NRV: Sale Value of production after further processing (output after further processing \times sales price) Less: Further processing cost	$\begin{gathered} (1,200 \times 50) \\ 60,000 \end{gathered}$	$\begin{gathered} (500 \times 200) \\ 1,00,000 \\ 20,000 \end{gathered}$
Net Realizable Value (NRV)	60,000	80,000
Share of joint cost of ₹ $1,00,000$ in ratio ($60 \mathbf{8 0}$)	42,857	57,143

2. Analysis of Life Swimming Pool Products

Sale value of 500 tons of PVC @ ₹200 per tonne 1,00,000
Less: Sale Value of 800 tons of Chlorine $\quad 60,000$
Incremental Revenue $\quad 40,000$
Cost of further processing chlorine into PVC 20000
Increase in net income due to further processing of chlorine into PVC 20,000
The operating income of Inorganic Chemicals will be reduced by ₹20,000 in August if it sells 800 tons of Chlorine to Lifetime Swimming Pool Products, instead of further processing of Chlorine into PVC for sale.

BQ 15

Sun-moon Ltd. produces and sells the following products:

Products	Units	Selling price at split-off point (Selling price after further processing ($¥$)
A	$2,00,000$	17	25

B	30,000	13	17
C	25,000	8	12
D	20,000	10	-
E	75,000	14	20

Raw material costs $₹ 35,90,000$ and other manufacturing expenses cost $₹ 5,47,000$ in the manufacturing process which are absorbed on the products on the basis of their 'Net realisable value'. The further processing costs of A, B, C and E are ₹ $12,50,000$; ₹ $1,50,000$; ₹ 50,000 and $₹ 1,50,000$ respectively. Fixed costs are ₹ $4,73,000$.

You are required to prepare the following in respect of the coming year:

(a) Statement showing income forecast of the company assuming that none of its products are to be further processed.
(b) Statement showing income forecast of the company assuming that products $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and E are to be processed further.
(c) Can you suggest any other production plan whereby the company can maximise its profits? If yes, then submit a statement showing income forecast arising out of adoption of that plan.

Answer

(a) Statement Showing Income Forecast of the Company (Assuming that none of its products are further processed)

Products	$\boldsymbol{A}(\mathrm{Y})$	$\boldsymbol{B}(\mathrm{Y})$	$\boldsymbol{C}(\mathrm{Y})$	$\boldsymbol{D}(\mathrm{Y})$	$\boldsymbol{E}(\mathrm{Y})$	Total (Y)
Number of units	$2,00,000$	30,000	25,000	20,000	75,000	-
Sale price per unit	17	13	8	10	14	-
Sales revenue	$34,00,000$	$3,90,000$	$2,00,000$	$2,00,000$	$10,50,000$	$52,40,000$
Less: Apportioned cost	$26,25,000$	$2,52,000$	$1,75,000$	$1,40,000$	$9,45,000$	$41,37,000$
	$7,75,000$	$1,38,000$	25,000	60,000	$1,05,000$	$11,03,000$
Less: Fixed cost						$4,73,000$
Profit						$\mathbf{6 , 3 0 , 0 0 0}$

(b) Statement Showing Income Forecast of the Company
(Assuming that products A, B, C and E are further processed)

Products	A (${ }^{\text {) }}$)	B (Y)	C (${ }^{\text {) }}$	D (${ }^{\text {P }}$)	E (${ }^{\text {) }}$	Total (${ }^{\text {\% }}$)
Number of units	2,00,000	30,000	25,000	20,000	75,000	-
Sale price per unit	25	17	12	10	20	-
Sales revenue	50,00,000	5,10,000	3,00,000	2,00,000	15,00,000	75,10,000
Less: Apportioned cost	26,25,000	2,52,000	1,75,000	1,40,000	9,45,000	41,37,000
Less: Further cost	12,50,000	1,50,000	50,000	-	1,50,000	16,00,000
	11,25,000	1,08,000	75,000	60,000	4,05,000	17,73,000
Less: Fixed cost						4,73,000
Profit						13,00,000

(c) Suggested production plan for maximising profits: On comparing the figures of excess of revenue over cost of manufacturing in the above statements one observes that the concern is earning more after further processing of A, C and E products but is loosing a sum of ₹ 30,000 in the case of product B (if it is processed further). Hence the best production plan will be to sell A, C and E after further processing and B and D at the point of split off. The profit statement based on this suggested production plan is as below:

Profit Statement Based on Suggested Production Plan

Products	$\boldsymbol{A}($ ₹ $)$	$\boldsymbol{B}($ ₹ $)$	$\boldsymbol{C}($ ₹ $)$	$\boldsymbol{D}($ ₹ $)$	$\boldsymbol{E}($ ₹)	Total (₹)
Number of units	$2,00,000$	30,000	25,000	20,000	75,000	-
Sale price per unit	25	13	12	10	20	-

Sales revenue	$50,00,000$	$3,90,000$	$3,00,000$	$2,00,000$	$15,00,000$	$73,90,000$
Less: Apportioned cost	$26,25,000$	$2,52,000$	$1,75,000$	$1,40,000$	$9,45,000$	$41,37,000$
Less: Further cost	$12,50,000$	-	50,000	-	$1,50,000$	$14,50,000$
	$11,25,000$	$1,38,000$	75,000	60,000	$4,05,000$	$18,03,000$
Less: Fixed cost						$4,73,000$
Profit						$\mathbf{1 3 , 3 0 , 0 0 0}$

Hence the profit of the company has increased by $\mathfrak{F 3 0 , 0 0 0}$

Working note:
Statement Showing Apportionment of Joint Cost
(Net Realisable Value Method)

Products	$\boldsymbol{A}($ ₹ $)$	$\boldsymbol{B}($ ($)$	$\boldsymbol{C}($ ₹ $)$	$\boldsymbol{D}($ ($)$	$\boldsymbol{E}($ ₹ $)$
Number of units	$2,00,000$	30,000	25,000	20,000	75,000
Sale price per unit	25	17	12	10	20
Sales revenue	$50,00,000$	$5,10,000$	$3,00,000$	$2,00,000$	$15,00,000$
Less: Further cost	$12,50,000$	$1,50,000$	50,000	-	$1,50,000$
Net Realisable Value	$37,50,000$	$3,60,000$	$2,50,000$	$2,00,000$	$13,50,000$
Joint cost (in NRV proportion)	$\mathbf{2 6 , 2 5 , 0 0 0}$	$\mathbf{2 , 5 2 , 0 0 0}$	$\mathbf{1 , 7 5 , 0 0 0}$	$\mathbf{1 , 4 0 , 0 0 0}$	$\mathbf{9 , 4 5 , 0 0 0}$

Joint cost	$=\quad$ Raw material cost + other manufacturing expenses
	$=35,90,000+5,47,000$
	$=\quad \mathbf{4 1 , 3 7 , 0 0 0}$

BY PRODUCTS

BQ 16

A Factory is engaged in the production of a chemical BOMEX and in the course of its manufacture, a byproduct BRUCIL is produced, which after further processing has commercial value. For the month of April 2023, the following are the summarised cost data.

Joint Expenses
Separate Expenses

		BOMEX	BRUCIL
Materials	$1,00,000$	6,000	4,000
Labour	50,000	20,000	18,000
Overheads	30,000	10,000	6,000
Selling price per unit		98	34
Estimated profit per unit on sale of BRUCIL		2,000	4
No. of units produced		2,000	

The factory uses reverse cost method of accounting for by-products where by the sales value of byproducts after deduction of the estimated profit, post separation cost and selling and distribution expenses relating to the by product is credited to the joint process account.

You are required to prepare statements showing:

(1) The joint cost allocable to BOMEX.
(2) The product wise and overall profitability of the factory for April 2023.

(1) Statement of Allocation of Joint Cost to BOMEX

	Particulars	Amount (P)
Sales value of BRUCIL	(2,000 units \times ₹ 34)	68,000
Less: Estimated profit	(2,000 units \times ₹ 4)	8,000
Less: Separate cost	(₹ 4,000 + ₹ 18,000 + ₹ 6,000)	28,000
Joint Cost of BRUCIL		32,000
Total Joint Cost	(₹1,00,000 + ₹50,000 +	1,80,000
₹ 30,000)		32,000
Less: Joint cost allocable to BRUCIL		
Joint Cost allocable to BOMEX		1,48,000

(2) Product-wise \& Overall Profitability Statement

	Particulars	BOMEX	BRUCIL	Total
Sales value		$1,96,000$	68,000	$2,64,000$
Less: Separate cost		36,000	28,000	64,000
Less: Joint cost		$1,48,000$	32,000	$1,80,000$
	Profit	$\mathbf{1 2 , 0 0 0}$	$\mathbf{8 , 0 0 0}$	$\mathbf{2 0 , 0 0 0}$

BQ 17

Smile company produces two main products and a by-product out of a joint process. The ratio of output quantities to input quantities of direct material used in the joint process remains consistent on yearly basis. Company has employed the physical volume method to allocate joint production costs to the main products. The net realizable value of the by-product is used to reduce the joint production costs before the joint costs are allocated to the main products. Details of company's operation are given in the table below. During the month, company incurred joint production costs of ₹ $10,00,000$. The main products are not marketable at the split off point and thus have to be processed further.

Particulars	Product A	Product \boldsymbol{B}	By Product
Monthly output in kg.	60,000	$1,20,000$	50,000
Selling price per kg.	$₹ 50$	$₹ 30$	$₹ 5$
Process costs	$₹ 2,00,000$	$₹ 3,00,000$	

Find out the amount of joint product cost that Smile company would allocate to the product B by using the physical volume method to allocate joint production costs?

Answer

Calculation of Net joint costs to be allocated:

Particulars	Amount ($₹$)
Joint Costs	$10,00,000$
Less: Net Realizable value of by-product $(50,000 \times 5)$	$2,50,000$
Net joint costs to be allocated	$7,50,000$

Joint cost allocable to Product B $=\frac{\text { Net joint cost allocable to products }}{\text { Total Units }} \times$ Physical qty of Product B

$$
=\frac{7,50,000}{60,000+1,20,000} \times 1,20,000
$$

$$
=\quad ₹ 5,00,000
$$

BQ 18

NN Manufacturing company uses joint production process that produces three products at the split off point. Joint productions costs during September were ₹ $8,40,000$. Product information for September was as follows:

Particulars	Product A	Product \boldsymbol{B}	Product \boldsymbol{C}
Units produced	1,500	3,000	4,500
Units sold	2,000	6,000	7,500
Sales prices:			
At the split-off		-	-
After further processing	₹ 150	$₹ 175$	$₹ 50$
Costs to process after split-off	$₹ 1,50,000$	$₹ 1,50,000$	$₹ 1,50,000$

Assume that product C is treated as a by-product and the company accounts for the by-product at net realizable value as a reduction of joint cost. Assume also that Product B \& C must be processed further before they can be sold. Find out the total cost of Product A in September if joint cost allocation is based on net realizable values.

Answer

Calculation of Net joint costs to be allocated:

Particulars	Amount (₹)
Joint Costs	$8,40,000$
Less: Net Realizable value of by-product $\{(4,500 \times 50)-1,50,000\}$	75,000
Net joint costs to be allocated	$7,65,000$

Note: Product A can be sold at the split-off point, because the question says that "Products B and C must be processed further before they can be sold." Since product A is not included in that, we know that Product A can be sold at the split-off point. Furthermore, the cost to process Product A after the split-off point is $₹ 150,000$, whereas the additional revenue to be earned by processing it further is only ₹ 75,000 ($₹ 50$ increase in selling price per unit multiplied by the 1,500 units produced during September). Therefore, Product A will not be processed further, and we use the sales value at split-off for A for allocating the joint costs. The sales value at the split-off for A is $₹ 100 \times 1,500$ units, or $₹ 1,50,000$.

Statement Showing Total Cost of Product A (Estimated Net Realisable Value Method)

Particulars	Product A Amount ($₹$)	Product \boldsymbol{B} Amount ($₹$)
Sales Value of units Produced	$1,50,000$	$5,25,000$
(Product A at split off and B after further processing)	$(₹ 100 \times 1,500)$	$(₹ 175 \times 3,000)$
Less: Further processing cost	-	$(1,50,000)$
Net Realisable Value	$1,50,000$	$3,75,000$
Apportionment of Joint Cost of ₹7,65,000 in ratio of 2:5	$\mathbf{2 , 1 8 , 5 7 1}$	$\mathbf{5 , 4 6 , 4 2 9}$
Add: Further processing cost	-	$\mathbf{1 , 5 0 , 0 0 0}$
Total Cost of product	$\mathbf{2 , 1 8 , 5 7 1}$	$\mathbf{6 , 9 6 , 4 2 9}$

PAST YEAR QUESTIONS

PYQ 1

A company manufactures one main product (M1) and two by-products B1 and B2 for the month of January 2013, following details are available:

Total Cost upto Separation Point
₹2,12,400

Particulars	M1	B1	B2
Cost after separation	-	$₹ 35,000$	$₹ 24,000$
No. of units produced	4,000	1,800	3,000
Selling price per units	$₹ 100$	$₹ 40$	$₹ 30$
Estimated net profit as percentage to sales value	-	20%	30%
Estimated selling expenses as percentage to sales value	20%	15%	15%

There are no beginning or closing inventories.

Prepare statement showing:

I. Allocation of joint cost; and
II. Product-wise and overall profitability of the company for January 2013.
[(8 Marks) May 2013/May 2015]

Answer

I. Statement of Allocation of Joint Cost

Particulars	B1	B2
Sales @ ₹ $40 / ₹ 30$ per unit	72,000	90,000
Less: Estimated profit @ 20\%/30\%	14,400	27,000
Less: Estimated selling expenses @ 15\% on sales	10,800	13,500
Less: Further estimated cost (cost after separation)	35,000	24,000
Joint Cost	11,800	25,500
Total Joint Cost		2,12,400
Less: Joint cost allocable to B1		11,800
Less: Joint cost allocable to B2		25,500
Joint Cost allocable to M1		1,75,100

II. Product-wise \& Overall Profitability Statement

Particulars	M1	$\boldsymbol{B 1}$	B2	Total
Sales	$4,00,000$	72,000	90,000	$5,62,000$
Less: Selling expenses @ 20\%/15\%/15\%	80,000	10,800	13,500	$1,04,300$
Less: Cost after separation	Nil	35,000	24,000	59,000
Less: Joint cost	Profit	$\mathbf{1 , 7 5 , 1 0 0}$	11,800	25,500
$2,12,400$				

PYQ 2

SV Chemicals Limited processes $9,00,000 \mathrm{kgs}$ of raw material in a month purchased at ₹ 95 per kg in department X. The input output ratio of department X is $100: 90$. Processing of material result in two joint products being produced ' P 1 ' and ' P 2 ' in the ratio of 60 : 40 . Product ' P 1 ' can be sold at the split of stage or can be processed further at department Y and sold as a new product 'YP1'. The input output ratio of department Y is $100: 95$. Department Y is utilized only for further processing of product ' P 1 ' to product ' $\mathrm{YP} 1^{\prime}$.

Individual departmental expenses are as follows:

Direct materials
Direct labour
Variable overheads
Fixed overheads
Total

Department X
(In Lakh)
₹95.00
₹80.00
₹100.00
₹75.00
₹350.00

Department Y
(In Lakh)
₹ 14.00
₹27.00
₹35.00
₹52.00
₹128.00

Further, selling expenses to be incurred on three products are:

Product 'P1'
Product 'P2'
Product 'YP1'
₹28.38 lakh
₹25.00 lakh
₹ 19.00 lakh

The selling prices per kg are as under:

```
Product 'P1'
₹110
Product 'P2' ₹325
Product 'YP1' ₹150
```


You are required to:

(1) Prepare a statement showing the apportionment of joint costs in the ratio of value of sales, net of selling expenses.
(2) Statement showing profitability at split off point.
(3) Statement of profitability of 'YP1'
(4) Would you recommend further processing of 'P1'?
[(8 Marks) June 2015]

Answer

Input in Department X	=	9,00,000 kgs		
Yield	=	90\%		
Therefore Output		90\% of 9,00,000 kgs	$=$	8,10,000 kgs
Ratio of output for 'P1' and 'P2'	=	60:40		
Product of 'P1'	$=$	60\% of 8,10,000 kgs	$=$	4,86,000 kgs
Product of 'P2'	=	40% of 8,10,000 kgs	$=$	3,24,000 kgs

(1) Statement Showing Apportionment of Joint Cost

Particulars	Product 'P1' (₹in Lakh)	Product 'P2' (₹in Lakh)
Sales value at split-off-point	$(4,86,000 \times 110)$	$(3,24,000 \times 325)$
Less: Selling expenses if sold at split-off-point	534.60	$1,053.00$
Net sales at split-off-point	(28.38)	(25.00)
Share of joint cost of ${ }^{*}$ ₹1,205 lakh (in 506.22: 1,028)	506.22	$1,028.00$
	$\mathbf{3 9 7 . 5 9}$	$\mathbf{8 0 7 . 4 1}$

* Calculation of joint cost:

Raw materials $(9,00,000 \mathrm{kgs} \times ₹ 95)$	$=$	855 lakh
Process cost of department X	$=$	350 lakh
Joint cost	$=$	$\mathbf{1 , 2 0 5}$ lakh

(2) Statement of Profitability at Split Off Point

Particulars	Product 'P1' (₹in Lakh)	Product 'P2' (₹in Lakh)
Sales value at split-off-point	$(4,86,000 \times 110)$	$(3,24,000 \times 325)$
	534.60	$1,053.00$
Less: Selling expenses if sold at split-off-point	(28.38)	(25.00)
Less: Joint Cost	(397.59)	(807.41)
	Profit	$\mathbf{1 0 8 . 6 3}$
$\mathbf{n y y}$		$\mathbf{2 2 0 . 5 9}$

(3) Statement of Profitability of 'YP1'

Particulars	Product 'YP1' (₹in Lakh)
Sales value $(4,61,700 \times 150)$	692.55
Less: Further processing cost in department Y	(128.00)
Less: Selling expenses if sold after further processing	(19.00)
Less: Joint Cost	Profit

Calculation of output of product 'YP1':
Output $=\quad 95 \%$ of $4,86,000 \mathrm{kgs} \quad=\quad 4,61,700 \mathrm{kgs}$
(4) Further Processing Decision: Product 'P1' should be sold after further processing as product 'YP1' having higher profit.

PYQ 3
A factory producing article A also produces a by-product B which is further processed into finished product.
The joint costs of manufacture are given below:

Material	$₹ 5,000$
Labour	$₹ 3,000$
Overheads	$₹ 2,000$
	₹10,000

Subsequent costs are given below:

	\boldsymbol{A}	\boldsymbol{B}
Material	₹3,000	₹ 1,500
Labour	$₹ 1,400$	$₹ 1,000$
Overheads	₹600	₹500
	₹5,000	₹3,000

Selling Price:

Product A
₹16,000
Product B
₹8,000

Estimated profits on selling prices:
$\begin{array}{ll}\text { Product A } & 25 \% \\ \text { Product B } & 20 \%\end{array}$
Assume that selling and distributing expenses are in proportion of sales prices. Show how you would apportion joint costs of manufacture and prepare a statement showing cost of production of A and B.

Answer

Statement Showing Apportionment of Joint Cost

Particulars	Article \boldsymbol{A}	By-product \boldsymbol{B}
Sales value	16,000	8,000
Less: Profit @ 25\% of 16,000 \& 20\% of 8,000	4,000	1,600
Less: Selling expenses (400 in 16 : 8)	267	133
Less: Subsequent cost \quad Joint cost	5,000	3,000
	$\mathbf{6 , 7 3 3}$	$\mathbf{3 , 2 6 7}$

* Calculation of selling expenses:

Selling expenses	$=$
	$=$ Total sales - Total profit - Total subsequent cost - Total joint cost
	$=$
	$(16,000+8,000)-(4,000+1,600)-(5,000+3,000)-10,000$

Statement Showing Cost of Production

	Particulars	Article \boldsymbol{A}	By-product \boldsymbol{B}
Joint cost		6,733	3,267
Subsequent cost	Cost of Production	5,000	3,000
		$\mathbf{6 , 2 6 7}$	

PYQ 4

A Ltd produces ' M ' as a main product and gets two by products ' P ' and ' Q ' in the course of processing. Following information are available for the month of October 2017:

Particulars	\boldsymbol{M}	\boldsymbol{P}	\boldsymbol{Q}
Cost after separation	-	$₹ 60,000$	$₹ 30,000$
No. of units produced	4,500	2,500	1,500
Selling price per units	$₹ 170$	$₹ 80$	$₹ 50$
Estimated net profit as percentage to sales value	-	30%	25%

The joint cost upto separation point amounts to ₹ $2,50,000$. Selling expenses amounting to 85,000 are to be apportioned to the three products in the ratio of sales units. There are no beginning or closing inventories.

Prepare statement showing:

(i) Allocation of joint cost;
(ii) Product-wise and overall profitability and
(iii) Advise the company regarding results if the by product ' P ' is not further processed and is sold at the point of separation at ₹ 60 per unit without incurring selling expenses.
[(8 Marks) Nov 2017]

Answer

(i) Statement of Allocation of Joint Cost

Particulars	\boldsymbol{P}	\boldsymbol{Q}
Sales @ ₹80/₹50 per unit	$2,00,000$	75,000
Less: Estimated profit @ 30\%/25\%	60,000	18,750
Less: Estimated selling 85,000 in (4,500 : 2,500 : 1,500)	25,000	15,000
Less: Further estimated cost (cost after separation)	60,000	30,000
Joint Cost		$\mathbf{5 5 , 0 0 0}$
Total Joint Cost		$\mathbf{1 1 , 2 5 0}$
Less: Joint cost allocable to P		55,000
Less: Joint cost allocable to Q		11,250
Joint Cost allocable to \mathbf{M}		

(ii)

Product-wise \& Overall Profitability Statement

Particulars	\boldsymbol{M}	\boldsymbol{P}	\boldsymbol{Q}	Total
Sales	$7,65,000$	$2,00,000$	75,000	$10,40,000$
Less: Selling expenses	45,000	25,000	15,000	85,000
Less: Cost after separation	Nil	60,000	30,000	90,000
Less: Joint cost	$\mathbf{1 , 8 3 , 7 5 0}$	55,000	11,250	$2,50,000$
Profit	$\mathbf{5 , 3 6 , 2 5 0}$	$\mathbf{6 0 , 0 0 0}$	$\mathbf{1 8 , 7 5 0}$	$\mathbf{6 , 1 5 , 0 0 0}$

(iii) Further processing decision in respect of by product ' P ':

Reduction in revenue	$=$	2,500 units $(₹ 80-₹ 60)$	$=$	$₹ 50,000$
Reduction in cost	$=$	Further processing cost + Selling expenses		
	$=$	$60,000+25,000$	$₹ 85,000$	

Decision: Since, reduction in cost is higher than reduction in revenue therefore, By product ' P ' should be sold at split of stage (by following such decision company can increase its income by ₹ 35,000).

PYQ 5

A Factory is engaged in the production of a chemical BOMEX and in the course of its manufacture, a byproduct CROMEX is produced which after further processing has commercial value. For the month of April 2019, the following are the summarised cost data.

Joint Expenses
Separate Expenses

		BOMEX	CROMEX
Materials	$1,00,000$	6,000	4,000
Labour	50,000	20,000	18,000
Overheads	30,000	10,000	6,000
Selling price per unit		100	40
Estimated profit per unit on sale of CROMEX			5
No. of units produced	2,000	2,000	

The factory uses net realizable value method for apportionment of joint cost to by-products.

You are required to prepare statements showing:

(1) Joint cost allocable to CROMEX.
(2) Product wise and overall profitability of the factory for April 2019.
[(5 Marks) May 2019]

Answer

(1) Statement of Allocation of Joint Cost to CROMEX

Particulars	Amount (₹)	Amount (\%)
Number of units produced	2,000	2,000
Sale price per unit	₹100	₹40
Sales value	2,00,000	80,000
Less: Separate cost	36,000	28,000
Net realizable value	1,64,000	52,000
Joint Cost ₹ $1,80,000$ in 1,64,000 : 52,000	1,36,667	43,333

(2) Product-wise \& Overall Profitability Statement

	Particulars	BOMEX	CROMEX	Total
Sales value		$2,00,000$	80,000	$2,80,000$
Less: Separate cost		36,000	28,000	64,000
Less: Joint cost		$1,36,667$	43,333	$1,80,000$
	Profit	$\mathbf{2 7 , 3 3 3}$	$\mathbf{8 , 6 6 7}$	$\mathbf{3 6 , 0 0 0}$

PYQ 6

A factory produces two, ' A ' and ' B ' from a single process. The joint processing costs during a particular month are:

Direct material	$₹ 30,000$
Direct labour	$₹ 9,600$
Variable overheads	$₹ 12,000$
Fixed overheads	$₹ 32,000$

Sales: A - 100 units @ ₹600 per unit; B - 120units @ ₹ 200 per unit.

Apportion joints costs on the basis of:

(1) Physical quantity of each product.
(2) Contribution margin method, and
(3) Determine profit or loss under both the methods. [(5 Marks) Nov 2019]

Answer

(1) Statement Showing Apportionment of Joint Cost
(Based on Physical Quantity Method)

Particulars	Product A	Product B
Number of units	100	120
Apportionment of Joint Cost $₹ 83,600$ in $100: 120$	$₹ 38,000$	$₹ 45,600$

(2) Statement Showing Apportionment of Joint Cost
(Based on Contribution Margin Method)

Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Number of units	100	120
(A) Variable Joint Cost $₹ 51, \mathbf{6 0 0}$ in $\mathbf{1 0 0} \mathbf{: 1 2 0}$	$₹ 23,455$	$₹ 28,145$
Sales	$₹ 60,000$	$₹ 24,000$
Less: Variable joint cost	$₹ 23,455$	$₹ 28,145$
Contribution	$₹ 36,545$	$(₹ 4,145)$
(B) Fixed Joint Cost $₹ 32, \mathbf{0 0 0}$ to Product A only	$₹ 32,000$	-
(C) Total Joint Cost $($ A $)+(B)$	$₹ 55,455$	$₹ 28,145$

Note: * The fixed cost of ₹ 32,000 is to be apportioned over the joint products A and B in the ratio of their contribution margin but contribution margin of Product B is Negative so fixed cost will be charged to Product A only.
(3) Statement Showing Profit under Both Methods

Particulars	Product \boldsymbol{A}	Product B
(1) Profit under physical quantity method:		
Sales	60,000	24,000
Less: Joint cost	38,000	45,600
Profit/ (loss)	$₹ 22,000$	(₹21,600)
(2) Profit under contribution margin method:		
Sales	60,000	24,000
Less: Joint cost	55,455	28,145
Profit/(loss)	₹4,545	(₹4,145)

Working note:

Variable joint cost = Direct material + Direct wages + Variable overheads

$$
=\text { ₹ } 30,000+₹ 9,600+₹ 12,000 \quad=\quad ₹ 51,600
$$

$$
\begin{array}{rll}
\text { Total joint cost } & = & \text { Variable joint cost }+ \text { Fixed overheads } \\
& = & ₹ 51,600+₹ 32,000
\end{array}=\quad ₹ 83,600
$$

PYQ 7

A company's plant processes 6,750 units of raw material in a month to produce two products ' M ' and ' N '.

The process yield is as under:

Product M	80%
Product N	12%
Process Loss	8%

Processing cost is $₹ 2,25,000$ of which labour cost is accounted for 66%. Labour is chargeable to products ' M ' and ' N ' in ratio of $100: 80$. The cost of material is ₹ 80 per unit

Prepare a comprehensive cost statement for each products showing:

(i) Apportionment of joint cost among products ' M ' and ' N ' and
(ii) Total cost of the products ' M ' and ' N '
[(5 Marks) Nov 2020]

Answer

Statement Showing Apportionment of Joint Cost and Total Cost of ' M ' and ' N '

Particulars		Basis	${ }^{\prime} \boldsymbol{M}^{\prime}$	${ }^{\prime} \boldsymbol{N}^{\prime}$
Material $\quad(6,750 \times ₹ 80)$	$5,400: 810$	$4,69,565$	70,435	$5,40,000$
Processing Cost except Labour $(2,25,000 \times 34 \%)$	$5,400: 810$	66,522	9,978	76,500
Labour $(2,25,000 \times 66 \%)$	$100: 80$	82,500	66,000	$1,48,500$
Joint Cost		$\mathbf{F 6 , 1 8 , 5 8 7}$	$\mathbf{₹ 1}, 46,413$	$\mathbf{F 7 , 6 5 , 0 0 0}$

Note: Cost of materials and processing cost except labour are apportioned between M and N in proportion of physical units i.e. 5,400 units of $M(80 \%$ of 6,750$)$ and 810 units of $N(12 \%$ of 6,750$)$.

PYQ 8

Mayura Chemicals Ltd buys a particular raw material at ₹8 per litre. At the end of the processing in Department 1, this raw material splits-off into products X, Y and Z . Product X is sold at the split-off point, with no further processing. Products Y and Z require further processing before they can be sold. Product Y is processed in Department 2, and Product Z is processed in Department 3.

Following is a summary of the costs and other related data for the year 2019-20:

Particulars	Departments		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Cost of Raw Material	$₹ 4,80,000$	-	-
Direct Labour	$₹ 70,000$	$₹ 4,50,000$	$₹ 6,50,000$
Manufacturing Overheads	$₹ 48,000$	$₹ 2,10,000$	$₹ 4,50,000$
	\boldsymbol{X}	Products	
	\boldsymbol{Y}	\boldsymbol{Z}	
Sales (Litres)	10,000	15,000	22,500
Closing Inventory (Litres)	5,000	-	7,500
Sale price per litre (₹)	30	64	50

There were no opening and closing inventories of basic raw materials at the beginning as well as at the end of the year. All finished goods inventory in litres was complete as to processing. The company uses the Net realisable value method of allocating joint costs.

You are required to prepare:

(1) Schedule showing the allocation of joint costs.
(2) Calculate the Cost of goods sold of each product and the cost of each item in Inventory.
(3) A comparative statement of Gross profit.
[(10 Marks) Jan 2021]

Answer

(1) Statement of Allocation of Joint Cost

Particulars	X	\boldsymbol{Y}	Z	Total
Production in litres	15,000	15,000	30,000	-
(Sales + Closing Inventory) Sale price per litre	₹30	₹64	₹50	-
Sales value of total production (in ₹)	4,50,000	9,60,000	15,00,000	29,10,000
Less: Further cost (in ₹):				
Cost of Dept. $2(4,50,000+2,10,000)$		$(6,60,000)$	-	$(6,60,000)$
Cost of Dept. 3 (6,50,000 + 4,50,000)	-	-	$(11,00,000)$	(11,00,000)
Net realizable value (in ₹)	4,50,000	3,00,000	4,00,000	11,50,000
Joint Cost ₹5,98,000* in $45: 30: 40$	2,34,000	1,56,000	2,08,000	5,98,000

*Joint cost $=$ Cost of dept. $1=$ ₹ $4,80,000+₹ 70,000+₹ 48,000=$ ₹5,98,000
(2) Statement of Cost of Goods Sold and Cost of Inventory

Particulars	X (${ }^{\text {) }}$	Y (\%)	Z ()	Total (${ }^{\text {P }}$)
Joint Cost Add: Further cost: Total Cost	2,34,000	1,56,000	2,08,000	5,98,000
	-	6,60,000	11,00,000	17,60,000
	2,34,000	8,16,000	13,08,000	23,58,000
Cost of Goods Sold	$\begin{gathered} 1,56,000 \\ \left(2,34,000 \times \frac{10,000}{15,000}\right) \end{gathered}$	8,16,000	$\begin{gathered} 9,81,000 \\ \left(13,08,000 \times \frac{22,500}{30,000}\right) \end{gathered}$	19,53,000
Closing Inventory	$\begin{gathered} 78,000 \\ \left(2,34,000 \times \frac{5,000}{15,000}\right) \end{gathered}$	-	$\begin{gathered} 3,27,000 \\ \left(13,08,000 \times \frac{7,500}{30,000}\right) \end{gathered}$	4,05,000

(3) Statement of Gross Profit

Particulars	\boldsymbol{X}	\boldsymbol{Y}	Z	Total
Sales	₹3,00,000	₹9,60,000	₹ $11,25,000$	₹ $23,85,000$
	(10,000 \times ₹ 30)	($15,000 \times$ ₹ 64)	(22,500 \times ₹ 50$)$	
Less: Cost of Goods Sold	₹1,56,000	₹8,16,000	₹9,81,000	₹ 19,53,000
Gross Profit	F1,44,000	F1,44,000	F1,44,000	F4,32,000

PYQ 9

OPR Ltd. purchases crude vegetable oil. It does refining of the same. The refining process results in four products at split-off point: S, P, N and A. Product 'A' is fully processed at split-off point. Product S, P and N can be individually further refined into SK, PM, and NL respectively. The joint cost of purchasing the crude vegetable oil and processing it were ₹ 40,000 . Other details are as follows:

Products	Further processing cost (7)	Sales at split off point (\%)	Sales after further processing (${ }^{\text {() }}$
S	80,000	20,000	1,20,000
P	32,000	12,000	40,000
N	36,000	28,000	48,000
A	-	20,000	-

You are required to identify the products which can be further processed for maximizing profits and make suitable suggestions.
[(5 Marks) July 2021]

Answer

Statement Showing Further Processing Decision

Product	Calculation Incremental Revenue and Incremental Cost		Status	Decision
S	$\begin{aligned} & \text { IR }=1,20,000-20,000 \\ & I C=80,000 \end{aligned}$	$\begin{aligned} & =1,00,000 \\ & =80,000 \end{aligned}$	IR > IC	Yes
P	$\begin{aligned} & \text { IR }=40,000-12,000 \\ & \mathrm{IC}=32,000 \end{aligned}$	$\begin{aligned} & =28,000 \\ & =32,000 \end{aligned}$	IR < IC	No
N	$\begin{aligned} & \text { IR }=48,000-28,000 \\ & \text { IC }=36,000 \end{aligned}$	$\begin{aligned} & =20,000 \\ & =36,000 \end{aligned}$	IR < IC	No

Suggestion: Product S should be processed further and Product P, N and A at split off point to maximize profit.

PYQ 10

RST Limited produces three joint products X, Y and Z. The products are processed further. Pre-separation costs are apportioned on the basis of weight of output of each joint product. The following data are provided for the month of April, 2022.
Cost incurred up to separation point: ₹ 10,000
Output (in Litre)
Cost incurred after separation point

Product X	Product \boldsymbol{Y}	Product Z
100	70	80
2,000	1,200	800

Selling Price per Litre:

After further processing	50	80	60

You are required to:

(a) Prepare a statement showing profit or loss made by each product after further processing using the presently adopted method of apportionment of pre-separation cost.
(b) Advise the management whether, on purely financial consideration, the three products are to be processed further or not.
[(5 Marks) May 2022]

Answer

(a) Statement Showing Profit or Loss made by each Product after Further Processing

Particulars	Product \boldsymbol{X}	Product \boldsymbol{Y}	Product \boldsymbol{Z}
Output in units	100	70	80
Sales after further processing (₹)	5,000	5,600	4,800
Less: Further processing cost $₹$ ₹)	$(2,000)$	$(1,200)$	(800)
Less: Joint cost (₹10,000 in proportion of 100:70:80)	$(4,000)$	$(2,800)$	$(3,200)$
Profit/(Loss) $(₹)$	$\mathbf{(1 , 0 0 0})$	$\mathbf{1 , 6 0 0}$	$\mathbf{8 0 0}$

(b) Further Processing Decision

Products	Incremental revenue	Incremental cost	Situation	Decision
X	$100(₹ 50-₹ 25)=₹ 2,500$	$₹ 2,000$	IR $>$ IC	Yes
Y	$70(₹ 80-₹ 70)=₹ 700$	$₹ 1,200$	IR $<I C$	No
Z	$80(₹ 60-₹ 45)=₹ 1,200$	$₹ 800$	IR > IC	Yes

Advise: It is advisable to further process only product X and Z and to sale product Y at the point of separation.

PYQ 11

ASR Ltd mainly produces Product ' L ' and gets a by-Product ' M ' out of a joint process. The net realizable value of the by-product is used to reduce the joint production costs before the joint costs are allocated to the main product. During the month of October 2022, company incurred joint production costs of ₹ $4,00,000$. The main Product 'L' is not marketable at the spilt off point. Thus, it has to be processed further. Details of company's operation are as under:

Particulars	Product \boldsymbol{L}	By- Product M
Production (units)	10,000	200
Selling pricing per kg	₹45	₹5
Further Processing cost	$₹ 1,01,000$	-

You are required to find out:

(a) Profit earned from Product 'L'
(b) Selling price per kg of product ' L ', if the company wishes to earn a profit of ₹ $1,00,000$ from the above production.
[(5 Marks) Nov 2022]

Answer

(a) Statement Showing Profit Earned from Product 'L'

Particulars	Amount
Sales Value of Product 'L' $(10,000 \times ₹ 45)$	$4,50,000$
Less: Further Processing Cost	$(1,01,000)$
Less: Net Joint Cost (₹4,00,000-200 \times ₹5)	$(3,99,000)$
	Profit

(b) Statement Showing Selling Price of Product 'L'

Particulars	Amount
Further Processing Cost	1,01,000
Add: Net Joint Cost (₹ $4,00,000-200 \times$ ₹ 5)	3,99,000
Add: Desired Profit	1,00,000
Sales Value	6,00,000
Selling Price ($\mathbf{\chi 6 , 0 0 , 0 0 0 \div 1 0 , 0 0 0 ~ u n i t s) ~}$	₹60

PYQ 12

ABC Company produces a Product ' X ' that passes through three processes: R, S and T. Three types of raw materials, viz., J, K, and L are used in the ratio of 40:40:20 in process R. The output of each process is transferred to next process. Process loss is 10% of total input in each process. At the stage of output in process T, a by-product ' Z ' is emerging and the ratio of the main product ' X ' to the by-product ' Z ' is $80: 20$. The selling price of product ' X ' is ₹ 60 per kg. The company produced $14,580 \mathrm{kgs}$ of product ' X '.

Material price: Material J @ ₹15 per kg; Material K @ ₹ 9 per kg; Material L @ ₹ 7 per kg. Process costs are as follows:

Process	Variable cost per $\boldsymbol{k g}(\mathrm{Y})$	Fixed cost of Input (()
R	5.00	42,000
S	4.50	5,000
T	3.40	4,800

The by-product ' Z ' cannot be processed further and can be sold at ₹ 30 per kg at the split-off stage. There is no realizable value of process losses at any stage.

Present a statement showing the apportionment of joint costs on the basis of the sales value of product ' X ' and by-product ' Z ' at the split-off point and the profitability of product ' X ' and by-product ' Z '.

Answer
Statement Showing Apportionment of Joint Cost and Profitability

Particulars	Product X	By-Product Z
Number of units produced at split off point (in kg)	14,580	3,645
Market value at separation point per kg	₹60	₹30
Total market value at separation point	₹8,74,800	₹ $1,09,350$
Apportionment of Joint Cost ₹ $¢, 21,900$ in sales ratio	F5,52,800	F69,100
Profit (Sales value - Joint cost)	₹3,22,000	F40,250

Working Notes:

(a) Output of Product X at split off point $=$
$14,580 \mathrm{~kg}$
\therefore Output of By-product Z =
$(14,580 \div 80) \times 20=3,645 \mathrm{kgs}$
(b) Input of raw material into each process:

Output of Process T =
Input of process T
$=14,580+3,645=18,225 \mathrm{kgs}$
Input of Process S
$=18,225 \div 90 \% \quad=\quad 20,250 \mathrm{kgs}$
$=\quad 20,250 \div 90 \% \quad=\quad 22,500 \mathrm{kgs}$
Input of Process $\mathrm{R}=22,500 \div 90 \%=25,000 \mathrm{kgs}$
(c) Calculation of Joint Cost:

Particulars	Process R	Process S	Process T	Total
Material input (in kg)	25,000	22,500	20,250	-
Material cost:				
Material J ($25,000 \times 40 \% \times$ ₹ 15$)$	1,50,000	-	-	1,50,000
Material K ($25,000 \times 40 \% \times$ ₹ 9$)$	90,000	-	-	90,000
Material L ($25,000 \times 20 \% \times$ ₹ 7)	35,000	-	-	35,000
Variable cost @ ₹ 5 , ₹ 4.50 , ₹ 3.40 per kg	1,25,000	1,01,250	68,850	2,95,100
Fixed cost	42,000	5,000	4,800	51,800
Joint Cost	4,42,000	1,06,250	73,650	6,21,900

SUGGESTED REVISION FOR EXAM:

BQ: $\quad 9,10,12,13,14,15,17,18$
PYQ: 1, 2, 3, 5, 6, 7, 8, 12

FLEXIBLE BUDGET

BQ 1

A factory which expects to operate 7,000 hours, i.e., at 70\% level of activity, furnishes details of expenses as under:

Variable expenses	$₹ 1,260$
Semi-variable expenses	$₹ 1,200$
Fixed expenses	$₹ 1,800$

The semi-variable expenses go up by 10% between 85% and 95% activity and by 20% above 95% activity.
Construct a flexible budget for 70, 80, 90 and 100 percent activities. Also calculate recovery rate per hour.

Answer

Flexible Budget

Particulars	70\%	80\%	90\%	100\%
Operating Hours	7,000	8,000	9,000	10,000
Variable Expenses	1,260	1,440	1,620	1,800
Semi Variable Expenses	1,200	1,200	1,320	1,440
Fixed Expense	1,800	1,800	1,800	1,800
Total Cost	F4,260	F4,440	F4,740	F5,040
Recovery Rate (Total Cost \div Hours)	F0.61	F0.56	F0.53	\%0.50

BQ 2

A department of Company X attains sale of $₹ 6,00,000$ at 80 percent of its normal capacity and its expenses are given below:

Administration Costs:

Office Salaries	90,000
General Expenses	2 percent of sales
Depreciation	7,500
Rates and taxes	8,750

Selling Costs:

Salaries 8 percent of sales
Travelling expenses
Sales office expenses 2 percent of sales

General expenses 1 percent of sales 1 percent of sales

Distribution costs:

Wages	15,000
Rent	1 percent of sales
Other expenses	4 percent of sales

Draw up flexible administration, selling and distribution costs budget, operating at 90 per cent, 100 per cent and 110 per cent of normal capacity.

Answer
Flexible Budget

Particulars	80\%	90\%	100\%	110\%
Sales in ₹	6,00,000	6,75,000	7,50,000	8,25,000
(A) Administration cost: Office salaries (fixed)	90,000	90,000	90,000	90,000
General expenses (2% of sales)	12,000	13,500	15,000	16,500
Depreciation (fixed)	7,500	7,500	7,500	7,500
Rent and rates (fixed)	8,750	8,750	8,750	8,750
Total (A)	1,18,250	1,19,750	1,21,250	1,22,750
(B) Selling cost:				
Salaries (8\% of sales)	48,000	54,000	60,000	66,000
Travelling expenses (2% of sales)	12,000	13,500	15,000	16,500
Sales office (1% of sales)	6,000	6,750	7,500	8,250
General expenses (1% of sales)	6,000	6,750	7,500	8,250
Total (B)	72,000	81,000	90,000	99,000
(C) Distribution Cost:				
Wages (fixed)	15,000	15,000	15,000	15,000
Rent (1\% of sales)	6,000	6,750	7,500	8,250
Other expenses (4% of sales)	24,000	27,000	30,000	33,000
Total (C)	45,000	48,750	52,500	56,250
Total Cost ($A+B+C)$	2,35,250	2,49,500	2,63,750	2,78,000

Note: In the absence of information it has been assumed that office salaries, depreciation, rates and taxes and wages remain the same at 110% level of activity also. However, in practice some of these costs may change if present capacity is exceeded.

BQ 3

The budgeted expenses for production of 10,000 units in a factory are furnished below:

Particulars	₹per unit	
Material		70
Labour		25
Variable overheads	20	
Fixed overheads (₹1,00,000)		10
Variable expenses (direct)	5	
Selling expenses (10\% fixed)		13
Distribution expenses (20\% fixed)		7
Administration expenses (₹50,000)	Total	5
		$\mathbf{1 5 5}$

Prepare a budget for the production of (a) 8,000 units, and (b) 6,000 units. Assume that administration expenses are rigid for all levels of production.

Answer

Flexible Budget

Particulars		$\mathbf{6 , 0 0 0}$ units		$\mathbf{8 , 0 0 0}$ units		$\mathbf{1 0 , 0 0 0}$ units	
		Total	Per unit	Total	Per unit	Total	
Materials	70.00	$4,20,000$	70.00	$5,60,000$	70.00	$7,00,000$	
Labour	25.00	$1,50,000$	25.00	$2,00,000$	25.00	$2,50,000$	
Direct expenses (variable)	5.00	30,000	5.00	40,000	5.00	50,000	
Variable overhead	20.00	$1,20,000$	20.00	$1,60,000$	20.00	$2,00,000$	

Fixed overhead	16.67	$1,00,000$	12.50	$1,00,000$	10.00	$1,00,000$
Selling expenses:						
Fixed	2.17	13,000	1.63	13,000	1.30	13,000
Variable	11.70	70,200	11.70	93,600	11.70	$1,17,000$
Distribution expenses:						
Fixed	2.33	14,000	1.75	14,000	1.40	14,000
Variable	5.60	33,600	5.60	44,800	5.60	56,000
Administration expenses	8.33	50,000	6.25	50,000	5.00	50,000
Total Cost	$\mathbf{1 6 6 . 8 0}$	$\mathbf{1 0 , 0 0 , 8 0 0}$	$\mathbf{1 5 9 . 4 3}$	$\mathbf{1 2 , 7 5 , 4 0 0}$	$\mathbf{1 5 5 . 0 0}$	$\mathbf{1 5 , 5 0 , 0 0 0}$

BQ 4

S Ltd. has prepared budget for the coming year for its two products A and B.

Product A
Production \& Sales units
Raw material cost per unit
Direct labour cost per unit
Variable overhead per unit
Fixed overhead per unit
Selling price per unit

6,000	9,000
$₹ 60.00$	$₹ 42.00$
$₹ 30.00$	$₹ 18.00$
₹12.00	$₹ 6.00$
₹8.00	$₹ 4.00$
₹120.00	₹ 78.00

After some marketing efforts, the sales quantity of the Product A \& B can be increased by 1,500 units and 500 units respectively but for this purpose the variable overhead and fixed overhead will be increased by 10% and 5% respectively for both products.

You are required to prepare flexible budget for both the products:

(a) Before marketing efforts.
(b) After marketing efforts.

Answer

(a) Flexible Budget before Marketing Efforts

Particulars	Product A (6,000 units)		Product B (9,000 units)	
	Per unit	Total	Per unit	Total
Sales	120.00	$7,20,000$	78.00	$7,02,000$
Raw materials cost	60.00	$3,60,000$	42.00	$3,78,000$
Direct labour cost	30.00	$1,80,000$	18.00	$1,62,000$
Variable overhead	12.00	72,000	6.00	54,000
Fixed overhead	8.00	48,000	4.00	36,000
	Total cost			
Profit				

(b) Flexible Budget After Marketing Efforts

Particulars	Product A (7,500 units)		Product B (9,500 units)	
	Per unit	Total	Per unit	Total
Sales	120.00	$9,00,000$	78.00	$7,41,000$
Raw materials cost	60.00	$4,50,000$	42.00	$3,99,000$
Direct labour cost	30.00	$2,25,000$	18.00	$1,71,000$
Variable overhead	13.20	99,000	6.60	62,700
Fixed OH $(48,000+5 \%) /(36,000+5 \%)$	6.72	50,400	3.98	37,800
	Total cost			
Profit				

BQ 5

During the FY 2022-23, P Limited has produced 60,000 units operating at 50% capacity level. The cost structure at the 50% level of activity is as under:

Direct Material	₹300 per unit
Direct Wages	₹100 per unit
Variable Overheads	₹100 per unit
Direct Expenses	₹60 per unit
Factory Expenses (25\% Fixed)	₹80 per unit
Selling and Distribution Expenses (80\% Variable)	₹40 per unit
Office and Administrative Expenses (100\% Fixed)	₹20 per unit

The company anticipates that in FY 2023-24, the variable costs will go up by 20% and fixed costs will go up by 15%. The selling price per unit will increase by 10% to ₹ 880

Required:

(a) Calculate the budgeted profit/loss for the FY 2022-23.
(b) Prepare an Expense budget on marginal cost basis for the FY 2023-24 for the company at 50\% and 60% level of activity and find out the profits at respective levels.

Answer

(1) Statement of Budgeted Profit for the FY 2022-23

Particulars	Per Unit (\%)	60,000 units (${ }^{\text {) }}$)
(A) Sales	800.00	4,80,00,000
(B) Variable Cost:		
Direct Material	300	1,80,00,000
Direct Wages	100	60,00,000
Variable Overhead	100	60,00,000
Direct Expenses	60	36,00,000
Variable Factory Expenses (75% of ₹80 p.u.)	60	36,00,000
Variable Selling and Distribution Expenses (80\% of ₹ 40 p.u.)	32	19,20,000
Total (B)	652	3,91,20,000
(C) Contribution ($A-B$)	148	88,80,000
(D) Fixed Cost:		
Office and Administration Expenses (100\%)	-	12,00,000
Fixed Factory Expenses (25\%)	-	12,00,000
Fixed Selling and Distribution Expenses (20\%)	-	4,80,000
Total (D)		28,80,000
Net Profit (C - D)	-	60,00,000

(2) Expense Budget of P Ltd. for the FY 2023-24 at 50\% \& 60\% level

Particulars	$\mathbf{6 0 , 0 0 0}$ units		$\mathbf{7 2 , 0 0 0}$ units		
		Per Unit	Amount	Per Unit	Amount
(A)	Sales	880	$5,28,00,000$	880	$6,33,60,000$
(B)	Variable Cost:				
	Direct Material	360	$2,16,00,000$	360	$2,59,20,000$
	Direct Wages	120	$72,00,000$	120	$86,40,000$
	Variable Overhead	120	$72,00,000$	120	$86,40,000$
	Direct Expenses	72	$43,20,000$	72	$51,84,000$
	Variable Factory Expenses	72	$43,20,000$	72	$51,84,000$
	Variable Selling and Distribution Expenses	38.40	$23,04,000$	38.40	$27,64,800$
	Total (B)	$\mathbf{7 8 2 . 4 0}$	$\mathbf{4 , 6 9 , 4 4 , 0 0 0}$	$\mathbf{7 8 2 . 4 0}$	$\mathbf{5 , 6 3 , 3 2 , 8 0 0}$
(C)	Contribution (A-B)	$\mathbf{9 7 . 6 0}$	$\mathbf{5 8 , 5 6 , 0 0 0}$	$\mathbf{9 7 . 6 0}$	$\mathbf{7 0 , 2 7 , 2 0 0}$

(D) Fixed Cost:					
Office and Administration Expenses (100\%)	-	$13,80,000$	-	$13,80,000$	
Fixed Factory Expenses (25\%)	-	$13,80,000$	-	$13,80,000$	
Fixed Selling and Distribution Expenses	-	$5,52,000$	-	$5,52,000$	
	(20\%)Total (D)				$\mathbf{3 3 , 1 2 , 0 0 0}$
Net Profit (C-D)	-	$\mathbf{2 5 , 4 4 , 0 0 0}$	-	$\mathbf{3 7 , 1 5 , 2 0 0}$	

BQ 6

ABC Ltd. is currently operating at 75% of its capacity. In the past two years the level of operations was 55% and 65% respectively. Presently, the production is 75,000 units. The company is planning for 85% capacity level during 2022-23. The cost details are as follow:

Particulars	$\mathbf{5 5 \%}$	$\mathbf{6 5 \%}$	$\mathbf{7 5 \%}$
Direct materials	$11,00,000$	$13,00,000$	$15,00,000$
Direct Labour	$5,50,000$	$6,50,000$	$7,50,000$
Factory Overheads	$3,10,000$	$3,30,000$	$3,50,000$
Selling overheads	$3,20,000$	$3,60,000$	$4,00,000$
Administrative Overheads	$1,60,000$	$1,60,000$	$1,60,000$
Total cost	$\mathbf{2 4 , 4 0 , 0 0 0}$	$\mathbf{2 8 , 0 0 , 0 0 0}$	$\mathbf{3 1 , 6 0 , 0 0 0}$

Profit is estimated @ 20\% on sales.
The following increases in costs are expected during the year:

Direct materials	8%
Direct Labour	5%
Variable factory overheads	5%
Variable selling overheads	8%
Fixed factory overheads	10%
Fixed selling overheads	15%
Administrative overheads	10%

Prepare a flexible budget for the period 2022-23 at 85\% level of capacity and ascertain the profit and contribution.
[Profit ₹9,46,300; Contribution ₹14,57,300; Sales ₹47,31,500]

BQ 7

Action Plan Manufacturers normally produce 8,000 units of their product in a month, in their machine shop. For the month of January, they had planned for a production of 10,000 units. Owing to a sudden cancellation of a contract in the middle of January, they could only produce 6,000 units in January.

Indirect manufacturing costs are carefully planned and monitored in the machine shop and the foreman of the shop is paid a 10% of the savings as bonus when in any month the indirect manufacturing cost incurred is less than the budgeted provision.

The foreman has put in a claim that he should be paid a bonus of ₹ 88.50 for the month of January. The works manager wonders how anyone can claim a bonus when the Company has lost a sizeable contract. The relevant figures are as under:

Indirect manufacturing costs	For a normal month $\mathbf{8 , 0 0 0}$ units	Planned for January $\mathbf{1 0 , 0 0 0}$ units	Actual in January $\mathbf{6 , 0 0 0}$ units
Salary of foreman	$1,000.00$	$1,000.00$	$1,000.00$
Indirect Labour	720.00	900.00	600.00
Indirect material	800.00	$1,000.00$	700.00
Repairs and maintenance	600.00	650.00	600.00

Power	800.00	875.00	740.00
Tools consumed	320.00	400.00	300.00
Rates and taxes	150.00	150.00	150.00
Depreciation	800.00	800.00	800.00
Insurance	$\mathbf{1 0 0 . 0 0}$	100.00	100.00
Total	$\mathbf{5 , 2 9 0 . 0 0}$	$\mathbf{5 , 8 7 5 . 0 0}$	$\mathbf{4 , 9 9 0 . 0 0}$

Do you agree with the works manager? Is the foreman entitled to any bonus for the performance in January? Substantiate your answer with facts and figures.
[Costs as per flexible budget for 6,000 units are $\mathfrak{F}^{4}, 705$; hence, foreman is not entitled for Bonus.]

PRODUCTION AND RELATED BUDGETS

BQ 8

A single product company estimated its sales for the next year quarter-wise as under:

Quarter	Sales (in units)
I	30,000
II	37,500
III	41,250
IV	45,000

The opening stock of finished goods is 6,000 units and the company expects to maintain the closing stock of finished goods at 12,250 units at the end of the year. The production pattern in each quarter is based on 80% of the sales of the current quarter and 20% of the sales of the next quarter.

The opening stock of raw materials in the beginning of the year is $10,000 \mathrm{~kg}$ and the closing stock at the end of the year is required to be maintained at $5,000 \mathrm{~kg}$. Each unit of finished output requires 2 kg of raw materials. The value of the opening stock of raw materials in the beginning of the year is ₹20,000.

The company proposes to purchase the entire annual requirement of raw materials in the first three quarters in the proportion and at the prices given below:

Quarter	Purchase of raw materials (\%)	Price per $\mathbf{~ k g}$
I	30%	₹2
II	50%	$₹ 3$
III	20%	₹4

You are required to present the following for the next year, quarter wise:
(i) Production budget in units.
(ii) Raw material consumption budget in quantity.
(iii) Raw material purchase budget in quantity and value.
(iv) Prepare stores ledger on the basis of FIFO method.
[(i) 31,500, 38,250, 42,000, 48,250 (ii) 63,000, 76,500, 84,000, 96,500 (iii) 94,500, 1,57,500, 63,000 and 1,89,000, 4,72,500, 2,52,000]

BQ 9

Jigyasa Ltd. is drawing a production plan for its two products Minimax (MM) and Heavyhigh (HH) for the year 2023-24. The company's policy is to hold closing stock of finished goods at 25% of the anticipated volume of sales of the succeeding month. The following are the estimated data for two products:

Minimax (MM)
Budgeted production (in units)
Direct material per unit
Direct labour per unit
Manufacturing overheads

$1,80,000$	$1,20,000$
$₹ 220.00$	$₹ 280.00$
$₹ 130.00$	$₹ 120.00$
$₹ 4,00,000$	$₹ 5,00,000$

The estimated units to be sold in the first four months of the year 2023-24 are as under:

	April	May	June	July
Minimax (MM)	8,000	10,000	12,000	16,000
Heavyhigh $(H H)$	6,000	8,000	9,000	14,000

You are required to:
(a) Prepare a production budget for the first quarter in month-wise.
(b) Present production cost budget for first quarter.

Answer
(a) Production Budget of Product Minimax and Heavyhigh (in units)

Particulars	April		May		June		Total	
	$\boldsymbol{M M}$	$\boldsymbol{H H}$						
Sales	8,000	6,000	10,000	8,000	12,000	9,000	30,000	23,000
Add: Closing Stock	2,500	2,000	3,000	2,250	4,000	3,500	9,500	7,750
(25\% of next month's sales)								
Less: Opening Stock	$* 2,000$	$* 1,500$	2,500	2,000	3,000	2,250	7,500	5,750
Production in units	$\mathbf{8 , 5 0 0}$	$\mathbf{6 , 5 0 0}$	$\mathbf{1 0 , 5 0 0}$	$\mathbf{8 , 2 5 0}$	$\mathbf{1 3 , 0 0 0}$	$\mathbf{1 0 , 2 5 0}$	$\mathbf{3 2 , 0 0 0}$	$\mathbf{2 5 , 0 0 0}$

Note: Opening stock of April is the closing stock of March, which is as per company's policy 25% of next month's sales.

(b) Production Cost Budget

Elements of cost	Minimax (MM)		Heavyhigh (HH)	
	Per unit	Total ($₹)$	Per unit	Total (₹)
No of units	1	32,000	1	25,000
Direct Material	220	$70,40,000$	280	$70,00,000$
Direct Labour	130	$41,60,000$	120	$30,00,000$
Manufacturing Overhead:				
MM: $(₹ 4,00,000 \div 1,80,000) \times 32,000$	2.22	71,111	-	-
HH: $(₹ 5,00,000 \div 1,20,000) \times 25,000$	-	-	4.167	$1,04,167$
Production Cost	352.22	$\mathbf{1 , 1 2 , 7 1 , 1 1 1}$	$\mathbf{4 0 4 . 1 6 7}$	$\mathbf{1 , 0 1 , 0 4 , 1 6 7}$

BQ 10

K Ltd. produces and markets a very popular product called ' X '. The company is interested in presenting its budget for the second quarter of 2023.

The following information are made available for this purpose:

(a) It expects to sell 1,50,000 bags of ' X ' during the second quarter of 2023 at the selling price of ₹ 1,200 per bag.
(b) Each bag of ' X ' requires 2.5 mtr . of raw material ' Y ' and 7.5 mtr . of raw - material ' Z '.
(c) Stock levels are planned as follows:

Particulars	Beginning of Quarter	End of Quarter
Finished Bags of 'X' (Nos.)	45,000	33,000
Raw - Material 'Y' (mtr)	96,000	78,000
Raw - Material 'Z' (mtr)	$1,71,000$	$1,41,000$
Empty Bag (Nos.)	$1,11,000$	84,000

(d) ' Y ' cost ₹ 160 per mtr., ' Z ' costs ₹ 30 per mtr. and 'Empty Bag' costs ₹ 110 each.
(e) It requires 9 minutes of direct labour to produce and fill one bag of ' X '. Labour cost is ₹70 per hour.
(f) Variable manufacturing costs are ₹ 60 per bag. Fixed manufacturing costs ₹ $40,00,000$ per quarter.
(g) Variable selling and administration expenses are 5% of sales and fixed administration and selling expenses are $₹ 3,75,000$ per quarter.

Required

1. Prepare a production budget for the said quarter in quantity.
2. Prepare a raw material purchase budget for ' Y ', ' Z ' and 'Empty Bags' for the said quarter in quantity as well as in rupees.
3. Compute the budgeted variable cost to produce one bag of ' X '.

Answer

1. Production Budget of ' X ' for the Second Quarter

	Particulars
Budgeted Sales	Bags (Nos.)
Add: Desired Closing stock	$1,50,000$
Total Requirements	33,000
Less: Opening stock	$1,83,000$
Required Production	$445,000)$
	$1,38,000$

2. Raw Materials Purchase Budget in Quantity as well as in ₹ for 1,38,000 Bags of ' X^{\prime}

Particulars	' ${ }^{\prime}$ '	'Z'	Empty Bags
Production Requirements Per bag of ' X '	2.5	7.5	1.0
Requirement for Production	$\begin{gathered} 3,45,000 \\ (1,38,000 \times 2.5) \end{gathered}$	$\begin{gathered} 10,35,000 \\ (1,38,000 \times 7.5) \end{gathered}$	$\begin{gathered} 1,38,000 \\ (1,38,000 \times 1) \end{gathered}$
Add: Desired Closing Stock	78,000	1,41,000	84,000
Total Requirements	4,23,000	11,76,000	2,22,000
Less: Opening Stock	$(96,000)$	(1,71,000)	(1,11,000)
Quantity to be Purchased	3,27,000	10,05,000	1,11,000
Cost per mtr./Bag	₹160	₹30	₹110
Cost of Purchase	₹5,23,20,000	₹3,01,50,000	₹1,22,10,000

3. Computation of Budgeted Variable Cost of Production of 1 Bag of ' X '

Rarticulars	Amount (₹)
Raw Material:	
Y 2.5 mtr @₹160	400.00
Z 7.5 mtr @₹30	225.00
Empty Bag	110.00
Direct Labour \{(₹70 $\div 60$ minutes $) \times 9$ minutes $\}$	10.50
Variable Manufacturing Overheads	
Variable Cost of Production per bag	60.00
	$\mathbf{8 0 5 . 5 0}$

BQ 11

A light motor vehicle manufacturer has prepared sales budget for the next few months, and the following draft figures are available:

Month

October

November
December
January
February

Number of vehicles
4,000
3,500
4,500
6,000
6,500

To manufacture a vehicle a standard cost of ₹ $2,85,700$ is incurred and sold through dealers at a uniform selling price of ₹ $3,95,600$ to customers. Dealers are paid 12.5% commission on selling price on sale of a vehicle.

Apart from other materials four units of Part X are required to manufacture a vehicle. It is a policy of the company to hold stocks of Part X at the end of the each month to cover 40% of next month's production. 4,800 units of Part X are in stock as on $1^{\text {st }}$ October.

There are 950 numbers of completed vehicles in stock as on $1^{\text {st }}$ October and it is the policy to have stock at the end of each month to cover 20% of the next month's sales.

You are required to:

(a) Prepare Production budget (in numbers) for the month of October, November, December and January.
(b) Prepare Purchase budget for Part X (in units) for the month of October, November and December.
(c) Calculate the budgeted Gross profit for the quarter October to December.

Answer

(a) Production Budget (in numbers)

Particulars	October	November	December	January
Demand for the month (in nos.)	4,000	3,500	4,500	6,000
Add: Closing Stock	700	900	1,200	1,300
(20\% of the next month's demand)	$\mathbf{9 5 0})$	(700)	(900)	$(1,200)$
Less: Opening Stock	$\mathbf{3 , 7 5 0}$	$\mathbf{3 , 7 0 0}$	$\mathbf{4 , 8 0 0}$	$\mathbf{6 , 1 0 0}$

(b) Purchase Budget for Part X (in units)

Particulars	October	November	December
Production for the month (in numbers)	3,750	3,700	4,800
No of units of Part X required for production of current month (4 units for 1 units of vehicle)	15,000	14,800	19,200
Add: Closing Stock of Part X	5,920		
(To cover 40\% of the next month's production)	$(40 \% \times 14,800)$	$(40 \% \times 19,200)$	$(40 \% \times 4 \times 6,100)$
Less: Opening Stock	$(4,800)$	$(5,920)$	$(7,680)$
Part \boldsymbol{X} to be purchased	$\mathbf{1 6 , 1 2 0}$	$\mathbf{1 6 , 5 6 0}$	$\mathbf{2 1 , 2 8 0}$

(c) Budgeted Gross Profit for the Quarter October to December

Particulars	October	November	December	Total
Sales in numbers	4,000	3,500	4,500	12,000
Sales value @ ₹3,46,150 per unit (in Lakh)	13,846	$12,115.25$	$15,576.75$	41,538
Less: Cost @ ₹2,85,700 per unit (in Lakh)	11,428	$9,999.50$	$12,856.50$	34,284
Gross Profit (in Lakh)	$\mathbf{2 , 4 1 8}$	$\mathbf{2 , 1 1 5 . 7 5}$	$\mathbf{2 , 7 2 0 . 2 5}$	$\mathbf{7 , 2 5 4}$

Note: Net selling price per unit ($₹ 3,95,600-12.5 \%$ commission $=₹ 3,46,150$) is used to prepare the gross profit budget.

SALES BUDGET

BQ 12

B Ltd manufactures two products viz., X and Y and sells them through two divisions, East and West. For the purpose of Sales Budget to the Budget Committee, following information has been made available for the year 2022-23:

Product	Budgeted Sales		Actual Sales	
	East Division	West Division	East Division	West Division
\boldsymbol{X}	800 units at ₹18	1,200 units at $₹ 18$	1,000 units at $₹ 18$	1,400 units at $₹ 18$
\boldsymbol{Y}	600 units at ₹ 42	1,000 units at $₹ 42$	400 units at $₹ 42$	800 units at $₹ 42$

Adequate market studies reveal that product X is popular but underpriced. It is expected that if the price of X is increased by ₹2, it will find a ready market. On the other hand, Y is overpriced and if the price of Y is reduced by ₹2, it will have more demand in the market. The company management has agreed for the aforesaid price changes. On the basis of these price changes and the reports of salesmen, following estimates have been prepared by the Divisional Managers:

Percentage increase in sales over budgeted sales:

Product
X
Y
East Division
$+12.5 \%$
$+22.5 \%$

West Division

+ 7.5\%
$+12.5 \%$
With the help of the intensive advertisement campaign, following additional sales (over and above the above mentioned estimated sales by Divisional Managers) are possible:

Product	East Division	West Division
\boldsymbol{X}	120 units	140 units
\boldsymbol{Y}	80 units	100 units

You are required to prepare Sales Budget 2023-2024 after incorporating above estimates and also show the Budgeted Sales and Actual Sales of 2022-2023.

Answer

1. Statement Showing Sales Budget for 2023-24

Division	Product X			Product Y			Total
	Qty.	Rate (₹)	Amount (₹)	Qty.	Rate (₹)	Amount (₹)	Amount (₹)
East	1,020	20	20,400	815	40	32,600	53,000
West	1,430	20	28,600	1,225	40	49,000	77,600
Total	$\mathbf{2 , 4 5 0}$	-	$\mathbf{4 9 , 0 0 0}$	$\mathbf{2 , 0 4 0}$	-	$\mathbf{8 1 , 6 0 0}$	$\mathbf{1 , 3 0 , 6 0 0}$

Working notes:

Calculation of budgeted sales of product X for 2023-24 in units:

East division	$=$	$(800$ units $+12.5 \%)+120$ units	$=$
West division	$=$	$(1,200$ units $+7.5 \%)+140$ units	$=$
	1,430 units		

Calculation of budgeted sales of product Y for 2022-23 in units:

East division	$=$	$(600$ units $+22.5 \%)+80$ units	$=$
West division	$=$	$(1,000$ units $+12.5 \%)+100$ units	$=815$ units
	1,225 units		

2. Statement Showing Sales Budget for 2022-23

Division	Product X			Product Y			Total
	Qty.	Rate (₹)	Amount (₹)	Qty.	Rate (₹)	Amount (₹)	Amount (₹)
East	800	18	14,400	600	42	25,200	39,600
West	1,200	18	21,600	1,000	42	42,000	63,600
Total	2,000	-	36,000	1,600	-	67,200	$1,03,200$

3. Statement Showing Actual Sales for 2022-23

Division	Product X			Product \boldsymbol{Y}			Total
	Qty.	Rate (₹)	Amount (₹)	Qty.	Rate (₹)	Amount (₹)	Amount (₹)
East	1,000	18	18,000	400	42	16,800	34,800
West	1,400	18	25,200	800	42	33,600	58,800
Total	2,400	-	43,200	$\mathbf{1 , 2 0 0}$	-	50,400	93,600

MASTER BUDGET

BQ 13

Float Glass manufacturing company requires you to present the Master budget for the next year from the following information:

Sales:

Toughened Glass
Bent Glass

Cost:

Direct materials cost
Direct wages
Factory overheads:
Indirect labour:
Works manager ₹500 per month
Foreman
Stores and spares
Depreciation on machine
Light and power
Repairs and maintenance
Other sundries
Administration, selling and distribution expenses
₹ $6,00,000$
₹2,00,000
60% of sales
20 workers @ ₹ 150 per month
₹ 400 per month
2.5\% of sales
₹ 12,600
₹3,000
₹8,000
10% of direct wages
$₹ 36,000$ per year

Answer

Master Budget

Particulars	₹	₹	₹
Sales:			
Toughened Glass			$6,00,000$
Bent Glass \quad Total Sales			$\mathbf{8 , 0 0 , 0 0 0}$
Less: Cost of production:			

Direct materials (60% of ₹ $8,00,000$) Direct wages (20 workers \times ₹ 150×12 months) Prime Cost Fixed Factory Overheads: Works manager's salary ($₹ 500 \times 12$ months) Foreman's salary ($₹ 400 \times 12$ months) Depreciation Light and power (assumed fixed) Variable Factory Overheads: Stores and spares (2.5% of $₹ 8,00,000$) Repairs and maintenance (assumed variable) Sundry expenses $(10 \%$ of ₹ 36,000$)$	$\begin{gathered} 6,000 \\ 4,800 \\ 12,600 \\ 3,000 \\ \hline \\ \hline 20,000 \\ 8,000 \\ 3,600 \\ \hline \end{gathered}$	$\begin{gathered} 4,80,000 \\ 36,000 \\ \hline 5,16,000 \\ \\ 26,400 \\ \hline 31,600 \\ \hline \end{gathered}$	5,74,000
Gross Profit (Sales - Works cost) Less: Administration, selling and distribution OH			$\begin{gathered} \hline 2,26,000 \\ 36,000 \end{gathered}$
Net Profit			1,90,000

MISCELLANEOUS

BQ 14

The accountant of manufacturing company provides you the following details for the year 2022:

Direct materials
Direct wages
Fixed factory overheads
Variable factory overheads
₹ $1,75,000$
₹1,00,000
₹1,00,000
₹1,00,000

Other variable costs
₹ 80,000
Other fixed costs
Profit
Sales
₹80,000
₹1,15,000
₹7,50,000

During the year, the company manufactured two products A and B and the output and costs were:

A

Output (units)
Selling price per unit
Direct materials per unit
Direct wages per unit

2,00,000
₹2.00
₹0.50
₹0. 25

1,00,000
B
₹3.50
₹0.75
₹0.50

Variable factory overhead are absorbed as a percentage of direct wages. Other variable costs have been computed as: Product A ₹ 0.25 per unit; and B ₹ 0.30 per unit.

During 2023, it is expected that the demand of product A will fall by 25% and for B by 50%. It is decided to manufacture a further product C , the cost for which are estimated as follows:

	\boldsymbol{C}
Output (units)	$2,00,000$
Selling price per unit	$₹ 1.75$
Direct materials per unit	$₹ 0.40$
Direct wages per unit	$₹ 0.25$

It is anticipated that the other variable cost per unit will be the same as for product A.
Prepare a budget to present to the management, showing the current position and the position for 2023. Comment on the comparative results.

Answer
Budget Showing Current Position and Position for 2023

Particulars	Position for 2022			Position for 2023			
	A	B	Total	A	B	C	Total
Sales (Units) Sales (in ₹)	2,00,000	1,00,000	3,00,000	1,50,000	50,000	2,00,000	4,00,000
	4,00,000	3,50,000	7,50,000	3,00,000	1,75,000	3,50,000	8,25,000
Sales (in ₹) Direct materials	1,00,000	75,000	1,75,000	75,000	37,500	80,000	1,92,500
	50,000	50,000	1,00,000	37,500	25,000	50,000	1,12,500
Direct wages Factory OH (V)	50,000	50,000	1,00,000	37,500	25,000	50,000	1,12,500
Other cost (V) Marginal Cost Contribution	50,000	30,000	80,000	37,500	15,000	50,000	1,02,500
	2,50,000	2,05,000	4,55,000	1,87,500	1,02,500	2,30,000	5,20,000
	1,50,000	1,45,000	2,95,000	1,12,500	72,500	1,20,000	3,05,000
Less: Fixed cost							
FactoryOther			1,00,000				$\begin{gathered} 1,00,000 \\ 80,000 \end{gathered}$
			80,000				
Profit			1,15,000				1,25,000

Comment: Introduction of Product C is likely to increase profit by 10,000 (i.e. from $1,15,000$ to $1,25,000$) in 2023 as compared to 2022 . Therefore, introduction of product C is recommended.

BQ 15

Concorde Ltd. manufactures two products using two types of materials and one grade of labour. Shown below is an extract from the company's working papers for the next month's budget:

Budgeted sales (in units)

Product \boldsymbol{A}	Product B
2,400	3,600

Budgeted material consumption per unit (in kg):
Material X $\quad 5 \quad 3$

Material Y $\quad 4 \quad 6$
Standard labour hours allowed per unit of product 3
Material X and Material Y cost ₹ 4 and $₹ 6$ per kg and labours are paid 25 per hour. Overtime premium is 50% and is payable, if a worker works for more than 40 hours a week. There are 180 direct workers.

The target productivity ratio (or efficiency ratio) for the productive hours worked by the direct workers in actually manufacturing the products is 80%. In addition the non-productive down-time is budgeted at 20% of the productive hours worked.

There are four 5-days weeks in the budgeted period and it is anticipated that sales and production will occur evenly throughout the whole period.

It is anticipated that stock at the beginning of the period will be:

Product A	400 units
Product B	200 units
Material X	$1,000 \mathrm{~kg}$
Material Y	500 kg

The anticipated closing stocks for the budgeted period are as below:

Product A
Product B
Material X
Material Y

400 units
200 units
$1,000 \mathrm{~kg}$
500 kg

4 days sales
5 days sales
10 days consumption
6 days consumption

Calculate the Materials Purchase Budget and Wages Budget for the direct workers, showing the quantities and values, for the month.

Answer

(i) Material Purchase Budget

Particulars	Material X	Material Y
Materials consumed: Product A @ $5 \mathrm{~kg} / 4 \mathrm{~kg}$ per unit of 2,480 units Product B @ $3 \mathrm{~kg} / 6 \mathrm{~kg}$ per unit of 4,300 units Total consumption (in kg)		
	12,400	9,920
	12,900	25,800
	25,300	35,720
Add: Closing Stock:		
Materials X (25,300/20 days $\times 10$ days $)$	12,650	-
Materials Y (35,720 $/ 20$ days $\times 6$ days)	-	10,716
Less: Opening Stock of Raw Material	$(1,000)$	(500)
Rate per kg Quantity of materials to be purchased (in kg)	$\begin{gathered} 36,950 \\ ₹ 4 \end{gathered}$	$\begin{gathered} 45,936 \\ ₹ 6 \end{gathered}$
Material Purchase (in ₹)	₹1,47,800	₹2,75,616

(ii) Wages Budget

Particulars	Product A	Product B
Units to be produced	2,480	4,300
Standard hours allowed per unit	3	5
Total standard hours allowed	7,440	21,500
Productive hours required for production (80\% efficiency)		
Product A (7,440 $\div 80 \%)$	9,300	-
Product A (21,500 $\div 80 \%$)	-	26,875
Add: Non-productive down time @ 20\% of productive hours	1,860	5,375
Total hours to be paid	11,160	32,250
Total hours to be paid ($11,160+32,250)$		43,410
Normal hours (4 weeks $\times 40$ hours $\times 180$ workers)		28,800
Overtime hours ($43,410-28,800$)		14,610
Wages to be paid:		
Normal hours @ ₹25 per hour for 28,800 hours		₹7,20,000
Overtime hours @ ₹ 37.50 ($25+50 \%$) per hour for 14,610 hours		₹5,47,875
Total Wages paid (in ₹)		₹12,67,875

Working notes:

(1) Number of days in budget period = 4 weeks $\times 5$ days $=20$ days

(2) Calculation of number of units to be produced:

	Particulars	Product \boldsymbol{A}	Product \boldsymbol{B}
Units to be sold		2,400	3,600
Add: Closing Stock:	$(2,400 / 20$ days $\times 4$ days $)$	480	-
Product A	-	900	
Product B	$(3,600 / 20$ days $\times 5$ days $)$	(400)	(200)
	Less: Opening Stock	Units to be produced	$\mathbf{2 , 4 8 0}$
			$\mathbf{4 , 3 0 0}$

BQ 16

A company is engaged in the manufacture of specialised sub-assemblies required for certain electronic equipment. The company envisages that in the forthcoming month, December, the sales will take a pattern in the ratio of $3: 4: 2$ respectively of sub-assemblies, ACB, MCB and DP.

The following is the schedule of components required for manufacture:

Sub-assembly	Selling	Component Requirements			
	Price ($)$	Base Board	IC08	IC12	IC26
ACB	520	1	8	4	2
MCB	500	1	2	10	6
DP	350	1	2	4	8
Purchase Price (₹)	-	60	20	12	8

The direct labour time and variable overheads required for each of the sub-assemblies are:

Particulars	Labour hours		Variable overheads
	Grade \boldsymbol{A}	Grade \boldsymbol{B}	
ACB	8	16	36
MCB	6	12	24
DP	4	8	24
Direct wage rate per hour $(\mathrm{₹})$	5	4	-

The labourers work 8 hours a day for 25 days a month.
The opening stocks of sub-assemblies and components for December are as under:

ACB	MCB	DP	Base Board	IC08	IC12	IC26
800	1,200	2,800	1,600	1,200	6,000	4,000

Fixed overheads amount to ₹ $7,57,200$ for the month and a monthly profit target of ₹ $12,00,000$ has been set. The company is eager for a reduction of *closing inventories for December of sub-assemblies and components by 10% of quantity as compared to the opening stock.

Prepare the following budgets for December:

(a) Sales budget in quantity and value.
(b) Production budget in quantity
(c) Component usage budget in quantity.
(d) Component purchase budget in quantity and value.
(e) Manpower budget showing the number of workers and the amount of wages payable.

Answer

(a) Sales Budget in Quantity and Value

Particulars	ACB	MCB	DP	Total
Sales in quantity in $3: 4: 2$	6,300	8,400	4,200	18,900
Selling price per unit $(\bar{₹})$	520	500	350	-
Sales value $(₹)$	$32,76,000$	$42,00,000$	$14,70,000$	$89,46,000$

(b) Production Budget in Quantity

Particulars	ACB	$\boldsymbol{M C B}$	$\boldsymbol{D P}$
Sales in units	6,300	8,400	4,200
Add: Closing stock (10\% less than opening stock)	720	1,080	2,520
Less: Opening stock	(800)	$(1,200)$	$(2,800)$
Production in units	$\mathbf{6 , 2 2 0}$	$\mathbf{8 , 2 8 0}$	$\mathbf{3 , 9 2 0}$

(c) Component Usage Budget in Quantity

Particulars	ACB	$\boldsymbol{M C B}$	$\boldsymbol{D P}$	Total
Production in quantity	6,220	8,280	3,920	-
Base board (1 each)	6,220	8,280	3,920	18,420

IC08 (8, 2 and 2 per unit)	49,760	16,560	7,840	74,160
IC12 (4,10 and 4 per unit)	24,880	82,800	15,680	$1,23,360$
IC26 (2,6 and 8 per unit)	12,440	49,680	31,360	93,480

(d) Component Purchase Budget in Quantity and Value

Particulars	Base Board	IC08	IC12	IC26	Total
Usage in production	18,420	74,160	$1,23,360$	93,480	-
Add: Closing stock	1,440	1,080	5,400	3,600	-
(10\% less than opening)					
Less: Opening stock	$(1,600)$	$(1,200)$	$(6,000)$	$(4,000)$	-
Purchase in quantity	18,260	74,040	$1,22,760$	93,080	$3,08,140$
Purchase price per unit $(₹)$	60	20	12	8	-
Purchase value $(₹)$	$10,95,600$	$14,80,800$	$14,73,120$	$7,44,640$	$47,94,160$

(e) Manpower Budget Showing the Number of Workers and the Amount of Wages Payable

Working notes:

1. Desired contribution $=$ Fixed cost + Profit $=7,57,200+12,00,000=19,57,200$

2. Calculation of contribution per unit:

Particulars	ACB (\%)	MCB (\%)	DP (\%)
Selling price per unit	520	500	350
Variable cost per unit: Components:			
Base board	$(1 \times 60)=60$	$(1 \times 60)=60$	$(1 \times 60)=60$
IC08	$(8 \times 20)=160$	$(2 \times 20)=40$	$(2 \times 20)=40$
IC12	$(4 \times 12)=48$	$(10 \times 12)=120$	$(4 \times 12)=48$
IC26	$(2 \times 8)=16$	$(6 \times 8)=48$	$(8 \times 8)=64$
Labour:			
Grade A	$(8 \times 5)=40$	$(6 \times 5)=30$	$(4 \times 5)=20$
Grade B	$(16 \times 4)=64$	$(12 \times 4)=48$	$(8 \times 4)=32$
Variable production overheads	36	24	24
Total Variable Cost per unit	424	370	288
Contribution per unit	96	130	62

3. Number of units required

Units of ACB
Units of MCB
Units of DP
4. Composite contribution p.u.
$=\quad$ Desired contribution \div Composite contribution per unit
$=19,57,200 \div 103.555 \quad=\quad 18,900$ units
$=18,900 \times 3 / 9 \quad=\quad 6,300$ units
$=18,900 \times 4 / 9 \quad=\quad 8,400$ units
$=18,900 \times 2 / 9 \quad=\quad 4,200$ units
$=(96 \times 3+130 \times 4+62 \times 2) \div 9 \quad=\quad 103.555 \mathrm{p}$

PAST YEAR QUESTIONS

PYQ 1

RST Limited is presently operating at 50% capacity and producing 30,000 units. The entire output is sold at a price of ₹ 200 per unit. The cost structure at 50% level of activity is as under:

Direct Material
Direct Wages
Variable Overheads
Direct Expenses
Factory Expenses (25\% Fixed)
Selling and Distribution Expenses (80\% Variable)
Office and Administrative Expenses (100\% Fixed)
₹75 per unit
₹25 per unit
₹25 per unit
₹15 per unit ₹20 per unit ₹10 per unit ₹5 per unit

The company anticipates that the variable costs will go up by 10% and fixed costs will go up by 15%.
You are required to prepare an Expense Budget, on the basis of marginal cost for the company at 50\% and 60\% level of activity and find out the profit at respective levels.
[(8 Marks) Nov 2014]
Answer
Expenses Budget of RST Ltd

Particulars	Per Unit (7)	$\begin{aligned} & \text { 30,000 units } \\ & \text { (})^{2} \text {) } \end{aligned}$	36,000 units $\text { (} 7 \text {) }$
	200.00	60,00,000	72,00,000
	82.50	24,75,000	29,70,000
	27.50	8,25,000	9,90,000
	27.50	8,25,000	9,90,000
	16.50	4,95,000	5,94,000
	16.50	4,95,000	5,94,000
	8.80	2,64,000	3,16,800
	179.30	53,79,000	64,54,800
(C) Contribution ($A-B$)	20.70	6,21,000	7,45,200
(D) Fixed Cost:			
Office and Administration Expenses $\text { (₹5 } \times 100 \% \times 30,000 \text { units }+15 \% \text {) }$	-	1,72,500	1,72,500
Factory Expenses $\text { (₹20 } \times 25 \% \times 30,000 \text { units }+15 \% \text {) }$	-	1,72,500	1,72,500
Selling and Distribution Expenses (₹ $10 \times 20 \% \times 30,000$ units $+15 \%$)	-	69,000	69,000
Total (D)	-	4,14,000	4,14,000
Net Profit (C - D)	-	2,07,000	3,31,200

PYQ 2

XYZ company is drawing a production plan for its two products XML and YML for the year 2015-16. The company's policy is to maintain a closing stock of finished goods at 25% of the anticipated volume of the sales of the succeeding month.

Budgeted production in units	$2,00,000$	$1,50,000$
Direct material per unit	$₹ 220.00$	$₹ 280.00$
Direct labour per unit	$₹ 130.00$	$₹ 120.00$
Other manufacturing expenses	$₹ 4,00,000$	$₹ 5,00,000$

The estimated units to be sold in the first 4 months of the year 2015-16 are as under:

	April
$X M L$	8,000
$Y M L$	6,000

May
10,000
8,000
June
12,000
9,000

July
16,000
14,000
Prepare:
(i) Production Budget (Month wise)
(ii) Production Cost Budget (for first quarter of the year)
[(5 Marks) May 2015]
Answer

(i) Production Budget

Product XML			
Particulars	April	May	June
Budgeted Sales (in units)	8,000	10,000	12,000
Add: Expected Closing Stock (25\% of sales of next month)	2,500	3,000	4,000
Less: Opening Stock	$(2,000)$	$(2,500)$	$(3,000)$
Total Production	8,500	10,500	13,000
Product YML			
Particulars	April	May	June
Budgeted Sales (in units)	6,000	8,000	9,000
Add: Expected Closing Stock (25\% of sales of next month)	2,000	2,250	3,500
Less: Opening Stock	$(1,500)$	$(2,000)$	$(2,250)$
Total Production	6,500	8,250	10,250

(ii) Production Cost Budget

Particulars	XML	YML
No of units expected to be produced during first quarter	32,000	25,000
Direct material @ ₹220/ ₹280 per unit	$70,40,000$	$70,00,000$
Direct labour @ ₹130/ ₹120 per unit	$41,60,000$	$30,00,000$
Other manufacturing expenses @ ₹2 / ₹3.33 per unit	64,000	83,333
Total Production Cost	$\mathbf{1 , 1 2 , 6 4 , 0 0 0}$	$\mathbf{1 , 0 0 , 8 3 , 3 3 3}$

Note: Other manufacturing expenses are apportioned on the basis of no of units, one student may apportion these expenses on the basis of period i.e. ₹ $1,00,000$ for quarter first in case of XML.

PYQ 3

XY Co. Ltd manufactures two products viz. X and Y and sells them through two divisions, East and West. For the purpose of Sales budget to the Budget Committee, following information has been made available for the year 2014-2015:

Product	Budgeted Sales		Actual Sales	
	East Division	West Division	East Division	West Division
\boldsymbol{X}	400 units at ₹9	600 units at ₹9	500 units at ₹9	700 units at ₹9
\boldsymbol{Y}	300 units at ₹21	500 units at ₹21	200 units at ₹21	400 units at ₹21

Adequate market studies reveal that product X is popular but under priced. It is expected that if the price of

X is increased by $₹ 1$, it will find a ready market. On the other hand, Y is overpriced and if the price of Y is reduced by $₹ 1$, it will have more demand in the market. The company management has agreed for the aforesaid price changes. On the basis of these price changes and the reports of salesmen, following estimates have been prepared by the Divisional Managers:

Percentage increase in sales over budgeted sales:

Y

East Division

$$
+10 \%
$$

$+20 \%$

West Division
$+5 \%$
$+10 \%$

With the help of the intensive advertisement campaign, following additional sales (over and above the above mentioned estimated sales by Divisional Managers) are possible:
Product
\boldsymbol{X}
\boldsymbol{Y}
East Division
60 units
40 units
West Division
70 units
50 units

You are required to prepare Sales Budget 2015-2016 after incorporating above estimates and also show the Budgeted Sales and Actual Sales of 2014-2015.
[(8 Marks) Nov 2015]
Answer

1. Statement Showing Sales Budget for 2015-16

Division	Product X			Product Y			Total
	Qty.	Rate (₹)	Amount (₹)	Qty.	Rate (₹)	Amount (₹)	Amount (₹)
East	500	10	5,000	400	20	8,000	13,000
West	700	10	7,000	600	20	12,000	19,000
Total	$\mathbf{1 , 2 0 0}$	-	$\mathbf{1 2 , 0 0 0}$	$\mathbf{1 , 0 0 0}$	-	$\mathbf{2 0 , 0 0 0}$	$\mathbf{3 2 , 0 0 0}$

2. Statement Showing Sales Budget for 2014-15

Division	Product X			Product \boldsymbol{P}			Total
	Qty.	Rate (₹)	Amount (₹)	Qty.	Rate (₹)	Amount (₹)	Amount (₹)
East	400	9	3,600	300	21	6,300	9,900
West	600	9	5,400	500	21	10,500	15,900
Total	$\mathbf{1 , 0 0 0}$	-	$\mathbf{9 , 0 0 0}$	$\mathbf{8 0 0}$	-	$\mathbf{1 6 , 8 0 0}$	$\mathbf{2 5 , 8 0 0}$

3. Statement Showing Actual Sales for 2014-15

Division	Product X			Product \boldsymbol{Y}			Total
	Qty.	Rate (₹)	Amount (₹)	Qty.	Rate (₹)	Amount (₹)	Amount (₹)
East	500	9	4,500	200	21	4,200	8,700
West	700	9	6,300	400	21	8,400	14,700
Total	$\mathbf{1 , 2 0 0}$	-	$\mathbf{1 0 , 8 0 0}$	$\mathbf{6 0 0}$	-	$\mathbf{1 2 , 6 0 0}$	$\mathbf{2 3 , 4 0 0}$

Working notes:

Calculation of budgeted sales of product X for 15-16 in units

East division	$=$	$(400$ units $+10 \%)+60$ units
West division	$=$	$=500$ units
	$(600$ units $+5 \%)+70$ units	$=700$ units

Calculation of budgeted sales of product Y for 15-16 in units

East division	$=$	$(300$ units $+20 \%)+40$ units
West division	$=$	$=400$ units
	$(500$ units $+10 \%)+50$ units	$=600$ units

PYQ 4

You are given the following data of a manufacturing concern:

Variable expenses (at 50\% capacity)	
Materials	$48,00,000$
Labour	$7,20,000$
Others	$7,60,000$
Semi variable expenses (at 50\% capacity)	
Maintenance and repairs	$19,00,000$
Indirect labour	$5,80,000$
Sales department salaries	$5,20,000$
Sundry administrative expenses	
	$16,80,000$
Fixed expenses	$11,20,000$
Wages and salaries	$14,00,000$
Rent, rates and taxes	$17,80,000$
Depreciation	
Sundry administrative expenses	

The fixed expenses remain constant for all levels of production. Semi variable expenses remain constant between 45% and 65% of capacity whereas it increases by 10% between 65% and 80% capacity of 20% between 80% and 100% capacity.

Sales at various levels are as under:

At 75% capacity	$₹ 2,40,00,000$
At 100% capacity	$₹ 3,20,00,000$

You are required to prepare flexible budget at 75\% and 100\% capacity.
[(8 Marks) May 2017]

Answer

Flexible Budget

Particulars	Capacity Levels		
	50\% (\%)	75\% (\%)	100\% (叉)
(A) Sales	-	2,40,00,000	3,20,00,000
(B) Variable Expenses:			
Material	48,00,000	72,00,000	96,00,000
Labour	51,20,000	76,80,000	1,02,40,000
Others	7,60,000	11,40,000	15,20,000
Total (B)	1,06,80,000	1,60,20,000	2,13,60,000
(C) Semi Variable Expenses			
Maintenance and repairs	5,00,000	5,50,000	6,00,000
Indirect labour	19,80,000	21,78,000	23,76,000
Sales department salaries	5,80,000	6,38,000	6,96,000
Sundry administrative expenses	5,20,000	5,72,000	6,24,000
Total (C)	35,80,000	39,38,000	42,96,000
(D) Fixed Cost:			
Wages and salaries	16,80,000	16,80,000	16,80,000
Rent, rates and taxes	11,20,000	11,20,000	11,20,000
Depreciation	14,00,000	14,00,000	14,00,000
Sundry administrative expenses	17,80,000	17,80,000	17,80,000

Total (D)	$59,80,000$	$59,80,000$	$59,80,000$
Total Cost $(B+C+D)$	$2,02,40,000$	$2,59,38,000$	$3,16,36,000$
Net Profit $(A-D)$	-	$(19,38,000)$	$3,64,000$

PYQ 5

AB manufacturing company manufactures two products A and B . both products use a common raw materials ' C '. The raw material ' C ' is purchased at the rate of ₹ 45 per kg . from the market. The company has made estimates for the year ended 31st March, 2018 (the budgeted period) as under:

Product A Product B

Sales in units	36,000	16,700
Finished goods stock increased by year end in units	860	400
Post-production rejection rate (\%)	3	5
Material 'C' per computed unit, net of wastage	4 kg	5 kg
Material 'C' wastage in $\%$	5	4

Additional information available is as under:

- Usage of raw material ' C ' is expected to be at constant rate over the period.
- Annual cost of holding one unit of raw material "C" in stock is 9% of the material cost.
- The cost of placing an order is 250 per order.

You are required to:

(a) Prepare functional budgets for the year ended $31^{\text {st }}$ March, 2018 under the following categories:
i. Production budget for product A and B in units.
ii. Purchase budget for raw material ' C ' in kg and value.
(b) Calculate economic order quantity (EOQ) in kg for raw material ' C '.
[(8 Marks) Nov 2018]

Answer

(a) (i) Production Budget for the year (in Quantity)

Particulars (in units)	Product \boldsymbol{A}	Product \boldsymbol{B}
Sales (in units)	36,000	16,700
Add: Increase in Closing Stock	860	400
Budgeted Production after rejection	36,860	$\mathbf{1 7 , 1 0 0}$
Add: Post rejection @ 3\%/5\%	1,140	900
	$[(36,860 \div 97 \%) \times 3 \%]$	$[(36,860 \div 95 \%) \times 5 \%]$
Budgeted Production before rejection	$\mathbf{3 8 , 0 0 0}$	$\mathbf{1 8 , 0 0 0}$

(a) (ii) Raw Material Purchase 'C'

Particulars	Product \boldsymbol{A}	Product B
Budgeted Production in units	38,000	18,000
Raw Material Consumption for one unit	4 kg	5 kg
Materials to be Purchased net of wastage	$\mathbf{1 , 5 2 , 0 0 0}$	$\mathbf{9 0 , 0 0 0}$
Add: Wastage @ 5\%/4\%	8,000	3,750
	$[(1,52,000 \div 95 \%) \times 5 \%]$	$[(90,000 \div 96 \%) \times 4 \%]$
Materials to be Purchased	$\mathbf{1 , 6 0 , 0 0 0}$	$\mathbf{9 3 , 7 5 0}$
Materials to be Purchased in $\mathbf{k g}(\mathbf{1 , 6 0 , 0 0 0}+\mathbf{9 3 , 7 5 0})$	$\mathbf{2 , 5 3 , 7 5 0}$	
Materials to be Purchased in value @ ₹45 of 2,53,750	$\mathbf{₹ 1 , 1 4 , 1 8 , 7 5 0}$	

(b) Economic order quantity $=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C}}}=\sqrt{\frac{2 \times 2,53,750 \times 250}{45 \times 9 \%}}=5,597 \mathrm{kgs}$

PYQ 6

An electronic gadget manufacture was prepared sales budget for the next few months. In this respect, following figures are available:

Month	$:$	January	February	March	April	May
Sales (units)	$:$	5,000	6,000	7,000	7,500	8,000

To manufacture an electronic gadget, a standard cost of ₹ 1,500 is incurred and it is sold through dealers at an uniform price ₹ 2,000 per gadget to customers. Dealers are given a discount of 15% on selling.

Apart from other materials, two units of batteries are required to manufacture a gadget. The company wants to hold stock of batteries at the end of each month to cover 30% of next month's production and to hold stock of manufactured gadget to cover 25% of the next month's sale.

3,250 units of batteries and 1,200 units of manufactured gadgets were in stock on $1^{\text {st }}$ January.

Required:

(1) Prepare production budget (in units) for the month of January, February, March and April.
(2) Prepare purchase budget for batteries (in units) for the month of January, February and March and calculate profit for the quarter ending on March.
[(10 Marks) Nov 2018]

Answer

(a) Production Budget in Units

Particulars	January	February	March	April
Budgeted Sales (in units)	5,000	6,000	7,000	7,500
Add: Desired Closing Stock	1,500	1,750	1,875	2,000
(25\% of sales of next month)				
Less: Opening Stock	$(1,200)$	$(1,500)$	$(1,750)$	$(1,875)$
Budgeted Production (in Gadget)	$\mathbf{5 , 3 0 0}$	$\mathbf{6 , 2 5 0}$	$\mathbf{7 , 1 2 5}$	$\mathbf{7 , 6 2 5}$

(b) Raw Material Purchase Budget in Batteries

Particulars	January	February	March	April
Consumption of batteries @ unit per gadget	10,600	12,500	14,250	15,250
	$(5,300 \times 2)$	$(6,250 \times 2)$	$(7,125 \times 2)$	$(7,625 \times 2)$
Add: Desired Closing Stock	3,750	4,275	4,575	-
(30\% of consumption of next month)				
Less: Opening Stock	$(3,250)$	$(3,750)$	$(4,275)$	-
Budgeted Purchase (in Batteries)	$\mathbf{1 1 , 1 0 0}$	$\mathbf{1 3 , 0 2 5}$	$\mathbf{1 4 , 5 5 0}$	-

Statement Showing Profit

Particulars	January	February	March	Total
Number of units sold	5,000	6,000	7,000	18,000
Sales @ ₹2,000 per Gadget	$1,00,00,000$	$1,20,00,000$	$1,40,00,000$	$3,60,00,000$
Less: Discount @ 15\% of sales	$(15,00,000)$	$(18,00,000)$	$(21,00,000)$	$(54,00,000)$
Less: Standard cost @ ₹1,500 per Gadget	$(75,00,000)$	$(90,00,000)$	$(1,05,00,000)$	$(2,70,00,000)$
Profit	$\mathbf{1 0 , 0 0 , 0 0 0}$	$\mathbf{1 2 , 0 0 , 0 0 0}$	$\mathbf{1 4 , 0 0 , 0 0 0}$	$\mathbf{3 6 , 0 0 , 0 0 0}$

PYQ 7

PJ Ltd manufactures hockey sticks. It sells the products at ₹ 500 each and makes a profit of $₹ 125$ on each stick. The company is producing 5,000 sticks annually by using 50% of its machinery capacity.

The cost of each stick is as under:

Direct Material	₹150
Direct Wages	₹50
Works Overheads	$₹ 125(50 \%$ fixed $)$
Selling Expenses	$₹ 50(25 \%$ variable $)$

The anticipation for the next year is that cost will go up as under:

Fixed Charges	10%
Direct Wages	20%
Direct Material	5%

There will not be any change in selling price. There is an additional order for 2,000 sticks in the next year.
Calculate the lowest price that can be quoted so that the company can earn the same profit as it earned in the current year?
[(10 Marks) Nov 2019]

Answer

Statement Showing Lowest Sale Price

Particulars	Amount (\%)
Direct Material (7,000 units \times ₹ $150 \times 105 \%)$	11,02,500
Direct Wages (7,000 units \times ₹ $50 \times 120 \%$)	4,20,000
Works Overheads:	
Variable (7,000 units \times ₹ $125 \times 50 \%$)	4,37,500
Fixed (5,000 units \times ₹ $125 \times 50 \% \times 110 \%)$	3,43,750
Selling Expenses:	
Variable (7,000 units \times ₹ $50 \times 25 \%)$	87,500
Fixed (5,000 units \times ₹ $50 \times 75 \% \times 110 \%)$	2,06,250
Total Cost	25,97,500
Add: Target Profit (5,000 units \times ₹125)	6,25,000
Total Sales Value	32,22,500
Less: Sale Value of 5,000 units (5,000 units \times ₹ 500)	$(25,00,000)$
Sales Value of 2,000 units of additional offer	7,22,500
\div Number of units	$\div 2,000$
Lowest Sale Price	F361.25

PYQ 8

G Ltd. manufacturers a single product for which market demand exist for an additional quantity. Present sales are of ₹ $6,00,000$ utilises only 60% capacity of the plant.

The following data are available:

(1) Selling price ₹100 per unit
(2) Variable cost
(3) Semi variable cost
(4) Fixed cost
₹30 per unit
₹ 60,000 fixed + ₹ 5 per unit
₹ $1,00,000$ at present level, estimated to increase by 25% at and above 80% capacity.

You are required to prepare a flexible budget so as to arrive at the operating profit at 60\%, 80\% and 100\% levels.
[(5 Marks) Nov 2020]

Answer

Flexible Budget

Particulars	$\mathbf{6 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{1 0 0 \%}$
Sales units	$\mathbf{6 , 0 0 0}$	$\mathbf{8 , 0 0 0}$	$\mathbf{1 0 , 0 0 0}$
Sales @ ₹100 per unit	$\mathbf{6 , 0 0 , 0 0 0}$	$\mathbf{8 , 0 0 , 0 0 0}$	$\mathbf{1 0 , 0 0 , 0 0 0}$
Variable Cost @ ₹30 per unit	$1,80,000$	$2,40,000$	$3,00,000$
Semi Variable Cost:			
Variable @ ₹5 per unit	30,000	40,000	50,000
Fixed	60,000	60,000	60,000
Fixed Cost	$1,00,000$	$1,25,000$	$1,25,000$
Total Cost	$3,70,000$	$\mathbf{4 , 6 5 , 0 0 0}$	$\mathbf{5 , 3 5 , 0 0 0}$
Operating Profit (Sales - Total Cost)	$\mathbf{2 , 3 0 , 0 0 0}$	$\mathbf{3 , 3 5 , 0 0 0}$	$\mathbf{4 , 6 5 , 0 0 0}$

PYQ 9

PSV Ltd. manufactures and sells a single product and estimated the following related information for the period November, 2020 to March, 2021.

Particulars	Nov, 2020	Dec, 2020	Jan, 2021	Feb, 2021	March, 2021
Op. stock of FG (in units)	7,500	3,000	9,000	8,000	6,000
Sales (in units)	30,000	35,000	38,000	25,000	40,000
Selling price per unit (in ₹)	10	12	15	15	20

Additional information:

- Closing stock of finished goods at the end of March, 2021 is 10,000 units.
- Each unit of finished output requires 2 kg of Raw Material ' A ' and 3 kg of Raw Material ' B '.

You are required to prepare the following budgets for the period November, 2020 to March, 2021 on monthly basis:
(1) Sales Budget (in ₹)
(2) Production budget (in units) and
(3) Raw material budget for raw material ' A ' and ' B ' separately (in units).
[(10 Marks) July 2021]

Answer

(1) Sales Budget (in ₹)

Particulars	Nov.	Dec.	Jan.	Feb.	March
Sales (in units)	30,000	35,000	38,000	25,000	40,000
Selling price per unit (in ₹)	10	12	15	15	20
Sales Value (in ₹)	$\mathbf{3 , 0 0 , 0 0 0}$	$\mathbf{4 , 2 0 , 0 0 0}$	$\mathbf{5 , 7 0 , 0 0 0}$	$\mathbf{3 , 7 5 , 0 0 0}$	$\mathbf{8 , 0 0 , 0 0 0}$

(2) Production Budget (in units)

Particulars	Nov.	Dec.	Jan.	Feb.	March
Sales	30,000	35,000	38,000	25,000	40,000
Add: Closing Finished Goods	3,000	9,000	8,000	6,000	10,000
Less: Opening Finished Goods	$(7,500)$	$(3,000)$	$(9,000)$	$(8,000)$	$(6,000)$
Production Budget (in units)	$\mathbf{2 5 , 5 0 0}$	$\mathbf{4 1 , 0 0 0}$	$\mathbf{3 7 , 0 0 0}$	$\mathbf{2 3 , 0 0 0}$	$\mathbf{4 4 , 0 0 0}$

(3) Raw Material ' A ' Budget (in units)

Particulars	Nov.	Dec.	Jan.	Feb.	March
Units Produced	25,500	41,000	37,000	23,000	44,000
Raw material for 1 unit in Kg	2	2	2	2	2
Raw Material Consumption	$\mathbf{5 1 , 0 0 0}$	$\mathbf{8 2 , 0 0 0}$	$\mathbf{7 4 , 0 0 0}$	$\mathbf{4 6 , 0 0 0}$	$\mathbf{8 8 , 0 0 0}$

Raw Material 'B' Budget (in units)

Particulars	Nov.	Dec.	Jan.	Feb.	March
Units Produced	25,500	41,000	37,000	23,000	44,000
Raw material for 1 unit in Kg	3	3	3	3	3
Raw Material Consumption	$\mathbf{7 6 , 5 0 0}$	$\mathbf{1 , 2 3 , 0 0 0}$	$\mathbf{1 , 1 1 , 0 0 0}$	$\mathbf{6 9 , 0 0 0}$	$\mathbf{1 , 3 2 , 0 0 0}$

PYQ 10

The Accountant of KPMR Ltd. has prepared the following budget for the coming year 2022 for its two products 'AYE' and 'ZYE':

	Product 'AYE'	Product 'ZYE'
Production \& Sales units	4,000	3,000
Selling price per unit	₹200	₹180
Direct Material per unit	₹80	₹70
Direct Labour per unit	₹40	₹35
Variable overhead per unit	₹20	₹25
Fixed overhead per unit	₹10	₹10

After reviewing the above budget, the management has called the marketing team for suggesting some measures for increasing the sales. The marketing team has suggested that by promoting the products on social media, the sales quantity of both the products can be increased by 5%. Also, the selling price per unit will go up by 10%. But this will result in increase in expenditure on variable overhead and fixed overhead by 20% and 5% respectively for both the products.

You are required to prepare flexible budget for both the products:

(a) Before promotion on social media,
(b) After promotion on social media.
[(5 Marks) Dec 2021]

Answer

(a) Flexible Budget before Promotion on Social Media

Particulars	Product 'AYE' (4,000 units)		Product 'ZYE' (3,000 units)	
	Per unit	Total	Per unit	Total
Sales	200.00	8,00,000	180.00	5,40,000
Direct Materials cost	80.00	3,20,000	70.00	2,10,000
Direct Labour cost	40.00	1,60,000	35.00	1,05,000
Variable overhead	20.00	80,000	25.00	75,000
Fixed overhead	10.00	40,000	10.00	30,000
Total cost	150.00	6,00,000	140.00	4,20,000
Profit	50.00	2,00,000	40.00	1,20,000

(b) Flexible Budget After Promotion on Social Media

Particulars	Product 'AYE' (4,200 units)		Product 'ZYE' (3,150 units)	
	Per unit	Total	Per unit	Total
Sales Direct Materials cost	220.00	$9,24,000$	198.00	$6,23,700$
	80.00	$3,36,000$	70.00	$2,20,500$

Direct Labour cost	40.00	$1,68,000$	35.00	$1,10,250$
Variable overhead	24.00	$1,00,800$	30.00	94,500
Fixed OH $(40,000+5 \%) /(30,000+5 \%)$	10.00	42,000	10.00	31,500
Total cost Profit	$\mathbf{1 5 4 . 0 0}$	$\mathbf{6 , 4 6 , 8 0 0}$	$\mathbf{1 4 5 . 0 0}$	$\mathbf{4 , 5 6 , 7 5 0}$
	$\mathbf{6 6 . 0 0}$	$\mathbf{2 , 7 7 , 2 0 0}$	$\mathbf{5 3 . 0 0}$	$\mathbf{1 , 6 6 , 9 5 0}$

PYQ 11

SR Ltd. is a manufacturer of Garments. For the first three months of financial year 2022-23 commencing on $1^{\text {st }}$ April 2022, production will be constrained by direct labour. It is estimated that only 12,000 hours of direct labour hours will be available in each month.

For market reasons, production of either of the two garments must be at least 25% of the production of the other. Estimated cost and revenue per garment are as follows:

Particulars	Shirt (()	Short (₹)
Sales price	60	44
Raw materials:		
Fabric @ 12 per meter	24	12
Dyes and cotton	6	4
Direct labour @ 8 per hour	8	4
Fixed overhead @ 4 per hour	4	2
Profit	18	22

From the month of July 2022 direct labour will no longer be a constraint. The company expects to be able to sell 15,000 shirts and 20,000 shorts in July, 2022. There will be no opening stock at the beginning of July 2022.

Sales volumes are expected to grow at 10% per month cumulatively thereafter throughout the year. Following additional information is available:

- The company intends to carry stock of finished garments sufficient to meet 40% of the next month's sale from July 2022 onwards.
- The estimated selling price will be same as above.

Required:

(1) Calculate the number of shirts and shorts to be produced per month in the first quarter of financial year 2022-2023 to maximize company's profit.
(2) Prepare the following budgets on a monthly basis for July, August and September 2022:
(a) Sales budget showing sales units and sales revenue for each product.
(b) Production budget (in units) for each product.
[(10 Marks) May 2022]

Answer

(1) Calculation of the number of shirts and shorts to be produced per month:

(a) Contribution per labour hour:

Particulars	Shirt ($₹$)	Short (₹)
Sales price per unit	60	44
Less: Variable cost per unit:		
\quad Raw materials $(24+6) \&(12+4)$	30	16
\quad Direct labour	8	4
Contribution per unit	22	24
\div Labour hour per unit $(8 \div 8) \&(4 \div 8)$	$\div 1$	$\div 0.5$
Contribution per labour hour	$\mathbf{2 2}$	$\mathbf{4 8}$

(b) Production plan for the first three months:

Since, Shorts has the higher Contribution per labour hour, it will be made first. Shirts will be 25% of Shorts.
Let the Quantity of Shorts be X and Shirts will be 0.25 X , then

(Qty. of Shorts \times labour hour p.u. $)+($ Qty. of Shirts \times labour hour p.u. $)=$	Total labour hours			
$(\mathrm{X} \times 0.5$ hour $)+(0.25 \mathrm{X} \times 1$ hour $)$	$=$	12,000 hours		
$0.5 \mathrm{X}+0.25 \mathrm{X}$	$=$	12,000		
X	$=$	$12,000 \div 0.75$	$=$	16,000 units of Shorts
Therefore, for Shirts	$=$	25% of 16,000 units	$=$	4,000 units

Production per month for the first quarter will be Shorts 16,000 units \& Shirts 4,000 units.

(2) (a) Sales Budget for the month of July, August \& September 2022

Particulars	July 2022		August 2022		September 2022	
	Shirts	Shorts	Shirts	Shorts	Shirts	Shorts
Sales demand (units)	15,000	20,000	16,500	22,000	18,150	24,200
Selling price per unit	60	44	60	44	60	44
Sales Revenue ((₹)	$\mathbf{9 , 0 0 , 0 0 0}$	$\mathbf{8 , 8 0 , 0 0 0}$	$\mathbf{9 , 9 0 , 0 0 0}$	$\mathbf{9 , 6 8 , 0 0 0}$	$\mathbf{1 0 , 8 9 , 0 0 0}$	$\mathbf{1 0 , 6 4 , 8 0 0}$

(2) (b) Production budget for the month of July, August \& September 2022

Particulars	July 2022		August 2022		September 2022	
	Shirts	Shorts	Shirts	Shorts	Shirts	Shorts
Sales demand (units)	15,000	20,000	16,500	22,000	18,150	24,200
Add: Closing stock	6,600	8,800	7,260	9,680	7,986	10,648
(40\% of next month)						
Less: Opening stock	-	-	$(6,600)$	$(8,800)$	$(7,260)$	$(9,680)$
Production (units)	$\mathbf{2 1 , 6 0 0}$	$\mathbf{2 8 , 8 0 0}$	$\mathbf{1 7 , 1 6 0}$	$\mathbf{2 2 , 8 8 0}$	$\mathbf{1 8 , 8 7 6}$	$\mathbf{2 5 , 1 6 8}$

Working Note: Sales demand for October 2022:

Shirts	$=18,150+10 \%$	$=$	19,965
Shorts	$=$	$24,200+10 \%$	$=$
26,620			

PYQ 12

A Limited has furnished the following information for the months from $1^{\text {st }}$ January to $30^{\text {th }}$ April, 2023:

	January	February	March	April
Number of Working days	25	24	26	25
Production (in units) per Working day	50	55	60	52
Raw Material Purchases (\% by weight to total of 4 months)	21%	26%	30%	23%
Purchase price of raw material (per kg)	₹10	₹12	₹13	₹11

Quantity of raw material per unit of product : 4 kg .
Opening stock of raw material on $1^{\text {st }}$ January : $\quad 6,020 \mathrm{~kg}$. (Cost ₹ 63,210)
Closing stock of raw material on $30^{\text {th }}$ April : $5,100 \mathrm{~kg}$.
All the purchases of material are made at the start of each month.

Required:

(a) Calculate the consumption of raw materials (in kgs) month-by-month and in total.
(b) Calculate the month-wise quantity and value of raw materials purchased.
(c) Prepare the priced stores ledger for each month using the FIFO method.
[(10 Marks) May 2023]
Answer
(a) Raw Material Consumption Budget in Kgs

Particulars	January	February	March	April	Total
No. of working days	25	24	26	25	-
Production in units per day	50	55	60	52	-
Monthly production in units	1,250	1,320	1,560	1,300	5,430
Raw Material Consumption @ 4 kg p.u.	$\mathbf{5 , 0 0 0}$	$\mathbf{5 , 2 8 0}$	$\mathbf{6 , 2 4 0}$	$\mathbf{5 , 2 0 0}$	$\mathbf{2 1 , 7 2 0}$

(b) Raw Material Purchase Budget in Quantity and Value

Particulars	January	February	March	April
Raw Material Purchases (\%)	21%	26%	30%	23%
Purchase in kgs (20,800 kgs $\times \%$ of purchase)	$4,368 \mathrm{kgs}$	$5,408 \mathrm{Kgs}$	$6,240 \mathrm{kgs}$	$4,784 \mathrm{kgs}$
Purchase price per kg				
Purchase in Value	$₹ 10$	$₹ 12$	$₹ 13$	$₹ 11$
	$\mathbf{₹ 4 3 , 6 8 0}$	$\mathbf{₹} 64,896$	$\mathbf{₹ 8 1 , 1 2 0}$	$₹ 52,624$

Working note:

Total Purchase of Raw Material (January to April)	$=\quad$ Consumption + Closing Stock -Opening Stock
	$=21,720+5,100-6,020$
	$=20,800$ Kgs.

(c) Stores Ledger (FIFO Method)

Months	Receipts			Issues			Balance		
	Kgs	Rate	Value	Kgs	Rate	Value	Kgs	Rate	Value
Opening							6,020	10.5	63,210
January	4,368	10	43,680	5,000	10.5	52,500	1,020	10.5	10,710
							4,368	10	43,680
February	5,408	12	64,896	1,020	10.5	10,720	108	10	1,080
				4,260	10	42,600	5,408	12	64,896
March	6,240	13	81,120	108	10	1,080	5,516	13	71,708
				5,408	12	64,896			
April	4,784	11	52,624	5,200	13	67,600	316	13	4,108

PYQ 13

PQR Limited manufactures three products - X, Product Y and Product Z. The output for the current year is $2,50,000$ units of Product $X, 2,80,000$ units of Product Y and $3,20,000$ units of Product Z respectively.

Selling price of Product X is 1.25 times of Product Z whereas Product Y can be sold at double the price at which product Z can be sold. Product Z can be sold at a profit of 20% on its marginal cost.

Other information are as follows:

	Product \boldsymbol{X}	Product \boldsymbol{Y}	Product \boldsymbol{Z}
Direct Materials Cost (per unit)	₹20	₹20	₹20
Direct Wages Cost (per unit)	₹16	₹24	₹16

Raw materials used for manufacturing all the three products is the same. Direct Wages are paid @ ₹ 4 per
labour hour. Total overhead cost of the company is ₹ $52,80,000$ for the year, out of which ₹ 1 per labour is variable and the rest is fixed.

In the next year it is expected that sales of product X and product Z will increase by 12% and 15% respectively and sale of product Y will decline by 5%. The total overhead cost of the company for the next year is estimated at $₹ 55,08,000$. The variable cost of $₹ 1$ per labour hour remains unchanged. It is anticipated that all other costs will remain same for the next year and there is no opening and closing stock. Selling Price per unit of each product will remain unchanged in the next year.

Prepare a budget showing the current position and the position for the next year clearly indicating the total product-wise contribution and profit for the company as a whole.
[(10 Marks) May 2023]

Answer

(1) Statement Showing Product-wise Contribution and Profit for the Company (Current Position)

(2) Statement Showing Product-wise Contribution and Profit for the Company (Next Year)

Working note:

(a) Labour hours (Current)	$=$ $=$ $=$	$\begin{aligned} & 2,50,000 \text { units } \times 16 / 4+2,80,000 \text { units } \times 24 / 4+3,20,000 \text { units } \\ & \times 16 / 4 \\ & 10,00,000 \text { hours }+16,80,000 \text { hours }+12,80,000 \text { hours } \\ & 39,60,000 \text { hours } \end{aligned}$		
(b) Fixed OH (Current)	$=$ $=$	$\begin{aligned} & \text { Total OH - Variable OH } \\ & \text { ₹ } 52,80,000-39,60,000 \text { hours } \times ₹ 1 \end{aligned}$	=	₹ $13,20,000$
(c) Sale price of Product Z	=	Marginal cost p.u. $+20 \%$ $(₹ 20+₹ 16+4 \text { hours } \times ₹ 1)+20 \%$	=	₹48 per unit
(d) Sale price of Product X	=	1.25 times of ₹ 48	=	₹ 60 per unit

(e) Sale price of Product $\mathrm{Y}=2$ times of ₹ 48 = ₹96 per unit
(f) Labour hours (Next year) $=\quad 2,80,000$ units $\times 4 \mathrm{H}+2,66,000$ units $\times 6 \mathrm{H}+3,68,000$ units $\times 4 \mathrm{H}$ $=\quad 11,20,000$ hours $+15,96,000$ hours $+14,72,000$ hours $=41,88,000$ hours
(g) Fixed OH (Next year) $=$ Total $\mathrm{OH}-$ Variable OH

$$
=₹ 55,08,000-41,88,000 \text { hours } \times ₹ 1=₹ 13,20,000
$$

SUGGESTED REVISION FOR EXAM:

BQ: $\quad 3,4,5,7,8,9,10,12,14,15$
PYQ: 8, 9, 11, 13

MATERIAL COST VARIANCE

BQ 1

The standard and actual figures of product ' Z ' are as under:

	Standard	Actual
Material quantity	50 units	45 units
Material price per unit	$₹ 1.00$	$₹ 0.80$

Calculate material cost variance.

Answer

(i) Material Price Variance
(ii) Material Usage Variance

$=$	Actual Quantity (Standard Price - Actual Price)	
$=$	45 units (₹1.00-₹0.80)	$=\quad ₹ 9 F$

$$
\begin{array}{lll}
= & \text { Standard Price (Standard Quantity - Actual Quantity) } \\
= & \text { ₹1.00 (50 units }-45 \text { units }) & = \\
\text { ₹5 F }
\end{array}
$$

(iii) Material Cost Variance

$$
=\quad \text { Standard cost }- \text { Actual cost }
$$

$$
=₹ 50-₹ 36 \quad=\quad ₹ 14 \text { F }
$$

(a) Standard cost

$$
\begin{aligned}
& =\quad \text { Standard Quantity } \times \text { Standard Price } \\
& =\quad 50 \text { units } \times ₹ 1.00
\end{aligned}
$$

$=\quad$ Actual Quantity \times Actual Price
$=45$ units $\times ₹ 0.80$
$=\quad ₹ 36.00$

BQ 2

NXE Manufacturing Concern furnishes the following information:

Standard:	Material for 70 kg finished products	100 kg.
	Price of material	₹ 1 per kg.
Actual:	Output	$2,10,000 \mathrm{~kg}$.
	Material used	$2,80,000 \mathrm{~kg}$.
	Cost of Materials	₹2,52,000

Calculate:

(a) Material usage variance,
(b) Material price variance,
(c) Material cost variance.

Answer

(a) Material Usage Variance
(b) Material Price Variance
(c) Material Cost Variance

$$
\begin{array}{llll}
= & \mathrm{SP} \times(\mathrm{SQ}-\mathrm{AQ}) & = & ₹ \\
= & \mathrm{₹} 1.00 \times(3,00,000-2,80,000) & & \\
= & \mathrm{AQ} \times(\mathrm{SP}-\mathrm{AP}) & = & \\
= & 2,80,000 \times(₹ 1.00-₹ 0.90) & \\
= & (\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP}) & \\
= & (3,00,000 \times 1)-(2,80,000 \times 0.90) & = & ₹ 48,000 \mathrm{~F}
\end{array}
$$

Working notes:

| 1. \quad SQ of input for actual output | $=\quad 2,10,000 \mathrm{~kg} \times \frac{100 \mathrm{kgs}}{70 \mathrm{kgs}}$ | $=3,00,000 \mathrm{kgs}$ |
| :--- | :--- | :--- | :--- |
| 2. \quad Actual Price (AP) | $=\quad ₹ 2,52,000 \div 2,80,000 \mathrm{~kg}$ | $=\quad ₹ 0.90 \mathrm{per} \mathrm{kg}$. |

BQ 3

The standard cost of a chemical mixture is as follows:

40% material A	at ₹20 per kg.
60% material B	at ₹ 30 per kg.

A standard loss of 10% of input is expected in production. The cost records for a period showed the following usage:

90 kg material A	at a cost of ₹ $18 \mathrm{per} \mathrm{kg}$.
110 kg material B	at a cost of ₹ 34 per kg.

The quantity produced was 182 kg . of good product.
Calculate (1) Material Price Variance, (2) Material Usage variance and (3) Material Cost variance.

Answer

1.	Material Price Variance	=	$(A Q \times S P)-(A Q \times A P)$		
		=	₹ 5,100 - ₹5,360	$=$	₹260 A
2.	Material Usage Variance	=	$(S Q \times S P)-(A Q \times S P)$		
		=	₹ $5,257.78$ - ₹ 5,100	=	₹157.78 F
3.	Material Cost Variance	=	$(S Q \times S P)-(A Q \times A P)$		
		=	₹ $5,257.78$ - ₹ 5,360	$=$	₹102.22 A

Working notes:

(a) Analysis Table

Materials	$\boldsymbol{S Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A} \boldsymbol{Q} \times \boldsymbol{A P}$
A	$80.88 \mathrm{~kg} \times ₹ 20$	$90 \mathrm{~kg} \times ₹ 20$	$90 \mathrm{~kg} \times ₹ 18$
B	$121.33 \mathrm{~kg} \times ₹ 30$	$110 \mathrm{~kg} \times ₹ 30$	$110 \mathrm{~kg} \times ₹ 34$
Total	$₹ 5,257.78$	$₹ 5,100$	$₹ 5,360$

(b) SQ of input for actual output Materials A Materials B
$=\quad 182 \mathrm{~kg} \div 90 \% \quad=\quad 202.22 \mathrm{kgs}$
$=\quad 202.22 \mathrm{kgs} \times 40 \% \quad=\quad 80.88 \mathrm{kgs}$ $=\quad 202.22 \mathrm{kgs} \times 60 \%=121.33 \mathrm{kgs}$

BQ 4

For making 10 kg . of CEMCO, the standard material requirements is:

Materials	Quantity (kg)	Rate per $\mathbf{~ k g}$. (()
A	8	6.00
B	4	4.00

During April, 1,000 kg of CEMCO were produced. The actual consumption of materials is as under:

Materials	Quantity (kg)	Rate per kg. (₹)
A	750	7.00
B	500	5.00

Calculate:

(a) Material Cost Variance;
(b) Material Price Variance;
(c) Material Usage Variance.

Answer

(a) Material Cost Variance $=(S Q \times S P)-(A Q \times A P)$

$$
=₹ 6,400-₹ 7,750 \quad=\quad ₹ 1,350 \mathrm{~A}
$$

(b) Material Price Variance
$=\quad(A Q \times S P)-(A Q \times A P)$
$=$ ₹ 6,500 - ₹ $7,750=$ ₹ $1,250 \mathrm{~A}$
(c) Material Usage Variance
$=\quad(S Q \times S P)-(A Q \times S P)$
$=$ ₹ $6,400-₹ 6,500=$ ₹ 100 A

Working notes:

1. Basic calculation

Materials	$\boldsymbol{S Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A P}$
A	$800 \mathrm{~kg} \times ₹ 6$	$750 \mathrm{~kg} \times ₹ 6$	$750 \mathrm{~kg} \times ₹ 7$
B	$400 \mathrm{~kg} \times ₹ 4$	$500 \mathrm{~kg} \times ₹ 4$	$500 \mathrm{~kg} \times ₹ 5$
Total	$₹ 6,400$	$₹ 6,500$	$₹ 7,750$

2. SQ of input for actual output:

Materials A	$=$	$(8 \mathrm{~kg} \div 10 \mathrm{~kg}) \times 1,000 \mathrm{~kg}$	$=$	800 kgs
Materials B	$=$	$(4 \mathrm{~kg} \div 10 \mathrm{~kg}) \times 1,000 \mathrm{~kg}$	$=$	400 kgs

BQ 5

The Standard mix to produce one unit of product is as follows:

Material X	60	units @ ₹15 per unit	₹900
Material Y	80	units @ ₹20 per unit	₹1,600
Material Z	100	units @ ₹25 per unit	₹2,500
	$\mathbf{2 4 0}$		₹5,000

During the month of April, 10 units were actually produced and consumption was as follows:

Material X	640	units @ ₹ 17.50 per unit	₹ 11,200
Material Y	950	units @ ₹18.00 per unit	₹ 17,100
Material Z	870	units @ ₹27.50 per unit	₹23,925
	2,460		₹52,225

Calculate all material variances.

Answer

1. Material Cost Variance
2. Material Price Variance
3. Material Usage Variance
4. Material Mix Variance
5. Material Yield Variance

=	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$		
$=$	₹ 50,000 - ₹ 52,225	=	₹2,225 A
=	$(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$		
=	₹ $50,350-₹ 52,225$	=	₹1,875 A
=	$(S Q \times S P)-(A Q \times S P)$		
=	₹ 50,000 - ₹ 50,350	=	₹350 A
=	$(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$		
$=$	₹ 51,250 - ₹ 50,350	$=$	₹900 F
=	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{RSQ} \times \mathrm{SP})$		
$=$	₹ 50,000 - ₹ 51,250	=	₹1,250 A

Working notes:

a. Basic Calculation

Materials	$\boldsymbol{S Q} \times \boldsymbol{S P}$	$\boldsymbol{R S Q} \times \boldsymbol{S P}$	$\boldsymbol{A} \boldsymbol{Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A} \boldsymbol{P}$
X	$600 \times ₹ 15.00$	$615 \times ₹ 15.00$	$640 \times ₹ 15.00$	$640 \times ₹ 17.50$
Y	$800 \times ₹ 20.00$	$820 \times ₹ 20.00$	$950 \times ₹ 20.00$	$950 \times ₹ 18.00$
Z	$1,000 \times ₹ 25.00$	$1,025 \times ₹ 25.00$	$870 \times ₹ 25.00$	$870 \times ₹ 27.50$
Total	₹ 50,000	$₹ 51,250$	$₹ 50,350$	$₹ 52,225$

b. $\quad S Q$ of input for actual output:

Materials X	$=$	60 units $\times 10$ units of FG	$=$	600 units
Materials Y	$=$	80 units $\times 10$ units of FG	$=$	800 units
Materials Z	$=$	100 units $\times 10$ units of FG	$=$	1,000 units

c. RSQ (Revised Standard Quantity)of actual input:

Materials X	$=$	2,460 units $\times 60 / 240$	$=$	615 units
Materials Y	$=$	2,460 units $\times 80 / 240$	$=$	820 units
Materials Z	$=$	2,460 units $\times 100 / 240$	$=$	1,025 units

BQ 6

A company manufactures a particular product the standard direct materials cost of which is ₹10 per unit. The following is obtained from the costing records:

(a) Standard:

Material	Quantity	Rate	Amount
A	70	10.00	700.00
B	30	5.00	150.00
	$\mathbf{1 0 0}$		$\mathbf{8 5 0 . 0 0}$
Loss: (15\%)	15		NIL
	$\mathbf{8 5}$	$\mathbf{8 5 0 . 0 0}$	

(b) Actual result:

Material	Quantity	Rate	Amount
A	400	11.00	$4,400.00$
B	200	6.00	$1,200.00$
	$\mathbf{6 0 0}$		$\mathbf{5 , 6 0 0 . 0 0}$
Loss:	60		NIL
	$\mathbf{5 4 0}$		$\mathbf{5 , 6 0 0 . 0 0}$

Compute:

(i) Material Price Variance;
(ii) Material Mix Variance;
(iii) Material Yield Variance;
(iv) Material Usage Variance; and
(v) Total Material Cost Variance.
[(i) 600 A (ii) 100 F (iii) 300 F (iv) 400 F (v) 200 A]

BQ 7

The standard cost of a chemical mixture is as follows:
60\% of Material A @ ₹50 per kg 40% of Material B @ ₹ 60 per kg

A standard loss of 25% on output is expected in production. The cost records for a period has shown the following usage:

540 kg of Material A @ ₹ 60 per kg
260 kg of Material B @ ₹ 50 per kg

The quantity processed was 680 kilograms of good product.
From the above given information calculate:
(1) Material Cost Variance
(2) Material Price Variance
(3) Material Usage Variance
(4) Material Mix Variance
(5) Material Yield Variance

Answer

(1) Material Cost Varianc
(2) Material Price Variance

=	$(S Q \times S P)-(A Q \times A P)$		
=	₹ 45,900 - ₹ 45,400	=	₹500 F
=	$(A Q \times S P)-(A Q \times A P)$		
=	₹ 42,600 - ₹ 45,400	=	F2,800 A
=	$(S Q \times S P)-(A Q \times S P)$		
=	₹ 45,900 - ₹ 42,600	=	F3,300 F
=	$(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$		
=	₹ 43,200 ₹ 42,600	=	F600 F
$=$	$(S Q \times S P)-(R S Q \times S P)$		
=	₹ 45,900 - ₹ 43,200	=	F2,700 F

Working notes:

(a) Basic Calculation

Materials	$\boldsymbol{S Q} \times \boldsymbol{\text { SP }}$	$\boldsymbol{R S Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A} \boldsymbol{P}$
A	$510 \times ₹ 50$	$480 \times ₹ 50$	$540 \times ₹ 50$	$540 \times ₹ 60$
B	$340 \times ₹ 60$	$320 \times ₹ 60$	$260 \times ₹ 60$	$260 \times ₹ 50$
Total	$₹ 45,900$	$₹ 43,200$	$₹ 42,600$	$₹ 45,400$

(b) SQ of input for actual output:

Input-Loss $=$ Output
Input - 25\% Output $=$ Output
Input $=125 \%$ Output
Input of Raw Material $=125 \% \times 680 \mathrm{kgs}$ of Good Product $=850 \mathrm{kgs}$
Materials A $=850 \mathrm{kgs} \times 60 \%=510 \mathrm{kgs}$
Materials B $=850 \mathrm{kgs} \times 40 \%=340 \mathrm{kgs}$
(c) RSQ (Revised Standard Quantity) of actual input:

Materials A	$=$	$=$	$=480 \mathrm{kgs} \times 60 \%$
Materials B	$=$	$800 \mathrm{kgs} \times 40 \%$	$=320 \mathrm{kgs}$

BQ 8

Vinayak Ltd. produces an article by blending two basic raw materials. It operates a standard costing system and the following standards have been set for raw materials:

Materials	Mix	Standard price $\mathbf{p e r} \mathbf{~ k g}$
A	40%	$₹ 4.00$
B	60%	$₹ 3.00$

The standard loss in processing is 15%. During April, 2023, the company produced $1,700 \mathrm{~kg}$ of finished output and the position of stock and purchased for the month of April, 2023 is as under:

Material	Stock on 01.04.23	Stock on 30.04.23	Purchased during April' 23	
			$\boldsymbol{k g}$	Cost ($₹$)
A	35 kgs	5 kgs	800	3,400
B	40 kgs	50 kgs	1,200	3,000

Calculate material variances (Price variance on the basis of consumption).
[MPV 376.25 F, MMV 22 A, MYV 68 A, MUV 90 A, MCV 286.25 F]

BQ 9

J.K. Ltd. manufactures NXE by mixing three raw materials. For every batch of 100 kg . of NXE, 125 kg . of raw materials are used. In April, 60 batches were prepared to produce an output of $5,600 \mathrm{~kg}$. of NXE. The standard and actual particulars for April, are as follows:

Materials	Standard		Actual		Materials Purchased
	Mix	Price per kg	Mix	Price per kg	
	\%	(7)	\%	(${ }^{\text {P }}$	(kg)
A	50	20	60	21	5,000
B	30	10	20	8	2,000
C	20	5	20	6	1,200

Calculate all variances.

Answer

1. Material Price Variance
(Based on purchase)
Material Price Variance
(Based on consumption)

$$
\begin{array}{lll}
= & (\mathrm{AQP} \times \mathrm{SP})-(\mathrm{AQP} \times \mathrm{AP}) & =\quad ₹ 2,200 \mathrm{~A} \\
= & \mathrm{₹} 1,26,000-₹ 1,28,200 \\
& \text { Or } & \\
= & (\mathrm{AQ} \text { used } \times \mathrm{SP})-(\mathrm{AQ} \text { used } \times \mathrm{AP}) \\
= & \mathrm{₹} 1,12,500-₹ 1,15,500 & =
\end{array}
$$

2. Material Mix Variance
3. Material Yield Variance
4. Material Usage Variance

$$
\begin{aligned}
& =\quad(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP}) \\
& =\quad \mathrm{₹} 1,05,000-₹ 1,12,500 \quad=\quad \text { F7,500 } \mathrm{A}
\end{aligned}
$$

$$
=\quad(S Q \times S P)-(R S Q \times S P)
$$

$$
=\text { ₹ } 98,000-₹ 1,05,000 \quad=\quad ₹ 7,000 \mathrm{~A}
$$

- M

$$
=\quad(S Q \times S P)-(A Q \times S P)
$$

$$
=₹ 98,000-₹ 1,12,500=₹ 14,500 \mathrm{~A}
$$

5. Material Cost Variance
$=\quad M U V+M P V$
(based on purchase)
$=₹ 14,500 \mathrm{~A}+₹ 2,200 \mathrm{~A}$
$=\quad ₹ 16,700 \mathrm{~A}$
Material Cost Variance
$=\quad(S Q \times S P)-(A Q \times A P)$
(based on consumption) = ₹98,000-₹1,15,500 = ₹17,500 A

Working notes:

a. Basic calculation

Materials	$S Q \times S P$	$R S Q \times S P$	AQC \times SP	$A Q C \times A P$	$A Q P \times$ P	$A Q P \times A P$
A	$3,500 \times$ ₹ 20	$3,750 \times$ ₹ 20	$4,500 \times$ ₹ 20	$4,500 \times$ ₹ 21	$5,000 \times$ ₹ 20	5,000 \times ₹ 21
B	$2,100 \times$ ₹ 10	$2,250 \times$ ₹ 10	$1,500 \times$ ₹ 10	$1,500 \times$ ₹ 8	$2,000 \times$ ₹ 10	$2,000 \times ₹ 8$
C	$1,400 \times$ ₹ 5	1,500 5 ₹ 5	$1,500 \times$ ₹ 5	1,500 \times ₹ 6	$1,200 \times$ ₹ 5	1,200 \times ₹ 6
Total	₹ 98,000	₹1,05,000	₹ $1,12,500$	₹1,15,500	₹1,26,000	₹1,28,200

b. Actual quantity of materials used
Materials A
$=\quad 125 \mathrm{~kg} \times 60$ batches

$$
=\quad 7,500 \mathrm{kgs} .
$$

Materials A $=7,500 \mathrm{kgs} \times 60 \%=4,500 \mathrm{kgs}$. Materials B $=7,500 \mathrm{kgs} \times 20 \% \quad=\quad 1,500 \mathrm{kgs}$. Materials C $=7,500 \mathrm{kgs} . \times 20 \%=1,500 \mathrm{kgs}$.
c. RSQ (Revised Standard Quantity) of actual input:

Materials A	$=$	$7,500 \mathrm{kgs} \times 50 \%$	$=$	$3,750 \mathrm{kgs}$.
Materials B	$=$	$7,500 \mathrm{kgs} \times 30 \%$	$=$	$2,250 \mathrm{kgs}$.
Materials C		$7,500 \mathrm{kgs} . \times 20 \%$	$=$	$1,500 \mathrm{kgs}$.
		$5,600 \mathrm{kgs} \times 125 \mathrm{~kg} / 100 \mathrm{~kg}$	$=$	$7,000 \mathrm{kgs}$.
nput for actual output	$=$	$=$	$3,500 \mathrm{kgs}$.	
Materials A	$=$	$7,000 \mathrm{kgs}. \times 50 \%$	$=$	$2,100 \mathrm{kgs}$.
Materials B	$=$	$7,000 \mathrm{kgs}. \times 30 \%$	$=20 \%$	$=$

BQ 10

GAP Limited operates a system of standard costing in respect of one of its products which is manufactured within a single cost centre. Following are the details:

Budgeted data:

Material	Quantity	Price	Amount (₹)
A	60	20	1,200
B	40	30	1,200
	$\mathbf{1 0 0}$		2,400
Normal Loss:	20		-
Output	$\mathbf{8 0}$		$\mathbf{2 , 4 0 0}$

Actual data:

Material	Quantity	Price	Amount (₹)
A	70	$?$	$?$
B	$?$	30	$?$

Material Price Variance (A) ₹105A

You are required to calculate:

1. Actual Price of material A
2. Actual Quantity of material B
3. Material Price Variance
4. Material Usage Variance
5. Material Mix Variance
6. Material Sub Usage (Yield) Variance

Answer

1. Actual Price of Material A:

Material Price Variance (A)	$=$	$\mathrm{AQ} \times(\mathrm{SP}-\mathrm{AP})$	$=70 \times(₹ 20-\mathrm{AP})$
$₹ 105 \mathrm{~A}$	$=$	$1,400-70 \mathrm{AP}$	
70 AP	$=$	$₹ 1,505$	
AP		$\mathrm{F} 1,505 \div 70$	

2．Actual Quantity of Material B：

Material Cost Variance	＝	$(S Q \times S P)-(A Q \times A P)$		
₹275A	＝	$\{(60 \times 20)+(40 \times 30)\}-\left\{(70 \times 21.5)+\left(A Q_{B} \times 30\right)\right\}$		
₹ 275 A	＝	$₹ 2,400-₹ 1,505-30 A Q_{B}$		
$30 \mathrm{AQ}_{\text {B }}$	＝	₹ 1,170		
AQ of Materials B	＝	₹ $1,170 \div 30$	＝	39 units
Material Price Variance	＝	$(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$		
	＝	₹ 2,570 －₹ 2,675	＝	₹105 A
Material Usage Variance	＝	$(S Q \times S P)-(A Q \times S P)$		
	＝	₹ 2,400 －₹ 2,570	＝	₹170 A
Material Mix Variance	＝	$(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$		
	＝	₹ 2,616 －₹ 2,570	$=$	F46F
Material Yield Variance	＝	$(S Q \times S P)-(R S Q \times S P)$		
	＝	₹ 2,400 －₹ 2,616	＝	₹216 A

Working notes：

a．Basic Calculation

Materials	$\boldsymbol{S Q} \times \mathbf{S P}$	$\boldsymbol{R S Q} \times \mathbf{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A P}$
A	$60 \times ₹ 20$	$65.4 \times ₹ 20$	$70 \times ₹ 20$	$70 \times ₹ 21.50$
B	$40 \times ₹ 30$	$43.6 \times ₹ 30$	$39 \times ₹ 30$	$39 \times ₹ 30$
Total	$₹ 2,400$	$₹ 2,616$	$₹ 2,570$	$₹ 2,675$

b．\quad RSQ（Revised Standard Quantity）：

Materials A	$=$	109 units $\times 60 / 100$	$=$
Materials B	$=$	109 units $\times 40 / 100$	$=$

BQ 11

Following data is extracted from the books of XYZ Ltd．for the month of January，2023：

1．Estimation：

Particulars	Quantity（kg．）	Price（叉）	Amount（叉）
Material A	800	$?$	-
Material B	600	30.00	18,000

Normal loss was expected to be 10% of total input materials．
2．Actuals： 1480 kg of output produced．

Particulars	Quantity（kg．）	Price（叉）	Amount（》）
Material A	900	$?$	-
Material B	$?$	32.50	-

3．Other Information：

Material Cost Variance	₹3，625（F）
Material Price Variance	₹175（F）

You are required to calculate:

1. Standard Price of Material A;
2. Actual Quantity of Material B;
3. Actual Price of Material A;
4. Revised standard quantity of Material A and Material B; and
5. Material Mix Variance.

Answer

1. Material Cost Variance
₹ 3,625
$(S Q \times S P)$
$\left(\mathrm{SQ}_{\mathrm{A}} \times \mathrm{SP}_{\mathrm{A}}\right)+\left(\mathrm{SQ}_{\mathrm{B}} \times \mathrm{SP}_{\mathrm{B}}\right)$
$\left(940 \mathrm{~kg} \times \mathrm{SP}_{\mathrm{A}}\right)+(705 \mathrm{~kg} \times$ ₹ 30$)$
$\left(940 \mathrm{~kg} \times \mathrm{SP}_{\mathrm{A}}\right)+$ ₹ 21,150
$\left(940 \mathrm{~kg} \times \mathrm{SP}_{\mathrm{A}}\right)$
SP_{A}
Standard Price of Material A

$=$	$(S Q \times S P)-(A Q \times A P)$
$=$	$(S Q \times S P)-₹ 59,825$
$=$	$₹ 63,450$
$=$	$₹ 63,450$
$=$	$₹ 63,450$
$=$	$₹ 63,450$
$=$	$₹ 42,300$
$=$	$42,300 \div 940 \mathrm{~kg}$
$=$	$₹ 45$

Working notes:

(a) SQ of input for actual output
Materials A $=1,645 \mathrm{kgs} \times 8 / 14=940 \mathrm{kgs}$

Materials B
$=1,645 \mathrm{kgs} \times 6 / 14=705 \mathrm{kgs}$
2. Material Price Variance $(A+B)$
$=(A Q \times S P)-(A Q \times A P)$
₹175
$=\quad(A Q \times S P)-₹ 59,825$
$(A Q \times S P)$
$=$ ₹ 60,000
$\left(A_{A} \times S P_{A}\right)+\left(A Q_{B} \times S P_{B}\right)$
$=$ ₹ 60,000
$(900 \mathrm{~kg} \times$ ₹ 45$)+\left(\mathrm{AQ}_{\mathrm{B}} \times ₹ 30\right)$
$=$ ₹ 60,000
$\left(A Q_{B} \times ₹ 30\right)$
Actual Quantity of Material B
3. Actual Material Cost $(\mathrm{A}+\mathrm{B})$
$=$ ₹ $60,000-₹ 40,500=₹ 19,500$
$\left(A Q_{A} \times A P_{A}\right)+\left(A Q_{B} \times A P_{B}\right)$
$=₹ 19,500 \div ₹ 30 \quad=\quad 650 \mathbf{k g}$.
$\left(900 \mathrm{~kg} \times \mathrm{AP}_{\mathrm{A}}\right)+(650 \mathrm{~kg} \times ₹ 32.5)$
$=(\mathrm{AQ} \times \mathrm{AP}) \quad=\quad ₹ 59,825$
$\left(900 \mathrm{~kg} \times \mathrm{AP}_{\mathrm{A}}\right)+₹ 21,125$

- $\mathrm{F} 9,825$
($900 \mathrm{~kg} \times \mathrm{AP}_{\mathrm{A}}$)
Actual Price of Material A
- ₹59,825
$=$ ₹ 59,825
$=$ ₹ 38,700
$=₹ 38,700 \div 900 \mathrm{~kg} \quad=\quad ₹ 43$

4. Revised Standard Quantity (RSQ) of A \& B:

| Materials A | $=$ | $(900+650) \times 8 / 14$ | $=$ |
| :--- | :--- | :--- | :--- |$\quad \mathbf{8 8 6} \mathbf{~ k g s}$

BQ 12

One kilogram of product K requires two chemicals A and B . The following were the details of product K for the month of June 2023:
(a) Standard mix for chemical A is 50% and chemical B is 50%.
(b) Standard price kilogram of chemical A is ₹ 12 and chemical B is ₹ 15 .
(c) Actual input of chemical B is 70 kilograms.
(d) Actual price per kilogram of chemical A is ₹ 15 .
(e) Standard normal loss is 10% of total input.
(f) Total Material cost variance is ₹ 650 adverse.
(g) Total Material yield variance is ₹ 135 adverse.

You are required to calculate:

(1) Total Material mix variance
(2) Total Material usage variance
(3) Total Material price variance
(4) Actual loss of actual input
(5) Actual input of chemical A
(6) Actual price per kg. of chemical B

Answer

(1) Material Mix Variance
(2) Material Usage Variance

$$
\begin{array}{ll}
= & (S Q \times S P)-(A Q \times S P) \\
= & ₹ 1,350-₹ 1,530
\end{array}
$$

(3) Material Price Variance
$=(A Q \times S P)-(A Q \times A P)$

$$
=₹ 1,530-₹ 2,000=₹ 470 \mathrm{~A}
$$

(4) Actual loss of actual input
$=\quad$ Actual input - Actual output
$=110 \mathrm{~kg}-90 \mathrm{~kg} \quad=\quad 20 \mathrm{Kgs}$
(5) Actual input of chemical A
$=\quad 40 \mathrm{Kgs}$
(6) Actual Price per kg of B
$=\quad$ F20

Working Notes:

(a) Calculation of standard mix of input (assuming Standard input as 100 kg , it will be given in exam):

Material	Quantity $\mathbf{i n} \mathbf{K g}$	Rate	Amount
A	50	12.00	600.00
B	50	15.00	750.00
	$\mathbf{1 0 0}$		$\mathbf{1 , 3 5 0 . 0 0}$
Loss: (10\%)	10		NIL
	$\mathbf{9 0}$	$\mathbf{1 , 3 5 0 . 0 0}$	

(b) Let the actual input of chemical A be X kg . and the actual price of chemical B be ₹ Y

Given,

Material Yield Variance	$=$	$($ Total Standard input - Total Actual input $) \times$ Std cost $\mathrm{p} . \mathrm{u}$. of input
135 A	$=$	$[100-(70+\mathrm{X})] \times 13.5(1,350 \div 100 \mathrm{~kg})$
-135	$=$	$(30-\mathrm{X}) \times 13.5$
-10	$=$	$30-\mathrm{X}$
\boldsymbol{X}	$=$	$\mathbf{4 0} \mathbf{K g}$.

Also,

Material Cost Variance	$=$	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$
650 A	$=$	$1,350-\{(40 \times 15)+(70 \times \mathrm{Y})\}$
-650	$=$	$1,350-600-70 \mathrm{Y}$
$-650-750$		70 Y
\boldsymbol{Y}	$=$	F 20

(c) Basic Calculation

Materials	$\boldsymbol{S Q} \times \mathbf{S P}$	$\boldsymbol{R S Q} \times \mathbf{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A P}$
A	$50 \times ₹ 12$	$55 \times ₹ 12$	$40 \times ₹ 12$	$40 \times ₹ 15$
B	$50 \times ₹ 15$	$55 \times ₹ 15$	$70 \times ₹ 15$	$70 \times ₹ 20$
Total	₹ 1,350	$₹ 1,485$	$₹ 1,530$	$₹ 2,000$

(d) RSQ (Revised Standard Quantity):

Materials A	$=$	110 units $\times 50 / 100$	$=$	55 units
Materials B	$=$	110 units $\times 50 / 100$	$=$	55 units

LABOUR COST VARIANCE

BQ 13

The following details are available from the records of ABC Ltd. engaged in manufacturing article A of the week ended $28^{\text {th }}$ February:

The standard labour hours and rates of payment per article were as following:

Category of workers	Hours	Rate per hour	Total
Skilled labour	10	$₹ 3.00$	$₹ 30.00$
Semi-skilled labour	8	$₹ 1.50$	$₹ 12.00$
Unskilled labour	16	$₹ 1.00$	$₹ 16.00$
Total	$\mathbf{3 4}$	-	$₹ 58.00$

The actual production was 1,000 articles A for which the actual hours worked and rates are given below:

Category of workers	Hours	Rate per hour	Total
Skilled labour	9,000	$₹ 4.00$	$₹ 36,000$
Semi-skilled labour	8,400	$₹ 1.50$	$₹ 12,600$
Unskilled labour	20,000	$₹ 0.90$	$₹ 18,000$
Total	$\mathbf{3 7 , 4 0 0}$	-	$₹ 66,600$

From the above set of data, you are asked to calculate:

(i) Labour Cost Variance; (ii) Labour Rate Variance; (iii) Labour Efficiency; (iv) Labour Mix Variance and (v) Labour Yield Variance.
[(i) 8,600 A (ii) 7,000 A (iii) 1,600 A (iv) 4,200 F (v) 5,800 A]

BQ 14

The standard labour employment and the actual labour engaged in a week for a job are as under:

Particulars	Skilled Workers	Semi-Skilled Workers	Unskilled Workers
Standard number of workers in the gang	32	12	6
Standard wage rate per hour $(₹)$	3.00	2.00	1.00
Actual number of workers in the gang	28	18	4
Actual wage rate per hour $(₹)$	4.00	3.00	2.00

During the 40 hours working week, the gang produced 1,800 standard labour hours of work.
Calculate the various labour variances.
[LRV 2,000 A, LMV 80 F, LYV 504 A, LEV 424 A, LCV 2,424 A]

BQ 15

The standard and actual figures of a firm are as under:
Standard time for the job
Standard rate per hour
Actual time taken
Actual wages paid

Compute the variances

Answer

1.	Labour Rate Variance	=	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		=	($900 \times$ ₹ 0.50) - ₹ 360	$=$	F90 F
2.	Labour Efficiency Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
		=	($1,000 \times$ ₹ 0.50) - ($900 \times$ ₹ 0.50$)$	$=$	F50 F
3.	Labour Cost Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		$=$	($1,000 \times$ ₹ 0.50) - ₹ 360	=	${ }^{1} 140$ F

BQ 16

NPX Ltd. uses standard costing system for manufacturing of its product X. Following is the budget data given in relation to labour hours for manufacture of 1 unit of Product X:

Labour	Hours	Rate ($₹$)
Skilled	2	6
Semi-Skilled	3	4
Un-Skilled	5	3
Total	10	-

In the month of January, 2023, total 10,000 units were produced following are the details:

Labour	Hours	Rate (₹)	Amount (₹)
Skilled	18,000	7	$1,26,000$
Semi-Skilled	33,000	3.5	$1,15,500$
Un-Skilled	58,000	4	$2,32,000$
Total	$1,09,000$	-	$4,73,500$

Actual Idle hours (abnormal) during the month:

Skilled	500
Semi-Skilled	700
Un-skilled	800
Total	2,000

Calculate:

(a) Labour Variances.
(b) Also show the effect on Labour Rate Variance if 5,000 hours of Skilled Labour are paid @ ₹5.5 per hour and balance were paid @ ₹7 per hour.

Answer

(a) Calculation of Labour Variances:

Labour Cost Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
	=	₹ $3,90,000$ - ₹ $4,73,500$	$=$	₹83,500 A
Labour Rate Variance	=	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
	=	₹ $4,14,000$ - ₹ $4,73,500$	$=$	F59,500 A
Labour Efficiency Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AHW} \times \mathrm{SR})$		
	=	₹ $3,90,000$ - ₹ $4,05,800$	=	₹15,800 A
Labour Mix Variance	=	$(\mathrm{RSH} \times \mathrm{SR})-(\mathrm{AHW} \times \mathrm{SR})$		
	=	₹ $4,17,300$ - $4,05,800$	=	F11,500 F
Labour Yield Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{RSH} \times \mathrm{SR})$		
	=	₹ $3,90,000-₹ 4,17,300$	$=$	₹27,300 A
Labour Idle Variance	=	$(\mathrm{AHW} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
	=	₹ $4,05,800$ - ₹ $4,14,000$	=	\% 8,200 A

(b) Labour Rate Variance revised:

Labour rate Variance	$=$	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
Skilled	$=$	$(18,000 \times 6)-(5,000 \times 5.5+13,000 \times 7)$	$=$	$10,500 \mathrm{~A}$
Semi-Skilled	$=$	$=$	$16,500 \mathrm{~F}$	
Un-Skilled		$58,000 \times(4-3.5)$	$=$	$58,000 \mathrm{~A}$
Total				
		$10,500 \mathrm{~A}+16,500 \mathrm{~F}+58,000 \mathrm{~A}$	$=$	F52,000 A

Effect on Labour Rate Variance= Adverse effect decreased by ₹7,500 (₹59,500A to ${ }^{\text {F52,000 A) }}$

Working notes:

1. Basic Calculation

Workers	$\boldsymbol{S H} \times \boldsymbol{S R}$	$\boldsymbol{R S H} \times \boldsymbol{S R}$	$\boldsymbol{A H W} \times \boldsymbol{S R}$	$\boldsymbol{A H} \times \boldsymbol{S} \boldsymbol{R}$	$\boldsymbol{A H} \times \boldsymbol{A R}$
Skilled	$20,000 \times 6$	$21,400 \times 6$	$17,500 \times 6$	$18,000 \times 6$	$18,000 \times 7$
Semi-Skilled	$30,000 \times 4$	$32,100 \times 4$	$32,300 \times 4$	$33,000 \times 4$	$33,000 \times 3.5$
Un-Skilled	$50,000 \times 3$	$53,500 \times 3$	$57,200 \times 3$	$58,000 \times 3$	$58,000 \times 4$
Total	$₹ 3,90,000$	$₹ 4,17,300$	$₹ 4,05,800$	$₹ 4,14,000$	$₹ 4,73,500$

2. RSH (Revised Standard Hours):

Total Actual Hours Worked $=17,500+32,300+57,200=1,07,000$ hours
Skilled $=1,07,000 \times 2 / 10 \quad=\quad 21,400$ hours
Semi-Skilled
Un-Skilled
$=1,07,000 \times 3 / 10 \quad=\quad 32,100$ hours
$=1,07,000 \times 5 / 10 \quad=\quad 53,500$ hours
3. SH (Standard hours) for actual output 10,000 units:

Skilled $=10,000 \times 2 \quad=\quad 20,000$ hours
Semi-Skilled $=10,000 \times 3=30,000$ hours
Un-Skilled $=10,000 \times 5=50,000$ hours

BQ 17

The standard output of a Product ' D ' is 50 units per hour in manufacturing department of a Company employing 100 workers. In a 40 hours week, the department produced 1,920 units of product 'D' despite 5% of the time paid was lost due to an abnormal reason. The hourly wage rates actually paid were ₹ 12.40 , ₹ 12.00 and ₹ 11.40 respectively to Group 'A' consisting 10 workers, Group 'B' consisting 30 workers and Group ' C ' consisting 60 workers. The standard wage rate per labour is same for all the workers. Labour Efficiency Variance is given ₹480 (F).

You are required to compute:

(1) Total Labour Cost Variance.
(2) Total Labour Rate Variance.
(3) Total Labour Gang Variance.
(4) Total Labour Yield Variance, and
(5) Total Labour Idle Time Variance.

Answer

(1) Labour Cost Variance

$$
\begin{aligned}
& =\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) \\
& =\text { ₹ } 46,080 \text {-₹ } 46,720=\text { ₹ } 640 \mathrm{~A} \\
& =\text { ₹ } 48,000-₹ 46,720=\text { ₹ } 1,280 \text { F } \\
& =\text { ₹ } 45,600-₹ 45,600=\text { Nil } \\
& =\quad(S H \times S R)-(R S H \times S R) \\
& =\text { ₹ } 46,080-₹ 45,600=\text { ₹ } 480 \text { F } \\
& =\quad(\mathrm{AHW} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR}) \\
& =\text { ₹ } 45,600 \text { - ₹48,000 }=\text { ₹2,400 } A
\end{aligned}
$$

(2) Labour Rate Variance $=(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
(3) Labour Gang Variance $=(\mathrm{RSH} \times \mathrm{SR})-(\mathrm{AHW} \times \mathrm{SR})$

Working notes:

(a) Basic Calculation

Workers	$\boldsymbol{S H} \times \boldsymbol{S R}$	$\boldsymbol{R S H} \times \boldsymbol{S R}$	$\boldsymbol{A H W} \times \boldsymbol{S R}$	$\boldsymbol{A H} \times \boldsymbol{S} \boldsymbol{R}$	$\boldsymbol{A H} \times \boldsymbol{A R}$
Group A	384×12	380×12	380×12	$10 \times 40 \times 12$	$10 \times 40 \times 12.40$
Group B	$1,152 \times 12$	$1,140 \times 12$	$1,140 \times 12$	$30 \times 40 \times 12$	$30 \times 40 \times 12.00$
Group C	$2,304 \times 12$	$2,280 \times 12$	$2,280 \times 12$	$60 \times 40 \times 12$	$60 \times 40 \times 11.40$
Total	$₹ 46,080$	$₹ 45,600$	$₹ 45,600$	$₹ 48,000$	$₹ 46,720$

(b) RSH (Revised Standard Hours) and AHW (Actual Hours Worked):

Total Actual Hours Worked $=$ (100 workers $\times 40$ hours) -5% abnormal idle time
$=\quad 3,800$ hours

Group A	$=$	$3,800 \times 10 / 100$	$=$
Group B	$=$	380 hours	
Croup C		$300 \times 30 / 100$	$=$
1,140 hours			

(c) SH (Standard hours) for actual output 1,920 units:

Total standard hours	$=$	$(100$ workers $\times 1$ hour $\div 50$ units $) \times 1,920$ units	
Group A	$=$	3,840 hours	
	$=$	$3,840 \times 10 / 100$	$=384$ hours

Group B $=3,840 \times 30 / 100=1,152$ hours
Group C $=3,840 \times 60 / 100=2,304$ hours
(d) Standard wages rate (SR):

Labour Efficiency Variance	$=$	$(\mathrm{SH}-\mathrm{AHW}) \times \mathrm{SR}$	
480 F	$=$	$(3,840-3,800) \times \mathrm{SR}$	
SR	$=$	$480 \div 40$	

OVERHEAD VARIANCE

BQ 18
The following data for Pijee Ltd. is given:

Particulars	Budgeted	Actual
Production in units	400	360
Man hours to produce above	8,000	7,000
Variable overheads	₹ 10,000	₹9,150

The standard time to produce one unit of the product is 20 hours.

Calculate relevant Variable overhead variances.

Answer

(i)	Variable Overhead Cost variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		=	(360×20 hours \times ₹ 1.25) - ₹9,150	=	150 A
(ii)	Variable OH Expenditure Variance	=	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		=	(7,000 \times ₹ 1.25) - ₹9,150	=	400 A
(iii)	Variable OH Efficiency Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
		=	(360×20 hours \times ₹ 1.25) - ($7,000 \times$ ₹		250 F

Working Notes:

(a) Standard Rate (SR) $=$ Budgeted Variable Overheads \div Budgeted Hours
$=\quad ₹ 10,000 \div 8,000$ hours $=\quad ₹ 1.25$ per hour
BQ 19
From the following information of G Ltd., Calculate (i) Variable Overhead Cost Variance; (ii) Variable Overhead Expenditure Variance and (iii) Variable Overhead Efficiency Variance:

Budgeted production	6,000 units
Budgeted variable overhead	$₹ 1,20,000$
Standard time for one unit of output	2 hours
Actual production	5,900 units
Actual overhead incurred	$₹ 1,22,000$
Actual hours worked	11,600 hours

Answer

(i) Variable Overhead Cost variance
$=\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=\quad(11,800 \times ₹ 10)-₹ 1,22,000=\mathbf{4 , 0 0 0 ~} \mathbf{A}$
(ii) Variable OH Expenditure Variance $=(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$

$$
\begin{array}{ll}
= & (11,600 \times ₹ 10)-₹ 1,22,000= \\
= & (\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR}) \\
= & (11,800 \times ₹ 10)-(11,600 \times ₹ 10)=
\end{array}
$$

(iii) Variable OH Efficiency Variance

Working Notes:

(a) Standard Hours (SH) = 5,900 units $\times 2$ hours per unit $=\mathbf{1 1 , 8 0 0}$ hours
(b) Standard Rate (SR) $\quad=\quad$ Budgeted Variable Overheads \div Budgeted Hours
$=\quad ₹ 1,20,000 \div 6,000$ units $\times 2$ hours $=\quad ₹ 10$ per hour
BQ 20
The cost detail of J\&G Ltd. for the month of September, 2023 is as follows:

Particulars	Budgeted	Actual
Fixed overhead	$₹ 15,00,000$	$₹ 15,60,000$
Units of production	7,500	7,800
Standard time for one unit	2 hours	-
Actual hours worked	-	16,000 hours

Required:

Calculate (i) Fixed Overhead Cost Variance (ii) Fixed Overhead Expenditure Variance (iii) Fixed Overhead Volume Variance (iv) Fixed Overhead Efficiency Variance and (v) Fixed Overhead Capacity Variance.

Answer

(1) Fixed Overhead Cost Variance
(2) Fixed OH Expenditure Variance
(3) Fixed OH Volume Variance
(4) Fixed OH Efficiency Variance
(5) Fixed OH Capacity Variance
$=\quad$ Recovered Fixed OH - Actual Fixed OH
$=\frac{15,00,000}{7,500} \times 7,800-₹ 15,60,000=$ Nil
$=\quad$ Budgeted Fixed OH - Actual Fixed OH
$=$ ₹ $15,00,000$ - ₹ $15,60,000 \quad=\mathbf{6 0 , 0 0 0} \mathbf{A}$
$=\quad$ Recovered Fixed OH - Budgeted Fixed OH
$=\frac{15,00,000}{7,500} \times 7,800-₹ 15,00,000 \quad=\mathbf{6 0 , 0 0 0} \mathbf{F}$
$=\quad$ Recovered Fixed OH - Recovered Fixed OH for AH
$=\quad \mathrm{SH} \times \mathrm{SR}-\mathrm{AH} \times \mathrm{SR}$
$=\quad \frac{15,00,000}{7,500} \times 7,800-\frac{15,00,000}{7,500 \times 2} \times 16,000$
$=$ ₹ $15,60,000-₹ 16,00,000 \quad=40,000 \mathrm{~A}$
$=\quad$ Recovered Fixed OH for AH - Budgeted Fixed OH
$=$ ₹ $16,00,000$ - ₹ $15,00,000 \quad=\mathbf{1 , 0 0 , 0 0 0 ~ F}$

BQ 21

Following information is available from the records of a factory:

Particulars	Budget	Actual
Fixed overhead for June, 2017	₹10,000	₹12,000
Production in June, 2017 (units)	2,000	2,100
Standard time per unit (hours)	10	-
Actual hours worked in June	-	22,000

Compute: (i) Fixed Overhead Cost Variance, (ii) Expenditure Variance, (iii) Volume Variance.

Answer

(i) Fixed Overhead Variance
(ii) Fixed OH Expenditure Variance
(iii) Fixed OH Volume Variance

$=$	Absorbed Overheads - Actual Overheads
$=$	$\left(2,100\right.$ units $\times 10$ hours $\left.\times ₹ 0.50^{*}\right)-12,000$
$=$	$10,500-12,000$

$=\quad$ Budgeted Overheads - Actual Overheads
$=10,000-12,000 \quad=2,000 \mathrm{~A}$
$=\quad$ Absorbed Overheads - Budgeted Overheads
$=10,500-10,000 \quad=500$ F
$=\frac{\text { Budgeted } \mathrm{OH}}{\text { Budgeted Hours }}$
$=\frac{10,000}{2,000 \text { Units } \times 10 \text { Hours per unit }}=₹ 0.50$
BQ 22
S.V. Ltd. has furnished the following data:

Particulars	Budget	Actual, May' 23
No. of working days	25	27
Production in units	20,000	22,000
Fixed Overheads (₹)	30,000	31,000

Budgeted fixed overhead rate is ₹1.00 per hour. In May' 23, the actual hours worked were 31,500.

Calculate the following variances in relation to fixed overheads:

(i) Efficiency Variance
(ii) Capacity Variance
(iii) Calendar Variance
(iv) Expenditure Variance
(v) Volume Variance
(vi) Total OH Variance.
[(i) 1,500 F (ii) 900 A (iii) 2,400 F (iv) 1,000 A (v) 3,000 F (vi) 2,000 F]

BQ 23

A company has a normal capacity of 120 machines, working 8 hours per day of 25 days in a month. The fixed overheads are budgeted at $₹ 1,44,000$ per month. The standard time required to manufacture one unit of product is 4 hours.

In April, the company worked 24 days of 840 machine hours per day and produced 5,305 units of output. The actual fixed overheads were ₹ $1,42,000$.

Compute: (i) Expense Variance; (ii) Volume Variance and (iii) Total Fixed Overheads Variance

Answer

(i)	Fixed OH Expenditure Variance	=	$(\mathrm{BH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		$=$	1,44,000-1,42,000	=	2,000 F
(ii)	Total Volume Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR})$		
		=	(5,305 units $\times 4$ hours \times ₹ 6 *) - 1,44,000		
		=	1,27,320-1,44,000		16,680 A
(iii)	Fixed overhead variance	$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		=	1,27,320-1,42,000	=	14,680 A

```
*Standard Rate \((\mathrm{SH})\) per hour \(\quad=\quad \frac{\text { Budgeted } \mathrm{OH}}{\text { Budgeted Hours }}\)
\(=\quad \frac{1,44,000}{120 \text { Machines } \times 8 \text { Hours } \times 25 \text { Days }}=\) ₹ \(6 /\) hour
```


BQ 24

The following data has been collected from the cost records of a unit for computing the various fixed overhead variances for a period.

Number of budgeted working days	25
Budgeted man-hours per day	6,000
Output (budgeted) per man-hour (in units)	1
Fixed overhead cost as budgeted	$₹ 1,50,000$
Actual number of working days	27
Actual man-hours per day	6,300
Actual output per man-hour (in units)	0.9
Actual fixed overhead incurred	$₹ 1,56,000$

Calculate the following variances:

(i) Efficiency Variance
(ii) Capacity Variance
(iii) Calendar Variance
(iv)Expenses Variance
(v) Volume Variance
(vi) Total Fixed OH

> [(i) 17,010 A (ii) 8,100 F (iii) 12,000 F (iv) 6,000 A (v) 3,090 F (vi) 2,910 A]

BQ 25

The following information was obtained from the records of a manufacturing unit using standard costing system.

Particulars	Budget	Actual, March' 23
Production in units	4,000	3,800
No. of working days	20	21
Fixed Overheads	$₹ 40,000$	$₹ 39,000$
Variable Overheads	$₹ 12,000$	$₹ 12,000$

You are required to calculate the following overhead variance:

(a) Variable Overhead Variance
(b) Fixed Overheads Variances:
(i) Expenditure Variance (ii) Volume Variance (iii) Overhead Variance
[(a) 600 A (b)(i) 1,000 F (ii) 2,000 A (iii) 1,000 A]
BQ 26
XYZ Ltd. is having standard costing system in operation for quite some time. The following data relating to the month of April, is available from the cost records:

Particulars	Budget	Actual
Output (in units)	30,000	32,500
Operating hours	30,000	33,000
Fixed Overheads $(₹)$	45,000	50,000
Variable Overheads $(₹)$	60,000	68,000
Working Days	25	26

Calculate overheads variances.

[FOH Variances: Cost 1,250 A, Exp. 5,000 A, Vol. 3,750 F, Cal. 1,800 F, Cap. 2,700 F, Eff. 750 A and VOH Variances: Cost 3,000 A, Expenditure 2,000 A, Efficiency 1,000 A]

BQ 27

XYZ Company has established the following standards for factory overheads:
Variable overheads per unit : ₹10

Fixed overheads per month : ₹ $1,00,000$
Capacity of the plant
20,000 units per month.
The actual data for the month are as follows:

Actual overheads incurred	$:$	$₹ 3,00,000$
Actual output (units)	$:$	$₹ 15,000$ units

Calculate overhead variances:

(i) Production Volume Variance
(ii) Overhead Expense Variance

Answer

(i) Production or Overhead volume variance (only for fixed overhead)

| Fixed Overhead Volume Variance | $=$ | Absorbed Overhead - Budgeted Overhead |
| ---: | :--- | :--- | :--- |
| | $=$ | $(₹ 5 * \times 15,000$ units $)-(₹ 5 \times 20,000$ units $)$ |
| | $=$ | $₹ 75,000-₹ 1,00,000$ |
| | $=$ | $₹ 25,000 A$ |

(ii) Overhead Expense Variance:

Variable Overhead
$=\quad$ Standard Variable OH - Actual Variable OH
$=\quad(15,000$ units $\times ₹ 10)-(15,000$ units $\times ₹ 10)$
$=\quad \mathrm{Nil}$
Fixed Overhead
$=\quad$ Budgeted Overhead - Actual Overhead
$=\quad$ ₹ $1,00,000-$ (Total overhead - Variable overhead)
$=\quad ₹ 1,00,000-(₹ 3,00,000-₹ 10 \times 15,000$ units $)$
$=₹ 1,00,000-₹ 1,50,000=$ ₹50,000 A
Assumption: Budgeted variable overheads per unit and actual variable overheads per unit are same.
BQ 28
The overhead expense budget for a factory producing to a capacity of 200 units per month is as follows:

Description of overhead	Fixed cost per unit in $₹$	Variable cost per unit in $₹$	Total cost per unit in $₹$
Power and fuel	1,000	500	1,500
Repair and maintenance	500	250	750
Printing and stationary	500	250	750
Other overheads	1,000	500	1,500
Total	$\mathfrak{₹} 3,000$	$₹ 1,500$	₹4,500

The factory has actually produced only 100 units in a particular month. Details of overheads actually incurred have been provided by the accounts department are as follows:

Repair and maintenance	$₹ 2,00,000$
Printing and stationary	$₹ 1,75,000$
Other overheads	$₹ 3,75,000$

You are required to compute the production volume variance and the overhead expenses variance.

Answer

(i) Production or Overhead volume variance (only for fixed overhead)

Fixed Overhead Volume Variance $=$ Absorbed Overhead - Budgeted Overhead
$=\quad(₹ 3,000 \times 100$ units $)-(₹ 3,000 \times 200$ units $)$
$=$ ₹3,00,000-₹6,00,000 = ₹ $3,00,000 \mathrm{~A}$
(ii) Overhead Expense Variance:

Variable Overhead	$=$ $=$ $=$	Standard Variable OH - Actual Variable OH (100 units $\times ₹ 1,500$) - (100 units $\times ₹ 1,500$) Nil
Fixed Overhead	=	Budgeted Overhead - Actual Overhead
	=	₹ $6,00,000$ - (Total overhead - Variable overhead)
	=	₹ $6,00,000-(₹ 11,50,000-₹ 1,500 \times 100$ units)
	=	$₹ 6,00,000-₹ 1,50,000=$ F4,00,000 A

Assumption: Budgeted variable overheads per unit and actual variable overheads per unit are same.

COMBINED VARIANCE

BQ 29
The following standards have been set to manufacture a product:

Direct Material:	2 units of A @ ₹4 per unit	₹8.00
	3 units of B @ ₹3 per unit	₹9.00
	15 units of C @ ₹1 per unit	₹15.00
		₹32.00
Direct Labour:	3 hrs @ ₹8 per hour	₹24.00
Total standard prime cost	₹56.00	

The company manufactured and sold 6,000 units of the product during the year. Direct material costs were 12,500 units of A at $₹ 4.40$ per unit; 18,000 units of B at $₹ 2.80$ per unit; and 88,500 units of C at $₹ 1.20$ per unit. The company worked 17,500 direct labour hours during the year. For 2,500 of these hours, the company paid at ₹12 per hour while for the remaining, the wages were paid at standard rate.

Calculate all materials and labour variances.

Answer

1.	Material Price Variance	=	$(A Q \times S P)-(A Q \times A P)$		
		=	₹ $1,92,500$ - ₹ $2,11,600$	=	F19,100 A
2.	Material Mix Variance	=	$(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$		
		=	₹ $1,90,400$ - 1 1,92,500	=	₹2,100 A
3.	Material Yield Variance	=	$(S Q \times S P)-(R S Q \times S P)$		

$=$	$₹ 1,92,000-₹ 1,90,400$	$=$	$₹ 1,600 F$
$=$	$(S Q \times S P)-(\mathrm{AQ} \times \mathrm{SP})$	$=$	$₹ 500 \mathrm{~A}$
$=$	$₹ 1,92,000-₹ 1,92,500$		
$=$	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$	$=$	$₹ 19,600 \mathrm{~A}$

6. Labour Rate Variance
7. Labour Efficiency Variance

$$
\begin{array}{ll}
= & (\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR}) \\
= & (6,000 \times 3 \text { hours } \times \mathrm{₹} 8)-(17,500 \times ₹ 8) \\
= & \mathrm{₹} 1,44,000-₹ 1,40,000 \\
= & (\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) \\
= & \mathrm{F} 1,44,000-₹ 1,50,000
\end{array}
$$

Working notes:

a. Basic calculation in respect of materials:

Materials	$\boldsymbol{S Q} \times \boldsymbol{S P}$	$\boldsymbol{R S} \boldsymbol{Q} \times \boldsymbol{S P}$	$\boldsymbol{A} \boldsymbol{Q} \times \boldsymbol{S P}$	$\boldsymbol{A} \boldsymbol{Q} \times \boldsymbol{A} \boldsymbol{P}$
A	$12,000 \times ₹ 4.00$	$11,900 \times ₹ 4.00$	$12,500 \times ₹ 4.00$	$12,500 \times ₹ 4.40$
B	$18,000 \times ₹ 3.00$	$17,850 \times ₹ 3.00$	$18,000 \times ₹ 3.00$	$18,000 \times ₹ 2.80$
C	$90,000 \times ₹ 1.00$	$89,250 \times ₹ 1.00$	$88,500 \times ₹ 1.00$	$88,500 \times ₹ 1.20$
Total	$₹ 1,92,000$	$₹ 1,90,400$	$\mathrm{₹} 1,92,500$	$₹ 2,11,600$

b. RSQ (Revised Standard Quantity) of actual input:

Total input of materials	$=$	$12,500+18,000+88,500$	$=$	$1,19,000$ units
Materials A	$=$	$1,19,000 \times 2 / 20$	$=$	11,900 units
Materials B	$=$	$1,19,000 \times 3 / 20$	$=$	89,250 units
Materials C	$=$	$1,19,000 \times 15 / 20$		

c. SQ of input for actual output:

Materials A	$=$	6,000 units $\times 2$ units	$=$
Materials B	$=$	6,000 units $\times 3$ units	$=$
Materials C	$=$	6,000 units $\times 15$ units	$=$
	9000 units		
		9000 units	

BQ 30

The following information is available from the cost records of Novell \& Co. for the month of March 2023:

Materials purchased	20,000 units @ ₹88,000
Materials consumed	19,000 units
Actual wages paid for $4,950 \mathrm{hrs}$	₹24,750
Units produced	1,800 units
Standard rates and pieces are:	
Direct material	10 number for one unit
Standard output	₹4.00 per hour
Direct labour rate	2.5 hours per unit
Standard requirement	

You are required to calculate relevant material (based on consumption) and labour variance for the month.

Answer

(a) Material Cost Variance $=(S Q \times S P)-(A Q \times A P)$

$$
=\quad(1,800 \text { units } \times 10 \text { units } \times ₹ 4)-\left(19,000 \text { units } \times ₹ 4.40^{*}\right)
$$

$$
=₹ 72,000-₹ 83,600=₹ 11,600 \mathrm{~A}
$$

*Actual Purchase Price (AP) $=$ ₹ $88,000 \div 20,000$ units $=$ F4.40
(b) Material Price Variance

$=$	$(\mathrm{SP}-\mathrm{AP}) \times \mathrm{AQ}$
$=$	$(₹ 4.00-₹ 4.40) \times 19,000$ units $\quad=\quad ₹ 7,600 \mathrm{~A}$

(c) Material Usage Variance

$$
\begin{array}{ll}
= & (\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP}) \\
= & (1,800 \text { units } \times 10 \text { units } \times ₹ 4)-(19,000 \text { units } \times ₹ 4.00) \\
= & ₹ 72,000-₹ 76,000 \quad=\quad ₹ 4,000 \mathrm{~A}
\end{array}
$$

(d) Labour Cost Variance

$$
\begin{aligned}
& =\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) \\
& =\quad(1,800 \text { units } \times 2.5 \mathrm{hrs} \times ₹ 4)-₹ 24,750
\end{aligned}
$$

$$
=₹ 18,000-₹ 24,750=₹ 6,750 \mathrm{~A}
$$

(e) Labour Efficiency Variance

$$
=\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})
$$

$$
=\quad(1,800 \text { units } \times 2.5 \mathrm{hrs} \times ₹ 4)-(4,950 \text { hours } \times ₹ 4.00)
$$

$$
=₹ 18,000-₹ 19,800 \quad=\quad ₹ 1,800 \mathrm{~A}
$$

(f) Labour Rate Variance $=(\mathrm{SR}-\mathrm{AR}) \times \mathrm{AH}$
$=(₹ 4.00-₹ 5.00) \times 4,950$ hours $=₹ 4,950 \mathrm{~A}$
*Actual Rate (AR) $=$ ₹ $24,750 \div 4,950$ hours $=\quad$ F5.00

BQ 31

Paras Synthetics uses Standard costing system in manufacturing of its product 'Star 95 Mask'. The details are as follows;

$$
\begin{array}{ll}
\text { Direct Material } 0.50 \text { Meter @ ₹ } 60 \text { per meter } & \text { ₹ } 30 \\
\text { Direct Labour } 1 \text { hour @ ₹20 per hour } & \text { ₹ } 20 \\
\text { Variable overhead } 1 \text { hour @ ₹10 per hour } & \text { ₹ } 10 \\
\text { Total } & \text { ₹ } 60
\end{array}
$$

During the month of August, 2023 10,000 units of 'Star 95 Mask' were manufactured. Details are as follows:
Direct material consumed 5,700 meters @ ₹ 58 per meter
Direct labour Hours? @ ? ₹2,24,400
Variable overhead incurred ₹1,12,200
Variable overhead efficiency variance is ₹ 2,000 A. Variable overheads are based on Direct Labour Hours.
You are required to calculate the missing data and all the relevant Variances.

Answer

1. Material Variances:

$$
\begin{aligned}
\text { Material Cost Variance } & =(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP}) \\
& =(10,000 \text { units } \times 0.5 \text { meter } \times ₹ 60)-(5,700 \times ₹ 58) \\
& =\mathrm{F} 30,600 \mathrm{~A}
\end{aligned}
$$

Material Price Variance	$=$
	$=(A Q \times S P)-(A Q \times A P)$
Material Usage Variance	$=(5,700 \times ₹ 60)-(5,700 \times ₹ 58) \quad$ ₹11,400 F
	$=(S Q \times S P)-(A Q \times S P)$
	$=(10,000$ units $\times 0.5$ meter $\times ₹ 60)-(5,700 \times ₹ 60)$
	$\mathrm{F} 42,000 \boldsymbol{A}$

2. Variable Overheads Variances:

Variable OH Cost variance	$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
		(10,000 $\times 1$ hour \times ₹ 10) - ₹ $1,12,200$	$=$	₹12,200 A
Variable OH Eff. Variance	$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
₹2,000 A	$=$	(10,000 $\times 1$ hour \times ₹ 10) - (AH \times ₹ 10$)$		
₹ $2,000 \mathrm{~A}$	=	₹ $1,00,000-10 \mathrm{AH}$		
Actual Hours	=	$₹ 1,02,000 \div ₹ 10$	=	10,200 hours
Variable OH Exp. Variance	=	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
	=	(10,200 \times ₹ 10) - ₹ $1,12,200$	$=$	10,200 A

3. Labour Variances:

BUDGET RELATED

BQ 32
TQM Ltd. has furnished the following information for the month ending $30^{\text {th }}$ June, 2007:

Units produced and sold
Sales (₹)
Direct material (₹)
Direct wages $(₹)$
Variable overhead (₹)
Fixed overhead (₹)
Total Cost
Master Budget
$\mathbf{8 0 , 0 0 0}$
$3,20,000$
80,000
$1,20,000$
40,000
40,000
$2,80,000$

Actual	Variance
$\mathbf{7 2 , 0 0 0}$	
$2,80,000$	$40,000(\mathrm{~A})$
73,600	$6,400(\mathrm{~F})$
$1,04,800$	$15,200(\mathrm{~F})$
37,600	$2,400(\mathrm{~F})$
39,200	$800(\mathrm{~F})$
$2,55,200$	

The Standard costs of the products are as follows:

Direct wages
 Variable overhead

(1 hour at the rate of ₹1.50)
₹1.50
(1 hour at the rate of ₹ 0.50)

Actual results for the month showed that $78,400 \mathrm{~kg}$ of material were used and 70,400 labour hours were recorded.

Required:

(i) Prepare Flexible budget for the month and compare with actual results.
(ii) Calculate Material, Labour, Sales Price, Variable overhead and Fixed overhead expenditure variances and Sales Volume (Profit) variance.

Answer

(i) Flexible Budget

Particulars	Budget for 72,000 units	Actual for 72,000 units	Difference
Direct Materials	72,000	73,600	$1,600 \mathrm{~A}$
Direct Labour	$1,08,000$	$1,04,800$	$3,200 \mathrm{~F}$
Variable OH	36,000	37,600	$1,600 \mathrm{~A}$
Fixed OH	40,000	39,200	800 F
Total cost	$2,56,000$	$2,55,200$	800 F
Sales	$2,88,000$	$2,80,000$	$8,000 \mathrm{~A}$
Profit			

(ii) Calculation of Various Variance:

(a) Material Variance :

Material Price Variance	$=$	$(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$	
	$=$	$(78,400 \mathrm{~kg} \times ₹ 1.00)-73,600($ given $)$	$=\mathbf{4 , 8 0 0} \boldsymbol{F}$
Material Usage Variance	$=$	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$	
	$=$	$(72,000 \mathrm{~kg} \times ₹ 1.00)-(78,400 \mathrm{~kg} \times ₹ 1.00)$	$=\mathbf{6 , 4 0 0} \mathbf{A}$
Material Cost Variance	$=$	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$	
	$=$	$72,000-73,600$	$=\mathbf{1 , 6 0 0} \mathbf{A}$

(b) Labour Variance:

Labour Rate Variance	$=$	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$	
	$=$	$(70,400$ hours $\times ₹ 1.5)-1,04,800($ given $)$	$=\mathbf{8 0 0} \boldsymbol{F}$
Labour Efficiency Variance	$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$	
	$=$	$(72,000$ hours $\times ₹ 1.5)-(70,400$ hours $\times ₹ 1.5)=2,400 \mathrm{~F}$	
Labour Cost Variance	$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$	
	$=$	$(72,000$ hours $\times ₹ 1.5)-1,04,800$	$=3,200 \mathrm{~F}$

(c) Overhead Expenditure Variance:

Variable OH Exp. Variance	$=$	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$	
	$=$	$(70,400$ hours $\times ₹ 0.50)-37,600($ given $)$	$=\mathbf{2 , 4 0 0} \mathbf{A}$
Fixed OH Exp. Variance	$=$	Budgeted Fixed OH - Actual Fixed 0 H	
	$=$	$40,000-39,200($ given $)$	$=\mathbf{8 0 0} \mathbf{F}$

(d) Sales Variance:

Sales Price Variance $=(A Q \times$ Standard Sales Price $)-(A Q \times$ Actual Sales Price $)$

	$=$	$(72,000$ units $\times ₹ 4)-2,80,000($ given $)$	$=8,000 ~ A$
Sales Vol. (Profit) Variance	$=$	Standard Profit per unit (BQ-AQ)	
	$=\quad ₹ 0.50 \times(80,000-72,000)$	$=\mathbf{4 , 0 0 0} \mathbf{A}$	

BQ 33

Following data is available for DKG and Co:

Standard working hours
Maximum capacity
Actual working
Actual hours expected to be worked per four week
Standard hours expected to be earned per four weeks
Actual hours worked in the four week period
Standard hours earned in the four week period

8 hours per day of 5 days per week
50 employees 40 employees 6,400 hours 8,000 hours 6,000 hours 7,000 hours.

The related period is of 4 weeks. In this period there was a one special day holiday due to national event.

Calculate:

(1) Efficiency Ratio,
(2) Activity Ratio,
(3) Calendar Ratio,
(4) Standard Capacity Usage Ratio,
(5) Actual Capacity Usage Ratio,
(6) Actual Usage of Budgeted Capacity Ratio.

Answer					
Maximum Capacity in a budget period =			50 Employees $\times 8$ Hours $\times 5$ Days $\times 4$ Weeks $=8$,000 Hours		
Bud	ted Hours	$=$	40 Employees $\times 8$ Hours	s $\times 5$ Day	Weeks = 6,400 Hours
Actu	Hours	$=$	6,000 Hours (given)		
Stan	rd Hours for Actual Output	$=$	7,000 Hours		
Bud	Number of Days	$=$	20 Days (4 Weeks x 5 D	Days)	
Actu	Number of Days	=	20-1 $\quad=\quad 1$	19 Days	
(1)	Efficiency Ratio	$=$	$\begin{aligned} & \frac{\text { Stan dard Hours }}{\text { Actual Hours }} \times 100 \\ & \mathbf{1 1 6 . 6 7 \%} \end{aligned}$	$=$	$\frac{7,000 \text { Hours }}{6,000 \text { Hours }} \times 100$
(2)	Activity Ratio	$=$	$\begin{aligned} & \frac{\text { Stan dard Hours }}{\text { Budgeted Hours }} \times 100 \\ & \mathbf{1 0 9 . 3 7 5 \%} \end{aligned}$	$=$	$\frac{7,000 \text { Hours }}{6,400 \text { Hours }} \times 100$
(3)	Calendar Ratio	$=$ $=$	$\begin{aligned} & \text { Available Working Days } \\ & \hline \text { Budgeted Working Days } \\ & \mathbf{9 5 \%} \end{aligned}$	=	$\frac{19 \text { Days }}{20 \text { Days }}$

(4) Standard Capacity Usage Ratio=

$\frac{\text { Budgeted Hours }}{\text { Max. Possible Hours in Budget Period }} \times 100$	
$\frac{6,400 \text { Hours }}{8,000 \text { Hours }} \times 100=$	$\mathbf{8 0 \%}$

(5) Actual Capacity Usage Ratio $=\frac{\text { Actual Hours Worked }}{\text { Max. Possible Working Hours in a Period }} \times 100$

$$
=\frac{6,000 \text { Hours }}{8,000 \text { Hours }} \times 100 \quad=75 \%
$$

(6) Actual Usage of Budgeted Capacity Ratio

$$
\begin{aligned}
& =\frac{\text { Actual Working Hours }}{\text { Budgeted Hours }} \times 100 \\
& =\frac{6,000 \text { Hours }}{6,400 \text { Hours }} \times 100=\mathbf{9 3 . 7 5 \%}
\end{aligned}
$$

PAST YEAR QUESTIONS

PYQ 1

SJ Ltd. has furnished the following information:

Standard overhead absorption rate per unit	$₹ 20$
Standard rate per hour	$₹ 4$
Budgeted production	12,000 units
Actual production	15,560 units
Actual overheads were	₹2,95,000 (₹62,500 fixed)
Actual hours	74,000

Overheads are based on the following flexible budget:

Production (units)	8,000	10,000	14,000
Total Overheads $(\mathbb{\chi})$	$1,80,000$	$2,10,000$	$2,70,000$

You are required to calculate the following overhead variances (on hour's basis) with appropriate workings:
(i) Variable overhead efficiency and expenditure variance.
(ii) Fixed overhead efficiency and capacity variance.
[(8 Marks) May 2012/2015]

Answer

(i) Variable Overhead Efficiency

Variable Expenditure Variable

$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
$=$	$2,33,400-2,22,000$		$\mathbf{1 1 , 4 0 0} \boldsymbol{F}$
$=$	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
$=$	$2,22,000-2,35,500$	$=$	$\mathbf{1 0 , 5 0 0} \mathbf{A}$
$=$	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
$=$	$77,800-74,000$	$\mathbf{3 , 8 0 0} \boldsymbol{F}$	
$=$	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR})$		
$=$	$74,000-60,000$	$\mathbf{1 4 , 0 0 0} \boldsymbol{F}$	

Working Notes:

For variable overheads:

$\mathrm{SH} \times \mathrm{SR}$	$=15,560$ units $\times 5$ hours per unit $\times ₹ 3$ per hour	
	$=2,33,400$	
$\mathrm{AH} \times \mathrm{SR}$	$=74,000$ hours $\times ₹ 3$ per hour $=2,22,000$	
$\mathrm{AH} \times \mathrm{AR}$	$=2,95,000-62,500$	$=2,32,500$

For fixed overheads:

$\mathrm{SH} \times \mathrm{SR}$	$=$	15,560 units $\times 5$ hours $\times ₹ 1$ per hour $=$	$\mathbf{7 7 , 8 0 0}$
$\mathrm{AH} \times \mathrm{SR}$	$=74,000 \times ₹ 1$ per hour	$=\quad \mathbf{7 4 , 0 0 0}$	
$\mathrm{BH} \times \mathrm{BR}$	$=$	12,000 units $\times 5$ hours per unit $\times ₹ 1$ per hour	
	$=\mathbf{6 0 , 0 0 0}$		
Standard $\mathrm{OH}($ variable + fixed $)$	$=$	₹20 per unit	

PYQ 2
XYZ Co. Ltd. provides the following information:

Particulars	Standard	Actual
Production in units	4,000	3,800
Working Days	20	21
Fixed Overhead	$₹ 40,000$	$₹ 39,000$
Variable Overhead	$₹ 12,000$	$₹ 12,000$

You are required to calculate the following overhead variance:
(a) Variable Overhead Variance
(b) Fixed Overheads Variances
(i) Expenditure Variance
(ii) Volume Variance
[(8 Marks) May 2014]
Answer
(a) Variable Overhead Variance

$=$	Standard Variable OH for 3,800 units - Actual Variable OH
$=$	$($ Actual production \times SR $)-12,000$
$=$	$(3,800$ units $\times 3)-12,000$

(b) Fixed Overhead Variances:

Working Notes:

1. Standard rate of Variable $\mathrm{OH}=\quad \frac{\text { Budgeted } \quad \text { Variable } \mathrm{OH}}{\text { Budgeted } \operatorname{Pr} \text { oduction }}=\frac{12,000}{4,000 \text { Units }}=$ F3 p.u.
2. Standard rate of Fixed $\mathrm{OH}=\frac{\text { Budgeted Fixed } \mathrm{OH}}{\text { Budgeted Pr oduction }}=\frac{40,000}{4,000 \text { Units }}=\boldsymbol{F} 10$ p.u.

PYQ 3
The following information has been provided by a company:

No of units produced and sold
Standard labour rate per hour Standard hours required for 6,000 units
Actual hours required Labour efficiency
Labour rate variance

6,000 units
₹8
?
17,094 hours
105.3\%
₹ 68,376 A

You are required to calculate:

(i) Actual labour rate per hour
(ii) Standard hours required for 6,000 units
(iii) Labour efficiency variance
(iv) Standard labour cost per unit
(v) Actual labour cost per unit
[(8 Marks) June 2015]

Answer

(i) Actual labour rate per hour:

Labour rate variance

$$
\begin{array}{rlll}
\text { rate variance } & = & (\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) & = \\
& = & 68,376 \mathrm{~A} \\
094 \mathrm{AH} & = & 17,094 \times 8)-(17,094 \times \mathrm{AR}) & = \\
\mathrm{AH} & = & 68,376 \mathrm{~A} \\
& 2,05,128 \div 17,094 & = & \text { ₹ } 12 \text { per hour }
\end{array}
$$

$$
17,094 \mathrm{AH}=1,36,752+68,376
$$

(ii) Standard hours required for 6,000 units

Labour efficiency ratio 105.3\%

SH
$=\quad \mathrm{SH} \div \mathrm{AH}$
$=\quad \mathrm{SH} \div 17,094$
$=17,094 \times 105.3 \% \quad=\quad \mathbf{1 8 , 0 0 0}$ hours
(iii) Labour efficiency variance:

Labour efficiency variance
$=\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SH})$
$=(18,000 \times 8)-(17,094 \times 8)=7,248 F$
(iv) Standard labour cost per unit:

Standard labour cost per unit

$$
\begin{aligned}
& =\quad(\mathrm{SH} \times \mathrm{SR}) \div \text { No of units } \\
& =\quad(18,000 \times 8) \div 6,000 \text { units } \quad=\quad \text { ₹24 per unit }
\end{aligned}
$$

(v) Standard labour cost per unit:

Actual labour cost per unit
$=\quad(\mathrm{AH} \times \mathrm{AR}) \div$ No of units
$=(17,094 \times 12) \div 6,000$ units $=$ ₹34.188/unit
PYQ 4
The following information available from the cost records of a company for the month of July' 2016:
(1) Materials purchased

22,000 pieces
₹90,000
(2) Materials consumed
(3) Actual wages paid for
(4) Fixed Factory overhead incurred

21,000 pieces
5,150 hours
₹25,750
(5) Fixed Factory overhead budgeted
(6) Units produced ₹46,000 ₹42,000
(7) Standard rates and prices are: Direct material ₹4.50 per piece Standard input

Direct labour rate
Standard requirement
Overheads
₹6 per hour
2.5 hour per unit
₹8 per labour hour

You are required to calculate the following variances:
(a) Material price variance
(b) Material usage variance
(c) Labour rate variance
(d) Labour efficiency variance
(e) Fixed overhead expenditure variance
(f) Fixed overhead efficiency variance
(g) Fixed overhead capacity variance.
[(8 Marks) Nov 2016]

Answer

(a) Material Price Variance
(based on purchase/single plan)
(b) Material Usage Variance
(c) Labour Rate Variance
(d) Labour Efficiency Variance
(e) Fixed OH Expenditure Variance
(f) Fixed OH Efficiency Variance
(g) Fixed OH Capacity Variance

$=$	$(\mathrm{AQ}$ purchased $\times \mathrm{SP})-(\mathrm{AQ}$ purchased $\times \mathrm{AP})$		
$=$	$(22,000 \times ₹ 4.5)-₹ 90,000$	$=$	$\mathbf{9 , 0 0 0} \mathbf{F}$
$=$	$(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$		
$=$	$(1,900 \times 10 \times ₹ 4.5)-(21,000 \times ₹ 4.5)$		
$=$	$₹ 85,500-₹ 94,500$	$=$	$\mathbf{9 , 0 0 0} \mathbf{A}$

$=\quad(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=(5,150 \times ₹ 6)-₹ 25,750=\mathbf{5 , 1 5 0} \mathbf{F}$
$=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$
$=(1,900 \times 2.5 \times ₹ 6)-(5,150 \times ₹ 6)=2,400 \mathrm{~A}$
$=\quad$ Budgeted Fixed OH - Actual Fixed OH
$=$ ₹ 42,000 - ₹ $46,000=4,000 \mathrm{~A}$
$=\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$
$=(1,900 \times 2.5 \times$ ₹ 8$)-(5,150 \times$ ₹ 8$)=3,200 \mathrm{~A}$
$=\quad(\mathrm{AH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR})$
$=(5,150 \times ₹ 8)-₹ 42,000=800 \mathrm{~A}$
PYQ 5
AB Ltd. has furnished the following data:

Particulars	Budget	Actual, July'16
No. of working days	25	27
Production in units	20,000	22,000
Fixed Overheads $(₹)$	30,000	31,000

Budgeted fixed overhead rate is ₹ 1.00 per hour. In July'16, the actual hours worked were 31,500 .
Calculate the following variances in relation to fixed overheads:
(a) Efficiency Variance
(b) Capacity Variance
(c) Calendar Variance
(d) Volume Variance
(e) Expenditure Variance.
[(5 Marks) May 2017]

Answer
(a) Fixed OH Efficiency Variance
(b) Fixed OH Capacity Variance
(c) Fixed OH Calendar Variance
(d) Fixed OH Volume Variance
(e) Fixed OH Expenditure Variance

=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$	
=	(33,000 \times ₹ 1) - (31,500 \times ₹ 1) $=$	1,500 F
=	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{CH} \times \mathrm{SR})$	
=	(31,500 \times ₹ 1) - (32,400 \times ₹ 1) $=$	900 A
=	$(\mathrm{CH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR})$	
=	($32,400 \times$ ₹ 1) - ₹ 30,000	2,400 F
=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR})$	
=	(33,000 \times ₹ 1) - ₹ 30,000	3,000 F
=	$(\mathrm{BH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$	
=	₹ 30,000 - ₹ $31,000=$	1,000 A

Working notes:

Budgeted hours (BH)	$=$	$₹ 30,000 \div ₹ 1$ per hour	$=$	30,000 hours
Standard hour per unit	$=$	30,000 hours $\div 20,000$ units	$=$	1.5 hour
Standard hour for actual output (SH)	$=$	22,000 units $\times 1.5$ hours	$=$	33,000 hours
Calendar hours (CH)	$=$	$(30,000$ hours $\times 27 / 25$ days $)$	$=$	32,400 hours

PYQ 6

XYZ Limited produces an article and uses a mixture of material X and Y . The standard quantity and price of materials for one unit of output as under:

Materials	Quantity	Price (Y)
X	$2,000 \mathrm{~kg}$	1.00 per kg
Y	800 kg	1.50 per kg

During a period, 1,500 units were produced. The actual consumption of materials and prices are given below:

Materials	Quantity	Price ($₹$)
X	$31,00,000 \mathrm{~kg}$	1.10 per kg
Y	$12,50,000 \mathrm{~kg}$	1.60 per kg

Calculate:

(1) Standard cost for actual output;
(2) Material Cost Variance;
(3) Material Price Variance;
(4) Material Usage Variance.
[(8 Marks) Nov 2017]

Answer

(1) Standard cost for actual output
(2) Material Cost Variance
$=\quad(S Q \times S P)-(A Q \times A P)$
$=$ ₹ $48,00,000-₹ 54,10,000=$ ₹ $6,10,000 \mathrm{~A}$
(3) Material Price Variance
$=(A Q \times S P)-(A Q \times A P)$
$=₹ 49,75,000-₹ 54,10,000=₹ 4,35,000 \mathrm{~A}$
(4) Material Usage Variance $=(S Q \times S P)-(A Q \times S P)$

$$
=₹ 48,00,000-₹ 49,75,000 \quad=\quad ₹ 1,75,000 \mathrm{~A}
$$

Working notes:

1. Basic calculation

Materials	$\boldsymbol{S Q} \times \boldsymbol{S P}$	$\boldsymbol{R Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A P}$
X	$30,00,000 \times ₹ 1.00$	$31,07,143 \times ₹ 1.00$	$31,00,000 \times ₹ 1.00$	$31,00,000 \times ₹ 1.10$
Y	$12,00,000 \times ₹ 1.50$	$12,42,857 \times ₹ 1.50$	$12,50,000 \times ₹ 1.50$	$12,50,000 \times ₹ 1.60$
Total	$₹ 48,00,000$	$₹ 49,71,429$	$₹ 49,75,000$	$₹ 54,10,000$

2. SQ of input for actual output:

Materials X	$=$	$=$	$30,00,000 \mathrm{kgs}$
Materials Y	$=1,500$ units $\times 2,000 \mathrm{~kg}$	$=12,00,000 \mathrm{kgs}$	

3. RQ (Revised Quantity) of actual input:

Materials X	=	$(31,00,000+12,50,000) \times 20 / 28$	=	31,07,143 kgs
Materials Y	=	$(31,00,000+12,50,000) \times 8 / 28$	=	$12,42,857 \mathrm{kgs}$

PYQ 7

A company planned to produce 2,000 units of a product in a week of 40 hours by employing 65 skilled workers. Other relevant information are as follows:

- Standard wage rate
- Actual production
- Actual number of workers employed
- Actual wage rate
- Abnormal time loss
: \quad ₹45 per hour
: $\quad 1,800$ units
: $\quad 50$ workers in a week of 40 hours
: ₹50 per hour
: due to machine breakdown 100 hours

You are required to calculate:

(1) Labour cost, rate, idle time and efficiency variances.
(2) Reconcile the variances.
[(5 Marks) May 2018]

Answer

(1) Labour Cost Variance $=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$

$$
=\quad \frac{65 \times 40}{2,000} \times 1,800 \times ₹ 45-(50 \times 40 \times ₹ 50)=\quad 5,300 \mathrm{~F}
$$

Labour Rate Variance	=	$(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$		
	=	$(50 \times 40 \times$ ₹ 45) - ($50 \times 40 \times$ ₹ 50$)$	=	10,000 A
Labour Efficiency Variance	=	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AHW} \times \mathrm{SR})$		
	=	($2,340 \times$ ₹ 45) - (1,900 \times ₹ 45)	=	19,800 F
Labour Idle Time Variance	=	$(\mathrm{AHW} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
	$=$	(1,900 \times ₹ 45) - ($2,000 \times$ ₹ 45)	=	4,500 A

(2) Reconciliation:

Labour Cost Variance $=\quad$ LRV + LEV + Idle time variance
$=10,000 \mathrm{~A}+19,800 \mathrm{~F}+4,500 \mathrm{~A}=5,300 \mathrm{~F}$

PYQ 8

Beta ltd. is manufacture Product N. This is manufactured by mixing two materials namely Material P and Material Q. The standard cost of mixture is as under:

Material P	$:$	150 ltrs. @ ₹ 40 per ltr.
Material Q	$:$	100 ltrs. @ ₹ 60 per ltr.
Standard loss expected	$:$	20% of total input during production

The cost records for the period exhibit following consumption:

Material P
Material Q
Quantity produced

140 ltrs. @ ₹42 per ltr.
110 ltrs. @ ₹56 per ltr.
195 ltrs.

Calculate:

(1) Material Cost Variance
(2) Material Usage Variance
(3) Material Price Variance
[(5 Marks) May 2018]
Answer
(1) Material Cost Variance

$=$	$(S Q \times S P)-(A Q \times A P)$		
$=$	$₹ 11,700-₹ 12,040$		340 A
$=$	$(S Q \times S P)-(A Q \times S P)$		
$=$	$₹ 11,700-₹ 12,200$	500 A	
$=$	$(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$		
$=$	$₹ 12,200-₹ 12,040$	$=$	$\mathbf{1 6 0 ~ F}$

Working notes:

Analysis Table

Materials	$\boldsymbol{S Q} \times \mathbf{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A} \boldsymbol{Q} \times \boldsymbol{A} \boldsymbol{P}$
P	146.25 ltrs. \times ₹ 40	140 ltrs. $\times ₹ 40$	140 ltrs. \times ₹ 42
Q	97.50 ltrs. \times ₹ 60	110 ltrs. \times ₹ 60	110 ltrs. \times ₹ 56
Total	₹ 11,700	₹ 12,200	₹ 12,040

(a) SQ of input for actual output

Total input	$=195$ ltrs. $\div 80 \%$	$=243.75$ ltrs.
Materials P	$=243.75$ ltrs. $\times 150 / 250=146.25$ ltrs.	
Materials Q	$=243.75$ ltrs. $\times 100 / 250=97.50$ ltrs.	

PYQ 9

A manufacturing concern has provided following information related to fixed overheads:

Particulars	Standard	Actual
Output in a month	5,000	4,800
Working days in a month	25	23
Fixed Overhead	$₹ 5,00,000$	$₹ 4,90,000$

Compute:

(1) Fixed Overheads Variance
(2) Fixed Overheads Expenditure Variance
(3) Fixed Overheads Volume Variance
(4) Fixed Overheads Efficiency Variance

Answer

(1) Fixed Overhead Variance $=$ Standard Fixed OH - Actual Fixed OH

$$
=\frac{5,00,000}{5,000} \times 4,800-₹ 4,90,000=10,000 \mathrm{~A}
$$

(2) Fixed OH Expenditure Variance $=$ Budgeted Fixed OH - Actual Fixed OH

$$
=₹ 5,00,000-₹ 4,90,000=10,000 \text { F }
$$

(3) Fixed OH Volume Variance $=$ Standard Fixed OH - Budgeted Fixed OH

$$
=₹ 4,80,000-₹ 5,00,000 \quad=20,000 \mathrm{~A}
$$

(4) Fixed OH Efficiency Variance $=$ Standard Fixed OH - Standard Fixed OH for AH

$$
=\quad \mathrm{SH} \times \mathrm{SR}-\mathrm{AH} \times \mathrm{SR}
$$

$$
=₹ 4,80,000-\frac{5,00,000}{25 \text { Days }} \times 23 \text { Days } \quad=\quad 20,000 \text { F }
$$

Note: In the absence of actual hours, we used calendar hours as actual hours in above solution.

PYQ 10

Following data is available for ABC Ltd:

Standard working hours
Maximum capacity
Actual working
Actual hours expected to be worked per four week
Standard hours expected to be earned per four weeks
Actual hours worked in the four week period Standard hours earned in the four week period The related period is of 4 weeks.

8 hours per day of 5 days per week
60 employees 50 employees 8,000 hours 9,600 hours 7,500 hours 8,800 hours.

Calculate the following ratios:

(1) Efficiency Ratio,
(2) Activity Ratio,
(3) Standard Capacity Usage Ratio,
(4) Actual Capacity Usage Ratio,
(5) Actual Usage of Budgeted Capacity Ratio. [(5 Marks) May 2019]

Answer

Maximum Capacity in a budget period $=$
60 Employees $\times 8$ Hours $\times 5$ Days $\times 4$ Weeks
$=$ 9,600 Hours
Budgeted Hours = 50 Employees $\times 8$ Hours $\times 5$ Days $\times 4$ Weeks
$=8,000$ Hours
Actual Hours
$=7,500$ Hours (given)
Standard Hours for Actual Output
(1) Efficiency Ratio
$=\frac{\text { Stan dard Hours }}{\text { Actual Hours }} \times 100=\frac{8,800 \text { Hours }}{7,500 \text { Hours }} \times 100$
$=117.33 \%$
$=\frac{\text { Stan dard Hours }}{\text { Budgeted Hours }} \times 100=\frac{8,800 \text { Hours }}{8,000 \text { Hours }} \times 100$
(2) Activity Ratio
$=110.00 \%$
(3) Standard Capacity Usage Ratio $=\frac{\text { Budgeted Hours }}{\text { Max. Possible Hours in Budget Period }} \times 100$

$$
=\frac{8,000 \text { Hours }}{9,600 \text { Hours }} \times 100 \quad=83.33 \%
$$

(4) Actual Capacity Usage Ratio $=\frac{\text { Actual Hours Worked }}{\text { Max. Possible Working Hours in a Period }} \times 100$

$$
=\frac{7,500 \text { Hours }}{9,600 \text { Hours }} \times 100=78.125 \%
$$

(5) Actual Usage of Bgt Capacity Ratio $=\frac{\text { Actual Working Hours }}{\text { Budgeted Hours }} \times 100$

$$
=\frac{7,500 \text { Hours }}{8,000 \text { Hours }} \times 100 \quad=93.75 \%
$$

PYQ 11

The standard cost of a chemical mixture is as follows:

$$
60 \% \text { of Material A @ ₹50 per kg }
$$ 40% of Material B @ ₹ 60 per kg

A standard loss of 25% on output is expected in production. The cost records for a period has shown the following usage:

540 kg of Material A @ ₹ 60 per kg 260 kg of Material B @ ₹ 50 per kg

The quantity processed was 680 kilograms of good product.
From the above given information calculate:
(1) Material Cost Variance
(2) Material Price Variance
(3) Material Usage Variance
(4) Material Mix Variance
(5) Material Yield Variance
[(10 Marks) Nov 2019]
Answer
(1) Material Cost Variance
(2) Material Price Variance
(3) Material Usage Variance

=	$(S Q \times S P)-(A Q \times A P)$		
=	$₹ 45,900$ - ₹ 45,400	=	F500 F
=	$(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$		
=	₹ 42,600 - ₹ 45,400	=	₹2,800 A
=	$(S Q \times S P)-(A Q \times S P)$		
=	₹ 45,900 - ₹ 42,600	=	₹3,300 F
=	$(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})$		
=	₹ 43,200 ₹ 42,600	=	F600 F
=	$(S Q \times S P)-(R S Q \times S P)$		
=	₹ 45,900 - ₹ 43,200	=	₹2,700 F

Working notes:

a. Basic Calculation

Materials	$\boldsymbol{S Q} \times \boldsymbol{\text { SP }}$	$\boldsymbol{R S Q} \times \mathbf{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A P}$
A	$510 \times ₹ 50$	$480 \times ₹ 50$	$540 \times ₹ 50$	$540 \times ₹ 60$
B	$340 \times ₹ 60$	$320 \times ₹ 60$	$260 \times ₹ 60$	$260 \times ₹ 50$
Total	$₹ 45,900$	$₹ 43,200$	$₹ 42,600$	$₹ 45,400$

b. $\quad S Q$ of input for actual output:

Input - Loss	$=$	Output		
Input - 25\% Output	$=$	Output		
Input	$=$	125% Output		
Input of Raw Material	$=$	$125 \% \times 680 \mathrm{kgs}$ of Good Product	$=850 \mathrm{kgs}$	
Materials A	$=$	$850 \mathrm{kgs} \times 60 \%$	$=$	510 kgs
Materials B	$=$	$850 \mathrm{kgs} \times 40 \%$	$=$	340 kgs

c. RSQ (Revised Standard Quantity) of actual input:

Materials A	$=$	$800 \mathrm{kgs} \times 60 \%$	$=$
Materials B	$=$	$800 \mathrm{kgs} \times 40 \% \mathrm{kgs}$	
		$=$	320 kgs

PYQ 12
ABC Ltd. has furnished the following information regarding the overheads for the month of June, 2020:
(i) Fixed Overhead Cost Variance
(ii) Fixed Overhead Volume Variance
(iii) Budgeted Hours for June, 2020
(iv) Budgeted Overheads for June, 2020
(v) Actual rate of recovery of overheads
₹2,800 (Adverse)
₹2,000 (Adverse)
2,400 hours
₹ 12,000
₹8 per hour

From the given information calculate:

(1) Fixed Overhead Expenditure Variance
(2) Actual Overheads Incurred
(3) Actual Hours for Actual Production
(4) Fixed Overhead Capacity Variance
(5) Standard Hours for Actual Production
(6) Fixed Overhead Efficiency Variance
[(10 Marks) Nov 2020]

Answer

(1) Fixed OH Expenditure Variance
(2) Fixed OH Expenditure Variance ₹ 800 A

Actual Overheads incurred
$=\quad$ Fixed OH Cost Variance - Fixed OH Volume Variance
$=$ ₹ $2,800 \mathrm{~A}-₹ 2,000 \mathrm{~A}=₹ 800 \mathrm{~A}$
$=\quad$ Budgeted Fixed OH - Actual Fixed OH
$=\quad ₹ 12,000$ - Actual Fixed 0H
= ₹ $12,000+₹ 800 \quad=\quad ₹ 12,800$
(3) Actual Hours for Actual Production:

Actual Overheads Incurred
Actual Hours (AH)
(4) Fixed OH Capacity Variance
$=\quad \mathrm{AH} \times \mathrm{AR}=\mathrm{AH} \times ₹ 8=\quad ₹ 12,800$
$=$ ₹ $12,800 \div$ ₹ $8=1,600$
$=\quad \mathrm{AH} \times \mathrm{SR}-\mathrm{BH} \times \mathrm{SR}$
$=1,600 \times ₹ 5-₹ 12,000=4,000 \mathrm{~A}$
(5) Standard Hours for Actual Production:

PYQ 13

Premier Industries has a small factory where 52 workers are employed on an average for 25 days a month and they work 8 hours per day. The normal down time is 15%. The firm has introduced standard costing for cost control. Its monthly budget for November, 2020 shows that the budgeted variable and fixed overhead are $₹ 1,06,080$ and $₹ 2,21,000$ respectively. The firm reports the following details of actual performance for November, 2020, after the end of the month:

Actual hours worked	8,100 hours
Actual production expressed in standard hours	8,800 hours
Actual Variable Overheads	$₹ 1,02,000$
Actual Fixed Overheads	$₹ 2,00,000$

You are required to calculate:

(1) Variable Overhead Variances:
(a) Variable overhead expenditure variance.
(b) Variable overhead efficiency variance.
(2) Fixed Overhead Variances:
(a) Fixed overhead budget variance.
(b) Fixed overhead capacity variance.
(c) Fixed overhead efficiency variance.
(3) Control Ratios:
(a) Capacity ratio.
(b) Efficiency ratio.
(c) Activity ratio.
[(10 Marks) Jan 2021]

Answer

(1) Variable Overhead Variances:
(a) Variable OH Exp. Variance $=(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=(8,100$ hours $\times ₹ 12)-₹ 1,02,000=₹ 4,800 \mathrm{~A}$
(b) Variable OH Eff. Variance
$=(\mathrm{SH}-\mathrm{AH}) \times \mathrm{SR}$
$=(8,800$ hours $-8,100$ hours $) \times ₹ 12=₹ 8,400$ F
(2) Fixed Overhead Variances:
(a) Fixed OH Budget Variance $=$ Budgeted Overheads - Actual Overheads

(3) Control Ratios:

(b) Fixed OH Capacity Variance

$$
\begin{array}{lll}
= & \text { ₹2,21,000 - ₹2,00,000 } & =\text { ₹ } 21,000 ~ F \\
= & (\mathrm{AH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR}) & \\
= & (8,100 \text { hours } \times ₹ 25)-₹ 2,21,000 & =₹ 18,500 \mathrm{~A} \\
= & (\mathrm{SH}-\mathrm{AH}) \times \mathrm{SR} & \\
= & (8,800 \text { hours }-8,100 \text { hours }) \times ₹ 25 & =₹ 17,500 \mathrm{~F}
\end{array}
$$

(c) Fixed OH Efficiency Variance $=(\mathrm{SH}-\mathrm{AH}) \times \mathrm{SR}$
(a) Capacity Ratio
$=\quad$ (Actual Hours \div Budgeted Hours) $\times 100$
$=\quad(8,100$ hours $\div 8,840$ hours $) \times 100=91.63 \%$
(b) Efficiency Ratio
$=\quad$ (Standard Hours \div Actual Hours) $\times 100$
$=\quad(8,800$ hours $\div 8,100$ hours $) \times 100=108.64 \%$
(c) Activity Ratio
$=\quad$ (Standard Hours \div Budgeted Hours) $\times 100$
$=\quad(8,800$ hours $\div 8,840$ hours $) \times 100=99.55 \%$

Working Notes:

Variable OH Standard Rate (SR)	=	Budgeted Variable $\mathrm{OH} \div$ Budgeted Hours		
	=	₹ $1,06,080 \div 8,840$ hours		F12 per hour
Fixed OH Standard Rate (SR)	=	Budgeted Fixed OH \div Budgeted Hours		
	=	₹ $2,21,000 \div 8,840$ hours		₹25 per hour
Budgeted Hours	=	(52 workers $\times 25$ Days $\times 8$ Hours) -15% Normal down time 8,840 hours		
	=			

PYQ 14

The standard output of a product ' DJ ' is 25 units per hour in manufacturing department of a company employing 100 workers. In a 40 hours week, the department produced 960 units of product 'DJ' despite 5\% of the time paid was lost due to an abnormal reason. The hourly wage rates actually paid were ₹ 6.20 , ₹ 6.00 and $₹ 5.70$ respectively to Group ' A ' consisting 10 workers, Group ' B ' consisting 30 workers and Group ' C ' consisting 60 workers. The standard wage rate per labour is same for all the workers. Labour Efficiency Variance is given ₹ 240 (F).

You are required to compute:

(1) Total Labour Cost Variance,
(2) Total Labour Rate Variance,
(3) Total Labour Gang variance,
(4) Total Labour Yield Variance, and
(5) Total Labour Idle Time Variance.
[(10 Marks) July 2021]

Answer

(1) Labour Cost Variance

$$
\begin{array}{llll}
= & (\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) & = & \mathrm{F} 320 \mathrm{~A} \\
= & (3,840 \times 6)-23,360 & \\
= & (\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) & \\
= & (4,000 \times 6)-23,360 & \mathrm{~F} 640 \mathrm{~F}
\end{array}
$$

(2) Labour Rate Variance
(3) Labour Gang Variance $=(\mathrm{RH} \times \mathrm{SR})-(\mathrm{AHW} \times \mathrm{SR})$

$=$	$₹ 22,800-₹ 22,800$	$=$	Nil
$=$	$(S H \times S R)-(\mathrm{RH} \times \mathrm{SR})$		
$=$	$(3,840 \times 6)-₹ 22,800$		₹ 240 F
$=$	$(\mathrm{AHW} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$		
$=$	₹ $22,800-₹ 24,000$		₹ $1,200 \mathrm{~A}$

Working notes:

(a) Basic Calculation

Workers	$\boldsymbol{S H} \times \boldsymbol{S R}$	$\boldsymbol{R S H} \times \boldsymbol{S R}$	$\boldsymbol{A H W} \times \boldsymbol{S R}$	$\boldsymbol{A H} \times \boldsymbol{S} \boldsymbol{R}$	$\boldsymbol{A H} \times \boldsymbol{A R}$
Group A	384×6	380×6	380×6	$10 \times 40 \times 6.00$	$10 \times 40 \times 6.20$
Group B	$1,152 \times 6$	$1,140 \times 6$	$1,140 \times 6$	$30 \times 40 \times 6.00$	$30 \times 40 \times 6.00$
Group C	$2,304 \times 6$	$2,280 \times 6$	$2,280 \times 6$	$60 \times 40 \times 6.00$	$60 \times 40 \times 5.70$
Total	$₹ 23,040$	$₹ 22,800$	$₹ 22,800$	$₹ 24,000$	$₹ 23,360$

(b) RSH (Revised Standard Hours) and AHW (Actual Hours Worked):

Total Actual Hours Worked $=$ (100 workers $\times 40$ hours) -5% abnormal idle time
$=3,800$ hours
Group A $=3,800 \times 10 / 100 \quad=\quad 380$ hours
Group B $=3,800 \times 30 / 100=1,140$ hours
Group C $=3,800 \times 60 / 100=2,280$ hours
(c) SH (Standard hours) for actual output 1,920 units:

Total standard hours	$=$	$(100$ workers $\times 1$ hour $\div 25$ units $) \times 960$ units	
Group A	$=$	3,840 hours	
Group B	$=$	$3,840 \times 10 / 100$	$=$
Group C	$=$	$3,840 \times 30 / 100$	$=$
		$3,840 \times 60 / 100$	$=$

(d) Standard wages rate (SR):

Labour Efficiency Variance	$=$	$(\mathrm{SH}-\mathrm{AHW}) \times \mathrm{SR}$
240 F	$=$	$(3,840-3,800) \times \mathrm{SR}$
SR	$=240 \div 40$	$=\quad ₹ 6$ per hour

PYQ 15

In a manufacturing company the standard units of production for the year were fixed at 1,20,000 units and overhead expenditures were estimated to be as follows:

	$₹$
Fixed	$12,00,000$
Semi-variable (60\% expenses are of fixed nature and 40% are of variable nature)	$1,80,000$
Variable	$6,00,000$

Actual production during the month of April, 2021 was 8,000 units. Each month has 20 working days. During the month there was one public holiday. The actual overheads were as follows:

	$₹$
Fixed	$1,10,000$
Semi-variable (60\% expenses are of fixed nature and 40% are of variable nature)	19,200
Variable	48,000

You are required to calculate the following variances for the month of April 2021:

1. Overhead Cost variance
2. Fixed Overhead Cost variance
3. Variable Overhead Cost variance
4. Fixed Overhead Volume variance
5. Fixed Overhead Expenditure Variance
6. Calendar Variance
[(10 Marks) Dec 2021]

Answer

1. Overheads Cost Variance $=$ Standard OH for 8,000 units - Actual OH
$=\quad 8,000$ units $\times(10.9+5.6)-(1,10,000+19,200+48,000)$
$=1,32,000-1,77,200=45,200 \mathrm{~A}$
2. Fixed Overhead Cost Variance $=\quad$ Standard Fixed OH - Actual Fixed OH
$=\quad 8,000$ units $\times 10.9-1,2,1520$
$=87,200-1,21,520=34,320 \mathrm{~A}$
3. Variable $\mathbf{O H}$ Cost Variance $=$ Standard Variable OH - Actual Variable OH
$=8,000$ units $\times 5.6-55,680$
$=44,800-55,680=10,880 \mathrm{~A}$
4. Fixed OH Volume Variance $=$ Standard Fixed OH - Budgeted Fixed OH
$=8,000$ units $\times 10.9-1,09,000$
$=87,200-1,09,000=21,800 \mathrm{~A}$
5. Fixed OH Exp Variance $=$ Budgeted Fixed OH - Actual Fixed OH
$=1,09,000-1,2,1520=12,520 \mathrm{~A}$
6. Calendar Variance $=$ Standard Fixed OH for 19 days - Budgeted Fixed OH
$=1,09,000 \times 19 / 20-1,09,000$
$=1,03,550-1,09,000=5,450 \mathrm{~A}$

Working notes:

Total Budgeted Fixed OH per annum
Total Budgeted Fixed OH per month
Total Budgeted Variable OH per annum
Total Actual Fixed OH per month
Total Actual Variable OH per month
Standard Fixed OH rate

Standard Variable OH rate

=	$₹ 12,00,000+60 \% \times ₹ 1,80,000=$	₹ $13,08,000$
$=$	₹ $13,08,000 \div 12$	₹ $1,09,000$
=	₹ $6,00,000+40 \% \times$ ₹ $1,80,000$	₹ $6,72,000$
=	₹ $1,10,000+60 \% \times$ ₹ 19,200	₹ $1,21,520$
=	₹ $48,000+40 \% \times$ ₹ 19,200	₹ 55,680
$=$ $=$	Budgeted Fixed $\mathrm{OH} \div$ Budgeted Units	
=	Budgeted Variable OH \div Budgeted Units	
=	₹ $6,72,000 \div 1,20,000$ units	₹5.6 per unit

PYQ 16

A manufacturing department of a company has employed 120 workers. The standard output of product "NPX" is 20 units per hour and the standard wage rate is ₹ 25 per labour hour.

In a 48 hours week, the department produced 1,000 units of 'NPX' despite 5% of the time paid being lost due to an abnormal reason. The hourly wages actually paid were ₹ 25.70 per hour.

Calculate:

(a) Labour Cost Variance
(b) Labour Rate Variance
(c) Labour Efficiency Variance
(d) Labour Idle time Variance
[(5 Marks) May 2022]

Answer

(a) Labour Cost Variance

$$
\begin{array}{ll}
= & (\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR}) \\
= & \text { ₹ } 1,50,000-₹ 1,48,032
\end{array} \quad=\quad \text { ₹ } 1,968 \text { F }
$$

(b) Labour Rate Variance
(c) Labour Efficiency Variance
$=\quad(\mathrm{AH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=$ ₹ $1,44,000-₹ 1,48,032=$ ₹ $4,032 \mathrm{~A}$
$=\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AHW} \times \mathrm{SR})$
$=$ ₹ $1,50,000$ - ₹ $1,36,800=$ ₹ 13,200 F
(d) Labour Idle Variance
$=\quad(\mathrm{AHW} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$
$=$ ₹ $1,36,800-₹ 1,44,000$
$=$
₹7,200 A

Working notes:

1. Basic Calculation

$\boldsymbol{S H} \times \boldsymbol{S} \boldsymbol{R}$	$\boldsymbol{A} \boldsymbol{H} \boldsymbol{W} \times \boldsymbol{S} \boldsymbol{R}$	$\boldsymbol{A H} \times \boldsymbol{S} \boldsymbol{R}$	$\boldsymbol{A} \boldsymbol{H} \times \boldsymbol{A} \boldsymbol{R}$
1,000 units $\times 6$ hours \times $₹ 25$	120 workers $\times 45.6$ hours $(48-5 \%) \times ₹ 25$	120 workers $\times 48$ hours $\times ₹ 25$	120 workers $\times 48$ hours $\times ₹ 25.70$
$₹ 1,50,000$	$₹ 1,36,800$	$₹ 1,44,000$	₹ $1,48,032$

2. Standard hour per unit $=(120$ workers $\times 1$ hour $) \div 20$ units $=6$ hours per unit

PYQ 17

Y Ltd. manufactures "Product M" which requires three types of raw materials - "A", "B" \& "C". Following information related to $1^{\text {st }}$ quarter of the F.Y. 2022-23 has been collected from its books of accounts. The standard material input required for $1,000 \mathrm{~kg}$ of finished product ' M ' are as under:

Material	Quantity (Kg.)	Std. Rate per Kg. (₹)
A	500	25
B	350	45
C	250	55
	1,100	
Less: Standard Loss	100	
Standard Output	$\mathbf{1 , 0 0 0}$	

During the period the company produced $20,000 \mathrm{kgs}$ of product ' M ' for which the actual quantity of materials consumed and purchase prices are as under:

Material	Quantity (Kg.)	Purchase price per kg. (₹)
A	11,000	23
B	7,500	48
C	4,500	60

You are required to calculate:

(a) Material Cost Variance
(b) Material Price Variance for each raw material and Product ' M '
(c) Material Usage Variance for each raw material and product ' M '
(d) Material Yield Variance

Note: Indicate the nature of variance i.e. Favourable or Adverse.
[(10 Marks) Nov 2022]

Answer

1. Material Cost Variance

$$
\begin{aligned}
& =\quad(S Q \times S P)-(A Q \times A P) \\
& =\quad \text { ₹ } 8,40,000-₹ 8,83,000
\end{aligned}
$$

2. Material Price Variance
$=\quad \mathrm{AQ} \times(\mathrm{SP}-\mathrm{AP})$
Material A
$=\quad 11,000 \times(25-23)$
$=\quad$ ₹ 22,000 F
Material B
Material C
$=7,500 \times(45-48)$
$=\quad$ ₹22,500 A
Total
$=4,500 \times(55-60)$
$=\quad ₹ 22,500 \mathrm{~A}$
3. Material Usage Variance
$=\quad S P \times(S Q-A Q)$
Material A
$=25 \times(10,000-11,000)=$ ₹25,000 A
Material B
$=\quad 45 \times(7,000-7,500)$
$=\quad ₹ 22,500 \mathrm{~A}$
Material C
$=55 \times(5,000-4,500)$
$=\quad ₹ 27,500 \mathrm{~F}$
Total
$=\quad 25,000 \mathrm{~A}+22,500 \mathrm{~A}+27,500$
$=$ ₹20,000 A
4. Material Yield Variance
$=(S Q \times S P)-(R S Q \times S P)$
$=$ ₹8,40,000-₹8,78,170 = ₹38,170 A

Working notes:

a. Basic Calculation

Materials	$\boldsymbol{S Q} \times \mathbf{S P}$	$\boldsymbol{R S Q} \times \mathbf{S P}$	$\boldsymbol{A Q} \times \boldsymbol{S P}$	$\boldsymbol{A Q} \times \boldsymbol{A P}$
A	$10,000 \times ₹ 25$	$10,455 \times ₹ 25$	$11,000 \times ₹ 25$	$11,000 \times ₹ 23$
B	$7,000 \times ₹ 45$	$7,318 \times ₹ 45$	$7,500 \times ₹ 45$	$7,500 \times ₹ 48$
C	$5,000 \times ₹ 55$	$5,227 \times ₹ 55$	$4,500 \times ₹ 55$	$4,500 \times ₹ 60$
Total	$₹ 8,40,000$	$₹ 8,78,170$	$₹ 8,60,000$	$₹ 8,83,000$

b. SQ of input for actual output:

Materials A	$=$	$500 \mathrm{kgs} \times 20 \mathrm{times}$	$=$	$10,000 \mathrm{kgs}$
Materials B	$=$	$350 \mathrm{kgs} \times 20 \mathrm{times}$	$=$	$7,000 \mathrm{kgs}$
Materials C	$=$	$250 \mathrm{kgs} \times 20 \mathrm{times}$	$=$	$5,000 \mathrm{kgs}$

c. RSQ (Revised Standard Quantity) of actual input:

Materials A	$=$	$23,000 \mathrm{kgs} \times 500 / 1,100$	$=$	$10,455 \mathrm{kgs}$
Materials B	$=$	$23,000 \mathrm{kgs} \times 350 / 1,100$	$=$	$7,318 \mathrm{kgs}$
Materials C	$=$	$23,000 \mathrm{kgs} \times 250 / 1,100$	$=$	$5,227 \mathrm{kgs}$

PYQ 18

NC Limited uses a standard costing system for the manufacturing of its product ' X '. The following information is available for the last week of the month:

- $25,000 \mathrm{~kg}$ of raw material were actually purchased for $₹ 3,12,500$. The expected output is 8 units of product ' X ' from each one kg of raw material. There is no opening and closing inventories. The material price variance and material cost variance, as per cost records, are ₹12,500 (F) and ₹1800 (A), respectively.
- The standard time to produce a batch of 10 units of product ' X ' is 15 minutes. The standard wage rate per labour hour is $₹ 50$. The company employs 125 workers in two categories, skilled and semi-skilled, in a ratio of 60:40. The hourly wages actually paid were ₹ 50 per hour for skilled workers and ₹ 40 per hour for semi-skilled workers. The weekly working hours are 40 hours per worker. Standard wage rate is the same for skilled and semi-skilled workers.
- The monthly fixed overheads are budgeted at ₹76,480. Overheads are evenly distributed throughout the month and assume 4 weeks in a month. In the last week of the month, the actual fixed overhead expenses were ₹ 19,500 .

Required:

(a) Calculate the standard price per kg and the standards quantity of raw material.
(b) Calculate the material usage variance, labour cost variance, and labour efficiency variance.
(c) Calculate the fixed overhead cost variance, the fixed overhead expenditure variance and the fixed overhead volume variance.

Note: Indicate the variance of variance i.e favourable or adverse.
[(10 Marks) May 2023]

Answer

(a) Material Price Variance $=(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$
$₹ 12,500 \mathrm{~F}=25,000 \times \mathrm{SP}-₹ 3,12,500$
Standard Price per kg = ₹ 13
Material Cost Variance $=(S Q \times S P)-(A Q \times A P)$
$₹ 1,800 \mathrm{~A}=\mathrm{SQ} \times ₹ 13-₹ 3,12,500$
Standard Quantity of material $=23,900 \mathrm{Kgs}$
(b) Material Usage Variance $=$ Material Cost Variance - Material Price Variance

$$
=₹ 1,800 \mathrm{~A}-₹ 12,500 \mathrm{~F} \quad=\quad ₹ 10,700 \mathrm{~A}
$$

Labour Cost Variance $=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=(4,780 \times$ ₹ 50$)-[(3,000$ hours \times ₹ 50$)+(2,000$ hours \times ₹ 40$)]$
$=\quad ₹ 9,000$ F
Labour Efficiency Variance $=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$
$=(4,780 \times ₹ 50)-(5,000$ hours $\times ₹ 50)=$
₹11,000 A
(c) Fixed OH Cost Variance

$$
=\quad(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})
$$

$$
=₹ 18,279-₹ 19,500 \quad=\quad ₹ 1,221 \mathrm{~A}
$$

Fixed OH Exp. Variance $\quad=\quad(\mathrm{BH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$
$=₹ 19,120-₹ 19,500=₹ 380 \mathrm{~A}$
Fixed OH Volume Variance $=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{BH} \times \mathrm{SR})$
$=$ ₹ 18,279 ₹ ₹ $19,120=$ ₹ 841 A

Working Notes:

(1) Actual Quantity Produced	$=23,900$ kgs Materials $\times 8$ units per kg
	$=1,91,200$ units of Product F
(2) Standard Hours	$=1,91,200$ units $\times 1.5$ minute per unit $/ 60=4,780$ hours

(3)	Actual Hours	=	125 workers $\times 40$ hours	=	5,000 hours
(4)	Actual Hours (Skilled)	=	125 workers $\times 60 \% \times 40$ hours	=	3,000 hours
	Actual Hours (Semi-skilled)	=	125 workers $\times 40 \% \times 40$ hours	=	2,000 hours
(5)	Budgeted Fixed OH $(\mathrm{BH} \times \mathrm{SR})$	$=$	₹ $76,480 \div 4$ weeks	=	₹ 19,120
(6)	Recovered Fixed OH (SH \times SR)		₹ $19,120 \times 4,780$ hours/5,000 hours	=	₹ 18,279

SUGGESTED REVISION FOR EXAM:

BQ: $\quad 5,6,7,8,9,10,11,12,16,17,19,22,24,28,30,32,33$

PYQ: 1, 12, 13, 16, 18

CHAPTER 13

MARGINAL COSTING

CONTRIBUTION, PV RATIO, BEP, MOS AND PROFIT PLANNING

BQ 1

Tata Ltd. had incurred fixed expenses of ₹ $4,50,000$ with sales of ₹ $15,00,000$ and earned a profit of ₹ $3,00,000$ during the first half year. In second half it suffered a loss of ₹ $1,50,000$.

Calculate:

(i) The profit volume ratio, B.E.P. \& MOS for the first half year.
(ii) Expected sales volume for second half year assuming that sales price and fixed expenses remains unchanged during the second half year.
(iii) B.E.P. \& MOS of the whole year.
[(i) 50\%, 9,00,000, 6,00,000; (ii) 6,00,000, 18,00,000, 3,00,000]

BQ 2

A company sells its product at ₹ 15 . In a period, if it produces and sells 8,000 units, it incurs a loss of $₹ 5$ per unit. If the volume is raised to 20,000 units, it earns a profit of ₹ 4 per unit.

Calculate break-even point both in terms of rupees as well as in units.
[12,000 units, ₹1,80,000]

BQ 3

The ratio of variable cost to sales is 70%. The break - even point occurs at 60% of the capacity sales. Find the capacity sales when fixed costs are ₹ 90,000 . Also compute profit at 75% of the capacity sales.
[${ }^{5} 5,00,000$ ₹22,500]

BQ 4

A company earned a profit of ₹ 30,000 during the year. If the marginal cost and selling price of a product are ₹8 and ₹ 10 per unit respectively.

Find out the amount of 'Margin of Safety'.
[₹1,50,000]

BQ 5

A company has made a profit of $₹ 50,000$ during the year. If the selling price and marginal cost (variable cost) of the product are ₹ 15 and ₹ 12 per unit respectively.

Find out the amount of margin of safety.
Answer

Marginal of Safety	$=\frac{\text { Pr ofit }}{* \text { PV Ratio }}$	$=\frac{50,000}{20 \%}$	$=₹ 2,50,000$
${ }^{*} P / V$ Ratio	$=\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{15-12}{15} \times 100$	$=1020$	

BQ 6

If Margin of safety of AB Ltd. is ₹ $2,40,000(40 \%$ of sales) and P / V ratio is 30%.

Calculate its (1) Break-even sales and (2) Amount of profit on sales of $\mathrm{F}^{9,00,000}$.
[(1) ₹3,60,000 (2) ₹1,62,000]
BQ 7
You are given the following data:

Year	Sales	Profit
2022	$₹ 1,20,000$	$₹ 8,000$
2023	$₹ 1,40,000$	$₹ 13,000$

Find out:
(i) P/V ratio, (ii) BEP, (iii) Profit when sales are ₹ $1,80,000$, (iv) Sales required earn a profit of ₹ 12,000 , (v) Margin of safety in year 2023.

> [(i) 25\% (ii) ₹88,000 (iii) ₹23,000 (iv) ₹1,36,000 (v) ₹52,000]

BQ 8

You are given the following particulars:
(i) Fixed cost ₹ $1,50,000$
(ii) Variable cost ₹15 per unit
(iii) Selling price is ₹30 per unit

Calculate:

(a) Break-even point
(b) Sales to earn a profit of $₹ 20,000$

Answer
(a) Break-even point $=\frac{\text { Fixed cost }}{\text { Contribution per unit }}=\frac{1,50,000}{30-15}$

$$
=\quad 10,000 \text { Units }
$$

(b) Sales to earn profit of $₹ 20,000=\frac{\text { Fixed } \cos \mathrm{t}+\text { Desired profit }}{* \mathrm{PV} \text { ratio }}=\frac{1,50,000+20,000}{50 \%}$

$$
\begin{aligned}
& =\text { F3,40,000 } \\
& =\frac{\text { Contribution }}{\text { Sales }} \times 100 \quad=\frac{15}{30} \times 100 \\
& =50 \%
\end{aligned}
$$

BQ 9

If P / V ratio is 60% and the marginal cost of the product is ₹ 20 . What will be the selling price?
Answer

| Sales Price | $=$ | $\frac{\text { Variable Cost Per Unit }}{* \text { Variable Cost Ratio }}=\frac{20}{40 \%}$ | $=$ F50 per unit |
| :--- | :--- | :--- | :--- | :--- |
| *Variable Cost Ratio | $=100-\mathrm{P} / \mathrm{V}$ Ratio | $=100-60$ | $=40 \%$ |

BQ 10

1. Ascertain profit, when:

Sales	$2,00,000$
Fixed Cost	40,000

2. Ascertain sales, when:

Fixed cost	20,000
Profit	10,000
BEP	40,000

Answer

1. Profit:

BEP Sales \times P/V Ratio	=	Fixed Cost	=	₹ $1,60,000 \times \mathrm{P} / \mathrm{V}$ ratio	= ₹ 40,000
P / V ratio	=	₹ $40,000 \div$ ₹ $1,60,000$			= 25%
Sales $\times \mathrm{P} / \mathrm{V}$ Ratio	=	Fixed Cost + Profit	=	₹2,00,000 $\times 25 \%$	= ₹ 50,000
Profit	=	₹ 50,000 - ₹ 40,000	=	₹10,000	

2. Sales:

BEP Sales $\times \mathrm{P} / \mathrm{V}$ Ratio	=	Fixed Cost	=	$₹ 40,000 \times \mathrm{P} / \mathrm{V}$ ratio	= ₹ 20,000
P / V ratio	=	₹ $20,000 \div ₹ 40,000$			= 50%
Sales $\times \mathrm{P} / \mathrm{V}$ Ratio	=	Fixed Cost + Profit	=	₹ 20,000 + ₹ 10,000	= ₹ 30,000
Sales	=	₹ $30,000 \div 50 \%$	=	F60,000	

BQ 11

A company has a PV ratio of 40%. By what percentage must sales be increased to offset 20% reduction in selling price?

Answer

Let current sales be ₹ 100 . Hence,

Particulars	Current	Proposed
Sales	100	80
Less: Variable cost (60\% of sale)	60	60
Contribution	$\mathbf{4 0}$	$\mathbf{2 0}$

In order to maintain the same contribution, the volume of sales should be $=\frac{40}{20} \times 80=₹ 160$
Thus, if selling price is reduced by 20%, the sales will have to be increased by $\mathbf{6 0 \%}$ i.e. from $\boldsymbol{₹}^{1} 00$ to ₹ 160.

BQ 12

From the following data, calculate cash break-even point in units and in value:
$\begin{array}{lc}\text { Selling price per unit } & ₹ 10 \\ \text { Variable cost per unit } & ₹ 6 \\ \text { Fixed cost (including ₹3,000 as depreciation) } & ₹ 10,000 \\ & \text { [1,750 units and ₹17,500] }\end{array}$

BQ 13

MNP Ltd. sold 2,75,000 units of its product at ₹ 37.50 per unit. Variable costs are ₹ 17.50 per unit (manufacturing costs of ₹14 and selling cost of ₹ 3.50 per unit). Fixed costs are incurred uniformly throughout the year and amount to ₹ $35,00,000$ (including depreciation of ₹ $15,00,000$). There are no beginning or ending inventories.

Required:

(i) Estimate breakeven sales level quantity and cash breakeven sales level quantity.
(ii) Estimate the P/V ratio.
(iii) Estimate the number of units that must be sold to earn an income (EBIT) of ₹2,50,000.
(iv) Estimate the sales level to achieve an after-tax income (PAT) of ₹ $2,50,000$. Assume 40% corporate Income Tax rate.
[(8 Marks) Nov 2010]

Answer

(a) Break even sales

$$
\begin{aligned}
& =\quad \frac{\text { Fixed cos } t}{\text { Contributi on per unit }}=\quad \frac{35,00,000}{37.50-17.50} \\
& =\quad \mathbf{1 , 7 5 , 0 0 0} \text { units. }
\end{aligned}
$$

$$
\text { Cash BEP (in Quantity) } \quad=\quad \frac{\text { Fixed cost (excluding depreciati on) }}{\text { Contributi on per unit }}
$$

$$
=\frac{35,00,000-15,00,000}{37.50-17.50}=1,00,000 \text { units. }
$$

(b) P / V ratio $=\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{37.50-17.50}{37.50} \times 100$

$$
=53.33 \%
$$

(c)

$$
\begin{aligned}
& =\frac{\text { Fixed cos } t+\text { Desired EBIT }}{\text { Contributi on per unit }} \\
& =\frac{35,00,000+2,50,000}{20.00}=\mathbf{1 , 8 7 , 5 0 0} \text { units. }
\end{aligned}
$$

(d) Desired Sales level $(7)=\frac{\text { Fixed } \cos \mathrm{t}+\text { Desired Pr ofit Before Tax }}{\text { PV ratio }}$

$$
=\frac{35,00,000+4,16,667}{53.33 \%}=\quad ¥ 73,43,750
$$

WN:

Desired PAT	$=$	$₹ 2,50,000$
Tax rate	$=40 \%$	
Desired Profit before tax	$=\frac{\text { Desired PAT }}{(1-\mathrm{t})} \quad=\quad \frac{2,50,000}{(1-0.40)}=₹ \mathbf{4}, \mathbf{1 6 , 6 6 7}$	

BQ 14

An automobile manufacturing company produces different models of Cars. The budget in respect of model 118 for the month of March is as under:

| Budgeted Output | ₹ $($ in lacs $)$ |
| :---: | :---: | | 40,000 units |
| :---: |
| $₹($ in lacs $)$ |

Variable costs:

Materials 79,200
Labour 15,600
Direct Expenses $\quad \underline{37,200}$
Fixed costs:
Specific Fixed Cost 27,000
Allocated Fixed Cost 33,750
Total Costs
Profit
Sales

Calculate:

(i) Profit with 10 percent increase in selling price with a 10 percent reduction in sales volume.
(ii) Volume to be achieved to maintain the original profit after a 10 per cent rise in material costs at the originally budgeted selling price per unit.

> [(i) ₹28,350 Lakhs (ii) 44,521 units]

BQ 15

A Ltd. maintains margin of safety of 37.5% with an overall contribution to sales ratio of 40%. Its fixed costs amount to ₹5,00,000.

Calculate (i) Break-even sales, (ii) Total sales, (iii) Total variable cost, (iv) Current profit, (v) New 'margin of safety' if the sales volume is increased by $7-1 / 2 \%$.

Answer

(i) Break Even Sales \times PV Ratio Break Even Sales $\times 40 \%$
$=$ Fixed Cost
= ₹5,00,000
Break Even Sales $\quad=\quad ₹ 5,00,000 \div 40 \%=$ ₹12,50,000
(ii) Total Sales
$=\quad$ Break Even Sales + Margin of Safety
Total Sales
$=$ ₹ $12,50,000+37.50 \%$ of Total Sales
62.50\% of Total Sales
$=\quad ₹ 12,50,000$
Total Sales
$=₹ 12,50,000 \div 62.50 \%=$ ₹ $20,00,000$
(iii) Contribution to Sales Ratio $=40 \%$

Therefore, Variable cost to Sales Ratio $=\quad 60 \%$
Variable cost $\quad=\quad 60 \%$ of sales
Variable cost $=60 \%$ of $₹ 20,00,000=₹ 12,00,000$
(iv) Current Profit $=$ Sales $-($ Variable Cost + Fixed Cost $)$
$=$ ₹ $20,00,000-(₹ 12,00,000+₹ 5,00,000)$
$=$ F3,00,000
(v) New Sales value
$=$ ₹ $20,00,000+7.50 \%$ of $₹ 20,00,000$
$=$ ₹21,50,000
New Margin of Safety
= \quad New Sales value - BES
$=$ ₹ $21,50,000-₹ 12,50,000=₹ 9,00,000$
BQ 16
PQR Ltd. has furnished the following data for the two years:

Particulars	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$
Sales	$₹ 8,00,000$	$?$
Profit Volume Ratio	50%	37.50%
Margin of Safety sales as a \% of total sales	40%	21.875%

There has been substantial savings in the fixed cost in the year 2023 due to the restructuring process. The company could maintain its sales quantity level of 2022 in 2023 by reducing selling price.

You are required to calculate the following:

(i) Sales for 2023 in ₹;
(ii) Fixed cost for 2023;
(iii) Break-even sales for 2023 in ₹.

Answer

In 2022:

PV ratio
Variable cost ratio $=100 \%-50 \%=50 \%$
Variable cost in 2022
$=₹ 8,00,000 \times 50 \% \quad=\quad$ ₹ $4,00,000$

In 2023:
Sales quantity has not changed. Thus variable cost in 2023 is ₹ $4,00,000$.
PV ratio $=37.50 \%$
Thus, Variable cost ratio $=100 \%-37.50 \%=62.50 \%$
(i) Thus sales in 2023
$=\frac{4,00,000}{62.5 \%}=$ ₹ $6,40,000$
At break-even point, fixed cost is equal to contribution.
In 2023, Break-even sales $=100 \%-21.875 \%=78.125 \%$
(iii) Break-even sales $=6,40,000 \times 78.125 \%=$ ₹5,00,000
(ii) Fixed cost
$=\quad$ BEP sales $\times \mathrm{PV}$ ratio
$=5,00,000 \times 37.50 \%=$ ₹ $1,87,500$

BQ 17

A single product company sells its product at ₹ 60 per unit. In 2022, the company operated at a margin of safety of 40%. The fixed costs amounted to ₹ $3,60,000$ and the variable cost ratio to sales was 80%. In 2023, it is estimated that the variable cost will go up by 10% and the fixed cost will increase by 5%.

Find the selling price required to be fixed in 2023 to earn the same P / V ratio as in 2022. Assuming the same selling price of $₹ 60$ per unit in 2023 , find the number of units required to be produced and sold to earn the same profit as in 2022.

Answer

1. PV Ratio in 2022:

Selling price per unit 60
Variable cost (80\% of Selling price) $\underline{48}$
Contribution $\underline{12}$
P / V Ratio 20%
2. No. of units sold in 2022:

Break-even point $\quad=\quad$ Fixed cost \div Contribution per unit
$=$ ₹ $3,60,000 \div ₹ 12=$ 30,000 units.
Margin of safety is 40%. Therefore, break-even sales will be 60% of units sold.
No. of units sold $=\quad B E P$ in units $\div 60 \% \quad=\quad \mathbf{5 0 , 0 0 0}$ units.
3. Profit earned in 2022:

Profit $=\quad$ Contribution - Fixed cost

$$
=(50,000 \times ₹ 12)-₹ 3,60,000=₹ 2,40,000
$$

4. Selling price to be fixed in 2023:

Revised variable cost $=₹ 48 \times 110 \%=₹ 52.80$

Revised fixed cost	$=$	$₹ 3,60,000 \times 105 \%$	$=$
PV Ratio	$=$	$20 \%($ Same as of 2016)	78,000
Variable cost ratio	$=$	80%	
Revised selling price	$=$	$₹ 52.80 \div 80 \%$	$=$

5. No. of units to be produced and sold in 2023 to earn the same profit:
$=\frac{\text { Fixed cos } t+\text { Desired profit }}{\text { Contributi on per unit }}=\frac{2,40,000+3,78,000}{60-52.80}=\mathbf{8 5 , 8 3 4}$ units

BQ 18

A company has three factories situated in North, East and South with its head office in Mumbai. The management has received the following summary report on the operations of each factory for a period:

Factory	Sales		Profit	
	Actual	Over / (Under Budget)	Actual	Over /(Under Budget)
North	1,100	(400)	135	(180)
East	1,450	150	210	90
South	1,200	(200)	330	(110)

Calculate for each factory and for the company as a whole for the period Fixed Costs and Break - Even Sales.

> [(i) ₹1,350 (ii) ₹2,500]

BQ 19

The profit for the year of R.J. Ltd. works out to 12.5% of the capital employed and the relevant figures are as under:

Sales	$₹ 5,00,000$
Direct Materials	$₹ 2,50,000$
Direct Labour	$₹ 1,00,000$
Variable Overheads	$₹ 40,000$
Capital Employed	$₹ 4,00,000$

The new Sales Manager who has joined the company recently estimates for next year a profit of about 23% on capital employed, provided the volume of sales is increased by 10% and simultaneously there is an increase in Selling Price of 4% and an overall cost reduction in all the elements of cost by 2%.

Find out by computing in detail the cost and profit for next year, whether the proposal of Sales Manager can be adopted.

Answer

Statement Showing Cost and Profit for the Next Year

	Particulars	Existing	Estimated
Sales Value	$5,00,000$	$5,72,000$	
Less: Direct Materials	$2,50,000$	$2,69,500$	
Direct Labour	$1,00,000$	$1,07,800$	
Variable Overheads	40,000	43,120	
	Less: Fixed Cost	Contribution	$\mathbf{1 , 1 0 , 0 0 0}$
		60,000	58,580
		$\mathbf{5 0 , 0 0 0}$	$\mathbf{9 2 , 7 8 0}$

Fixed Cost $=$ Existing Sales - Existing Marginal Cost -12.5% on ₹ $4,00,000$

$$
=₹ 5,00,000-₹ 3,90,000-₹ 50,000=\text { ₹ } 60,000
$$

Percentage Profit on Capital Employed equals to $23.19 \%\left(\frac{92,780}{4,00,000} \times 100\right)$
Since the Profit of $₹ 92,780$ is more than 23% of capital employed, the proposal of the Sales Manager can be adopted.

BQ 20

An Indian soft drink company is planning to establish a subsidiary company in Bhutan to produce mineral water. Based on the estimated annual sales of 40,000 bottles of the mineral water, cost studies produced the following estimates for the Bhutanese subsidiary:

Name of Expense	Total Annual Cost	\% of Total annual cost which is variable
Materials	$2,10,000$	100%
Labour	$1,50,000$	80%
Factory Overheads	92,000	60%
Administration Expenses	40,000	35%

The Bhutanese production will be sold by manufacturer's representatives who will receive a commission of 8% of the sale price. No portion of the Indian office expenses is to be allocated to the Bhutanese subsidiary.

You are required to

1. Compute the sale price per bottle to enable the management to realize an estimated 10% profit on sale proceeds in Bhutan.
2. Calculate the break-even point in sales as also in number of bottles for the Bhutanese subsidiary on the assumption that the sale price is $₹ 14$ per bottle.

Answer

1. Calculation of sales price to earn $\mathbf{1 0} \%$ profit on sales:

Sales value	=	Fixed cost + Variable cost + Profit		
Sales value		$\begin{aligned} & (2,10,000 \times 0 \%+1,50,000 \times 20 \%+92,000 \times 40 \%+40,000 \times 65 \%)+ \\ & (2,10,000 \times 100 \%+1,50,000 \times 80 \%+92,000 \times 60 \%+40,000 \times 35 \%+ \\ & \text { Commission @ } 8 \% \text { on sales })+ \text { Profit } @ 10 \% \text { on sales } \end{aligned}$		
Sales value	=	$92,800+3,99,200+8 \%$ of sales $+10 \%$ of sales		
Sales value	=	4,92,000 $\div 82 \%$	=	F6,00,000
Sales Price	=	Sales value \div No. of units		
	=	6,00,000 $\div 40,000$ units	=	₹15.00

2. Calculation of Break Even Point:

Break Even Point (in units) = Fixed cost \div Contribution per unit
$=\quad 92,800 \div 2.90(14-11.10) \quad=\quad 32,000$ units
Break Even Point (in ₹) $\quad=\quad$ BEP in units \times Sales price per unit
$=32,000$ units $\times 14.00 \quad=\quad$ F4,4,8000

Working notes:

Total variable cost	$=$	$3,99,200+8 \%$ on sales $(8 \%$ of $40,000 \times 14.00)$
Variable cost per unit	$=$	$4,44,000$
	$=$	Total variable cost \div No. of units
		$4,44,000 \div 40,000$ units

BEP IN CASE OF STOCK

BQ 21

The Co. has an opening stock of 6,000 units of output. Production plan for current period is 24,000 units. Expected sale for the current period comes to 28,000 units. The selling price per unit ₹ 10 variable cost per unit is ₹ 6 while it was ₹ 5 per unit during the previous period. Fixed cost of the current period is ₹ 86,000 .

Find out break-even point using FIFO Method.
[14,000 units of current period and 6,000 units of previous period]

CONTRIBUTION, PV RATIO, BEP, MOS AND PROFIT PLANNING

BQ 22

M Company's central services department is evaluating new copying machines to replace the firm's current copier, which is worm out. The analysis of alternative machines has been narrowed to two and the estimated costs of operating them are shown below:

Particulars	Cost per 100 copies	
	Machine \boldsymbol{A}	Machine \boldsymbol{B}
Material Costs (Variable)	$₹ 60$	$₹ 40$
Labour Cost (variable)	₹ 80	$₹ 30$
Annual Lease Cost (Fixed)	$₹ 30,000$	$₹ 58,000$

Required:

(i) Compute the cost indifference points for the two alternatives.
(ii) What do the cost indifference points suggest as a course of action in this regard?
(iii) If the management expects to need 87,000 copies next year, which copier would be most economical?
[(i) 40,000 Copies; (ii) Below 40,000: A, At 40,000: A/B, Above 40,000: B; (iii) B]

BQ 23

The following are cost data for three alternative ways of processing the clerical work for cases brought before the LC Court System:

Particulars	'A' Manual $(₹)$	'B'Semi Automatic $(₹)$	'C' Fully Automatic $(₹)$
Monthly fixed costs:			
\quad Occupancy	15,000	15,000	15,000
Maintenance contract	-	5,000	10,000
Equipment lease		25,000	$1,00,000$
Unit variable cost (per report):	40	80	20
Supplies	200	60	20
Labour	$(5$ hours $\times 40)$	$(1$ hour $\times 60)$	$(0.25$ hour $\times 80)$

1. Calculate cost indifference points. Interpret your results.
2. If the present case load is 600 cases and it is expected to go up to 850 cases in near future, which method is most appropriate on cost considerations?

Answer

1. Statement Showing Cost Indifference Point

Particulars	A and B	A and \boldsymbol{C}	B and \boldsymbol{C}
(a) Differential Fixed Cost	30,000	$1,10,000$	80,000
	$(45,000-15,000)$	$(1,25,000-15,000)$	$(1,25,000-45,000)$
(b) Differential Variable Cost	100	200	100
(c)Cost Indifference Point (a) \div (b)	$(240-140)$	$(240-40)$	$(140-40)$

Interpretation of Results

At activity level below the indifference points, the alternative with lower fixed costs and higher variable costs should be used. At activity level above the indifference point alternative with higher fixed costs and lower variable costs should be used.

Number of Cases	Alternative to be Chosen
Cases ≤ 300	Alternative ' A '
$300 \geq$ Cases ≤ 800	Alternative ' B '
Cases ≥ 800	Alternative ' C '

2. Present case load is 600 . Therefore, alternative B is suitable. As the number of cases is expected to go upto 850 cases, alternative C is most appropriate.

SHUT DOWN POINT

BQ 24

Mr. X has ₹ $2,00,000$ investments in his business firm. He wants a 15 percent return on his money. From an analysis of recent cost figures, he finds that his variable cost of operating is 60 percent of sales, his fixed costs are ₹ 80,000 per year.

Show computations to answer the following questions:

(i) What sales volume must be obtained to break even?
(ii) What sales volume must be obtained to get 15 percent return on investment?
(iii) Mr. X estimates that even if he closed the doors of his business, he would incur ₹ 25,000 as expenses per year. At what sales would he be better off by locking his business up?

Answer

P/V Ratio
(i) Break-even point
(ii) Sales volume required
(iii) Shut down point

Mr. X should shut down the business if the sale is less than $\mathfrak{₹}_{1,37,500 .}$

BQ 25

A Company sells two products, A and B. The sales mix is 5 units of A and 3 units of B. The sale price of A and B are ₹ 80 and ₹ 60 per unit respectively and variable cost ₹ 50 and ₹ 45 respectively. Fixed costs are ₹ $4,87,500$ per month.

Compute the break-even point.

Answer

$$
\begin{aligned}
\text { Break Even Points in units } & =\frac{\text { Fixed cost }}{\frac{\text { Composite contributi on per unit }}{20,500} \text { units }(\mathbf{1 2 , 5 0 0} \text { units of } \boldsymbol{A} \text { and } \mathbf{7 , 5 0 0} \text { units of } \boldsymbol{B})}
\end{aligned}
$$

WN:
$\begin{aligned} \text { Composite contribution } & =[(30 \times 5 \text { units of } \mathrm{A})+(15 \times 3 \text { units of } \mathrm{B})] \div 8 \text { units } \\ & =24.375 \text { per unit }\end{aligned}$

BQ 26
The product mix of a Gama Ltd. is as under:

	Particulars	Product \boldsymbol{M}
Units	54,000	18,000
Selling price	$₹ 7.50$	$₹ 15.00$
Variable cost	$₹ 6.00$	$₹ 4.50$

Find the break-even points in units, if the company discontinues product ' M ' and replace with product ' 0 '. The quantity of product ' 0 ' is 9,000 units and its selling price and variable costs respectively are ₹ 18 and ₹ 9 . Fixed Cost is ₹ 15,000 .

Answer

Break Even Point	$=\frac{\text { Fixed Cost }}{\frac{\text { Composite Contributi on Per Unit }}{}=\frac{15,000}{10}}$
	$=1,500$ units (1,000 units of ' N ' and 500 units of ' \mathbf{O}^{\prime} in $\mathbf{2 : 1}$)

Working note:

Composite contribution $=\quad[(10.50 \times 2$ units of N$)+(9 \times 1$ unit of 0$)] \div 3$ units $=10$ per unit

BQ 27

M.K. Ltd. manufactures and sells a single product X whose selling price is ₹ 40 per unit and the variable cost is ₹ 16 per unit.
(a) If the Fixed Costs for this year are $₹ 4,80,000$ and the annual sales are at 60% margin of safety, calculate the rate of net return on sales, assuming an income tax level of 40%
(b) For the next year, it is proposed to add another product line Y whose selling price would be ₹ 50 per unit and the variable cost ₹ 10 per unit. The total fixed costs are estimated at ₹ $6,66,600$. The sales mix units of X : Y would be $7: 3$. At what level of sales next year, would M.K. Ltd. break even? Give separately for both X and Y the breakeven sales in rupee and quantities.

Answer

(a) Rate of net return on sales

$$
=\quad \frac{4,32,000}{20,00,000} \times 100
$$

$$
=\quad 21.60 \%
$$

Working notes:

(1) Calculation of Net return:

(2) Composite Contribution per unit= $(40-16) \times 7 / 10+(50-10) \times 3 / 10=28.80$ per unit

BQ 28

Prisha Limited manufactures three different products and the following information has been collected from the books of accounts:

	Products		
	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
Sales Mix	40%	35%	25%
Selling Price	$₹ 300$	$₹ 400$	$₹ 200$
Variable Cost	$₹ 150$	$₹ 200$	$₹ 120$
Total Fixed Costs			$₹ 18,00,000$
Total Sales			$₹ 60,00,000$

The company has currently under discussion, a proposal to discontinue the manufacture of Product C and replace it with Product E, when the following results are anticipated:

	Products		
	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{E}
Sales Mix	45%	30%	25%
Selling Price	$₹ 300$	$₹ 400$	₹300
Variable Cost	₹150	₹200	₹150
Total Fixed Costs			₹18,00,000
Total Sales			$₹ 64,00,000$

Required:

(a) Calculate the PV ratio, Total contribution, Profit and Break-even sales for the existing product mix.
(b) Calculate the PV ratio, Total contribution, Profit and Break-even sales for the proposed sales mix.
(c) State whether the proposed sales mix is accepted or not?

Answer

(a) Calculation of PV Ratio, Total Contribution, Profit and BEP for the existing product mix:

	Products			Total
	A	B	C	
Selling Price ($\mathrm{\chi}$)	300	400	200	
Less: Variable Cost (₹)	150	200	120	
Contribution per unit (₹)	150	200	80	
P/V Ratio	50\%	50\%	40\%	
Sales Mix	40\%	35\%	25\%	
Contribution per rupee of sales (P / V Ratio \times Sales Mix)	20\%	17.5\%	10\%	47.5\%
Present Total Contribution ($₹ 60,00,000 \times 47.5 \%$)				₹28,50,000
Less: Fixed Costs				₹18,00,000
Present Profit				₹10,50,000
Present Break-Even Sales (₹18,00,000/0.475)				₹ $37,89,473.68$

(b) Calculation of PV Ratio, Total Contribution, Profit and BEP for the proposed product mix:

	Products			Total
	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{E}	
Selling Price (₹)	300	400	300	
Less: Variable Cost (₹)	150	200	150	
Contribution per unit (₹)	150	200	80	
P/V Ratio	50%	50%	50%	
Sales Mix	45%	30%	25%	
Contribution per rupee of sales (P/V Ratio \times Sales	22.5%	15%	12.5%	50%
Mix)				
Present Total Contribution (₹64,00,000 $\times 50 \%$)		$₹ 32,00,000$		
Less: Fixed Costs				
Present Profit				
Present Break-Even Sales (₹18,00,000/0.5)		$₹ 18,00,000$		

(c) The proposed sales mix increases the total contribution to sales ratio from 47.5% to 50% and the total profit from ₹ $10,50,000$ to ₹ $14,00,000$. Thus, the proposed sales mix should be accepted.

MERGER OF PLANTS

BQ 29

Two manufacturing companies A and B are planning to merge. The details are as follows:

	\boldsymbol{A}	\boldsymbol{B}
Capacity utilisation $(\%)$	90	60
Sales $(₹)$	$31,50,000$	$24,00,000$
Variable Cost $(₹)$	$19,80,000$	$11,25,000$
Fixed Cost $(₹)$	$6,50,000$	$7,50,000$

Assuming that the proposal is implemented, calculate:

(1) Break-Even sales of the merged plant and the capacity utilization at that stage.
(2) Profitability of the merged plant at 80% capacity utilization.
(3) Sales Turnover of the merged plant to earn a profit of ₹ $30,00,000$.
(4) When the merged plant is working at a capacity to earn a profit of ₹ $30,00,000$, what percentage of increase in selling price is required to sustain an increase of 5% in fixed overheads.

Answer

(1) Break-Even sales of the merged plant and the capacity utilization at that stage:
$\left.\begin{array}{rllll}\text { Break-Even Sales } & = & \text { Fixed Cost } \div \text { P/V Ratio } \\ & = & = & \text { ₹3 } 14,00,000 \div 45.67 \%\end{array}\right)$
(2) Profitability of merged plant at 80\% Capacity:

Profit	$=$	Contribution - Fixed Cost	
	$=$	$\{(₹ 75,00,000 \times 80 \%) \times 45.67 \%\}-₹ 14,00,000=\quad ₹ 13,40,200$	

(3) Sales to earn a profit of $₹ 30,00,000$:

Sales	$=$	(Fixed Cost + Profit $) \div \mathrm{P} / \mathrm{V}$ Ratio
	$=$	$(₹ 14,00,000+₹ 30,00,000) \div 45.67 \%$

(4) $\%$ increase in selling price:

Increase in fixed cost	$=$	$₹ 14,00,000 \times 5 \%$	$=$
$\therefore \%$ increase in sales price	$=$	$(₹ 70,000 \div ₹ 96,34,333) \times 100$	$=$

Working Notes:

Calculation of Sales, Variable Cost, P/V Ratio and Fixed Cost at 100\% capacity of merged plant:

Sales	$=$	$(₹ 31,50,000 \div 90 \%)+(₹ 24,00,000 \div 60 \%)$	$=$	$₹ 75,00,000$
Variable Cost	$=(₹ 19,80,000 \div 90 \%)+(₹ 11,25,000 \div 60 \%)$	$=$	$₹ 40,75,000$	
P/V Ratio	$=($ Contribution \div Sales $) \times 100$			
	$=\{(₹ 75,00,000-₹ 40,75,000) \div ₹ 75,00,000\} \times 100$	$=$	45.67%	
Fixed Cost	$=₹ 6,50,000+₹ 7,50,000$	$=₹ 14,00,000$		

KEY FACTOR OR LIMITING FACTOR

BQ 30
Moon Ltd. produces products ' X ', ' Y ', ' Z ' and has decided to analyse it's production mix in respect of these three products: ' X ', ' Y ', ' Z '.

You have the following information:

		\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
		160	120	80
Direct Material ₹ (per unit)		8	20	12
Variable Overheads ₹ (per unit)				
Direct Labour:				
Departments:	Rate per hour (₹)	Hours per unit	Hours per unit	Hours per unit
		\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Department A	4	6	10	5
Department B	8	6	15	11

From the current budget, further details are as below:

Particulars	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Annual production at present (in units)	10,000	12,000	20,000
Estimated selling price per unit ($₹$)	312	400	240
Sales departments estimate of possible	12,000	16,000	24,000
sales in the coming year (in units)			

There is constraint on supply of labour in Department A and its manpower cannot be increased beyond its present level.

Required:

(i) Identify the best possible product mix of Moon Ltd.
(ii) Calculate the total contribution from the best possible product mix.

Answer

(i) Statement Showing Best Possible Mix of Moon Ltd.

Rank	Product	Units/Mix	Labour hours dept. \boldsymbol{A}
I	Product X	12,000	72,000
II	Product Y	16,000	$1,60,000$
III	Product Z $(48,000 \div 5)$	9,600	48,000 (b.f.)
Total		$\mathbf{3 7 , 6 0 0}$	$\mathbf{2 , 8 0 , 0 0 0}$

Best possible mix of X, Y, Z is $12,000: 16,000: 9,600$
(ii) Calculation of contribution from best possible mix:

Total contribution $=12,000$ units of $\mathrm{X} \times 72+16,000$ units of $\mathrm{Y} \times 100+9,600$ units of $\mathrm{Z} \times 40$
$=$ ₹28,48,000

Working notes:

(1) Calculation of total available labour hours in department A:

Total available labour hours	$=\quad$10,000 units of $\mathrm{X} \times 6$ hours $+12,000$ units of $\mathrm{Y} \times 10$ hours \quad20,000 units of $\mathrm{Z} \times 5$ hours
$2,80,000$ hours	

(2) Calculation of Contribution per labour hour of department A and Rank:

Particulars	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Sale price per unit	312	400	240
Less: Direct materials per unit	160	120	80
Less: Variable overheads per unit	8	20	12
Less: Wages per unit:	24	40	20
Department A	(6×4)	(10×4)	(5×4)
	48	120	88
Department B	(6×8)	(15×8)	(11×8)
Contribution per unit	$\div 6$	100	40
\div Labour hours per unit of Dept. A	12	$\div 10$	$\div 5$
Contribution per labour hour Dept. A	\boldsymbol{I}	$\mathbf{I I}$	8
Rank		$\boldsymbol{I I}$	$\mathbf{I I I}$

BQ 31

X Ltd. supplies spare parts to an air craft company Y Ltd. The production capacity of X Ltd. facilitates production of any one spare part for a particular period of time. The following are the cost and other information for the production of the two different spare parts A and B:

Per unit	Part \boldsymbol{A}	Part B
Alloy usage	1.6 kgs.	1.6 kgs.
Machine Time: Machine A	0.6 hrs	0.25 hrs.
Machine Time: Machine B	0.5 hrs.	0.55 hrs.
Target Price (Y)	145	115

Total hours available for Machine A: 4,000 hours and for Machine B: 4,500 hours. Alloy available is 13,000 kgs @ ₹ 12.50 per kg. Variable overheads per machine hours for Machine A: ₹80 and for Machine B: ₹100

Required

1. Identify the spare part which will optimize contribution at the offered price.
2. If Y Ltd. reduces target price by 10% and offers $₹ 60$ per hour of unutilized machine hour, what will be the total contribution from the spare part identified above?

Answer

1. Statement Showing Optimum Contribution

Particulars	Part A	Part B
Maximum units to be manufactured and sold	6,666	8,125
Sales Price	145	115
Less: Materials 1.60 kgs. @ ₹12.50 per kg	20	20
Variable overheads Machine A 0.6/.25 hour @ ₹80	48	20
Variable overheads Machine B 0.5/.55 hour @ ₹100	50	55
Contribution per unit	$\mathbf{2 7}$	$\mathbf{2 0}$
Maximum Contribution (Contribution per unit \times Max. units)	$\mathbf{1 , 7 9 , 9 8 2}$	$\mathbf{1 , 6 2 , 5 0 0}$

Calculation of maximum number of units that can be produced under various limiting factor:

Particulars	Part A	Part B
Machine A (4,000 hours)	6,666	16,000
	$(4,000 \div 0.6)$	$(4,000 \div 0.25)$
Machine B (4,500 hours)	9,000	8,181
	$(4,500 \div 0.5)$	$(4,500 \div 0.55)$
Alloy Available (13,000 kg.)	8,125	8,125
Maximum number of part to be manufactured (least of all)	$(13,000 \div 1.6)$	$(13,000 \div 1.6)$

Spare Part A will optimize the contribution.
2. Statement Showing Revised Contribution

\quad Particulars	Part A
Parts to be manufactured	6,666
Machine A to be used $(0.6 \times 6,666)$	4,000
Machine B to be used $(0.5 \times 6,666)$	3,333
Underutilized machine hours $(4,500-3,333)$	1,167
Compensation for unutilized machine hours $(1,167 \times ₹ 60)$	70,020
Reduction in price by $10 \%(6,666 \times 145 \times 10 \%)$	96,657
Total revised contribution $(\mathbf{1 , 7 9 , 9 8 2}+\mathbf{7 0 , 0 2 0} \mathbf{- 9 6 , 6 5 7})$	
$\mathbf{1}, 53,345$	

BQ 32
A company can make any one of the 3 products X, Y or Z in a year. It can exercise its option only at the beginning of each year. Fixed cost for the period is ₹ 30,000 , Relevant information about the products for the next year is given below:

Details	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Selling price per unit (₹)	10	12	12
Variable cost per unit (₹)	6	9	7
Market demand in units	3,000	2,000	1,000
Production capacity in units	2,000	3,000	900

Compute the opportunity costs for each of the products.

Answer

Statement Showing Opportunity Cost

Details	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Contribution per unit (₹)	4	3	5
Units	2,000	2,000	900
(lower of market demand or production capacity)			
Possible contribution (₹)	8,000	6,000	4,500
Opportunity cost (₹)	6,000	8,000	8,000

Opportunity cost is the maximum possible contribution forgone by not producing alternative product i.e. if Product X is produced then opportunity cost will be maximum of ($₹ 6,000$ from Y, ₹ 4,500 from Z).

MAKE OR BUY DECISION

BQ 33

NN Ltd. manufactures automobiles accessories and parts. The following are the total cost of processing 2,00,000 units:

Direct material cost
Direct labour cost
Variable factory overhead
Fixed factory overhead
₹375 per unit
₹80 per unit
₹16 per unit
₹500 Lakhs

The purchase price of the component is $₹ 485$. The fixed overhead would continue to be incurred even when the component is bought from outside.

Required:

(a) Should the part be made or bought from outside considering that the present facility when released following a buying decision would remain idle?
(b) In case the released capacity can be rented out to another manufacturer for ₹ $32,00,000$ having good demand. What should be the decision?

Answer

(a) Make or Buy decision when present facility would remain idle:

Variable cost per unit	$=$	$₹ 375+₹ 80+₹ 16$	$=$
Buying cost of component	$=$	$₹ 485$	

Decision: Here the variable cost of making the component is ₹471 as compared to buying cost of ₹485. The
component shall be made by using own production facility as it would save the company ₹14 per unit.
Note: The fixed cost of ₹ 500 lakhs is irrelevant for decision making as it would incur in either case.
(b) Make or Buy decision when present facility can be rented out:
$\begin{array}{lllll}\text { Rental income if we buy } & = & ₹ 32,00,000 & \\ \text { Additional cost of buying } & = & (₹ 485-₹ 471) \times 2,00,000 \text { units } & = & ₹ 28,00,000 \\ \text { Net benefit if we buy } & = & ₹ 32,00,000-₹ 28,00,000 & = & ₹ 4,00,000\end{array}$
Net benefit if we buy $=$ ₹32,00,000 - ₹28,00,000 $=$ ₹4,00,000
Decision: The component should be bought from outside as it would save the company ₹4,00,000 in fixed cost.

PROCESSING OF SPECIAL ORDER

BQ 34

PQR Ltd. manufactures medals for winners of athletic events and other contests. Its manufacturing plant has the capacity to produce 10,000 medals each month. The company has current production and sales level of 7,500 medals per month. The current domestic market price of the medal is ₹ 150 . The cost data for the month of August 2023 is as under:

	(₹)
Variable cost:	
Direct material cost	$2,62,500$
Direct labour cost	$3,00,000$
Overheads	75,000
Fixed manufacturing cost	$2,75,000$
Fixed marketing cost	$1,75,000$
Total cost	$\mathbf{1 0 , 8 7 , 5 0 0}$

PQR Ltd. has received a special onetime only order for 2,500 medals at $₹ 120$ per medal.

Required:

(1) Should PQR Ltd. accept the special order? Why? Explain briefly.
(2) Suppose the plant capacity was 9,000 medals instead of 10,000 medals each month. The special order must be taken either in full or rejected totally. Analyse whether PQR Ltd. should accept the special order or not.

Answer

(1) Profit if we accept special order of 2,500 units with capacity of 10,000 units:

Particulars		Amount (${ }^{\text {) }}$
Sales	(7,500 units \times ₹ 150) + (2,500 units \times ₹ 120)	14,25,000
Less: Variable Cost:		
Direct material cost	$(2,62,500 \times 10,000 / 7,500)$	3,50,000
Direct labour cost	$(3,00,000 \times 10,000 / 7,500)$	4,00,000
Overheads	$(75,000 \times 10,000 / 7,500)$	1,00,000
Contribution		5,75,000
Less: Fixed manufacturing cost		2,75,000
Less: Fixed marketing cost		1,75,000
	osed Profit	1,25,000

Decision: The offer for 2,500 units be accepted as it increases the profit by ₹ 87,500 ($₹ 1,25,000$ - ₹ 37,500).
(2) Profit if we accept special order of 2,500 units with capacity of 9,000 units:

Particulars		Amount (\%)
Sales	(6,500 units \times ₹ 150) + (2,500 units \times ₹ 120)	12,75,000
Less: Variable Cost:		
Direct material cost	(2,62,500 $\times 9,000 / 7,500)$	3,15,000
Direct labour cost	(3,00,000 $\times 9,000 / 7,500)$	3,60,000
Overheads	$(75,000 \times 9,000 / 7,500)$	90,000
Contribution		5,10,000
Less: Fixed manufacturing cost		2,75,000
Less: Fixed marketing cost		1,75,000
	oosed Profit	60,000

Decision: The offer for 2,500 units be accepted as it increases the profit by ₹22,500 (₹ $60,000-₹ 37,500$).

Working note:

Existing profit at 7,500 units

Particulars	Amount (${ }^{\text {) }}$
Sales (7,500 units \times ₹ 150$)$	11,25,000
Less: Variable Cost:	
Direct material cost	2,62,500
Direct labour cost	3,00,000
Overheads	75,000
Contribution	4,87,500
Less: Fixed manufacturing cost	2,75,000
Less: Fixed marketing cost	1,75,000
Existing Profit	37,500

ABSORPTION COSTING V/S MARGINAL COSTING

BQ 35

XYZ Ltd. has a production capacity of 2,00,000 units per year normal capacity utilization is reckoned as 90%. Standard variable production costs are ₹ 11 per unit. The fixed costs are ₹ $3,60,000$ per year. Variable selling costs are ₹ 3 per unit \& fixed selling costs are ₹ $2,70,000$ per year. The unit selling price is ₹ 20 . In the year just ended on $30^{\text {th }}$ June 2023, the production was $1,60,000$ units \& sales were $1,50,000$ units. The closing inventory on $30^{\text {th }}$ June 2023 was 20,000 units. The actual variable production costs for the year were ₹ 35,000 higher than the standard.

Calculate the profit for the year:

(a) By the absorption costing method,
(b) By the marginal costing method,
(c) Explain the difference in the profits.

Answer

(a) Income Statement (Under Absorption Costing)

Particulars		₹
Sales (1,50,000 units @ ₹20)		$30,00,000$
Production costs:	$17,60,000$	
Variable (1,60,000 units @ ₹11)	$-35,000$	$17,95,000$
Add :Increase		$3,20,000$

Cost of Goods Produced	21,15,000
Add: Opening stock (10,000 Units @ ₹ $13 *$)	1,30,000
Less: Closing stock $\left(\frac{21,15,000}{1,60,000} \times 20,000\right.$ units $)$	$(2,64,375)$
Cost of Goods Sold	19,80,625
Add: Under absorbed fixed production overhead (3,60,000-3,20,000)	40,000
Add: Variable selling costs (1,50,000 units @ ₹ 3)	4,50,000
Add: Fixed selling costs	2,70,000
Total cost	27,40,625
Profit (Sales - Total Cost)	2,59,375

(b) Income Statement (Under Marginal Costing)

Particulars	₹
Sales (1,50,000 units @ ₹20) Variable cost of goods sold: Variable production cost (1,60,000 units @ ₹ 11 + ₹ 35,000) Variable cost of production	30,00,000
	17,95,000
	17,95,000
Add: Opening Stock (10,000 units @ ₹11)	1,10,000
Less: Closing stock $\left(\frac{17,95,000}{1,60,000} \times 20,000\right.$ units $)$	$(2,24,375)$
Variable cost of goods sold	16,80,625
	4,50,000
Variable Cost of Sales Contribution (Sales - Variable Cost of Sales)	21,30,625
	8,69,375
Less: Fixed cost:	
Production 3,60,000	
Selling $\quad \underline{\text { 2,70,000 }}$	$(6,30,000)$
Profit (Contribution - Fixed Cost)	2,39,375

Working Notes:

- Fixed production overhead are absorbed at a pre-determined rate based on normal capacity, i.e. $₹ 3,60,000 \div 1,80,000$ units $=₹ 2$ per unit
- Opening stock is 10,000 units (1,50,000 units $+20,000$ units $-1,60,000$ units). It is valued at $₹ 13$ per unit [₹11 + ₹2 (standard variable + standard fixed)].

(c) Reconciliation Statement

Particulars	$₹$
Profit as per absorption costing	$2,59,375$
Add: Opening stock under-valued in marginal costing (₹ $1,30,000-₹ 1,10,000)$	20,000
Less: Closing Stock under-valued in marginal closing ($₹ 2,64,375-₹ 2,24,375)$	$(40,000)$
Profit as per marginal costing	$2,39,375$

BQ 36

Wonder ltd manufactures a single product, ZEST. The following figures relate to ZEST for a one year period:

Activity Level	$\mathbf{5 0 \%}$	$\mathbf{1 0 0 \%}$
Sales and production (units)	₹	
Sales	$₹ 000000$	$₹ 16,00,000$
Production costs:		
Variable	$₹ 30,000$	$₹ 6,40,000$
Fixed	$₹ 1,60,000$	$₹ 1,60,000$

Selling and distribution costs:
Variable
Fixed
₹ $1,60,000$
₹ $3,20,000$
Fixed
₹2,40,000
₹2,40,000
The normal level of activity for the year is 800 units. Fixed costs are incurred evenly throughout the year and actual fixed costs are the same as budgeted. There were no stocks of ZEST at the beginning of the year. In the first quarter, 220 units were produced and 160 units were sold.

Required:

(a) What would be the fixed production costs absorbed by ZEST if absorption costing is used?
(b) What would be the under/over-recovery of overheads during the period?
(c) What would be the profit using absorption costing?
(d) What would be the profit using marginal costing?
(e) Why is there a difference between the answers to (c) and (d)?

Answer

(a) Fixed production costs absorbed:

Budgeted fixed production costs
₹ $1,60,000$
Budgeted output (Normal level of activity 800 units)
Therefore, the absorption rate ($₹ 1,60,000 \div 800$)
₹200 per unit
Fixed cost recovered (During the first quarter, 220 units \times ₹200)
₹ 44,000
(b) Under/over-recovery of overheads during the period:

Actual fixed production overhead ($1 / 4$ of $₹ 1,60,000$)
₹ 40,000
Absorbed fixed production overhead ₹44,000
Over-recovery of overheads ₹4,000
(c) Profit for the Quarter (Absorption Costing)

Activity Level	₹	₹
Sales revenue (160 units \times ₹ 2,000)		3,20,000
Production costs: Variable (220 units \times ₹ 800) Fixed overheads absorbed (220 units \times ₹200)	$\begin{gathered} 1,76,000 \\ 44,000 \end{gathered}$	2,20,000
Cost of production Add: Opening stock Less: Closing stock ($₹ 2,20,000 \div 220$ units) $\times 60$ units		$\begin{gathered} \hline 2,20,000 \\ \text { Nil } \\ (60,000) \\ \hline \end{gathered}$
Cost of goods sold Less: Adjustment for over recovery of fixed overheads		$\begin{gathered} \mathbf{1 , 6 0 , 0 0 0} \\ (4,000) \end{gathered}$
Add: Selling and distribution costs: Variable (160 units \times ₹ 400) Fixed ($1 / 4$ of $₹ 2,40,000$)	$\begin{aligned} & 64,000 \\ & 60,000 \end{aligned}$	1,24,000
Cost of sales		2,80,000
Profit (Sales - Cost of sales)		40,000

(d) Profit for the Quarter (Marginal costing)

Activity Level	₹	₹
Sales revenue (160 units \times ₹ 2,000)		3,20,000
Production costs: Variable (220 units \times ₹ 800)		1,76,000
Cost of production Add: Opening stock Less: Closing stock ($₹ 1,76,000 \div 220$ units) $\times 60$ units		$\begin{gathered} \hline \mathbf{1 , 7 6 , 0 0 0} \mathrm{Nil} \\ \mathrm{Ni} \\ (48,000) \end{gathered}$

		1,28,000
	Add: Selling and distribution costs:	
Variable (160 units \times ₹ 400)		64,000
Cost of sales		1,92,000
Contribution (Sales - Variable Cost of sales)		1,28,000
Less: Fixed costs:		
Production	40,000	
Selling \& distribution	60,000	$(1,00,000)$
Profit		28,000

(e) Difference in profit between both techniques is due to difference in valuation of closing stock:

Profit as per Marginal costing
28,000
Add: under valuation of closing stock in marginal costing (60,000-48,000)
12,000
Profit as per Absorption costing
40,000

OTHERS

BQ 37

Arnav Ltd. manufacture and sales its product R9. The following figures have been collected from cost records of last year for the product R9:

Elements of Cost	Variable Cost Portion	Fixed Cost
Direct Material	30% of Cost of Goods Sold	-
Direct Labour	15% of Cost of Goods Sold	-
Factory Overhead	10% of Cost of Goods Sold	$₹ 2,30,000$
Administration Overhead	2% of Cost of Goods Sold	$₹ 71,000$
Selling and Distribution Overhead	4% of Cost of Sales	$₹ 68,000$

Last Year 5,000 units were sold at ₹ 185 per unit. From the given data find the followings:
(a) Break-even Sales (in rupees),
(b) Profit earned during last year,
(c) Margin of safety (in \%),
(d) Profit if the sales were 10% less than the actual sales.
(Assume that Administration Overhead is related with production activity)

Answer

(a) Break-even Sales $\quad=\quad$ Fixed Cost \div PV Ratio

$$
=₹ 3,69,000 \div 53.4054 \% \quad=\quad \text { ₹6,90,941 }
$$

(b) Profit Last Year $=$ Sales - Variable Cost - Fixed Cost

$$
=5,000 \text { units } \times ₹ 185-₹ 4,31,000-₹ 3,69,000=₹ 1,25,000
$$

(c) Margin of safety (\%)

Margin of Safety	$=$	Sales - BEP Sales ₹9,25,000 - ₹6,90,941	$=$	₹2,34,059
Margin of Safety (\%)	$=$	MOS Sales \div Sales		
	$=$	$₹ 2,34,059 \div ₹ 9,25,000$		25.3036%

(d) Profit at 90% Sales $=90 \%$ of Sales -90% of Variable Cost - Fixed Cost
$=90 \%(₹ 9,25,000-₹ 4,31,000)-₹ 3,69,000=$ F75,600

Working notes:

1. Cost of Goods Sold		$\begin{aligned} & \text { Direct Material + Direct Labour + Factory 0 } \\ & 30 \% \text { COGS }+15 \% \text { COGS }+10 \% \text { COGS + ₹2,3 } \\ & +₹ 71,000 \end{aligned}$	+	nistration OH \% COGS
Cost of Goods Sold	$=$	57% of COGS + ₹ $3,01,000$ or 43% of COGS	=	₹ $3,01,000$
Cost of Goods Sold	$=$	₹ $3,01,000 \div 43 \%$	=	₹7,00,000
2. Cost of Sales	=	COGS + Selling and Distribution Overheads		
	=	₹ $7,00,000+4 \%$ of Cost of Sales + ₹ 68,000		
Cost of Sales	=	₹ $7,68,000 \div 96 \%$	=	₹ $8,00,000$

3. Classification of Fixed and Variable Cost

Elements of Cost	Variable Cost Portion	Fixed Cost
Direct Material	30% of $₹ 7,00,000=₹ 2,10,000$	-
Direct Labour	15% of $₹ 7,00,000=₹ 1,05,000$	-
Factory Overhead	10% of $₹ 7,00,000=₹ 70,000$	$₹ 2,30,000$
Administration Overhead	2% of $₹ 7,00,000=₹ 14,000$	$₹ 71,000$
Selling and Distribution Overhead	4% of $₹ 8,00,000=₹ 32,000$	$₹ 68,000$
Total	$₹ 4,31,000$	$₹ 3,69,000$

4. Profit Volume Ratio $=\frac{\text { Sales }- \text { Variable Cost }}{\text { Sales }} \times 100=\frac{5,000 \text { units } \times 185-4,31,000}{5,000 \text { units } \times 185} \times 100$

$$
=53.4054 \%
$$

BQ 38

By noting " P / V will increase or P / V will decrease or P / V will not change", as the case may be, state how the following independent situations will affect the P / V ratio:

1. An increase in the physical sales volume;
2. An increase in the fixed cost;
3. A decrease in the variable cost per unit;
4. A decrease in the contribution margin;
5. An increase in selling price per unit;
6. A decrease in the fixed cost;
7. A 10% increase in both selling price and variable cost per unit;
8. A 10% increase in the selling price per unit and 10% decrease in the physical sales volume;
9. A 50% increase in the variable cost per unit and 50% decrease in the fixed cost.
10. An increase in the angle of incidence.

Answer

Item number	P/V Ratio	Reason
1	Will not change	-
2	Will not change	-
3	Will increase	-
4	Will decrease	-
5	Will increase	-
6	Will not change	-
7	Will not change	Reasoning 1
8	Will increase	Reasoning 2
9	Will decrease	Reasoning 3
10	Will increase	Reasoning 4

Reasoning 1: A 10\% increase in both selling price and variable cost per unit.
Assumptions: a) Variable cost is less than selling price.
b) Selling price ₹ 100 variable cost ₹ 90 per unit.
c) P / V ratio $=\frac{100-90}{100}=10 \%$
$\begin{array}{lll}10 \% \text { increase in S.P. } & = & ₹ 110 \\ 10 \% \text { increase in variable cost } & = & ₹ 99 \\ \mathrm{P} / \mathrm{V} \text { ratio } & = & 10 \% \text { i.e. } \mathrm{P} / \mathrm{V} \text { ratio will not change }\end{array}$
Reasoning 2: Increase or decrease in physical sales volume will not change P/V ratio. Hence 10\% increase in selling price per unit will increase P / V ratio.

Reasoning 3: Increase or decrease in fixed cost will not change P/V ratio. Hence 50% increase in the variable cost per unit will decrease P / V ratio.

Reasoning 4: Angle of incidence is the angle at which sales line cuts the total cost line. If it is large, it indicates that the profits are being made at higher rate. Hence increase in the angle of incidence will increase the P / V ratio.

BQ 39

XY Ltd. makes two products X and Y, whose respective fixed costs are F1 and F2. You are given that the unit contribution of Y is one fifth less than the unit contribution of X , that the total of F1 and F2 is ₹1,50,000, that the BEP of X is 1,800 units (for BEP of X F2 is not considered) and that 3,000 units is the indifference point between X and Y . (i.e. X and Y make equal profits at 3,000 unit volume, considering their respective fixed costs). There is no inventory build up as whatever is produced is sold.

Find out the values F1 and F2 and units contributions of X and Y.

Answer

Let $C x$ be the Contribution per unit of Product X. Therefore, Contribution per unit of Product $\mathrm{Y}=$

$$
\mathrm{Cy}=4 / 5 \mathrm{Cx} \quad=\quad 0.8 \mathrm{Cx}
$$

Given F1 + F2	=	1,50,000,		
F1	=	1,800 Cx (Break even Volume \times Contribution per		
unit)				
Therefore, F2	$=$	1,50,000-1,800 Cx		
3,000 Cx - F1	=	$3,000 \times 0.8 \mathrm{Cx}-\mathrm{F} 2$ or 3,000 Cx - F1		
	=	2,400 Cx-F2	(Indifference Point)	
i.e., 3,000 Cx-1,800 Cx	=	2,400 Cx - 1,50,000 + 1,800 Cx		
i.e., 3,000 Cx	=	1,50,000,		
Cx	=	1,50,000 $\div 3,000$	=	₹50
Contribution per unit of X	=	F50		
Contribution per unit of Y	=	₹ 50×0.8	=	F40
Fixed Cost of X	$=$	F1		
	=	$1,800 \times 50$	=	F90,000
Fixed Cost of Y	=	F2		
	=	1,50,000-90,000	=	₹60,000

PAST YEAR QUESTIONS

PYQ 1

SHA Limited provides the following trading results:

Year	Sales	Profit
$2012-13$	$₹ 25,00,000$	10% of Sale
$2013-14$	$₹ 20,00,000$	8% of Sale

You are required to calculate:
(i) Fixed Cost
(ii) Break Even Point
(iii) Amount of profit, if sale is ₹ $30,00,000$
(iv) Sale, when desired profit is ₹ $4,75,000$
(v) Margin of Safety at a profit of ₹ $2,70,000$
[(5 Marks) May 2014]
Answer
(i) Calculation of Fixed Cost (by using data of year 2012-13):

Fixed cost $=$ Contribution - profit $=$ (Sales \times PV Ratio) -10% of Sale

$$
=\quad(₹ 25,00,000 \times 18 \%)-10 \% \text { of } ₹ 25,00,000=\quad=2,00,000
$$

(ii) Calculation of Break Even Point:

$$
\text { BEP } \quad=\frac{\text { Fixed Cost }}{\text { PV Ratio }} \quad=\frac{2,00,000}{18 \%} \quad=\quad \text { ₹11,11,111.11 }
$$

(iii) Calculation of Amount of profit, if Sale is $₹ 30,00,000$:

Profit	$=$	Contribution - Fixed Cost
	$=$	$₹ 30,00,000 \times 18 \%-2,00,000$

(iv) Sales, when desired profit is $₹ 4,75,000$:

$$
\begin{aligned}
\text { Sales } & =\frac{\text { Fixed Cost }+ \text { Desired Pr ofit }}{\text { PV Ratio }}=\frac{2,00,000+4,75,000}{18 \%} \\
& =\text { F37,50,000 }
\end{aligned}
$$

(v) Margin of Safety at a profit of $\mathfrak{F}^{2}, 70,000$:

$$
\text { MOS } \quad=\frac{\text { Pr ofit }}{\text { PV Ratio }}=\frac{2,70,000}{18 \%}=₹ 15,00,000
$$

Working Note:

$$
\begin{aligned}
\text { PV Ratio } & =\frac{\text { Difference in Pr ofit }}{\text { Difference in Sales }} \times 100=\frac{10 \% \text { of } 25,00,000-8 \% \text { of } 20,00,000}{25,00,000-20,00,000} \times 100 \\
& =\frac{90,000}{5,00,000} \times 100
\end{aligned}
$$

PYQ 2

ABC Limited started is operation in the year 2013 with the total production capacity of $2,00,000$ units. The following information, for two years, are made available to you:

	2013	2014
Sales units	80,000	$1,20,000$
Total cost $(₹)$	$34,40,000$	$45,60,000$

There has been no change in the cost structure and selling price and it is anticipated that it will remain unchanged in 2015 also. Selling price is ₹ 40 per unit.

Calculate:

(a) Variable cost per unit.
(b) Profit Volume ratio.
(c) Break-Even Point (in units).
(d) Profit if the firm operates at 75\% of the capacity.
[(5 Marks) May 2015]

Answer

(a) Variable cost per unit

$$
=\frac{\text { Increase in Cost }}{\text { Increase in Units }} \quad=\frac{45,60,000-34,40,000}{1,20,000-80,000}
$$

$$
=\quad \text { ₹28 per unit }
$$

(b) Profit Volume ratio $=\frac{\text { Contributi on per unit }}{\text { Sale price per unit }} \times 100=\frac{40-28}{40} \times 100$
$=30 \%$
(c) Break Even Point (in units) $=\frac{\text { Fixed Cost }}{\text { Cont }^{\text {P P.U. }}}=\frac{12,00,000}{12}=\mathbf{1 , 0 0 , 0 0 0}$ units
(d) Profit at 75\% of total capacity:

$$
\begin{array}{lll}
\text { Profit } & = & (\text { No. of units sold } \times \text { Contn per unit) - Fixed cost } \\
& =\quad(2,00,000 \times 75 \% \times ₹ 12)-12,00,000=\quad=\quad \text { ₹ } 6,00,000
\end{array}
$$

Working Note:

Fixed Cost $=$ Total cost - Variable cost (by using data of 2013)

$$
=34,40,000-(80,000 \times 28)=12,00,000
$$

PYQ 3

SL Limited is engaged in manufacture of tyres. Analysis of income statement indicated a profit of ₹150 Lakhs on a sales volume of 50,000 units. The fixed costs are ₹ 850 Lakhs which appears to be high. Existing selling price is ₹ 3,400 per unit. The company is considering to revise the target profit to ₹ 350 Lakhs.

You are required to compute:

(i) Break even point at existing levels in units and in rupees.
(ii) The number of units required to be sold to earn the target profit.
(iii) Profit with 15% increase in selling price and drop in sales volume by 10%
(iv) Volume to be achieved to earn target profit at revised selling price as calculated in (iii) above, if reduction of 8% in the variable costs and ₹ 85 Lakhs in the fixed cost is envisaged.
[(8 Marks) June 2015]

Answer

(i) Break even point (in units) $=\frac{\text { Fixed Cost }}{\text { Contributi on Per Unit }}=\frac{850 \text { Lakhs }}{2,000}=42,500$ Units

Break even point (in rupees) = BEP in Units \times Sales Price Per Unit
(ii) Sales to earn target profit $=\frac{\text { Fixed Cost }+ \text { Targ et Pr ofit }}{\text { Contributi on Per Unit }}=\frac{850 \text { Lakhs }+350 \text { Lakhs }}{2,000}$
(iii) Revised Profit = Revised Contribution - Fixed Cost

$$
=\quad[₹ 2,510 \times 45,000 \text { units }(50,000-10 \%)]-850 \text { Lakhs }
$$

$$
=\quad \text { ₹279.5 Lakhs }
$$

(iv) Volume to earn target profit $=\frac{\mathrm{Re} \text { vised Fixed Cost }+\mathrm{Targ} \text { et Pr ofit }}{\text { Re vised Contributi on Per Unit }}$

$$
=\frac{765 \text { Lakhs }+350 \text { Lakhs }}{2,622}=42,524.79 \text { Units }
$$

Working Note:

(a) Calculation of Contribution per unit and PV Ratio:

| Contribution | $=$ | Fixed Cost + Profit | $=1,000$ Lakhs |
| :--- | :--- | :--- | :--- | :--- |
| | $=$ | 850 Lakhs +150 Lakhs | |
| Contribution Per Unit | $=$ | Total Contribution \div No of units | |
| | $=$ | 1,000 Lakhs $\div 50,000$ units 2,000 per unit | |

(b) Calculation of Revised Contribution with 15\% increase in sale price:

Revised Contribution	$=\quad$ Revised Sale Price - Variable Cost
	$=\quad(3,400+15 \%)-1,400$

(c) Calculation of Revised Variable Cost per unit, Revised Contribution per unit and Fixed Cost:

Revised Variable Cost	$=$	Variable Cost -8%	$=$
	$=$	$1,400-8 \%$	$=288$ per unit
Revised Contribution per unit	$=$	$(3,400+15 \%)-1,288$	$=$
Revised Fixed Cost	$=$	850 Lakhs -85 Lakhs	$=$

PYQ 4

A company gives the following information:

Margin of safety	$:$	$₹ 3,75,000$
Total cost	$:$	$₹ 3,87,500$
Margin of safety in units	$:$	15,000 units
Break even sales in units	$:$	5,000 units

You are required to calculate:

(i) Selling price per unit, (ii) Profit, (iii) Profit/Volume ratio, (iv) Break even sales (in ₹), (v) Fixed cost
[(5 Marks) Nov 2015]
Answer
$\begin{aligned} \text { (i) Selling price per unit } & =\quad \frac{\text { Marg in of safety in rupees }}{\text { Marg in of safety in units }}=\frac{3,75,000}{15,000}=\quad \text { ₹25 } \\ \text { (ii) Profit } & =\text { Total sales - Total cost } \\ & =[(15,000+5,000) \times 25]-3,87,500=\text { ₹1,12,500 }\end{aligned}$
(iii)

Profit/Volume ratio	=	Pr ofit	=	$\frac{1,12,500}{3,75,000} \times 100$		
		Marg in of safety in rupees				
	$=$	30\%				
Break even sales in rupees	=	Break even point in units \times sale price per unit				
	=	5,000 units $\times 25$		₹1,25,000		
Fixed cost	=	Break even point in rupees \times PV ratio				
	=					

PYQ 5

A dairy product company manufacturing baby food with a shelf life of one year furnishes the following information:
(i) On $1^{\text {st }}$ January, 2016, the company has an opening stock of 20,000 packets whose variable cost is ₹ 180 per packet.
(ii) In 2015, production was 1,20,000 packets and the expected production in 2016 is $1,50,000$ packets. Expected sales for 2016 is $1,60,000$ packets.
(iii) In 2015, fixed cost per unit was ₹60 and it is expected to increase by 10% in 2016. The variable cost is expected to increase by 25%. Selling price for 2016 has been fixed at ₹ 300 per packet.

You are required to calculate the Break-even volume in units for 2016.
[(5 Marks) May 2016]
Answer
Break-even-point (in units) $=\quad$ Opening units $+\frac{\text { Fixed } \cos t-\text { Contributi on from opening units }}{\text { Contributi on per current period unit }}$

$$
=\quad 20,000 \text { units }+\frac{79,20,000-120 \times 20,000}{300-225}=93,600 \text { Units }
$$

Note: Since, shelf life of the product is one year only, hence, opening stock is to be sold first.
Working notes:

Fixed cost (2015)	$=$	1,20,000 packets \times ₹ 60 per unit	$=$	₹72,00,000
Fixed cost (2016)	=	₹ $72,00,000+10 \%$	=	F79,20,000
Variable cost (2016)	=	₹ $180+25 \%$	=	F225 per unit
Contribution (2015)	=	₹ 300 - ₹180	=	₹120 per unit

PYQ 6

The M-Tech Manufacturing Company is presently evaluating two possible processes for the manufacture of a toy. The following information is available:

Particulars	Process \boldsymbol{A} (₹)	Process \boldsymbol{B} ($)$)
Variable cost per unit	12	14
Sales price per unit	20	20
Total fixed cost per year	$30,00,000$	$21,00,000$
Capacity (in units)	$4,30,000$	$5,00,000$
Anticipated sales (next year, in units)	$4,00,000$	$4,00,000$

Suggest:

1. Which process should be chosen?
2. Would you change your answer as given above, if you were informed that the capacities of the two processes are as follows: A-6,00,000 units; B-5,00,000 units? Why?
[(4 Marks) May 2016]

Answer

1. Profit (Process A) $=$ Contribution - Fixed cost

$$
=\quad 4,00,000 \text { units } \times ₹ 8(₹ 20-₹ 12)-₹ 30,00,000=
$$

₹2,00,000
Profit (Process B) $\quad=\quad$ Contribution - Fixed cost
$=4,00,000$ units $\times ₹ 6$ (₹20-₹ 14) - ₹ $21,00,000=$
₹3,00,000
Suggestion: Process B should be chosen as it gives more profit.
2. Profit (Process $\mathbf{A})=$ Contribution - Fixed cost

$$
=6,00,000 \text { units } \times ₹ 8(₹ 20-₹ 12)-₹ 30,00,000=
$$

₹18,00,000
Profit (Process B) $\quad=\quad$ Contribution - Fixed cost
$=5,00,000$ units $\times ₹ 6(₹ 20-₹ 14)-₹ 21,00,000=$
₹9,00,000
Suggestion: Process A should be chosen as it will give more profit.
Note: It is assumed that capacity produced equals sales.

PYQ 7

The following figures are available from the records of ABC Company as at $31^{\text {st }}$ March:

	2015 (₹ in Lakhs)	2016 ($\mathrm{F}_{\text {in Lakhs) }}$
Sales	200	250
Profit	30	45

Calculate:

1. The P / V ratio and total fixed expenses.
2. The break-even level of sales.
3. Sales required to earn a profit of $₹ 70$ lakhs.

Answer

1.	Profit Volume ratio	=	$\frac{\text { Increase in Pr ofit }}{\text { Increase in Sales }} \times 100$	=	$\frac{45-30}{250-200} \times 100$	= 30\%
	Fixed Cost	$\begin{aligned} & = \\ & = \end{aligned}$	Contribution - Profit 200 Lakhs $\times 30 \%-30$ Lakhs	=	(by using data of 2015 ₹30,00,000	
2.	Break Even Point	$=$	$\frac{\text { Fixed Cost }}{\text { PV Ratio }}$ $\mathbf{F 1 , 0 0 , 0 0 , 0 0 0}$	=	$\frac{30,00,000}{30 \%}$	
3.	Required Sales	$=$	Fixed Cost + Pr ofit PV Ratio ₹3,33,33,333	=	$\frac{30 \text { Lakhs }+70 \text { Lakhs }}{30 \%}$	

PYQ 8

A company has introduced a new product and marketed 20,000 units. Variable cost of the product is ₹20 per units and fixed overheads are ₹ $3,20,000$.

You are required to:

1. Calculate selling price per unit to earn a profit of 10% on sales value, BEP and Margin of Safely?
2. If the selling price is reduced by the company by 10%, demand is expected to increase by 5,000 units, then what will be its impact on Profit, BEP and Margin of Safety?
3. Calculate Margin of Safety if profit is ₹ 64,000 .
[(8 Marks) Nov 2016]

Answer

1. Sales:

Let Sale price per unit be ' x '
Sale price \times no of units $\quad=\quad$ Variable cost per unit \times no of units + Fixed cost + Profit
$20,000 \mathrm{x}=20 \times 20,000+3,20,000+10 \%$ of $20,000 \mathrm{x}$
$20,000 \mathrm{x}=4,00,000+3,20,000+2,000 \mathrm{x}$
$\mathrm{x}=7,20,000 \div 18,000 \quad=\quad$ F40 per unit
Break-even-point
$=\quad$ Fixed cost \div Contribution per unit
$=3,20,000 \div 20 \quad=\quad 16,000$ units
Margin of safety $\quad=\quad$ Total sales unit - BEP units
$=20,000$ units $-16,000$ units $=\mathbf{4 , 0 0 0}$ units

2. Impact on Profit, BEP and MOS:

Impact on profit:

Existing profit

Revised profit

$$
\begin{array}{ll}
= & \text { Sales }- \text { Variable cost }- \text { Fixed cost } \\
= & 20,000 \text { units } \times 40-20,000 \text { units } \times 20-3,20,000 \\
= & 80,000 \\
= & \text { Sales }- \text { Variable cost }- \text { Fixed cost } \\
= & 25,000 \text { units } \times 36(40-10 \%)-25,000 \text { units } \times 20-3,20,000 \\
= & 80,000
\end{array}
$$

Though there is no impact on the total profit amount but the rate of profit is decreased from 10% to $8.89 \%(80,000 / 9,00,000 \times 100)$.

Impact on BEP:

Revised BEP $=\quad$ Fixed cost \div Contribution per unit
$=3,20,000 \div 16(36-20)=20,000$ units
The Break-even point is increased by 4,000 units (20,000 units $-16,000$ units).

Impact on MOS:

Revised MOS $\quad=\quad$ Total sales unit - BEP units
$=25,000$ units $-20,000$ units $=\mathbf{5 , 0 0 0}$ units
Margin of safety is increased by 1,000 units (5,000 units - 4,000 units).

3. Margin of Safety when, profit $\mathbf{₹} 64,000$:

Margin of safety $\quad=\quad$ Profit \div Contribution per unit
$=64,000 \div 20 \quad=\quad 3,200$ units

PYQ 9

The following information was obtained from the records of a manufacturing unit:

Particulars	(₹)	(₹)
Sales 80,000 units @ ₹25 per unit		$20,00,000$
Materials consumed	$8,00,000$	
Variable overheads	$2,00,000$	
Labour charges	$4,00,000$	
Fixed overheads	$3,60,000$	$17,60,000$
Net profit		$2,40,000$

Calculate:

1. The number of units by selling which the company will neither lose nor gain anything.
2. The sales needed to earn a profit of 20% on sales.
3. The extra units which should be sold to obtain the present profit if it is proposed to reduce the selling price by 20% and 25%.
4. The selling price to be fixed to bring down its Break-even Point to 10,000 units under present conditions.
[(8 Marks) May 2017]

Answer

1. Break-even-point (in units) $=$ Fixed cost \div Contribution per unit

$$
=3,60,000 \div 7.50 \quad=\quad 48,000 \text { units }
$$

2. Required sales (in units) $\quad=\quad \frac{\text { Fixed } \cos t}{\text { Contributi on per unit }-\operatorname{Pr} \text { ofit per unit }}$

$$
=\frac{3,60,000}{7.50-20 \% \text { of } 25.00} \quad=\mathbf{1 , 4 4 , 0 0 0} \text { units } / \text { F36,00,000 }
$$

3. Calculation of Extra units to be sold:

No. of units sold with 20% decrease in sales price

$$
\begin{array}{llll}
& = & \frac{\text { Fixed cost }+\operatorname{Pr} \text { ofit }}{\text { Re vised contributi on per unit }}= & \frac{3,60,000+2,40,000}{2.50} \\
& =2,40,000 \text { units } \\
\text { Extra units to be sold } & =\quad 2,40,000-80,000 \quad=\quad \mathbf{1 , 6 0 , 0 0 0} \text { units }
\end{array}
$$

No. of units sold with 20% decrease in sales price

$$
\begin{aligned}
&=\frac{\text { Fixed cos } t+\operatorname{Pr} \text { ofit }}{\text { Re vised contributi on per unit }}= \\
&=4,80,000 \text { units } \\
& \text { Extra units to be sold }=\quad 4,80,000-80,000 \quad=\quad 3,60,000+2,40,000 \\
& 1.25 \\
& 4,00,000 ~ u n i t s
\end{aligned}
$$

4. Selling price per unit to bring down its BEP to 10,000 units:

	$=$	Variable Cost + Fixed Cost		
At BEP, Sales Value	$=$	10,000 units $\times ₹ 17.50+₹ 3,60,000$	$=$	$₹ 5,35,000$
		$₹ 5,35,000$	$=$	$₹ 53.50$

PYQ 10

A company, with 90% Capacity utilization, is manufacturing a product and makes a sale of ₹ $9,45,000$ at ₹ 30 per unit. The cost data is as under:

Materials	₹9 per unit
Labour	₹7 per unit
Semi variable cost (including variable cost ₹4.25 per unit)	$₹ 2,10,000$

Fixed cost is ₹ 94,500 upto 90% level of output (capacity). Beyond this, an additional amount of ₹ 15,000 will be incurred.

You are required to calculate:

(1) Level of output at break-even point,
(2) Number of units to be sold to earn a net income of 10% of sales and
(3) Level of output needed to earn a profit of ₹ $1,41,375$.
[(8 Marks) Nov 2017]

Answer

(1) Break-even-point (in units) $=$ Fixed cost \div Contribution per unit

$=$	$₹ 1,70,625 \div ₹ 9.75$	$=17,500$ units
$=$	17,500 units $\times ₹ 30$	$=\quad ₹ 5,25,000$

(2) Required sales (in units) $=\quad$ Fixed cost

$$
=\quad \frac{1,70,625}{9.75-10 \% \text { of } 30} \quad=\quad 25,278 \text { units }
$$

$$
=\quad \frac{\text { Fixed cos } t+\operatorname{Pr} \text { ofit }}{\text { Contributi on per unit }}
$$

$$
=\frac{1,70,625+1,41,375}{9.75} \quad=\quad 32,000 \text { units }
$$

Note: 32,000 units is higher than 90% activity level (31,500 units), therefore now fixed cost will be ₹1,85,625 (₹1,70,625 + ₹15,000)
Required sales (in units) $=\frac{\text { Fixed cos } t+\operatorname{Profit}}{\text { Contributi on per unit }}=\frac{1,85,625+1,41,375}{9.75}$
$=33,538.46$ units or $₹ 10,06,154$

Working notes:

Existing level of sales $=\quad$ ₹ $9,45,000 \div ₹ 30=31,500$ units
(90% capacity level)
Fixed cost in semi variable cost $=$ Total semi variable cost - variable cost

$$
=₹ 2,10,000-31,500 \times ₹ 4.25=₹ 76,125
$$

Fixed cost $=$ ₹94,500 + ₹76,125 $=$ ₹1,70,625
Contribution per unit = ₹30-₹9-₹7-₹4.25 = ₹9.75

PYQ 11

A company is producing an identical product in two factories. The following are the details in respect of both factories:

Particulars	Factory \boldsymbol{X}	Factory \boldsymbol{Y}
Sales price per unit $(\mathrm{₹})$	50	50
Variable cost per unit $(\mathrm{₹})$	40	35
	$2,00,000$	$3,00,000$

Fixed cost (₹)	40,000	30,000
Depreciation included in above fixed cost (₹)	30,000	20,000
Sales in units	40,000	30,000
Production capacity (units)		

You are required to determine:

(1) Break even point (BEP) each factory individually.
(2) Cash break even point for each factory individually.
(3) BEP for company as a whole, assuming the present product mix is in sales ratio.
(4) Consequence on profit and BEP if product mix is changed to 2:3 and total demand remain same.
[(8 Marks) May 2018]

Answer

(1) Individual BEP:

Factory X	$=$	Fixed cost \div Contribution per unit	
	$=$	$2,00,000 \div 10(50-40)$	$\mathbf{2 0 , 0 0 0}$ units
Factory Y	$=$	$=$	$\mathbf{2 0 , 0 0 0}$ units

(2) Individual Cash BEP:

Factory $\mathrm{X} \quad=\quad$ Cash fixed cost \div Contribution per unit
$=1,60,000 \div 10(50-40) \quad=\quad 16,000$ units

Factory Y $=2,70,000 \div 15(50-35)=\mathbf{1 8 , 0 0 0}$ units
(3) BEP as a whole: $\quad=\quad$ Total fixed cost \div Composite contribution per unit
$=\quad(2,00,000+3,00,000) \div 12(10 \times 3 / 5+15 \times 2 / 5)$
$=41,667$ units
(4) BEP as a whole:

Total demand original	=	30,000 of $X+20,000$ of Y	50,000 units
Revised sales X	=	50,000 $\times 2 / 5$	20,000 units
Revised sales Y	$=$	50,000 $\times 3 / 5$	30,000 units
Existing Profit	$=$ $=$ $=$	$\begin{aligned} & \text { Contribution - Fixed cost } \\ & (30,000 \times 10+20,000 \times 15)-(2,00,000+3,00,000) \\ & ₹ 1,00,000 \end{aligned}$	
Revised Profit	=	$\begin{aligned} & (20,000 \times 10+30,000 \times 15)-(2,00,000+3,00,000) \\ & ₹ 1,50,000 \end{aligned}$	
Consequence on Profit	=	Increase in Profit by 50,000	
Revised BEP	$=$ $=$ $=$	Total fixed cost \div Revised composite contribution per unit$\begin{aligned} & (2,00,000+3,00,000) \div 13(10 \times 2 / 5+15 \times 3 / 5) \\ & 38,462 \text { units } \end{aligned}$	
Consequence on BEP	=	Decrease in BEP by 3,205 units	

PYQ 12

Following figures have been extracted from the books of M/s. RST Private Limited:

Year	Sales	Profit
$2016-17$	$₹ 4,00,000$	15,000 (loss)
$2017-18$	$₹ 5,00,000$	15,000 (profit)

You are required to calculate:

(1) Profit Volume Ratio
(2) Fixed Costs
(3) Break Even Point
(4) Sales required to earn a profit of ₹ 45,000
(5) Margin of Safety in financial year 2017-2018.
[(5 Marks) May 2018]

Answer

(a) PV Ratio $=\frac{\text { Difference in Pr ofit }}{\text { Difference in Sales }} \times 100=\frac{30,000}{1,00,000}=30 \%$
(b) Calculation of Fixed Cost (by using data of year 2017-18):

Fixed cost	$=$	Contribution-profit
	$=\quad 5,00,000 \times 30 \%-15,000$	$=\quad$ 11,35,000

(c) Calculation of Break Even Point:

BEP $\quad=\frac{\text { Fixed Cost }}{\text { PV Ratio }}=\frac{1,35,000}{30 \%}=₹ 4,50,000$
(d) Sales required to earn $\mathfrak{F} 45,000$:
$\begin{aligned} \text { Sales } & =\frac{\text { Fixed Cost }+ \text { Desired Pr ofit }}{\text { PV Ratio }} \quad=\quad \frac{1,35,000+45,000}{30 \%} \\ & =\boldsymbol{₹} 6,00,000\end{aligned}$
(e) Margin of Safety in financial year 2017-2018:
$\operatorname{MOS} \quad=\frac{\text { Profit }}{\text { PV Ratio }}=\frac{15,000}{30 \%}=$ ₹50,000

PYQ 13

A manufacturing concern was operating at margin of safety of 40% in the year 2018 and was selling its product at $₹ 75$ per unit. Variable cost ratio was 80% and fixed cost amounted to ₹ $5,40,000$.

In the year 2019, the concern anticipates an increase in the variable costs and fixed cost by 15% and 5% respectively.

You are required to:

Find out the selling price to be fixed in the year 2019 keeping in view that concern is willing to maintain same P / V ratio as it was in the year 2018.
[(5 Marks) Nov 2018]

Answer

Variable cost (2018)		₹ $75 \times 80 \%$	=	₹ 60 per unit
Variable cost (2019)	=	₹ $60+15 \%$	=	₹ 69 per unit
Sale Price to maintain same PV Ratio		₹ $69 \div 80 \%$	=	₹86.25 p.u.

PYQ 14

A manufacturing company is providing a product ' A ' which is sold in the market at $₹ 45$ per unit. The company has the capacity to produce 40,000 units per year. The budget for the year 2018-2019 projects a sale of 30,000 units.

The cost of each unit are expected as under:

Materials	₹ 12
Wages	₹9
Overheads	₹ 6

Margin of safety is ₹ $4,12,500$.

You are required to:

(1) Calculate fixed cost and break-even point.
(2) Calculate the volume of sales to earn profit of 20% on sales.
(3) If management is willing to invest $10,00,000$ with the expected return of 20%, calculate units to be sold to earn this profit.
(4) Management expects additional sales if the selling price is reduced to ₹ 44 . Calculate units to be sold to achieve the same profit as desired in above (3).
[(10 Marks) Nov 2018]

Answer

(1) Fixed cost

Break-even point

$=$	BEP sales \times P $/ V$ ratio	$=$	₹3,75,000
$=$	₹9,37,500 $\times 40 \%$		
$=$	Total sales - Margin of safety		
$=$	30,000 units $\times ₹ 45-₹ 4,12,500$	$=$	$₹ 9,37,500$

P/V ratio
$=\quad($ Contribution \div Sales $) \times 100$
$=\quad[\{45-(12+9+6)\} \div 45] \times 100$
$=(18 \div 45) \times 100 \quad=\quad 40 \%$
(2) Sales to earn 20% on sales $=\frac{\text { Fixed Cost }+ \text { Pr ofit }}{\text { P/V Ratio }}=\frac{3,75,000+20 \% \text { Sales }}{40 \%}$
$=\quad$ ₹18,75,000 or 41,667 units
$=\frac{\text { Fixed Cost }+ \text { Profit }}{\text { Contributi on p.u. }}=\frac{3,75,000+20 \% \text { on } 10,00,000}{18}$
(3) Sales in units
$=31,945$ units
(4) Calculation of units to be sold to earn same profit as in (3) with revised sale price:

Revised sales

$$
=\frac{\text { Fixed Cost }+ \text { Pr ofit }}{\text { Re vised Contributi on p.u. }}=\frac{3,75,000+2,00,000}{17}
$$

PYQ 15

When volume is 4,000 units, average cost is ₹ 3.75 per unit. When volume is 5,000 units, average cost is ₹ 3.50 per unit. The break-even point is 6,000 units.

Calculate:

(1) Variable Cost per unit
(2) Fixed Cost and
(3) Profit Volume Ratio.

Answer

(1) Variable Cost per unit

$$
=\quad \frac{\text { Change in Cost }}{\text { Change in Units }}
$$

$$
=\frac{5,000 \times 3.50-4,000 \times 3.75}{5,000-4,000}
$$

$$
=\frac{17,500-15,000}{1,000}=\quad \text { ₹2 } 2.50 \text { per unit }
$$

(2) Fixed Cost

$$
\begin{array}{lll}
= & \text { Total Cost - Variable Cost } & \\
= & 4,000 \times ₹ 3.75-4,000 \times ₹ 2.50 \quad \text { (using 4,000 units as base) } \\
= & ₹ 15,000-₹ 10,000 \quad=\quad ₹ 5,000
\end{array}
$$

(3) Profit Volume Ratio $=\frac{\text { Fixed Cost }}{\text { BEP Sales }} \times 100=\frac{5,000}{20,000} \times 100$

Working Note:

BEP sales $=\quad$ Fixed Cost + Variable Cost

$$
=5,000+6,000 \text { units } \times ₹ 2.50=₹ 20,000
$$

PYQ 16

Moon Ltd. produces products ' X ', ' Y ', ' Z ' and has decided to analyse it's production mix in respect of these three products: ' X ', ' Y ', ' Z '.

You have the following information:

From the current budget, further details are as below:

Particulars	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Annual production at present (in units)	10,000	12,000	20,000
Estimated selling price per unit (₹)	312	400	240
Sales departments estimate of possible	12,000	16,000	24,000
sales in the coming year (in units)			

There is constraint on supply of labour in Department A and its manpower cannot be increased beyond its present level.

Required:

(i) Identify the best possible product mix of Moon Ltd.
(ii) Calculate the total contribution from the best possible product mix.
[(5 Marks) Nov 2020]

Answer

(i) Statement Showing Best Possible Mix of Moon Ltd.

Rank	Product	Units/Mix	Labour hours dept. A
I	Product X	12,000	72,000
II	Product Y	16,000	$1,60,000$
III	Product Z $48,000 \div 5)$	9,600	48,000 (b.f.)
Total		$\mathbf{3 7 , 6 0 0}$	$\mathbf{2 , 8 0 , 0 0 0}$

Best possible mix of X, Y, Z is $12,000: 16,000: 9,600$
(ii) Calculation of contribution from best possible mix:
$\begin{array}{rll}\text { Total contribution } & =\begin{array}{l}12,000 \text { units of } \mathrm{X} \times 72+16,000 \text { units of } \mathrm{Y} \times 100 \\ \\ =\end{array} \quad \begin{array}{l}\mathrm{F} 2,600 \text { units of } \mathrm{Z} \times 40\end{array} \\ & \end{array}$

Working note:

(1) Calculation of total available labour hours in department A:

Total available labour hours $=\quad 10,000$ units of $\mathrm{X} \times 6$ hours $+12,000$ units of $\mathrm{Y} \times 10$ hours $+20,000$ units of $\mathrm{Z} \times 5$ hours
$=2,80,000$ hours
(2) Calculation of Contribution per labour hour of department A and Rank:

Particulars	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
Sale price per unit	312	400	240
Less: Direct materials per unit	160	120	80
Less: Variable overheads per unit	8	20	12
Less: Wages per unit:	24	40	
\quad Department A	(6×4)	(10×4)	(5×4)
	48	120	88
Department B	(6×8)	(15×8)	(11×8)
Contribution per unit	72	100	40
\div Labour hours per unit of Dept. A	$\div 6$	$\div 10$	$\div 5$
Contribution per labour hour Dept. A	12	10	8
Rank	\boldsymbol{I}	$\boldsymbol{I I}$	III

PYQ 17

During a particular period ABC Ltd has furnished the following data:

Sales	₹ $10,00,000$
Contribution to sales ratio	37%
Margin of safety is	25% of sales

A decrease in selling price and decrease in the fixed cost could change the "contribution to sales ratio" to 30% and "margin of safety" to 40% of the revised sales.

Calculate:

(1) Revised Fixed Cost.
(2) Revised Sales and
(3) New Break-Even Point.
[(5 Marks) Jan 2021]

Answer

Contribution to sales ratio (P/V ratio)	$=$	37%	
Variable cost ratio	$=$	$100 \%-37 \%$	$=$
Variable cost	$=$	$₹ 10,00,000 \times 63 \%$	$=$
		$6,30,000$	

After decrease in selling price and fixed cost, sales quantity has not changed. Thus, variable cost is ₹6,30,000.
Revised Contribution to sales $=30 \%$

Thus, Variable cost ratio	$=$	$100 \%-30 \%$	$=$	70%
Thus, Revised sales	$=$	$₹ 6,30,000 \div 70 \%$	$=$	$₹ 9,00,000$
Revised Margin of Safety	$=$	40%	$=$	60%

(1) Revised Fixed Cost $=$ Revised break-even sales \times Revised P/V Ratio
$=(₹ 9,00,000 \times 60 \%) \times 30 \%=₹ 1,62,000$
(2) Revised Sales $=$ ₹9,00,000 (as calculated above)
(3) New BEP $=$ Revised sales \times Revised break-even sales ratio
$=$ ₹9,00,000 $\times 60 \%=$ ₹5,40,000

PYQ 18

Two manufacturing companies A and B are planning to merge. The details are as follows:

	\boldsymbol{A}	\boldsymbol{B}
Capacity utilisation (\%)	90	60
Sales (₹)	$63,00,000$	$48,00,000$
Variable Cost (₹)	$39,60,000$	$22,50,000$
Fixed Cost (₹)	$13,00,000$	$15,00,000$

Assuming that the proposal is implemented, calculate:

(1) Break-Even sales of the merged plant and the capacity utilization at that stage.
(2) Profitability of the merged plant at 80% capacity utilization.
(3) Sales Turnover of the merged plant to earn a profit of ₹ $60,00,000$.
(4) When the merged plant is working at a capacity to earn a profit of ₹ $60,00,000$, what percentage of increase in selling price is required to sustain an increase of 5% in fixed overheads.
[(10 Marks) Jan 2021]

Answer

(a) Break-Even sales of the merged plant and the capacity utilization at that stage:

Break-Even Sales	$=$	Fixed Cost \div P/V Ratio		
	$=₹ 28,00,000 \div 45.67 \%$	$=$		
		$61,30,939$		
Capacity Utilization	$=$	(BEP Sales \div Sales at 100% Capacity $) \times 100$		
	$=$	$(₹ 61,30,939 \div ₹ 1,50,00,000) \times 100$	$=\mathbf{4 0 . 8 7 \%}$	

(b) Profitability of merged plant at 80\% Capacity:

Profit $=\quad$ Contribution - Fixed Cost

$$
\begin{aligned}
& =\quad\{(₹ 1,50,00,000 \times 80 \%) \times 45.67 \%\}-₹ 28,00,000 \\
& =\quad ₹ 26,80,400
\end{aligned}
$$

(c) Sales to earn a profit of $₹ \mathbf{\gamma} 0,00,000$:
$\begin{array}{rlll}\text { Sales } & = & \text { (Fixed Cost }+ \text { Profit }) \div \mathrm{P} / \mathrm{V} \text { Ratio } \\ & = & (₹ 28,00,000+₹ 60,00,000) \div 45.67 \% & =\quad ₹ 1,92,68,666\end{array}$
(d) \% increase in selling price:

Increase in fixed cost	$=₹ 28,00,000 \times 5 \%$	$=₹ 1,40,000$	
$\therefore \%$ increase in sales price	$=$	$(₹ 1,40,000 \div ₹ 1,92,68,666) \times 100=$	$=0.727 \%$

Working Notes:

Calculation of Sales, Variable Cost, P/V Ratio and Fixed Cost at 100\% capacity of merged plant:

| Sales | $=(₹ 63,00,000 \div 90 \%)+(₹ 48,00,000 \div 60 \%)$ | $=₹ 1,50,00,000$ |
| :--- | :--- | :--- | :--- |
| Variable Cost | $=(₹ 39,60,000 \div 90 \%)+(₹ 22,50,000 \div 60 \%)$ | $=₹ 81,50,000$ |
| P/V Ratio | $=($ Contribution \div Sales $) \times 100$ | |
| | $=\{(₹ 1,50,00,000-₹ 81,50,000) \div ₹ 1,50,00,000\} \times 100=$ | $=45.67 \%$ |
| Fixed Cost | $=₹ 13,00,000+₹ 15,00,000$ | $=₹ 28,00,000$ |

PYQ 19

LR Ltd. is considering two alternative methods to manufacture a new product it intends to market. The two methods have a maximum output of 50,000 units each and produce identical items with a selling price of ₹ 25 each. The costs are:

Particulars	Method 1 Semi-Automatic	Method 2 Fully-Automatic
Variable cost per unit Fixed costs	$₹ 15$	$₹ 10$
	$₹ 1,00,000$	$₹ 3,00,000$

You are required to calculate:

(1) Cost Indifference Points in units, Interpret your results.
(2) The Break-even Points of each method in terms of units.
[(5 Marks) July 2021]

Answer

(1) Cost Indifference Pont $\begin{aligned} & =\frac{\text { Difference in Fixed Costs }}{\text { Difference in Variable Cost per unit }}=\frac{3,00,000-1,00,000}{15-10} \\ & =\quad 40,000 \text { units }\end{aligned}$

Interpretation:

If expected output $<40,000$ units
If expected output $=40,000$ units
If expected output $>40,000$ units

Select Method 1
Select Any Method
Select Method 2
$\begin{array}{llll}\text { (2) Break-even Points in units } & = & \text { Fixed cost } \div \text { Contribution per unit } & \\ \text { Method } 1 & = & 1,00,000 \div(25-15) & = \\ \text { Method } 2 & = & \mathbf{1 0 , 0 0 0} \text { units } \\ & 3,00,000 \div(25-10) & =\mathbf{2 0 , 0 0 0} \text { units }\end{array}$
PYQ 20
AZ company has prepared its budget for the production of 2,00,000 units. The variable cost per unit is ₹ 16 and fixed cost is ₹ 4 per unit. The company fixes its selling price to fetch a profit of 20% on total cost.

You are required to calculate:

1. Present break-even sales (in ₹ and in quantity).
2. Present profit-volume ratio.
3. Revised break-even sales in ₹ and the revised profit-volume ratio, if it reduces its selling price by 10%.
4. What would be revised sales -in quantity and the amount, if a company desires a profit increase of 20% more than the budgeted profit and selling price is reduced by 10% as above in point (iii)
[(10 Marks) Dec 2021]

Answer

1. Present BEP in ₹ $=$ Fixed cost \div PV Ratio

	$=$	$(2,00,000$ units \times ₹ 4$) \div 33.33 \%$	$=$	₹24,00,000
Present BEP in units	$=$	Fixed cost \div Contribution per unit	$=$	$\mathbf{1 , 0 0 , 0 0 0 ~ u n i t s ~}$

2. Present PV Ratio $=($ Contribution \div Sales Price $) \times 100$

$$
=(₹ 8 \div ₹ 24) \times 100 \quad=33.33 \%
$$

3. Revised BEP in ₹ $=$ Fixed cost \div Revised PV Ratio

$$
=₹ 8,00,000 \div 25.9259 \% \quad=\quad ₹ 30,85,714
$$

Revised PV Ratio $=\quad$ (Revised Contribution \div Revised Sales Price) $\times 100$
$=\quad(₹ 5.6 \div ₹ 21.6) \times 100=$
25.9259\%
4. Revised Sales in Quantity $=\quad$ (Fixed cost + Desired Profit) \div Revised Contribution per unit $=(₹ 8,00,000+₹ 9,60,000) \div ₹ 5.6=3,14,286$ units
$\begin{array}{rlrl}\text { Revised Sales in Amount } & = & \text { (Fixed cost + Desired Profit) } \div \text { Revised PV Ratio } \\ & = & (₹ 8,00,000+₹ 9,60,000) \div 25.9259 \% & =\end{array}$

Working Notes:

(a) Present Sale Price $=$ Cost p.u. $+20 \%$
$=(₹ 16+₹ 4)+20 \%=$ ₹24 per unit
(b) Present Contribution p.u. $=$ Sale Price p.u. - Variable Cost p.u.
$=$ ₹24-₹16 = ₹8 per unit
(c) Revised Sale Price $=$ Present Sale Price - 10\%
$=$ ₹24-10\% = ₹21.6 per unit
(d) Revised Contribution p.u. $=\quad$ Revised Sales p.u. -Variable Cost p.u.
$=$ ₹21.6-₹16 $=\quad$ ₹5.6 per unit

PYQ 21

Top-tech a manufacturing company is presently evaluating two possible machines for the manufacture of superior Pen-drives. The following information is available:

Particulars	Machine $\boldsymbol{A}($ ₹)	Machine B (₹)
Sales price per unit	400	400
Variable cost per unit	240	260
Total fixed cost per year	350 Lakhs	200 Lakhs
Capacity (in units)	$8,00,000$	$10,00,000$

Required:

1. Recommend which machine should be chosen?
2. Would you change your answer, if you were informed that the capacities of the two processes are as follows: A - 12,00,000 units; B-12,00,000 units? Why?
[(5 Marks) May 2022]

Answer

1. Profit (Machine A) $=$ Contribution - Fixed cost

$$
=\quad 8,00,000 \text { units } \times ₹ 160(₹ 400-₹ 240)-₹ 3,50,00,000
$$

$$
=\quad ₹ 9,30,00,000
$$

Profit (Machine B) = Contribution - Fixed cost
$=10,00,000$ units \times ₹ 140 ($₹ 400-₹ 260$) - ₹ $2,00,00,000$
$=$ ₹12,00,00,000
Recommendation: Machine B should be chosen as it gives more profit.
2. Profit (Machine A) $=\quad$ Contribution - Fixed cost

$$
=12,00,000 \text { units } \times ₹ 160(₹ 400-₹ 240)-₹ 3,50,00,000
$$

$$
=\quad ₹ 15,70,00,000
$$

Profit (Machine B) = Contribution - Fixed cost

$$
\begin{aligned}
& =\quad 12,00,000 \text { units } \times ₹ 140(₹ 400-₹ 260)-₹ 2,00,00,000 \\
& =\quad ₹ 14,80,00,000
\end{aligned}
$$

Yes, the preference for the machine would change because now, Machine A is having higher contribution and higher profit, hence recommended.

PYQ 22

UV Limited started a manufacturing unit from $1^{\text {st }}$ October 2021. It produces designer lamps and sells its lamps at ₹450 per unit.

During the quarter ending on $31^{\text {st }}$ December, 2021, it produced and sold 12,000 units and suffered a loss of ₹35 per unit.

During the quarter ending on 31 st March, 2022, it produced and sold 30,000 units and earned a profit of ₹ 40 per unit.

You are required to calculate:

(a) Total fixed cost incurred by UV ltd. per quarter.
(b) Break Even sales value (in rupees)
(c) Calculate Profit, if the sale volume reaches 50,000 units in the next quarter (i.e., quarter ending on $30^{\text {th }}$ June, 2022).
[(5 Marks) May 2022]

Answer

(a) Fixed Cost per quarter (by using data of quarter ending 31st March, 2022):

Fixed cost $=\quad$ Contribution - profit
$=30,000$ units $\times 450 \times 20 \%-30,000 \times 40=$ ₹ $15,00,000$
(b) Calculation of Break Even Point:

BEP $=\frac{\text { Fixed Cost }}{\text { PV Ratio }}=\frac{15,00,000}{20 \%}=$ F75,00,000
(c) Calculation of profit at 50,000 units:

Profit $=$ Contribution - Fixed cost
$=50,000 \times 450 \times 20 \%-15,00,000=$ ₹30,00,000

Working Notes:

$$
\text { PV Ratio }=\frac{\text { Difference in Pr ofit }}{\text { Difference in Sales }} \times 100=\frac{30,000 \times 40+12,000 \times 35}{(30,000-12,000) \times 450}=20 \%
$$

PYQ 23

ABC Ltd, sell its Product ' Y ' at a price of ₹ 300 per unit and its variable cost is ₹ 180 per unit. The fixed costs are $₹ 16,80,000$ per year uniformly incurred throughout the year, The Profit for the year is ₹7,20,000.

You are required to calculate:

(a) BEP in value ($₹$) and units.
(b) Margin of Safety
(c) Profits made when sales are 24,000 units,
(d) Sales in value (${ }^{\text {₹ }}$) to be made to earn a net profit of $₹ 10,00,000$ for the year.
[(5 Marks) Nov 2022]

Answer

(a) BEP in value (₹) and units:

BEP in value $(₹) \quad=\quad$ Fixed Cost $\div \mathrm{P} / \mathrm{V}$ Ratio

$$
=₹ 16,80,000 \div 40 \% \quad=\quad ₹ 42,00,000
$$

BEP in units $\quad=\quad$ Fixed Cost \div Contribution per unit
$=₹ 16,80,000 \div 120(300-180) \quad=\quad 14,000$ units
(b) Margin of Safety:

MOS in value $(₹) \quad=\quad$ Profit $\div \mathrm{P} / \mathrm{V}$ Ratio

$$
=₹ 7,20,000 \div 40 \% \quad=\quad ₹ 18,00,000
$$

(c) Profit at 24,000 units:

Profit	$=$	Contribution - Fixed cost
	$=$	$(24,000 \times ₹ 120)-₹ 16,80,000$

(d) Sales in value (₹) to earn a profit of $₹ 10,00,000$:

Sales in value $(₹) \quad=\quad$ (Fixed Cost + Profit $) \div P / V$ Ratio
$=(₹ 16,80,000+₹ 10,00,000) \div 40 \%=₹ 67,00,000$

Working Note:

P / V Ratio $\quad=\quad \frac{\text { Contribution }}{\text { Sale Price }} \times 100=\frac{300-180}{300} \times 100=40 \%$

PYQ 24

An agriculture based company having 210 hectares of land is engaged in growing three different cereals namely, wheat, rice, and maize annually. The yield of the different crops and their selling prices are given below:

Particulars	Wheat	Rice	Maize
Yield (in kgs per hectare)	2,000	500	100
Selling price (₹ per kg)	20	40	250

The variable cost data of different crops are given below:

Particulars	Wheat	Rice	Maize
Labour charges	8	10	120
Packing materials	2	2	10
Other variable expenses	4	1	20

The company has a policy to produce and sell all the three kinds of crops. The maximum and minimum area to be cultivated for each crop is as follows:

Particulars	Wheat	Rice	Maize
Maximum area in hectares	160	50	60
Minimum area in hectares	100	40	10

You are required to:

(a) Rank the crops on the basis of contribution per hectare.
(b) Determine the optimum product mix considering that all the three cereals are to be produced.
(c) Calculated the maximum profit which can be achieved if the total fixed cost per annum is ₹ $21,45,000$. (Assume that there are no other constraints applicable to this company)
[(10 Marks) Nov 2022]

Answer

(a) Statement Showing Rank on the basis of Contribution per Hectare

Particulars	Wheat	Rice	Maize
Sale price per kg	20	40	250
Less: Labour charges per kg	(8)	(10)	(120)
Less: Packing materials per kg	(2)	(2)	(10)
Less: Other variable expenses per kg	(4)	(1)	(20)
Contribution per kg	6	27	100
\times Yield in kg per hectare	$\times 2,000$	$\times 500$	$\times 100$
Contribution per Hectare	12,000	13,500	10,000
Rank	II	\boldsymbol{I}	III

(b) Statement Showing Optimum Product Mix

Cereals	Rank	Minimum Area	Additional Area	Total Area	Yield per Hectare	Production in kg .
Wheat	II	100	50 (b.f.)	150	2,000	$3,00,000$
Rice	I	40	$50-40=10$	50	500	25,000
Maize	III	10	-	10	100	1,000
Total		$\mathbf{1 5 0}$	$\mathbf{6 0}$	$\mathbf{2 1 0}$	-	$3,26,000$

(c) Maximum Profit $=(3,00,000 \mathrm{kgs} \times ₹ 6)+(25,000 \mathrm{kgs} \times ₹ 27)+(1,000 \mathrm{kgs} \times ₹ 100)-₹ 21,45,000$ $=\quad$ ₹4,30,000

PYQ 25

The following information pertains to ZB Limited for the year:

Profit volume ratio	30%
Margin of Safety (as \% of total sales)	25%
Fixed Cost	$₹ 12,60,000$

You are required to calculate:

(a) Break even sales value ($₹$),
(b) Total sales value (₹) at present,
(c) Proposed sales value ($₹$) if company wants to earn the present profit after reduction of 10% in fixed cost,
(d) Sales in value (₹) to be made to earn a profit of 20% on sales assuming fixed cost remains unchanged,
(e) New Margin of Safety if the sales value at present as computed in (b) decreased by 12.5\%.
[(5 Marks) May 2023]
Answer
(a) Break even sales $=\frac{\text { Fixed } \cos \mathrm{t}}{\text { PV Ratio }}=\frac{12,60,000}{30 \%}=$ F42,00,000
(b) Total sales at present $=\frac{\text { BEP Sales }}{\text { BEP as } \% \text { of Total Sales }}=\frac{42,00,000}{75 \%}$
(c) Proposed Sales $=\frac{\text { Revised Fixed cos } t+\text { Desired Pr ofit }}{\text { PV Ratio }}$
$\frac{(12,60,000-10 \%)+4,20,000}{30 \%}=\quad$ F51,80,000
(d) Desired Sales Value

$=$	Fixed cos t	$=$	$\frac{12,60,000}{30 \%-20 \%}$
$=$	PV ratio $-\%$ of Pr ofit to Sales		
$=$	R1,26,00,000		
$=$	$(56,00,000-12.5 \%)-42,00,000 \quad=\quad$ F7,00,000		

WN:
Existing Profit $=$ MOS \times PV Ratio $\quad=\quad ₹ 56,00,000 \times 25 \% \times 30 \%$
(e) New Margin of Safety

$$
=₹ 4,20,000
$$

PYQ 26

MNP Company Limited produces two products ' A ' and ' B '. The relevant cost and sales data per unit of output is as follows:

Particulars	Product $\boldsymbol{A}($ ($)$	Product \boldsymbol{B} () $)$
Direct material	55	60
Direct labour	35	45
Variable factory overheads	40	20
Selling Price	180	175

The availability of machine hours is limited to 55,000 hours for the month. The monthly demand for product ' A ' and product ' B ' is 5,000 units and 6,000 units, respectively. The fixed expense of the company are ₹ $1,40,000$ per month. Variable factory overheads are ₹ 4 per machine hour. The company can produce both products according to the market demand.

Calculate the product mix that generates maximum profitfor the company in the given situation and also calculate profit of the company.

Answer
Statement Showing Best Possible Mix and Profit of MNP Company Ltd.

Rank	Product	Units/Mix	Machine hours	Contribution
I	Product B	6,000	30,000	3,00,000
II	Product A (25,000 hours $\div 10$)	2,500	25,000 (b.f.)	1,25,000
	Total	8,500	55,000	
Total Contribution Less: Fixed Expenses				4,25,000
				(1,40,000)
		Profit		2,85,000

Working notes:

Calculation of Contribution per machine hour and Rank:

Particulars	\boldsymbol{A}	\boldsymbol{B}
Sale price per unit	180	175
Less: Direct materials per unit	55	60
Less: Direct labour per unit	35	45
Less: Variable overheads per unit	40	20
Contribution per unit	50	50
Machine hours per unit $(40 \div 4)$ and $(20 \div 4)$	$\div 10$	$\div 5$
Contribution per machine hour	5	10
Rank	$\boldsymbol{I I}$	\boldsymbol{I}

SUGGESTED REVISION FOR EXAM:

$B Q: \quad 7,11,13,14,16,18,19,20,23,24,28,29,31,33,36,37,39$
PYQ: 1, 3, 5, 6, 16, 24

CHAPTER 14

COST ACCOUNTING SYSTEM

INTEGRATED ACCOUNTING SYSTEM

BQ 1

In the absence of the chief Accountants you have been asked to prepare a month's cost accounts for a company which operates a batch costing system fully integrated with the financial accounts. The following relevant information is provided to you:

Balances at the beginning of the month:

Stores ledger control Account	25,000
Work in progress control account	20,000
Finished goods control account	35,000
Prepaid production overheads brought forward from previous month	3,000

Transactions during the month:

Materials purchased		75,000
Materials Issued:		
\quad To Production	30,000	
To factory Maintenance	4,000	34,000
Materials transferred between batches	5,000	
Total wages paid:	25,000	
To direct workers	5,000	30,000
To Indirect workers	20,000	
Direct wages charged to batches	5,000	
Recorded non-productive time of direct workers	6,000	
Selling and distribution overheads incurred	12,000	
Other production overheads incurred	$1,00,000$	
Sales	80,000	
Cost of finished goods sold	65,000	
Cost of goods completed and transferred into Finished goods during the month	40,000	

The production overhead absorption rate is 150% of direct wages charged to work in progress.

Prepare the following accounts for the month:

(a) Stores ledger control account.
(b) Work in progress control account.
(c) Finished goods control account.
(d) Production overheads control account.
(e) Profit and loss account.
[(a) ₹ 66,000 (b) $\mathfrak{F} 40,000$ (c) ₹20,000 (d) Over absorption taken to P/LA/c ₹1,000 (e) ₹20,000]

BQ 2

The following incomplete accounts are furnished to you for the month ended 31st October, 2023:
Creditors for Purchases Account

	01.10 .23 By Balance	30,000

Stores Control Account

Factory overheads Control Account

Total debits for October, 2023	45,000		

Work in progress control Account

01.10 .23 To Balance	6,000		

Finished Goods Control Account

01.10 .23 To Balance	75,000		

Additional information:

(i) The factory overheads are applied by using a budgeted rate based on direct labour hours. The budget for overheads for 2023 is ₹ $6,75,000$ and the budget of direct labour hours is $4,50,000$.
(ii) The balance in the account of creditors for purchases on 31.10 .23 is $₹ 15,000$ and the payments made to creditors in October, 2023 amount to ₹1,05,000.
(iii) The finished goods inventory as on $31^{\text {st }}$ October, 2023 is ₹ $66,000$.
(iv) The cost of goods sold during the month was ₹ $1,95,000$.
(v) On $31^{\text {st }}$ October, 2023 there was only one unfinished job in the factory. The cost records show that ₹ 3,000 (1,200 direct labour hours) of direct labour cost and ₹ 6,000 of direct material cost had been charged.
(vi) A total of 28,200 direct labour hours were worked in October, 2023. All factory workers earn same rate of pay.
(vii) All actual factory overheads incurred in October, 2023 have been posted.

You are required to find:

(a) Materials purchased during October, 2023.
(b) Cost of goods completed in October, 2023.
(c) Overheads applied to production in October, 2023.
(d) Balance of work in progress on 31st October, 2023.
(e) Direct materials consumed during October, 2023.
(f) Balance of Stores Control account on 31 ${ }^{\text {st }}$ October, 2023.
(g) Over absorbed or under absorbed overheads for October, 2023.
[(a) 90,000 (b) 1,86,000 (c) 42,300 (d) 10,800 (e) 78,000 (f) 66,000 (g) 2,700 under-recovered]

BQ 3

A fire destroyed some accounting records of a company. You have been able to collect the following from the spoilt papers/records and as a result of consultation with accounting staff in respect of January, 2017.

Incomplete Ledger Entries:

Materials Control A/c

Particulars	$₹$	Particulars	$₹$
To Balance b/d	32,000		

Work-in-Progress Control A/c

Particulars	\mathcal{F}	Particulars	$₹$
To Balance b/d	9,200	By Finished Goods Control A/c	$1,51,000$

Payable (Creditors) A/c

Particulars	₹	Particulars	$₹$
To Balance c/d	19,200	By Balance b/d	16,400

Manufacturing Overheads Control A/c

Particulars	\mathcal{F}	Particulars	\mathcal{F}
To Bank A/c (Amount Spent)	29,600		

Finished Goods Control A/c

Particulars	\mathcal{F}	Particulars	$₹$
To Balance b/d	24,000	By Balance c/d	30,000

Additional Information:

1. The cash-book showed that $₹ 89,200$ have been paid to creditors for raw-material.
2. Ending inventory of work-in-progress included material $₹ 5,000$ on which 300 direct labour hours have been booked against wages and overheads.
3. The job card showed that workers have worked for 7,000 hours. The wage rate is ₹ 10 per labour hour.
4. Overhead recovery rate was ₹ 4 per direct labour hour.

You are required to complete the above accounts in the cost ledger of the company.

Answer

Materials Control A/c

Particulars	F	Particulars	F
To Balance b/d To Payables/Creditors A/c (WN) (Purchases)	32,000	By WIP Ledger Control A/c (figure from WIP A/c) By Balance b/d	53,000
	92,000		
			71,000
	1,24,000		1,24,000

WIP Ledger Control A/c

Particulars	₹	Particulars	₹
To Balance b/d To Materials Control A/c (b.f.) To Wages Control A/c (7,000 hrs × ₹ 10) To Manufacturing OH Control A/c	9,200	By Finished Goods Control A/c	1,51,000
	53,000	By Balance c/d:	
	70,000	Material	
		₹5,000	
To Manufacturing OH Control A / c	28,000	Labour ($300 \mathrm{hrs} \times$ ₹ 10)	9,200
	1,60,200	$\begin{aligned} & ₹ 3,000 \\ & \text { Overheads (} 300 \mathrm{hrs} \times ₹ 4 \text {) } \\ & ₹ 1,200 \end{aligned}$	1,60,200

Manufacturing Overheads Control A/c

Particulars	$₹$	Particulars	$₹$
To Bank A/c	29,600	By WIP Ledger Control A/c (7,000 hrs \times ₹4) By Costing P/L A/c (Under-absorbed Overheads)	28,000
	$\mathbf{2 9 , 6 0 0}$	1,600	
		$\mathbf{2 9 , 6 0 0}$	

Finished Goods Control A/c

Particulars	\mathcal{F}	Particulars	$₹$
To Balance b/d	24,000	By Cost of Sales A/c (b.f.)	$1,45,000$
To Work-in-progress Control A/c	$1,51,000$	By Balance c/d	30,000
	$\mathbf{1 , 7 5 , 0 0 0}$		$\mathbf{1 , 7 5 , 0 0 0}$

Working note:

Payables (Creditors) A/c

Particulars	$₹$	Particulars	$₹$
To Cash or Bank A/c	89,200	By Balance b/d	16,400
To Balance c/d	19,200	By Material Control A/c	92,000
	$\mathbf{1 , 0 8 , 4 0 0}$		
			$\mathbf{1 , 0 8 , 4 0 0}$

BQ 4

Journalise the following transactions assuming that cost and financial transactions are integrated:

Details of Transactions	($\boldsymbol{\text { ₹ }})$
Raw materials purchased	$2,00,000$
Direct materials issued to production	$1,50,000$
Wages paid (30\% indirect)	$1,20,000$
Wages charged to production	84,000
Manufacturing expenses incurred	84,000
Manufacturing overhead charged to production	92,000
Selling and distribution costs	20,000
Finished products (at cost)	$2,00,000$
Sales	$2,90,000$
Closing stock	Nil
Receipts from debtors	69,000
Payments to creditors	$1,10,000$

Answer

Journal Entries

Entries		Dr.	Cr.
Stores Ledger Control A/c To Payables (Creditors)/Bank A/c (Being materials purchased)	Dr.	2,00,000	2,00,000
Work-in-progress Ledger Control A/c To Stores Ledger Control A/c (Being direct materials issued to production)	Dr.	1,50,000	1,50,000
Wages Control A/c To Bank A/c (Being wages paid)	Dr.	1,20,000	1,20,000
Work-in-progress Ledger Control A/c Factory Overhead Control A/c To Wages Control A/c (Being allocation of direct and indirect wages)	$\begin{aligned} & \hline \text { Dr. } \\ & \text { Dr. } \end{aligned}$	$\begin{aligned} & \hline 84,000 \\ & 36,000 \end{aligned}$	1,20,000
Factory Overhead Control A/c To Bank A/c (Being manufacturing overheads incurred)	Dr.	84,000	84,000
Work-in-progress Ledger Control A/c To Factory Overhead Control A/c	Dr.	92,000	92,000

(Being manufacturing overheads charged to production)			
Selling and Distribution Overhead Control A/c To Bank A/c (Being selling and distribution cost incurred)	Dr.	20,000	20,000
Finished Goods Control A/c To Work-in-progress Ledger Control A/c (Being cost of finished goods transferred to finished goods account)	Dr.	$2,00,000$	$2,00,000$
Cost of Sales A/c To Finished Goods Control A/c To Selling and Distribution Overhead Control A/c (Being cost of goods sold)	$2,20,000$	$2,00,000$	
Receivables/Debtors/Bank A/c To Sales A/c (Being finished stock sold)	Dr.	$2,90,000$	$2,90,000$
Bank A/c To Receivables/Debtors A/c (Being collection received from debtors)	Dr.	69,000	69,000
Payables/Creditors A/c To Bank A/c (Being payments made to creditors)	Dr.	$1,10,000$	$1,10,000$

BQ 5

Dutta Enterprises operates an integral system of accounting. You are required to pass the Journal Entries for the following transactions that took place for the year ended $30^{\text {th }}$ June, 2023.

Details of Transactions	(₹)
Raw materials purchased (50\% on credit)	$6,00,000$
Materials issued to production	$4,00,000$
Wages paid (50\% indirect)	$2,00,000$
Wages charged to production	$1,00,000$
Factory overheads incurred	80,000
Factory overheads charged to production	$1,00,000$
Selling and distribution overheads incurred	40,000
Finished goods at cost	$5,00,000$
Sales (50\% on credit)	$7,50,000$
Closing stock	Nil
Receipts from debtors	$2,00,000$
Payments to creditors	$2,00,000$

(Narrations are not required.)

Answer

Journal Entries

Entries		Dr.	Cr.
Stores Ledger Control A/c To Payables/Creditors A/c To Bank A/c	Dr.	$6,00,000$	
Work-in-progress Ledger Control A/c To Stores Ledger Control A/c			$3,00,000$
Wages Control A/c To Bank A/c	Dr.	$4,00,000$	
Work-in-progress Ledger Control A/c To Wages Control A/c	Dr.	$2,00,000$	$4,00,000$
Factory Overhead Control A/c	Dr.	$1,00,000$	$2,00,000$

To Wages Control A/c			$1,00,000$
Factory Overhead Control A/c To Bank A/c	Dr.	80,000	80,000
Work-in-progress Ledger Control A/c To Factory Overhead Control A/c	Dr.	$1,00,000$	$1,00,000$
Selling and Distribution Overhead Control A/c To Bank A/c	Dr.	40,000	40,000
Finished Goods Control A/c To Work-in-progress Ledger Control A/c	Dr.	$5,00,000$	$5,00,000$
Cost of Sales A/c To Finished Goods Control A/c To Selling and Distribution Overhead Control A/c	Dr.	$5,40,000$	$5,00,000$
Receivables/Debtors A/c Bank A/c To Sales A/c	Dr. Bank A/c To Receivables/Debtors A/c	$3,75,000$	$3,75,000$

NON INTEGRATED ACCOUNTING SYSTEM

BQ 6

As on 31 ${ }^{\text {st }}$ March, 2023, the following balance existed in a firm's cost Ledger:

Name of Account	Dr.	Cr.					
Stores Ledger Control A/c	$3,01,435$	-					
Work in progress Control A/c	$1,22,365$	-					
Finished Stock Ledger Control A/c	$2,51,945$	-					
Manufacturing Overhead Control A/c	-	10,525					
Cost Ledger Control A/c	-	$6,65,220$					
Total						$\mathbf{6 , 7 5 , 7 4 5}$	$\mathbf{6 , 7 5 , 7 4 5}$

During the next three months the following items arose:

Finished product (at cost)	$2,10,835$
Manufacturing overhead incurred	91,510
Raw materials purchased	$1,23,000$
Factory Wages	50,530
Indirect Labour	21,665
Cost of sales	$1,85,890$
Material issued to production	$1,27,315$
Sales returned at Cost	5,380
Material returned to suppliers	2,900
Manufacturing overhead charged to production	77,200

You are required to pass the Journal Entries; write up the accounts and schedule the balances, stating what each balance represents.
[SLC 2,94,220; WIP 1,66,575; Finished Stock 2,82,270; Manufacturing OH 25,450; COS 1,80,510; CLC 9,49,025]

BQ 7

Acme Manufacturing Co. Ltd. opens the costing records, with the balances as on $1^{\text {st }}$ July as follows:

Name of Account	Dr.	Cr.		
Material Control A/c	$1,24,000$	-		
Work-in-process	62,500	-		
Finished Goods A/c	$1,24,000$	-		
Production Overheads A/c	8,400	-		
Administration Overhead	-	12,000		
Selling and Distribution Overhead A/c	6,250	-		
Cost Ledger Control A/c Total	-	$3,13,150$		
3,25,150				$\mathbf{3 , 2 5 , 1 5 0}$

The following are the transactions for the quarter ended $30^{\text {th }}$ September:

Particulars	$₹$
Materials purchased	$4,80,100$
Materials issued to jobs	$4,77,400$
Materials to works maintenance	41,200
Materials to administration office	3,400
Materials to sales department	7,200
Wages direct	$1,49,300$
Wages indirect	65,000
Transportation for indirect materials	8,400
Production overheads	$2,42,250$
Absorbed production overheads	$3,59,100$
Administration overheads incurred	74,000
Administration allocation to production	5,900
Administration allocation to sales department	14,800
Selling \& Distribution overheads incurred	64,200
Selling \& Distribution overheads absorbed	82,000
Finished goods produced	$9,58,400$
Finished goods sold	$9,77,300$
Sales	$14,43,000$

Make up the various accounts as you envisage in the Cost Ledger and prepare a Trial Balances as at $3^{\text {th }}$ September.

Answer

Material Control A/c

Particulars	\mathcal{F}	Particulars	$₹$
To Balance b/d	$1,24,000$	By Work-in-process control A/c	$4,77,400$
To Cost ledger control A/c	$4,80,100$	By Production OH control A/c	41,200
(Purchases)		By Administration OH control A/c	3,400
		By \& D OH control A/c	7,200
		By Balance c/d	74,900
			$\mathbf{6 , 0 4 , 1 0 0}$

Wages Control A/c

Particulars	₹	Particulars	₹
To Cost ledger control A/c (₹ $1,49,300$ + ₹ 65,000)	2,14,300	By Work-in-process control A/c By Production OH control A/c	1,49,300
			65,000
	2,14,300		2,14,300

Production Overhead Control A/c
₹

To Balance b/d	8,400	By Work-in-process control A/c By Balance c/d	3,59,100
To Cost Ledger control A/c: Transportation			6,150
8,400	2,50,650		
Production overheads	65,000		
$\frac{2,42,250}{\text { To Wa }}$	41,200		
To Wages control A/c To Material control A/c	3,65,250		3,65,250

Work-in-Progress Control A/c

Particulars	$₹$	Particulars	$₹$
To Balance b/d	62,500	By Finished goods control A/c	$9,58,400$
To Material control A/c	$4,77,400$	By Balance c/d	89,900
To Wages control A/c	$1,49,300$		
To Production OH control A/c	$3,59,100$		
	$\mathbf{1 0 , 4 8 , 3 0 0}$		$\mathbf{1 0 , 4 8 , 3 0 0}$

Administration Overhead Control A/c

Particulars	$₹$	Particulars	$₹$
To Cost Ledger control A/c	74,000	By Balance b/d	12,000
To Material control A/c	3,400	By Finished goods control A/c	52,900
To Balance c/d	2,300	By Cost of sales A/c	14,800
	$\mathbf{7 9 , 7 0 0}$		$\mathbf{7 9 , 7 0 0}$

Finished Goods Control A/c

Particulars	$₹$	Particulars	$₹$
To Balance c/d	$1,24,000$	By Cost of sales A/c	$9,77,300$
To Work-in-process A/c	$9,58,400$	By Balance c/d	$1,58,000$
To Administration OH control A/c	52,900		
	$\mathbf{1 1 , 3 5 , 3 0 0}$		$\mathbf{1 1 , 3 5 , 3 0 0}$

Selling and Distribution Overhead Control A/c

Particulars	₹	Particulars	$₹$
To Balance b/d	6,250	By Cost of Sales A/c	82,000
To Cost Ledger control A/c	64,200		
To Material control A/c	7,200		
To Balance c/d	4,350		$\mathbf{8 2 , 0 0 0}$
	$\mathbf{8 2 , 0 0 0}$		

Cost of Sales A / c

Particulars	$₹$	Particulars	$₹$
To Finished Goods Control A/C	$9,77,300$	By Costing profit \& loss A/c	$10,74,100$
To Administration OH control A/c	14,800		
To S \& D OH control A/c	82,000		$\mathbf{1 0 , 7 4 , 1 0 0}$
	$\mathbf{1 0 , 7 4 , 1 0 0}$		

Costing Profit \& Loss A/c

Particulars	₹	Particulars	F
To Cost of sales A/c To Cost ledger control A/c (b.f.) (Profit for the period)	10,74,100	By Cost ledger control A/c (Sales)	14,43,000
	3,68,900		
	14,43,000		14,43,000

Cost Ledger Control A/c

Particulars	₹	Particulars	F
To Costing profit and loss A / c	14,43,000	By Balance b/d	3,13,150
To Balance c/d	3,22,300	By Material control A/c	4,80,100
		By Wages Control A/c	2,14,300
		By Production OH control A/c	2,50,650
		By Administration OH control A / c	74,000
		By S \& D OH control A/c	64,200
		By Costing profit and loss A/c	3,68,900
	17,65,300		17,65,300

Trial Balance as at $30^{\text {th }}$ September

Name of Account	Dr.	Cr.
Material Control A/c	74,900	-
Work-in-process Control A/c	89,900	-
Finished Goods Control A/c	$1,58,000$	-
Production Overheads Control A/c	6,150	-
Administration Overhead Control A/c	-	2,300
Selling and Distribution Overhead Control A/c	-	4,350
Cost Ledger Control A/c \quad Total	-	$3,22,300$
	$\mathbf{3 , 2 8 , 9 5 0}$	$\mathbf{3 , 2 8 , 9 5 0}$

BQ 8

The following figures have been extracted from the Cost Ledger of a manufacturing unit:

Stores:

Opening balance	15,000
Purchases	80,000
Transfer from work-in-progress	40,000
Issues to work-in-progress	80,000
Issues to repairs and maintenance	10,000
Sold as special case at cost	5,000
Shortage in the year	3,000

Work-in-progress:

Opening inventory	30,000
Direct labour cost charged	30,000
Overhead cost charged	$1,20,000$
Closing balance	20,000

Entire output is sold at a profit of 10\% on actual cost from work-in-progress.
Wages for the period 35,000
Overhead expenses
1,25,000
Ascertain the profit or loss as per financial account and cost accounts and reconcile them.

Answer

Stores Ledger Control Account

Particulars	Amount	Particulars	Amount
To Balance b/d	15,000	By WIP Control A/c	80,000
To Cost Ledger Control A/c	80,000	By Cost Ledger Control A/c	5,000
(Purchases)	40,000	(Materials sold at cost)	
To Work in progress Control A/c		By Overhead Control A/c	10,000

| (Return from WIP) | By Overhead Control A/c
 (assumed normal)
 By Balance c/d | 3,000 |
| :--- | :---: | :--- | :---: |
| | $\mathbf{1 , 3 5 , 0 0 0}$ | 37,000 |
| | | $\mathbf{1 , 3 5 , 0 0 0}$ |

Wages Control Account

Particulars	Amount	Particulars	Amount
To Cost Ledger Control A/c	35,000	By WIP Control A/c	30,000
		By Overhead Control A/c	5,000
	$\mathbf{3 5 , 0 0 0}$		$\mathbf{3 5 , 0 0 0}$

Overhead Control Account

Particulars	Amount	Particulars	Amount
To Cost Ledger Control A/c	$1,25,000$	By WIP Control A/c	$1,20,000$
To Store Ledger Control A/c	10,000	By Balance c/d	23,000
To Store Ledger Control A/c	3,000	(under recovery carried forward)	
To Wages Control A/c	5,000		$\mathbf{1 , 4 3 , 0 0 0}$
	$\mathbf{1 , 4 3 , 0 0 0}$		

Work in Progress Control Account

Particulars	Amount	Particulars	Amount
To Balance b/d	30,000	By Stores Control A/c	40,000
To Stores Ledger Control A/c	80,000	By Costing Profit and Loss A/c	$2,00,000$
To Wages Control A/c	30,000	(i.e., cost of sales)	
To Overhead Control A/c	$\mathbf{1 , 2 0 , 0 0 0}$	By Balance c/d	$\mathbf{2 0 , 0 0 0}$
	$\mathbf{2 , 6 0 , 0 0 0}$		$\mathbf{2 , 6 0 , 0 0 0}$

Costing Profit \& Loss Account

Particulars	Amount	Particulars	Amount
To WIP Control A/c To Profit	$2,00,000$	By Cost Ledger Control A/c	$2,20,000$
	20,000	(Sales: $2,00,000+10 \%)$	
	$2,20,000$		$2,20,000$

(Alternatively) Statement of Profit as per Costing Records

Particulars	Amount
Direct materials cost (80,000 - 40,000)	40,000
Direct wages	30,000
Prime Cost	70,000
Production overheads	$1,20,000$
Add: Opening WIP	30,000
Less: Closing WIP	$(20,000)$
	$2,00,000$
Profit @10\% of 2,00,000	20,000
Sales	$2,20,000$

Profit \& Loss Account

Particulars	Amount	Particulars		Amount
To Opening stock:		By Sales	$2,20,000$	
Materials	15,000		By Closing stock:	
WIP	$\underline{30,000}$	45,000	Materials	37,000
To Purchases net of item sold	75,000	WIP	$\underline{20,000}$	57,000

$(80,000-5,000)$		By Net Loss	3,000
To Wages incurred	35,000		
To Overheads incurred	$\mathbf{1 , 2 5 , 0 0 0}$		$\mathbf{2 , 8 0 , 0 0 0}$
	$\mathbf{2 , 8 0 , 0 0 0}$		

Reconciliation statement

Particulars	$₹$
Profit as per Cost Accounts	20,000
Less: Overhead under recovered	$(23,000)$
Loss as per Financial Accounts	$(3,000)$

BQ 9

A company operates on historic job cost accounting system, which is not integrated with the financial accounts. At the beginning of a month, the opening balances in cost ledger were:

Particulars	₹(In lakhs)
Stores Ledger Control Account	80
Work-in-Process Control Account	20
Finished Goods Control Account	430
Building Construction Account	10
Cost Ledger Control Account	540
During the month, the following transaction took place:	
Materials:	
Purchased	40
Issued to production	50
Issued to factory maintenance	6
Issued to building construction	4
Gross wages paid	150
Indirect wages	40
For building construction	10
Works Overheads:	160
Actual amount incurred	
(excluding items shown above)	20
Absorbed in building construction	8
Under absorbed	5
Royalty paid (related to production)	25
Selling, distribution and administration overheads	450
Sales	

At the end of the month, the stock of raw material and work-in-Process was ₹55 lakhs and ₹25 lakhs respectively. The loss arising in the raw material accounts is treated as factory overheads. The building under construction was completed during the month. Company's gross profit margin is 20% on sales.

Prepare the relevant control accounts to record the above transactions in the cost ledger of the company.

Answer

Stores Ledger Control A/c

To Balance b/d
To Cost Ledger Control A/c

80	By Work-in-process A/c By Works OH Control A/c By Building Construction A/c By Works OH Control A/c (b.f.; loss) By Balance c/d
$\mathbf{1 2 0}$	

Wages Control A/c

Particulars	₹(in lakhs)	Particulars	₹(in lakhs)
To Cost Ledger Control A/c	$\mathbf{1 5 0}$	By Work-in-process A/c (b.f.)	100
		By Works OH Control A/c	40
		By Building Construction A/c	10
	$\mathbf{1 5 0}$		$\mathbf{1 5 0}$

Royalty A / c

Particulars	F (in lakhs)	Particulars	F (in lakhs)
To Cost Ledger Control A/c	5	By Work-in-process A/c	5
	5		5

Works Overhead Control A/c

Particulars	₹(in lakhs)	Particulars	$₹$ (in lakhs)
To Cost Ledger Control A/c	160	By Work-in-process A/c (b.f.)	183
To Stores Ledger Control A/c	6	By Building Construction A/c	20
To Stores Ledger Control A/c	5	By Costing P \& L A/c	8
To Wages Control A/c	40	(under absorption)	
	$\mathbf{2 1 1}$		$\mathbf{2 1 1}$

Work-in-Process Control A/c

Particulars	$₹$ ₹ (in lakhs)	Particulars	$₹$ (in lakhs)
To Balance b/d	20	By Finished Goods Control A/c (b.f.)	333
To Works OH Control A/c	183	By Balance c/d	25
To Wages Control A/c	100		
To Stores Ledger Control A/c	50		
To Royalty A/c	5		$\mathbf{3 5 8}$
	$\mathbf{3 5 8}$		

Finished Goods Control A/c

Particulars	₹ (in lakhs)	Particulars	₹ (in lakhs)
To Balance b/d To Work-in-Progress Control A/c	430	By Cost of Sales A/c (80% of ₹ $450 /$ Gross Profit 20\%) By Balance c/d (b.f)	360
	333		
	763		763

Selling, Distribution and Administration Overhead A/c

Particulars	\mathfrak{F} (in lakhs)	Particulars	$₹$ (in lakhs)
To Cost Ledger Control A/c	25	By Cost of Sales A/c	25
	25		25

Cost of Sales A/c

Particulars	₹ $($ in lakhs $)$	Particulars	$₹($ in lakhs)
To Finished Goods Control A/c	360	By Costing P \& L A/c	385

| To Selling, Distribution and |
| :--- | :---: | :---: | :---: |
| Administration OH A/c |$\quad 25$| |
| :---: |

Costing P \& L A/c

Particulars	₹ $($ in lakhs $)$	Particulars	$₹($ in lakhs)
To Cost of Sales A/c	385	By Cost Ledger Control A/c (Sales)	450
To Works OH Control A/c	8		
To Cost Ledger Control A/c	57		$\mathbf{4 5 0}$
(Profit/b.f.)	$\mathbf{4 5 0}$		

Building Construction A/c

Particulars	₹ $($ in lakhs $)$	Particulars	₹ (in lakhs)
To Balance b/d	10	By Cost Ledger Control A/c	44
To Stores Ledger Control A/c	4		
To Wages Control A/c	10		
To Works OH Control A/c	20		$\mathbf{4 4}$

Cost Ledger Control A/c

Particulars	₹(in lakhs)	Particulars	$₹($ in lakhs)
To Costing P \& L A/c	450	By Balance b/d	540
To Building Construction A/c	44	By Stores Ledger Control A/c	40
To Balance c/d	483	By Wages Control A/c	150
		By Works OH Control A/c	160
		By Royalty A/c	5
		By Selling, Distribution and	25
		Administration OH A/c	
		By Costing P \& L A/c	57
			$\mathbf{9 7 7}$

Trial Balance

Name of Account	Dr.	Cr.					
Stores Ledger Control A/c	55	-					
Work in progress Control A/c	25	-					
Finished Goods Control A/c	403	-					
Cost Ledger Control A/c \quad Total	-	483					

PAST YEAR QUESTIONS

PYQ 1

The following information has been extracted from the cost records of a manufacturing company:

Stores:

Opening balance	9,000
Purchase	48,000
Transfer from WIP	24,000
Issue to work-in-process	48,000
Issue for repairs	6,000
Deficiency found in stock	1,800

Work-in-process:

Opening balance 18,000
Direct wages applied 18,000
Overhead charged $\quad 72,000$
Closing balance 12,000
Finished Production: Entire production is sold at a profit of 10\% on cost from Work-in-process.

Wages paid	21,000
Overhead incurred	75,000

Draw the Stores Ledger Control A/c, Work-in-progress Control A/c, Overheads Control A/c and Costing Profit and Loss A/c.
[(8 marks) Nov 2011/May 2017]
Answer
Stores Ledger Control A/c

Particulars	Amount	Particulars	Amount
To Balance b/d	9,000	By WIP Ledger Control A/c	48,000
To Cost Ledger Control A/c	48,000	By Overhead Control A/c	6,000
To WIP Ledger Control A/c	24,000	By Overhead Control A/c	1,800
		(Deficiency assumed normal)	25,200
		By Balance c/d	$\mathbf{8 1 , 0 0 0}$

WIP Ledger Control A/c

Particulars	Amount	Particulars	Amount
To Opening balance	18,000	By Stores Ledger Control A/c	24,000
To Stores Ledger Control A/c	48,000	By Costing Profit \& Loss A/c	$1,20,000$
To Wages Control A/c	18,000	By Balance c/d	12,000
To Overhead Control A/c	$\mathbf{7 2 , 0 0 0}$		
	$\mathbf{1 , 5 6 , 0 0 0}$		$\mathbf{1 , 5 6 , 0 0 0}$

Overhead Control A/c

Particulars	Amount	Particulars	Amount
To Cost Ledger Control A/c	75,000	By WIP Ledger Control A/c	72,000
To Stores Ledger Control A/c	6,000	By Costing P \& L A/c	13,800
To Stores Ledger Control A/c	1,800		

To Wages Control A/c	3,000		
	$\mathbf{8 5 , 8 0 0}$		$\mathbf{8 5 , 8 0 0}$

Costing P/LA/c

Particulars	Amount	Particulars	Amount
To WIP Ledger Control A/c	$1,20,000$	By Cost Ledger Control A/c	$1,32,000$
To Overhead Control A/c	13,800	(1,20,000 + 10\%) By Cost Ledger Control A/c (Loss)	1,800
	$\mathbf{1 , 3 3 , 8 0 0}$	$\mathbf{1 , 3 3 , 8 0 0}$	

Wages Control A/c

Particulars	Amount	Particulars	Amount
To Cost Ledger Control A/c	21,000	By WIP Ledger Control A/c	18,000
		By Overhead Control A/c	3,000
		$\mathbf{2 1 , 0 0 0}$	
$\mathbf{2 1 , 0 0 0}$			

Note: This question is solved on the basis of Non Integrated Method of accounting, alternatively student can solve this problem by using Integrated Method of accounting.

PYQ 2

Following information has been extracted from the cost records of XYZ Pvt. Ltd:

Stores:

Opening balance	54,000
Purchase	$2,88,000$
Transfer from WIP	$1,44,000$
Issue to work-in-process	$2,88,000$
Issue for repairs	36,000
Deficiency found in stock	10,800

Work-in-process:

Opening balance	$1,08,000$
Direct wages applied	$1,08,000$
Overhead charged	$4,32,000$
Closing balance	72,000

Finished Production:

Entire production is sold at a profit of 15\% on cost from Work-in-process.
$\begin{array}{ll}\text { Wages paid } & 1,26,000 \\ \text { Overhead incurred } & 4,50,000\end{array}$
Draw the Stores Ledger Control A/c, Work-in-progress Control A/c, Overheads Control A/c and Costing Profit and Loss A/c.

Answer

Stores Ledger Control A/c

To Balance b/d	54,000	By WIP Ledger Control A/c	$2,88,000$
To Cost Ledger Control A/c	$2,88,000$	By Overhead Control A/c	36,000
To WIP Ledger Control A/c	$1,44,000$	By Overhead Control A/c	10,800
		(Deficiency assumed normal)	$1,51,200$
	$\mathbf{4 , 8 6 , 0 0 0}$		$\mathbf{4 , 8 6 , 0 0 0}$

WIP Ledger Control A/c

Particulars	Amount	Particulars	Amount
To Opening balance	$1,08,000$	By Stores Ledger Control A/c	$1,44,000$
To Stores Ledger Control A/c	$2,88,000$	By Costing Profit \& Loss A/c	$7,20,000$
To Wages Control A/c	$1,08,000$	By Balance c/d	72,000
To Overhead Control A/c	$4,32,000$		
	$\mathbf{9 , 3 6 , 0 0 0}$		$\mathbf{9 , 3 6 , 0 0 0}$

Overhead Control A/c

Particulars	Amount	Particulars	Amount
To Cost Ledger Control A/c	$4,50,000$	By WIP Ledger Control A/c	$4,32,000$
To Stores Ledger Control A/c	36,000	By Costing P \& L A/c	82,800
To Stores Ledger Control A/c	10,800		
To Wages Control A/c	$\mathbf{1 8 , 0 0 0}$		$\mathbf{5 , 1 4 , 8 0 0}$
	$\mathbf{5 , 1 4 , 8 0 0}$		

Costing P/LA/c

Particulars	Amount	Particulars	Amount
To WIP Ledger Control A/c	$7,20,000$	By Cost Ledger Control A/c	$8,28,000$
To Overhead Control A/c	82,800	(Sales: 7,20,000 + 15\%)	
To Cost Ledger Control A/c	25,200		
(Profit)			$\mathbf{8 , 2 8 , 0 0 0}$

Wages Control A/c

Particulars	Amount	Particulars	Amount
To Cost Ledger Control A/c	$1,26,000$	By WIP Ledger Control A/c	$1,08,000$
			18,000
	By Overhead Control A/c	$\mathbf{1 , 2 6 , 0 0 0}$	

PYQ 3
The following information is available from a company's records for March, 2016:
(a) Opening balance of Creditors Account
₹ 25,000
(b) Closing balance of Creditors Account
₹40,000
(c) Payment made to Creditors
(d) Opening balance of Stores Ledger Control Account
₹5,80,000
(e) Closing balance of Stores Ledger Control Account
₹40,000
(f) Wages paid (for 8,000 hours) 20% relate to indirect workers
(g) Various indirect expenses incurred
₹65,000
(h) Opening balance of WIP Control Account
₹4,00,000
₹ 60,000
(i) Inventory of WIP at the end includes:

Material worth	₹35,000
Labour hours booked	400 hours

(j) Budgeted:

$$
\begin{array}{ll}
\text { Overhead cost } & \text { ₹20,80,000 } \\
\text { Labour hours } & 1,04,000
\end{array}
$$

(a) Factory overhead is charged to production at budgeted rate based on direct labour hours.

You are required to prepare Creditors A/c, Stores Ledger Control A/c, WIP Control A/c, Wages Control A / c and Factory Overhead Control A / c.
[(8 marks) May 2016]

Answer

Creditors A/c

Particulars	$₹$	Particulars	$₹$
To Cash or Bank A/c			
To Balance c/d			

Stores Ledger Control A/c

Particulars	F	Particulars	₹
To Balance b/d To Creditors A/c (Purchase: figure from creditor A / c)	40,000	By Work-in-progress Control A/c (Balancing figure) By Balance b/d	5,70,000
	5,95,000		
			65,000
	6,35,000		6,35,000

Work-in-progress Ledger Control A/c

Particulars	₹	Particulars	F
To Balance b/d	50,000	By Finished Goods Control A/c (b.f.)	10,05,000
To Stores Ledger Control A/c	5,70,000	$\begin{aligned} & \text { By Balance c/d: } \\ & \text { Material } \\ & \text { ₹35,000 } \\ & \text { Labour (} 400 \mathrm{hrs} \times \text { ₹50) } \\ & \text { ₹20,000 } \\ & \quad \text { Overheads (} 400 \mathrm{hrs} \times \text { ₹ } 20 \text {) ₹ } 8,000 \\ & \hline \end{aligned}$	
To Wages Control A/c	3,20,000		
To Factory Overhead Control A/c	1,28,000		
	10,68,000		10,68,000

Wages Control A/c			
Particulars	F	Particulars	₹
To Bank A/c	4,00,000	```By WIP Ledger Control A/c (8,000 hours \(\times 80 \% \times 50\)) By Factory Overhead Control A/c (8,000 hours \(\times 20 \% \times 50\))```	3,20,000
			80,000
	4,00,000		4,00,000

Factory Overhead Control A/c

Particulars	$₹$	Particulars	$₹$
To Bank A/c			
To Wages Control A/c	60,000	By WIP Ledger Control A/c	$1,28,000$
	80,000	(6,400 hrs \times ₹20 By Costing P/L A/c (Under-absorbed Overheads)	12,000
			$\mathbf{1 , 4 0 , 0 0 0}$

Working notes:

1. Direct Labour Hour Rate
2. Factory Overhead Rate $=$ Budgeted Factory Overheads \div Budgeted Labour Hours
$=$ ₹ $20,80,000 \div 1,04,000 \quad=\quad$ ₹ 20 per hour

PYQ 4

The following balances were extracted from a company's ledger as on 30 th June 2018:

Name of Account	Dr.	$\boldsymbol{C r}$.
Raw materials control A/c	$2,82,450$	-
Work in progress control A/c	$2,38,300$	-
Finished stock control A/c	$3,92,500$	-
General ledger adjustment A/c	-	$\mathbf{9 , 1 3 , 2 5 0}$
Total	$\mathbf{9 , 1 3 , 2 5 0}$	$\mathbf{9 , 1 3 , 2 5 0}$

The following transactions took place during the quarter ended 30th September, 2018:

Factory overhead - allocated to WIP	$1,36,350$
Goods Finished at - cost	$13,76,200$
Raw materials purchased	$12,43,810$
Direct wages - allocated to WIP	$2,56,800$
Cost of goods sold	$14,56,500$
Raw materials - issued to production	$13,60,430$
Raw materials - credited by suppliers	27,200
Raw material losses - inventory audit	6,000
WIP rejected (with no scrap value)	12,300
Customer's return (at cost) of finished goods	45,900

You are required to prepare:

(1) Raw material control A/c
(2) Work-in-progress control A/c
(3) Finished stock control A/c
(4) General ledger adjustment A / c
[(10 Marks) Nov 2018]
Answer
Raw Material Control A/c

Particulars	Amount	Particulars	Amount
To Balance b/d	$2,82,450$	By WIP A/c	$13,60,430$
To General Ledger Adjustment A/c	$12,43,810$	By General Ledger Adjustment A/c	27,200
		By General Ledger Adjustment A/c	6,000
		(Loss)	
		By Balance c/d (Bal. figure)	$1,32,630$
		$\mathbf{1 5 , 2 6 , 2 6 0}$	

Work-in-Process Control A/c

Particulars	Amount	Particulars	Amount
To Balance b/d	$2,38,300$	By Finished Stock Control A/c	$13,76,200$
To Raw Material Control A/c	$13,60,430$	By General Ledger Adjustment A/c	12,300
To Wages Control A/c	$2,56,800$	(Rejected)	
To Factory OH Control A/c	$1,36,350$	By Balance c/d (Bal. figure)	$6,03,380$
	$\mathbf{1 9 , 9 1 , 8 8 0}$		$\mathbf{1 9 , 9 1 , 8 8 0}$

Finished Stock Control A/c

Particulars	Amount	Particulars	Amount
To Balance b/d	$3,92,500$	By Cost of Sales	$14,56,500$
To Work-in-Progress Control A/c	$13,76,200$	By Balance c/d (bal. figure)	$3,58,100$
To Cost of Sales (Return)	45,900		
	$\mathbf{1 8 , 1 4 , 6 0 0}$		$\mathbf{1 8 , 1 4 , 6 0 0}$

General Ledger Adjustment A/c

Particulars	Amount	Particulars	Amount
To Raw Material Control A/c	27,200	By Balance b/d	$9,13,250$
(Returns)		By Raw Material Control A/c	$12,43,810$
To Raw Materials Control A/c (Loss)	6,000	By Wages Control A/c	$2,56,800$
To WIP Control A/c (Rejected)	12,300	By Factory OH Control A/c	$1,36,350$
To Balance c/d	$25,04,710$		
	$\mathbf{2 5 , 5 0 , 2 1 0}$		$\mathbf{2 5 , 5 0 , 2 1 0}$

PYQ 5
Journalise the following transactions in the cost books under non- integrated system of accounting:
(a) Credit Purchase of Material
₹ 27,000
(b) Manufacturing overheads charged to production
₹6,000
(c) Selling and Distribution overheads recovered from Sales ₹ 4,000
(d) Indirect wages incurred
(e) Material returned from production to stores
₹8,000 ₹9,000
[(5 Marks) Nov 2019]

Answer

Journal Entries

S. No.	Entries		Dr.	$\boldsymbol{C r}$.
(a)	Store Ledger Control A/c To Cost Ledger Control A/c	Dr.	27,000	-
(b)	Work-in-progress Ledger Control A/c To Manufacturing Overhead Control A/c	Dr.	6,000	-
(c)	Cost of Sales A/c To Selling \& Distribution Overhead Control A/c	Dr.	4,000	-
(d)	Wages Control A/c To Cost Ledger Control A/c	Dr.	8,000	-
(e)	Store Ledger Control A/c To Work-in-progress Ledger Control A/c	Dr.	9,000	-

PYQ 6

Journalize the following transactions assuming the cost and financial accounts are integrated:

Particulars	(in ₹)
Direct Materials issued to production	$5,88,000$
Allocation of Wages (Indirect)	$7,50,000$
Factory Overheads (Over absorbed)	$2,25,000$
Administrative Overheads (Under absorbed)	$1,55,000$
Deficiency found in stock of Raw material (Normal)	$2,00,000$

Journal Entries

S. No.	Entries	Dr.	Cr.
(a)	Work-in-progress Ledger Control A/c To Store Ledger Control A/c (Being issue of direct materials to production)	$5,88,000$	5,88,000
(b)	Factory Overhead Control A/c To Wages Control A/c (Being allocation of indirect wages)	$7,50,000$	7,50,000
(c)	Factory Overhead Control A/c To Costing Profit \& Loss A/c (Being transfer of over absorption of factory overhead)	$\begin{gathered} 2,25,000 \\ - \end{gathered}$	$2,25,000$
(d)	Costing Profit \& Loss A/c Dr. To Administration Overhead Control A/c (Being transfer of under absorption of administration overhead)	1,55,000	$\stackrel{-}{1,55,000}$
(e)	Factory Overhead Control A/c To Store Ledger Control A/c (Being transfer of deficiency in stock of raw material)	$\begin{gathered} 2,00,000 \\ - \end{gathered}$	2,00,000

SUGGESTED REVISION FOR EXAM:

BQ: 1, 2, 6, 9
PYQ: 1, 3, 4

CHAPTER 15

RECONCILIATION

INTEGRATED ACCOUNTING SYSTEM

BQ 1

During the year ended 31st March, 2023, the profit of a company stood at ₹ 36,450 as per financial records. The cost books however showed a profit of ₹ 51,950 for the same period.

Prepare a statement reconciling the profit as per cost records with the profit as per financial records.
(a) Opening stock overstated in cost accounts 3,500
(b) Closing stock understated in cost accounts 4,600
(c) Factory overheads under recovered in cost accounts 2,500
(d) Administration expenses over recovered in cost accounts 750
(e) Selling and distribution expenses under recovered in cost accounts 1,650
(f) Depreciation over recovered in cost accounts 1,500
(g) Interest on investment not included cost accounts $\quad 5,000$
(h) Obsolescence loss in respect of machineries charged in financial accounts 2,450
(i) Income tax provided in financial accounts 25,000
(j) Bank interest credited in financial accounts 1,500
(k) Stores adjustments (debit in financial book) 750

Answer

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Books		$\mathbf{5 1 , 9 5 0}$
Add:	Opening stock overstated	3,500
Closing stock understated	4,600	
Administration expenses over recovered	750	
Depreciation over recovered	1,500	
Interest on investment	5,000	
Bank interest credited	1,500	16,850
Less:		
Factory overheads under recovered	2,500	
Selling and distribution expenses under recovered	1,650	
Obsolescence loss	2,450	
Income tax provided	25,000	$32,350)$
Stores adjustment (debit in financial book)	750	
Profit as per Financial Books		36,450

BQ 2

M/s. H.K. Piano Company showed a net loss of $₹ 4,16,000$ as per their financial accounts for the year ended $31^{\text {st }}$ March. The cost accounts, however, disclosed a net loss of ₹ $3,28,000$ for the same period. The following information was revealed as a result of scrutiny of the figures of both the sets of books:

$$
\text { (1) Factory overheads under recovered } \quad 6,000
$$

(2) Administration overheads over recovered 4,000

(3)	Depreciation charged in financial accounts	$1,20,000$
(4)	Depreciation recovered in costs	$1,30,000$
(5)	Interest on investment not included costs	20,000
(6)	Income-tax provided	$1,20,000$
(7)	Transfer fees (credit in financial books)	2,000
(8)	Stores adjustments (credit in financial book)	2,000

Prepare a Memorandum reconciliation account.
Answer
Memorandum Reconciliation Account

Particulars	Amount	Particulars	Amount
To Net loss as per Cost A/c	$\mathbf{3 , 2 8 , 0 0 0}$	By Admin. OH over recovered	4,000
To Factory OH under recovered	6,000	By Depreciation over recovered	10,000
To Income Tax	$1,20,000$	(1,30,000 - 1,20,000)	
		By Interest on investment	20,000
		By Transfer fees	2,000
		By Stores adjustment	2,000
		By Net loss as per Financial $\boldsymbol{A} / \boldsymbol{c}$	$\mathbf{4 , 1 6 , 0 0 0}$
			$\mathbf{4 , 5 4 , 0 0 0}$

BQ 3

Given below is the trading and profit and loss account of a company for the year ended 31st March 2023:

Particulars	Amount	Particulars	Amount
To Direct Materials	$27,40,000$	By Sales (60,000 units)	$60,00,000$
To Direct Wages	$15,10,000$	By Closing finished goods	$1,60,000$
To Factory Expenses	$8,30,000$	(2,000 units)	
To Administration Expenses	$3,82,400$	By Closing Work in progress:	
To Selling Expenses	$4,50,000$	Materials	64,000
To Preliminary Expenses	60,000	Wages	
		Factory Expenses	$\underline{20,000}$
To Net profit	$3,25,600$	By Dividend received	$1,20,000$
	$\mathbf{6 2 , 9 8 , 0 0 0}$		$\mathbf{1 8 , 0 0 0}$
		$\mathbf{6 2 , 9 8 , 0 0 0}$	

The company manufactures standard units. In the cost Accounts:
(1) Factory expenses have been allocated to production at 20% of prime cost.
(2) Administrative expenses at ₹ 6 per unit produced.
(3) Selling expenses at ₹8 per unit sold.

Prepare the costing profit and loss account of the company and reconcile the same with the profit disclosed by the financial accounts.

Answer

Costing Profit \& Loss Account

Particulars	Amount	Particulars	Amount
To Direct Materials	$27,40,000$	By Sales (60,000 units)	$60,00,000$
To Direct Wages	$1,10,000$	By Closing finished goods	$1,72,645$
To Factory Expenses	$8,50,000$	(2,000 units)	
To Administration Expenses	$3,72,000$	By Closing Work in progress	$1,20,000$
To Selling Expenses	$4,80,000$		
To Net profit	$3,40,645$		$\mathbf{6 2 , 9 2 , 6 4 5}$
	$\mathbf{6 2 , 9 2 , 6 4 5}$		

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Accounts		3,40,645
Add: Factory expenses over recovered (8,50,000-8,30,000)	20,000	68,000
Selling expenses over recovered (4,80,000-4,50,000)	30,000	
Dividend received	18,000	
Less: Administration overheads under recovered (3,82,400-3,72,000)	10,400	
Closing stock over valued (1,72,645-1,60,000)	12,645	
Preliminary expenses	60,000	$(83,045)$
Profit as per Financial Accounts		3,25,600

Working note:

(a)	Factory expenses	=	$\begin{aligned} & 20 \% \text { of prime cost } \\ & 20 \%(27,40,000+15,10,000) \end{aligned}$	=	₹8,50,000
(b)	Administration expenses	=	₹ $6 \times 62,000$ units	=	F3,72,000
(c)	Selling expenses	=	₹ $8 \times 60,000$ units	=	₹4,80,000
(d)	Number of units produced	$=$ $=$	Units sold + Units in closing fin $60,000+2,000$		62,000 units
(e)	Value of closing finished goods	$=$ $=$	$\begin{aligned} & \frac{\text { Cost of Production }}{\text { Units Produced }} \times \text { Closing fi } \\ & \frac{53,52,000}{62,000} \times 2,000 \end{aligned}$	goo	₹ $1,72,645$
(f)	Cost of production	=	$\begin{aligned} & 27,40,000+15,10,000+8,50,0 \\ & \text { ₹53,52,000 } \end{aligned}$,20,0	$+3,72,000$

BQ 4

The following figures are available from the financial records of ABC Manufacturing Co. Ltd. for the year ended 31.03.2023.

Particulars	₹	
Sales (20,000 units)		$25,00,000$
Materials		$10,00,000$
Wages		$5,00,000$
Factory overheads	$4,50,000$	
Office and administrative overheads (production related)	$2,60,000$	
Selling and distribution overheads	$1,80,000$	
Finished goods (1,230 units)		$1,50,000$
Work-in-process:		
Materials	30,000	
\quad Labour	20,000	
Factory overheads	$\underline{20,000}$	70,000
Goodwill written off		$2,00,000$
Interest on loan taken		20,000

In the Costing records, factory overhead is charged at 100% of wages, administration overhead 10% of factory cost and selling and distribution overhead at the rate of ₹10 per unit sold.

Prepare a statement reconciling the profit as per cost records with the profit as per financial records.

Answer

Profit \& Loss Account of ABC Manufacturing Co. Ltd. (For the year ended 31.03.2023)

Particulars	Amount	Particulars	Amount
To Opening finished goods	Nil	By Sales (20,000 units)	$25,00,000$
To Materials	$10,00,000$	By Closing stock:	
To Wages	$5,00,000$	Finished goods (1,230 units)	$1,50,000$
To Factory overheads	$4,50,000$	Work-in-process	70,000
To Office \& Admin. overheads	$2,60,000$		
To Selling \& distribution Overheads	$1,80,000$		
To Goodwill written off	$2,00,000$		
To Interest on loan	20,000		$\mathbf{2 7 , 2 0 , 0 0 0}$
To Profit	$1,10,000$		
	$\mathbf{2 7 , 2 0 , 0 0 0}$		

Cost Sheet

Particulars	Amount
Materials	10,00,000
Wages	5,00,000
Direct Expenses	Nil
Prime Cost	15,00,000
Factory overheads at 100\% of wages	5,00,000
Less: Closing stock of WIP	$(70,000)$
Factory Cost	19,30,000
Office and administrative overheads at 10\% of factory cost	1,93,000
Cost of Production (21,230 units)	21,23,000
Less: Closing stock of Finished goods $\{(21,23,000 \div 21,230) \times 1,230$ units $\}$	(1,23,000)
Production cost of 20,000 units or COGS	20,00,000
Selling and distribution overheads at ₹ 10 per unit	2,00,000
Cost of sales	22,00,000
Profit (balancing figure)	3,00,000
Sales	25,00,000

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Accounts		3,00,000
Add: Factory overheads over recovered	50,000	97,000
Selling and distribution overheads over recovered	20,000	
Closing stock under valued in costs	27,000	
Less: Office and administrative overheads under recovered	67,000	
Goodwill written off	2,00,000	
Interest on loan	20,000	(2,87,000)
Profit as per Financial Accounts		1,10,000

BQ 5

The following figures have been extracted from the Financial Accounts of a manufacturing firm for the first year of its operation:

Direct material consumption	$50,00,000$
Direct wages	$30,00,000$
Factory overheads	$16,00,000$
General administration overheads	$7,00,000$
Selling and distribution overheads	$9,60,000$
Bad debts	80,000
Preliminary expenses written off	40,000
Legal charges	10,000
Dividends received	$1,00,000$
Interest received on deposits	20,000
Sales (1,20,000 units)	$1,20,00,000$
Closing stock:	$3,20,000$
Finished goods (4,000 units)	$2,40,000$

The cost accounts for the same period reveal that the direct material consumption was ₹ $56,00,000$. Factory overhead is recovered at 20% on prime cost. Administration overhead is recovered at ₹ 6 per unit of goods sold. Selling and distribution overheads are recovered at ₹8 per unit sold.

Prepare the Profit and Loss Accounts as per financial records and Cost Sheet as per cost records. Reconcile the profits as per the two records.

Answer

Profit \& Loss Account
(As per financial records)

Particulars	Amount	Particulars	Amount
To Materials	50,00,000	By Sales (1,20,000 units)	1,20,00,000
To Wages	30,00,000	By Closing stock:	
To Factory overheads	16,00,000	Finished goods (4,000 units)	3,20,000
To Gross profit c/d	29,60,000	Work-in-process	2,40,000
	1,25,60,000	By Gross profit b/d	1,25,60,000
To General administrave overheads To Selling \& distribution Overheads	7,00,000		29,60,000
	9,60,000	By Dividends	1,00,000
To Bad debts	80,000	By Interest	20,000
To Preliminary expenses written off To Legal charges	40,000		
	10,000		
To Profit	12,90,000		
	30,80,000		30,80,000

Statement of Cost and Profit (As per Cost Records)

Particulars	Amount
Direct materials	56,00,000
Direct wages	30,00,000
Prime Cost	86,00,000
Factory overheads (20% of $86,00,000$)	17,20,000
Less: Closing stock of WIP	(2,40,000)
Cost of Production (1,24,000 units)	1,00,80,000
Less: Closing stock of Finished goods [$(1,00,80,000 \div 1,24,000) \times 4,000]$	$(3,25,161)$
Cost of goods sold (1,20,000 units)	97,54,839
General administrative overheads (1,20,000 units @ ₹ 6 per unit)	7,20,000
Selling and distribution overheads (1,20,000 units @ ₹8 per unit)	9,60,000

	Cost of sales
Net Profit (balancing figure)	Sales

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Accounts		$5,65,161$
Add:	Excess of material consumption	$6,00,000$
Factory overheads over recovered	$1,20,000$	
Administration overheads over recovered	20,000	
Dividend received	$1,00,000$	
Interest received	20,000	$8,60,000$
Less: Closing stock over valued in costs $(3,25,161-3,20,000)$	80,000	
Bad debts	40,000	
Preliminary expenses written off	10,000	$(1,35,161)$
Legal charges		$\mathbf{1 2 , 9 0 , 0 0 0}$

BQ 6

The financial books of a company reveal the following data for the year ended 31 ${ }^{\text {st }}$ March, 2023:

Opening stock:

Finished goods (625 units) 53,125
Work-in-process 46,000
During the year (01.04.22 to 31.03.23):
Raw materials consumed 8,40,000
Direct Labour 6,10,000
Factory overheads 4,22,000
Administration overheads (production related) 1,98,000
Dividend paid 1,22,000
Bad Debts 18,000
Selling and Distribution Overheads 72,000
$\begin{array}{ll}\text { Interest received } & 38,000\end{array}$
$\begin{array}{ll}\text { Rent received } & 46,000\end{array}$
Sales (12,615 units) 22,80,000

Closing stock:

Finished goods (415 units) 45,650
Work-in-process 41,200
The cost records provide as under:

- Factory overheads are absorbed at 70% of direct wages.
- Administration overheads are recovered at 15% of factory cost.
- \quad Selling and distribution overheads are charged at ₹ 3 per unit sold.
- Opening stock of finished goods is valued at ₹ 120 per unit.
- The company values work-in-process at factory cost for both Financial and Cost Profit reporting.

Required:

(i) Prepare statements for the year ended 31 ${ }^{\text {st }}$ March, 2023 to show
(a) The profit as per financial records
(b) The profit as per costing records.
(ii) Present a statement reconciling the profit as per costing records with the profit as per Financial Records?

Answer

(i) (a) Financial Profit and Loss A / c

Particulars	Amount	Particulars	Amount
To Opening stock:		By Sales	$22,80,000$
WIP	46,000	By Closing stock:	
Finished goods	53,125	WIP	41,200
To Raw material consumed	$8,40,000$	Finished goods (375 units)	45,650
To Direct labour	$6,10,000$		
To Gross profit	$8,17,725$		$23,66,850$
	$\mathbf{2 3 , 6 6 , 8 5 0}$		$8,17,725$
To Factory overheads	$4,22,000$	By Gross profit	38,000
To Administrative overheads	$1,98,000$	By Interest received	46,000
To Selling \& Distribution overheads	72,000	By Rent received	
To Dividend Paid	$1,22,000$		
To Bad debts	18,000		$\mathbf{9 , 0 1 , 7 2 5}$

(i) (b) Cost Sheet showing Costing P/L (Production 12,405 units)

Particulars	Amount
Direct Material	8,40,000
Direct labour	6,10,000
Prime Cost	14,50,000
Factory overhead (70\% of direct wages)	4,27,000
Add: Opening WIP	46,000
Less: Closing WIP	$(41,200)$
Factory Cost	18,81,800
Administrative overhead (15\% of factory cost)	2,82,270
Cost of Production	21,64,070
Add: Opening finished goods ($₹ 120 \times 625$ units)	75,000
Less: Closing Stock of finished goods (W.N. 2)	$(72,397)$
Cost of Goods Sold	21,66,673
Selling \& distribution overheads ($₹ 3 \times 12,615$ units)	37,845
Profit (balancing figure) Cost of sales	$\begin{gathered} \hline 22,04,518 \\ 75,482 \end{gathered}$
Sales	22,80,000

(ii) Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Records (Cost Sheet)		$\mathbf{7 5 , 4 8 2}$
Add: Interest Received	38,000	
Rent Received	46,000	
Administration overheads over recovered (2,82,270-1,98,000)	84,270	
Factory overheads over recovered (4,27,000-4,22,000)	21,875	
Opening stock overvalued (75,000 - 53,125)	5,000	$\mathbf{1 , 9 5 , 1 4 5}$
Less: Dividend	$1,22,000$	
Bad debts	18,000	
Selling \& distribution OH under recovered (72,000 - 37,845)	34,155	
Closing stock over valued (72,397 - 45,650)	26,747	$\mathbf{(2 , 0 0 , 9 0 2)}$
Profit as per Financial Records		$\mathbf{6 9 , 7 2 5}$

Working note:

(1) Number of units produced $=$ Units sold + Closing finished units - Opening finished units

$$
=12,615+415-625 \quad=\quad 12,405 \text { units }
$$

(2) Value of closing finished goods $=\frac{\text { Cost of Production }}{\text { Units Produced }} \times$ Closing finished goods units

$$
=\frac{21,64,070}{12,405} \times 415 \quad=\quad ₹ 72,397
$$

Note: Closing stock is valued as per FIFO method.

BQ 7

The following information is available from the financial books of a company having a normal production capacity of 60,000 units of the year ended $31^{\text {st }}$ March.
(1) Sales ₹ $10,00,000$ (50,000 units).
(2) There was no opening and closing stock of finished units.
(3) Direct material and direct wages cost were $₹ 5,00,000$ and $₹ 2,50,000$ respectively.
(4) Actual factory expenses were ₹ $1,50,000$ of which 60% are fixed.
(5) Actual administrative expenses were ₹ 45,000 which are completely fixed.
(6) Actual selling and distribution expenses were ₹ 30,000 of which 40% are fixed.
(7) Interest and dividends received $₹ 15,000$.

You are required to:

(a) Find out profit as per financial books for the year ended 31st March.
(b) Prepare the cost sheet and ascertain the profit as per cost accounts for the year ended 31st March assuming that the indirect exp. are absorbed on the basis of normal production capacity.
(c) Prepare a statement reconciling profits shown by financial and cost books.
[Financial Profit: $\mathbf{F}^{40,000 ; ~ C o s t ~ P r o f i t: ~} \mathbf{F}^{49,500]}$

PAST YEAR QUESTIONS

PYQ 1

A manufacturing company has disclosed net loss of ₹ 48,700 as per their cost accounting records for the year ended $31^{\text {st }}$ March, 2014. However their financial accounting records disclosed net profit of ₹ 35,400 for the same period.

A scrutiny of data of both the sets of books of accounts revealed the following informations:

(a)	Factory overheads under absorbed	$₹ 30,500$
(b)	Administrative overheads over absorbed	$₹ 65,000$
(c)	Depreciation charged in financial accounts	$₹ 2,25,000$
(d)	Depreciation charged in cost accounts	$₹ 2,70,000$
(e)	Income tax provision	$₹ 52,400$
(f)	Transfer fee (credited in financial accounts)	$₹ 10,200$
(g)	Obsolescence loss charged in financial accounts	$₹ 20,700$
(h)	Notional rent of own premises charged in cost accounts	$₹ 54,000$
(i)	Value of opening stock:	
	(a) In cost accounts	
	(b) In financial accounts $1,38,000$	
(j)	Value of closing stock:	$₹ 1,15,000$
	(c) In cost accounts	
	(d) In financial accounts	$₹ 1,22,000$
		$₹ 1,12,500$

Prepare a Memorandum Reconciliation Account by taking costing loss as base.
[(5 Marks) May 2014]

Answer

Memorandum Reconciliation Account

Particulars	$₹$	Particulars	$₹$
To Net loss as per Costing Books	$\mathbf{4 8 , 7 0 0}$	By Admin OH over absorbed	65,000
To Factory OH under absorbed	30,500	By Depreciation over charged	45,000
To Income tax provision	52,400	(2,70,000-2,25,000)	
To Obsolescence loss	20,700	By Transfer fee	10,200
To Closing stock over valued	9,500	By Notional rent	54,000
To Net profit as per Fin. Books	$\mathbf{3 5 , 4 0 0}$	By Opening stock over valued	23,000
	$\mathbf{1 , 9 7 , 2 0 0}$		$\mathbf{1 , 9 7 , 2 0 0}$

PYQ 2

The Trading and Profit and Loss Account of a company for the year ended 31.03.2016 is as under:

Particulars	Amount	Particulars	Amount
To Materials	$26,80,000$	By Sales (50,000 units)	$62,00,000$
To Wages	$17,80,000$	By Closing stock (2,000 units)	$1,50,000$
To Factory expenses	$9,50,000$	By Dividend received	20,000
To Administrative expenses	$4,80,200$		
To Selling expenses	$2,50,000$		
To Preliminary expenses written off	50,000		
To Net Profit	$\mathbf{1 , 7 9 , 8 0 0}$		$\mathbf{6 3 , 7 0 , 0 0 0}$
	$\mathbf{6 3 , 7 0 , 0 0 0}$		

In the Cost Accounts:

(i) Factory expenses have been allocated to production at 20\% of Prime Cost.
(ii) Administrative expenses absorbed at 10% of factory cost.
(iii) Selling expenses charged at ₹10 per unit sold.

Prepare the Costing Profit and Loss Account of the company and reconcile the Profit/Loss with the profit as shown in the Financial Accounts.
[(8 Marks) Nov 2016]

Answer

Costing Profit \& Loss A/c

Particulars	Amount	Particulars	Amount
To Materials	$26,80,000$	By Sales (50,000 units)	$62,00,000$
To Wages	$17,80,000$	By Closing stock (2,000 units)	$2,26,431$
To Factory overheads	$8,92,000$		
To Administration overheads	$5,35,200$		
To S \& E Expenses $(50,000 \times 10)$	$5,00,000$		
To Net profit	39,231		$\mathbf{6 4 , 2 6 , 4 3 1}$
	$\mathbf{6 4 , 2 6 , 4 3 1}$		

Working notes:

1. Factory overheads in costs

$$
\begin{array}{lll}
= & 20 \% \text { of Prime cost } & =8,92,000 \\
= & 20 \% \text { of }(26,80,000+17,80,000) & \\
= & 10 \% \text { of Factory cost } & \\
= & 10 \% \text { of }(26,80,000+17,80,000+8,92,000) & =5,35,200
\end{array}
$$

2. Administrative overheads $=10 \%$ of Factory cost
3. Valuation of closing stock $=\frac{\text { Cost of production }}{\text { Units produced }} \times$ Units in Clo sing stock
$=\frac{26,80,000+17,80,000+8,92,000+5,35,200}{52,000} \times 2,000$
$=2,26,431$
4. Units produced $=$ Units sold + Closing units - Opening units

$$
=50,000+2,000-\mathrm{Nil} \quad=52,000
$$

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Accounts		39,231
Add: Administrative expenses over recovered (5,35,200-4,80,200)	55,000	
Selling expenses over recovered ($5,00,000-2,50,000$)	2,50,000	
Dividend received	20,000	3,25,000
Less: Factory expenses under recovered ($9,50,000-8,92,000$)	58,000	
Closing stock over valued in costs ($2,26,431-1,50,000$)	76431	
Preliminary expenses written off	50,000	$(1,84,431)$
Profit as per Financial Accounts		1,79,800

PYQ 3

GK Limited showed a net loss of $₹ 2,43,300$ as per their financial accounts for the year ended $31^{\text {st }}$ March, 2018. However, cost accounts disclosed a net loss of ₹ $2,48,300$ for the same period. On scrutinizing both the set of books of accounts, the following information were revealed:
(a) Works overheads over recovered 30,400
(b) Selling overheads under recovered 20,300
(c) Administrative overhead under recovered 27,700
(d) Depreciation over charged in cost accounts 35,100
(e) Bad debts w/off in financial accounts 15,000
(f) Preliminary Exp. w/off in financial accounts 5,000
(g) Interest credited during the year in financial accountants 7,500

Prepare a reconciliation statement reconciling losses shown by financial and cost accounts by taking costing net loss as base.
[(5 marks) Nov 2018]

Answer

Reconciliation Statement

Particulars	Amount	Amount
Loss as per Cost Records		$(2,48,300)$
Add:	Factory overhead over recovered	30,400
Depreciation over charged in cost accounts		
Interest credited during the year in financial accounts	7,100	
Less:		
Selling overheads under recovered	20,000	
Administrative overheads under recovered	27,700	
Bad debts w/off in financial accounts	15,000	
Preliminary Exp. w/off in financial accounts	5,000	$(68,000)$
Profit as per Financial Books		

PYQ 4

M / s Abid Private Limited disclosed a net profit of ₹ 48,408 as per cost books for the year ending $31^{\text {st }}$ March 2019. However, financial accounts disclosed net loss of ₹ 15,000 for the same period. On scrutinizing both the set of books of accounts, the following information was revealed:

Works Overheads under recovered in Cost Books	48,600
Office Overheads over recovered in Cost Books	11,500
Dividend received on Shares	17,475
Interest on Fixed Deposits	21,650
Provision for doubtful debts	17,800
Obsolescence loss not charged in Cost Accounts	17,200
Stores adjustments (debited in Financial Accounts)	35,433
Depreciation charged in financial accounts	30,000
Depreciation recovered in Cost Books	35,000

Prepare a Memorandum Reconciliation Account.
[(5 Marks) May 2019]

Answer

Memorandum Reconciliation Account

Particulars	$₹$	Particulars	$₹$
To Works OH under recovered	48,600	By Net profit as per Costing Books	$\mathbf{4 8 , 4 0 8}$
To Provision for doubtful debts	17,800	By Admin overheads over recovered	11,500
To Obsolescence loss	17,200	By Dividend received	17,475

To Stores adjustments	35,433	By Interest on fixed deposits 	By Depreciation over recovered $(35,000-30,000)$		
		By Net loss as per Financial Books		\quad	5,000
:---:					

PYQ 5

The Profit and Loss account of ABC Ltd. for the year ended 31st March, 2021 is given below:
Profit \& Loss Account
(For the year ended 31st March, 2021)

To Direct Material	$6,50,000$	By Sales (15,000 units)	$15,00,000$
To Direct Wages	$3,50,000$	By Dividend received	9,000
To Factory overheads	$2,60,000$		
To Administrative overheads	$1,05,000$		
To Selling overheads	85,000		
To Loss on sale of investments	2,000		
To Net profit	57,000		$\mathbf{1 5 , 0 9 , 0 0 0}$

Additional information:

(a) The factory overheads are 50\% fixed and 50\% variable.
(b) The administration overheads are 100\% fixed.
(c) Selling overheads are completely variable.
(d) Normal production capacity of ABC Ltd. is 20,000 units.
(e) Indirect expenses are absorbed in the cost accounts on the basis of normal production capacity.
(f) Notional rent of own premises charged in Cost Accounts is amounting to ₹ 12,000 .

You are required to:

(1) Prepare a Cost Sheet and ascertain the profit as per Cost records for the year ended 31st March, 2021.
(2) Reconcile the Profit as per Financial Records with profit as per Cost Records.
[(10 Marks) July 2021]

Answer

(1) Cost Sheet

Particulars	Amount () $^{\text {) }}$
Direct Materials	6,50,000
Direct Wages	3,50,000
Factory Overheads: Prime Cost	10,00,000
Variable ($2,60,000 \times 50 \%$)	1,30,000
Fixed $\{(2,60,000 \times 50 \%) \times 15,000 / 20,000\}$	97,500
Factory Cost	12,27,500
Administrative Overheads ($1,05,000 \times 15,000 / 20,000$)	78,750
Notional rent	12,000
Cost of Production	13,18,250
Selling Overheads (completely variable)	85,000
Cost of sales	14,03,250
Profit (balancing figure)	96,750
Sales	15,00,000

(2) Reconciliation Statement

Particulars	Amount
Profit as per Cost Accounts	96,750
Add: Dividend received	9,000
Notional rent	12,000
Less: Factory overheads under recovered ($2,60,000-1,30,000-97,500$)	32,500
Administration overheads under recovered (1,05,000-78,750)	26,250
Loss on sale of investments	2,000
Profit as per Financial Accounts	57,000

PYQ 6

R Ltd. showed a Net Profit of ₹ $3,60,740$ as per their cost accounts for the year ended 31 st March, 2021. The following information was revealed as a result of scrutiny of the figures from the both sets of accounts:
(a) Over recovery of selling overheads in cost accounts 10,250
(b) Over valuation of closing stock in cost accounts 7,300
(c) Rent received credited in financial accounts 5,450
(d) Bad debts provided in financial accounts 3,250
(e) Income tax provided in financial accounts 15,900
(f) Loss on sale of capital asset debited in financial accounts $\quad 5,800$
(g) Under recovery of administration overheads in cost accounts 3,600

Required: Prepare a reconciliation statement showing the profit as per financial records.

[(5 Marks) Dec 2021]

Answer

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Cost Books		3,60,740
Add: Over recovery of selling overheads in cost accounts Rent received credited in financial accounts	$\begin{gathered} 10,250 \\ 5,450 \end{gathered}$	15,700
Less: Over valuation of closing stock in cost accounts Bad debts provided in financial accounts Income tax provided in financial accounts Loss on sale of capital asset debited in financial accounts Under recovery of administration overheads in cost accounts	$\begin{gathered} 7,300 \\ 3,250 \\ 15,900 \\ 5,800 \\ 3,600 \end{gathered}$	$(35,850)$
Profit as per Financial Books		3,40,590

PYQ 7

' X ' Ltd. follows Non-Integrated Accounting System. Financial Accounts of the company show a Net Profit of ₹ $5,50,000$ For the year ended 31 st March, 2022. The chief accountant of the company has provided following information form the Financial Accounts and Cost Accounts:

$\boldsymbol{S N}$.	Particulars	(₹)
(i)	Legal Charges provided in financial accounts	15,250
(ii)	Interim Dividend received credited in financial accounts	$4,50,000$
(iii)	Preliminary Expenses written off in financial accounts	25,750
(iv)	Over recovery of selling overheads in cost accounts	11,380
(v)	Profit on sale of capital asset credited in financial accounts	30,000

(vi)	Under valuation of closing stock in cost accounts	25,000
(vii)	Over recovery of production overheads in cost accounts	10,200
(viii)	Interest paid on Debentures shown in financial accounts	50,000

Find out the Profit (Loss) as per Cost Accounts by preparing a Reconciliation Statement.
[(5 Marks) Nov 2022]

Answer

Reconciliation Statement

Particulars	Amount	Amount
Profit as per Financial Books		$\mathbf{5 , 5 0 , 0 0 0}$
Add: Legal charges	15,250	
Preliminary expenses	25,750	
Interest paid on debentures	50,000	91,000
Less: Interim dividend received	$4,50,000$	
Over recovery of selling overheads	11,380	
Profit on sale of capital assets	30,000	
Under valuation of closing stock in cost accounts	25,000	
Over recovery of production overheads	10,200	$(5,26,580)$
Profit as per Cost Books		$\mathbf{1 , 1 4 , 4 2 0}$

PYQ 8

The following has been obtained from financial accounting and cost accounting records.

	Financial Accounting	Cost Accounting
Factory Overhead	94,750	90,000
Administrative overhead	60,000	57,000
Selling Overhead	55,000	61,500
Opening Stock	17,500	22,500
Closing Stock	12,500	15,000

Indicate under-recovery and over-recovery and their effects on cost accounting profit.
Note: You are not required to prepare reconciliation statement.
[(5 Marks) May 2023]
Answer

Particulars	Financial Accounting	Cost Accounting	Under-over Recovered	Effect on Cost Accounting Profit
Factory Overhead	94,750	90,000	4,750 under recovered	Increased
Administrative overhead	60,000	57,000	3,000 under recovered	Increased
Selling Overhead	55,000	61,500	6,500 over recovered	Decreased
Opening Stock	17,500	22,500	5,000 over valued	Decreased
Closing Stock	12,500	15,000	2,500 over valued	Increased

SUGGESTED REVISION FOR EXAM:

BQ:
3, 4, 6

PYQ: 1, 4, 5

