STRATEGIC FINANCIAL MANAGEMENT
For CA Final

FORMULA
for quick revision

Kunal Doshi, CFA

An exclusive hand written booklet covering most formulas.

“Begin your journey from amateur to analyst”
MUTUAL FUNDS

1. NAV = Market Value of + Receivables + Accrued - Accrued - Outside all investments income expense liabilities (including cash)

\[\text{Opening units} + \text{units subscribe} - \text{units redeem} + (\text{Sub units} \times \text{NAV}) - (\text{Redeem units} \times \text{NAV})\]

2. Loads:
 - **Sale Price** = NAV \times (1 + \text{Entry load} x)
 - **Repurchase Price** = NAV \times (1 - \text{Exit load} x)

3. Returns:
 - **Holding Period Return (HPR)** = \frac{NAV_t - NAV_0 + D + G}{NAV_0} \times 100

 where:
 - D = Income received during the investment period
 (in form of dividend or interest)
 - G = Gain received by trading the shares

Kunal Doshi, CFA

Contact: 9920546547
- **Simple Annualised Return (SAR)**: \(\frac{HPR \times 12}{n} \)

- **Compound Annualised Gross Return (CAGR)**: \(PV \times (1+r)^t = FV \)

4. **Close Ended Funds**
 \[\text{% Discount / Premium Price} = \frac{\text{Exchange price} - \text{NAV}}{\text{NAV}} \times 100 \]

5. **Expense Ratio**
 \[\text{Expense Ratio} = \frac{\text{Expenses}}{\text{Average Portfolio / Average NAV}} \]

6. **Returns**
 \[\text{Returns} = \frac{\text{Ending Value} - \text{Beginning Value}}{\text{Beginning Value}} \times 100 \]

Kunal Doshi, CFA
Contact: 9920546547
PORTFOLIO MANAGEMENT

3. Statistics

1. Returns = \(\frac{(P - P_0) + I}{P_0} \times 100 \)

where:
- \(P_0 \) = Price at the beginning of investment period
- \(P \) = Price at the end of investment period
- \(I \) = Income earned during investment period

\[\text{Past data} \quad \text{Future Data} \]
\[\text{without probability} \quad \text{Probability} \]

2. Average Return (Mean) \(\bar{r} = \frac{\sum r}{N} \)

3. Average Risk (Standard Deviation)

\(\sigma_r = \sqrt{\frac{\sum (r - \bar{r})^2}{N}} \)

4. Covariance (Covxy)

\[\text{Covxy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{N} \]

5. Covariance (Covxy) = \(\frac{\text{Covxy}}{\sigma_x \sigma_y} \)

\[\text{Covxy} = \sigma_x \sigma_y \]
6. Portfolio Return \((Rp) = w_a x_a + w_b x_b + \ldots = w_n x_n \) \\
\[\text{Combination of variance calculation} = \frac{\sigma (n-1)}{2} \]

7. Portfolio Risk \((\sigma_p) = \sqrt{w_a^2 x_a^2 + w_b^2 x_b^2 + 2w_a w_b \text{ Cov}_{ab}} \)

8. Properties of Portfolio Risk
 - When \(x = -1 \): \(\sigma_p = a - b \)
 - When \(x = +1 \): \(\sigma_p = a + b \)
 - When \(x = 0 \): \(\sigma_p = \sqrt{a^2 + b^2} \)

9. Minimum Variance Portfolio (MVP)
 \[w_a = \frac{s^2 b - \text{ Cov}_{ab}}{s^2 a + s^2 b - 2 \text{ Cov}_{ab}} \]

 - When \(x = -1 \): \(\sigma_p = 0 \rightarrow +ve \) weights
 - When \(x = +1 \): \(\sigma_p = 0 \rightarrow -ve \) weights (Short selling)

10. Theory of Dominance
 - Rule 1: Same Return \(\rightarrow \) Risk ↑
 - Rule 2: Same Risk \(\rightarrow \) Return ↑
 - Rule 3: Different Return and Risk \(\rightarrow \) Coefficient of \(\frac{\sigma}{\mu} \) variation \(\rightarrow \) Slower \(\rightarrow \) the better
11. **As per Capital Asset Pricing Model (CAPM)**:

\[k_e = \frac{R_{PA}}{E(R)} = R_f + (R_m - R_f) \times \beta \]

where:
- \(k_e \): Expected return by investors
- \(R_{PA} \): Required rate of return by equity shareholders
- \(R_f \): Cost of equity to the company
- \(R_m \): Risk-free rate of return for the investor
- \(R_m - R_f \): Market Risk Premium
- \(\beta \): Beta

12. **As per Security Characteristic Line (SCL) - Sharpe Index Model**

\[E(R) = R_f + R_m \times \beta \]

13. **As per Arbitrage Pricing Theory (APT) - Multifactor Model**

\[E(R) = R_f + \beta_1 \times R_1 + \ldots + \beta_n \times R_n \]

where:
- \(\beta_i \): Sensitivity of factors on stock \((i,2,3,\ldots,n)\)
- \(R_p \): Risk Premium, i.e., Actual Returns - Expected Returns

\[R_p = A_x - E(R) \]

14. **As per Capital Market Line (CML) - No Beta**

\[E(R) = R_f + \left(\frac{R_m - R_f}{\sigma_m} \right) \times \sigma_i \]

where:
- \(\sigma_i \): Risk of stock/portfolio
- \(\sigma_m \): Total Market Risk
- \(R_m - R_f \): Sharpe Ratio of Market/Risk Return trade off

Kunal Doshi, CFA

Contact: 9920546547
* Ways of Calculating Portfolio Risk:

15. Markowitz Model: \(\sigma_p = \sqrt{w_a^2 \sigma_a^2 + w_b^2 \sigma_b^2 + 2w_a w_b \text{cov}_{ab}} \)

16. Sharpe Model: \(\sigma_p^2 = \text{Systematic Risk} + \text{Unsystematic Risk} \)
\[= \beta^2 \sigma_m^2 + [\text{cov}_{wa}^2 + \text{cov}_{wb}^2 + \ldots \ldots \ldots \ldots] \]

where: \(\sigma \) = Standard Devviation / Residual Deviation / Unsystematic Risk.

* Beta Calculation:

17. Beta (\(\beta \)) = \(\frac{\text{Cov}(i, m)}{\sigma_m^2} \)

\[\beta = \frac{\text{Cov}(i, m)}{\sigma_m^2} = \frac{\text{Cov}(i, m)}{\sigma_m^2} \]

where: \(i \) = Stock
\(m \) = Market

18. Portfolio Beta (\(\beta_p \)) = \(\beta_a w_a + \beta_b w_b + \beta_c w_c + \ldots \ldots + \beta_n w_n \)

* Systematic & Unsystematic Risk - for Individual Security & Portfolio

19. Individual Security

\(\text{SR} = \beta_i^2 \times \sigma_m^2 \)
\(\text{USR} = \sigma_p^2 \)

20. Portfolio

\(\text{SR} = \beta_p^2 \times \sigma_m^2 \)
\(\text{USR} = \omega_a^2 \sigma_a^2 + \omega_b^2 \sigma_b^2 + \omega_c^2 \sigma_c^2 + \ldots \ldots \ldots \ldots \)
21. Covariance between 2 Securities using Beta
 \[\text{Cov}_{ab} = \beta_a \times \beta_b \times \sigma^2_m \]

\[\text{d) PERFORMANCE EVALUATION} \]

1. **Sharpe Ratio** = \(\frac{R_p - R_f}{\sigma_p} \)

 Where:
 - \(R_p \) = Return of portfolio/fund/security
 - \(R_f \) = Risk-free return
 - \(\sigma_p \) = Standard Deviation

2. **Treynor Ratio** = \(\frac{R_p - R_f}{\beta_p} \)

 Where:
 - \(\beta_p \) = Systematic Risk of Portfolio

3. **Jensen’s Alpha** (\(\alpha \)) = \(E(R_p) - E(R_f) \)

 Where:
 - \(E(R_p) \) = \(R_f + (R_{m} - R_f) \times \beta_p \) (as per CAPM)

\[\text{III) PRICING} \]

\[P_0 = \frac{D_0 (1 + q)}{R_e - q} \]

Where:
- \(P_0 \) = Intrinsic Value/Equilibrium Price/Ideal Price
- \(D_0 \) = Current dividend/Last year dividend/Dividend paid/Already given
- \(D_1 \) = Expected dividend/Dividend in future/Dividend to be paid in next year
- \(q \) = Growth in dividends/earnings/cashflows
- \(\alpha \) = Retention ratio (b) \times Return on Equity (ROE)²
- \(R_e \) = Cost of equity
- \(R_{m} - R_f \) = Expected return by Gilt

Kunal Doshi, CFA
Contact: 9920546547
Security Analysis

1. Single Stage Growth Model

As per Gordon's Growth: \[\text{Po} = \frac{D_0 \cdot (1+q)}{r_e - q} \]
\[\text{or} \quad \text{Po} = \frac{D_1}{r_e - q} \]

where: \(\text{Po} \) = Intrinsic Value / Equilibrium Price / Ideal Price
\(D_0 \) = Current dividend / last year dividend / Dividend paid
\(D_1 \) = Expected dividend / Dividend in future / Dividend to be paid in next year
\(q \) = Growth in dividends / earnings / cash flows
\(r_e \) = Cost of equity = Expected return by ESG; Equity Capitalisation Rate
\(r_p \) = Cost per CAPM; \(r_e = r_f + (r_m - r_f) \times p \)

2. Dual Stage Growth Model

\[\text{Po} = \frac{C \cdot D_0 \cdot (1+q_0)^t}{(1+r_e)^t} + \frac{D_t \cdot (1+q_n)}{(r_e - q_n) \cdot (1+r_e)^t} \]

where: \(t \) = terminal year
\(q_a \) = Abnormal growth rate
\(q_n \) = Normal growth rate
\(r_e \) = Cost of equity

Kunal Doshi, CFA
Contact: 9920546547
3. Free Cash Flow to the Firm (FCFF)

Given:

i) FCFF = Net Income + Non-Cash + Interest (1 - t) - FC invest - AWC invest

ii) FCFF = Net Income + Interest (1 - t) - [FC invest - Dep^2] - AWC invest

Net Apes

FCFF = **EBIT (1 - t) - [FC invest - Dep^2] - AWC invest**

FCFF = CFO + Int (1 - t) - FC invest

***(EBIT - I) x (1 - t) = NS
EBIT (1 - t) - I(1 - t) = NJ
EBIT (1 - t) = NJ + I(1 - t)***

** CFO = NI + Non Cash - AWC Invest

4. Free Cash Flow to the Equity (FCFE)

i) FCFE = FCFF - Int (1 - t) + NB (Net Borrowings)

ii) FCFE = NI - [FC Invest - Dep^2] - AWC Inv + NB

iii) FCFE = NI - [FC Invest - Dep^2] - AWC Inv + D x [FC Invest - Dep^2] + D x AWC Inv

iv) FCFE = NI - [(1 - Dep) * (FC Invest - Dep^2)] - [(1 - Dep) x AWC Inv]

v) FCFE = NI - [D x (FC Invest - Dep^2)] - [D x AWC Inv]
5. Valuation of Firms (FCFF)

- **Single Stage**:
 \[V_{firm} = \frac{FCFF \times (1+g)}{WACC - q} \]

- **Multi Stage**:
 \[V_{firm} = \frac{\sum FCFF \times (1+g)}{(1+WACC)^T} + \frac{FCFF_T \times (1+g_T)}{(WACC - g_T)(1+WACC)^T} \]

where:
- **WACC** = \(kn \times rx + w p \times rp + w e \times re \)
- **q** = Retention Ratio \(b \) x Return on Capital Employed

- \(V_{firm} = Vd + Vp + Ve - Cash \)
- \(Ve = V_{firm} - Vd - Vp + Cash \)

- \(P_0 = \frac{Ve}{No \ of \ shares} \)

6. Valuation of Equity (FCFE)

- **Single Stage**:
 \[Ve = \frac{FCFE \times (1+g)}{Ke - q} \]

- **Multi Stage**:
 \[Ve = \frac{\sum FCFE \times (1+g)}{(1+Ke)^T} + \frac{FCFE_T \times (1+g_T)}{(Ke - g_T)(1+Ke)^T} \]

where:
- **Ke** = Cost of Equity

- \(P_0 = \frac{Ve}{No \ of \ shares} \)
Economic Value Added (EVA)
- \[\text{EVA} = \text{Net Operating Profit} - \left(\frac{\text{Total Invested Capital} \times \text{WACC}}{1 - \text{tax}} \right) \]
- \[\text{EVA} = \left[\frac{\text{EBIT}(1 - \text{t})}{\text{TIC}} \right] - \left[\text{D} + \text{E} \times \text{WACC} \right] \]

Where: TIC = Debt + Equity / FC inv + WC inv

b) Convertible Preference Shares
i) Conversion Ratio = No of equity shares : Preference shares.
ii) Conversion Value = Conversion Ratio \times \text{CP of equity}
iii) Conversion Premium = Market Price of Pref sh - Conversion Value \times 100 \div Conversion Value

9. Right Issue & Valuation of Rights
i) Value of Right = \(\frac{P_0 - (\text{N}_a \times x)}{\text{N}_a + \text{N}_x} \)
ii) \(x \)-Right Price = \(\frac{(P_0 \times \text{N}_a) + (\text{N}_a \times x)}{\text{N}_a + \text{N}_x} \)

Where: \(P_0 \) = Current price of equity share.
\(\text{N}_a \) = No of equity shares
\(x \) = Right Price
\(\text{N}_x \) = No of rights

iii) Cum Right Price - Value of Right = \(x \) \times \text{Right Price}
Security Analysis - Bond Valuation

1. Intrinsic Value of the bond \(P_0 = C \times PVIFA(x \times t) + RV \times PVIF(x \times t) \)
 where:
 - \(C \) = Coupon
 - PVIFA = Present Value Interest Factor Annuity
 - \(x \) = Yield to Maturity (YTM)
 - \(t \) = time / period
 - PVIF = Present Value Interest Factor
 - \(RV \) = Redemption Value

2. Approximate YTM = Interest + \(\left[\frac{RV - CMP}{t} \right] \times 100 \)
 (Non-Time Value) \(\frac{RV + CMP}{2} \)
 where:
 - CMP = Current Market Price

3. Perpetual / Zero-decoupled Bond
 \(P_0 = \frac{Coupon}{YTM} \)

4. Current Yield = \(\frac{Coupon \times 100}{Price} \)

5. Duration = \(t \times w_t \)
 where:
 - \(t \) = time / period
 - \(w_t \) = weights
6. Modified Duration = \(\frac{\text{Duration}}{1 + \text{YTM}} \)

7. \(\text{MD} = \frac{\% \Delta \text{Price}}{\% \Delta \text{Yield}} \)

\(\therefore \% \text{Delta in Price} = \% \Delta \text{Yield} \times \text{MD} \)

8. \(D = \frac{\sum \text{Cash Flow}_t \times (1 + Y)^t}{(1 + Y)^0} \frac{1}{(1 + Y)^T} \)

\(\text{where: } D = \text{Duration} \)
\(Y = \text{YTM} \)

9. Straight Value = \(P_0 = \sum \text{PV of Cash Flow}_t \times (1 + Y)^0 \)

11. Downside Risk = Option Value.

12. \(\% \text{Of Downside Risk} = \frac{\text{Straight Value} - \text{CMP}}{\text{CMP}} \times 100 \)

13. Conversion Ratio = No of shares receivable on conversion of 1 convertible bond.

14. Stock Value / Conversion Value = Conversion Ratio \times \text{CMP} \text{ of stock/equity}
15. Conversion Parity Price = \(\frac{\text{CIF of bond}}{\text{Conversion Ratio}} \)

16. Conversion Premium = Conversion Parity Price - CIF of Equity

17. Conversion Premium % = \(\frac{\text{Conversion Premium}}{\text{CIF of Equity}} \) \times 100

18. Favourable Income Difference / share = Coupon - \([\text{Exchange ratio} \times \text{DPS}] \) / \text{Exchange ratio}

where; DPS = Dividend per share.

19. Premium Payback Period = \(\frac{\text{Conversion Premium}}{\text{Favourable Income Diff/ share}} \)

20. Duration of Perpetual Bond = \(\frac{1 + r}{4} \)
M e r g e r , A c q u i s i t i o n & C o r p o r a t e R e s t r u c t u r i n g

1. Exchange Ratio = \(\frac{E_{\text{PS}}}{E_{\text{PVPS}}} \times \frac{M_{\text{PS}}}{B_{\text{VPS}}} \times T \)

 Where:
 - E\text{PS} = Earnings per Share
 - M\text{PS} = Market Price per Share
 - B\text{VPS} = Book Value per Share
 - T = Target Company
 - A = Acquiring Company

2. Promoters holding after acquisition = \(S_h \) in any co + (ER x shin target co)

3. \(\% \) Promoters Holding = \(\frac{\text{Promoters Shares}}{\text{Total number of shares}} \times 100 \)

4. Free float market capitalisation = (Total shares - Promoters Sh) x MPS

 \(= \text{Mkt Cap x Public Holding} \)

5. MPS = E\text{PS} x PE

 Where: PE = Price earning Ratio

6. Post merger (Mkt (cap)) = No of shares x MPS

7. Market Capitalisation = \(\frac{\text{Free float market cap}}{\text{Free float (%)}} \)

9. Gross NPA ($\%$) = \(\frac{\text{Gross NPA}}{\text{Total Advances}} \times 100\)

10. Capital Adequacy Ratio (CAR) = \(\frac{\text{Total Capital}}{\text{Risk-Weighted Assets}} \times 100\)

11. Swap Ratio = \(\left(\frac{\text{BVPS} \times w}{\text{BVPS}}\right) + \left(\frac{\text{MPS} \times w}{\text{MPS}}\right) + \left(\frac{\text{CAPA} \times w}{\text{CAPA}}\right) + \left(\frac{\text{GNPAr} \times w}{\text{GNPAr}}\right)\)

\[\text{where: BVPS = Book Value per Share, MPS = Market Price per Share, CAPA = Capital Adequacy Ratio, GNPAr = Gross Non-Performing Asset, w = Weights}\]

12. \(\text{passet} = wd \times pd + w_e x pe\)

\[\text{where: } d = \text{debt, } e = \text{equity}\]

13. \(\text{Asset p with no taxation} \quad \text{passet} = \frac{D}{D+E} \times pd + \frac{E}{D+E} \times pe\)

\[\{\text{If nothing given } \rightarrow pd = D\}\]

14. Asset p with taxation,

\(\text{passet} = \frac{D(1-t)}{D(1-t)+E} \times pd + \frac{E}{D(1-t)+E} \times pe\)
15. \(p_d = 0 \) \{Not Given\}

\[p \text{ asset} = w_c \times p_e \]

16. If only equity is issued,

\[p \text{ asset} = p_e \]
CA FINAL SFM VIDEO LECTURES

Get an exclusive coverage of most repeated sums and concepts explained in detail along with A2A - Handwritten book set.

Full Course (Old)
- No. of Sums: 500+
- Attempt: May/Nov 19
- Duration: 175 hours
- Views: 2 times
- Validity: 12 Months

Price: ₹ 14,500/- (Google Drive)
Price: ₹ 15,500/- (Pen Drive)

Full Course (New)
- No. of Sums: 400+
- Attempt: May/Nov 19/20
- Duration: 160 hours
- Views: 2 times
- Validity: 12 Months

Price: ₹ 14,500/- (Google Drive)
Price: ₹ 15,500/- (Pen Drive)

Fast Track Course (New)
- No. of Sums: 200+
- Attempt: May/Nov 19
- Duration: 110 hours
- Views: 1.5 times
- Validity: 6 Months

Price: ₹ 7,500/- (Google Drive)
Price: ₹ 8,000/- (Pen Drive)

RATES APPLICABLE FROM APRIL 1ST, 2019

7977674844 / 9920546547 YouTube Channel: kundaoshicfa
FOREIGN EXCHANGE & DERIVATIVES

1. Spread = Ask rate - Bid rate

2. Mid-Quote = \(\frac{\text{Ask rate} + \text{Bid rate}}{2} \)

3. Spread Margin (\(x \)) = \(\frac{\text{Spread}}{\text{Mid-Quote}} \) x 100

4. Bid rate = Mid-Quote - \(\frac{\text{Spread}}{2} \)

5. Ask rate = Mid-Quote + \(\frac{\text{Spread}}{2} \)

6. Annualised Forward Margin (AFM)
 \[\text{AFM} = \frac{f - s}{s} \times \frac{100}{N} \times 12 \]
 where:
 - \(f \) = Forward rate
 - \(s \) = Spot rate
 - \(N \) = No of months

7. As per Interest Rate Parity (IRP):
 \[\text{Forward Rate}_{bc} = \frac{\text{Spot}_{bc}}{(1 + \text{Int}_{vc})} \times \frac{1 + \text{Int}_{bc}}{(1 + \text{Int}_{bt})} \]
 where:
 - \(bc \) = base currency
 - \(vc \) = variable currency
\[P_{HC} = P_{FC} \times F_{C} \]

where:
- \(P_{HC} \) = Price of goods in home currency
- \(P_{FC} \) = Price of goods in foreign currency
- \(F_{C} \) = Exchange rate in foreign currency

9. As per Purchasing Power Parity (PPP):
Forward Rate = Spot rate \(\times \frac{(1 + \text{Inflation}_v)}{(1 + \text{Inflation}_b)} \)

where:
- \(v \) = variable currency
- \(b \) = base currency

10. As per Fisher's Effect:
\[(1 + N) = (1 + R) \times (1 + I) \]

where:
- \(N \) = Nominal Interest Rate
- \(R \) = Real Interest Rate
- \(I \) = Inflation

11. Theoretical / Ideal / Equilibrium Future Price (TFP):
\[TFP = S + C - D \]

where:
- \(S \) = Spot Price
- \(C \) = Cost of carrying
- \(D \) = Dividend

12. Cost of Carrying - Simple Annualized
\[TFP = S + \left(\frac{C \times \text{Rate of Interest}}{12} \right) - D \]
- Dividend Yield

\[\text{TFP} = S + \left(s \times \frac{x}{12} \right) - \left(s \times d \times \frac{t}{12} \right) \]

\[\therefore \text{TFP} = S + \left[s \times (r - d) \times \frac{t}{12} \right] \]

13. Cost of Carrying - Compounded Annualised

- Dividend (Pitsolute)

\[\text{TFP} = S \times (1 + x)^t - D \]

- Dividend Yield

\[\text{TFP} = S \times \left[1 + (r - d) \right]^t \]

14. Effective Rate of Interest

\[\text{EROS} = \left[1 + \frac{x}{n} \right]^{t \times n} - 1 \]

where:
- \(t \) = No of years (time period) of compounding
- \(n \) = No of times compounding in a year

15. CBBT / Exponential

\[FV = PV \times (1+r)^t \]

\[FV = PV \times e^{rt} \]

where:
- \(r \) = rate of interest
- \(t \) = time to maturity

\(e^{rt} \) is the exponential function which is always in factor and will be provided in the question.
16. **Cost of Carrying - CCA**

- **Dividend (Absolute)**

 - If dividend is expected at end,

 \[TFP = s \times e^{rt} - D \]

 - If dividend is received between/before maturity,

 Method 1: \[TFP = s \times e^{rt_1} - De^{st_2} \]

 Method 2: \[TFP = (s - De^{st_1}) \times e^{st_2} \]

- **Dividend Yield**

 \[TFP = s \times e^{(r-d)xt} \]

17. **TFP = [s + c] + sc/L**

 Where; sc/L = Storage Cost.

18. **Contract Size = \((\beta \tau - \beta P) \times \frac{VP}{FCS} \)**

 Adjustment

 Risk Adjustment

 Where, \(\beta \tau = \) Target Beta

 \(\beta P = \) Portfolio Beta

 \(VP = \) Value of Portfolio

 \(FCS = \) Future Contract Size.

19. **Margin Call = Initial Margin - Balance in Margin Account**

20. **BEP = Initial Margin - Maintenance Margin**

 Lot size

22. Contract Size (Hedging Portfolio with Options/Delta Hedging)
\[CS = \frac{1}{\Delta} \times \frac{VP}{OCS} \]

Where:
- \(CS \) = Contract Size
- \(VP \) = Value of Portfolio
- \(OCS \) = Option Contract Size
- \(\Delta \) = Delta = \% change in Option Premium
- \% change in Underlying Asset

23. FRA Pay Off = \(\frac{(Ref\ rate - FRA\ rate) \times NP \times \Delta}{360} \times \left[1 + \frac{(FR \times d)}{360} \right] \)

Where:
- FRA rate = Fixed rate of FRA i.e. Contracted Rate
- Ref rate = Settlement rate or LIBOR on maturity
- \(d \) = Duration of the underlying
- NP = Notional Principal

24. As per Risk Neutral Model (ANM):
\((Su \times Pd) + (Sd \times Pa) = TFP \)

Where:
- \(Su \) = Price when the stock goes upwards
- \(Sd \) = Price when the stock goes downwards
- \(Pa \) = Probability of stock going upwards
- \(Pd \) = Probability of stock going downwards
- \(So \) = Price of stock today
- \(\alpha \) = Risk-free rate
- \(t \) = Time of maturity
- \(Pa + Pd = 1 \)
25. Put-Call Parity

\[S_0 + P_0 = C_0 + e^{-rt} \]

where:
- \(S_0 \) = Long in Stocks
- \(P_0 \) = Long Put
- \(C_0 \) = Long Call
- \(e^{-rt} \) = Present value of the strike price also called as Investment in risk free at present value of \(X \).

26. Formulae of Black & Scholes

- \(C_0 = S_0 N(d_1) - X e^{-rt} N(d_2) \)
- \(d_1 = \frac{\ln \left(\frac{S}{X} \right) + \left[\left(\frac{X + S^2}{2} \right) \right] t}{S \sqrt{t}} \)
- \(d_2 = d_1 - S \sqrt{t} \)

where:
- \(C_0 \) = Price of Call/Call premium today
- \(S_0 \) = Spot Price today
- \(X \) = Strike Price
- \(X e^{-rt} \) = Present Value of Strike
- \(X \) = Risk free rate (Annualized)
- \(\sigma \) = Standard deviation (Annualized)
- \(t \) = Time to maturity
- \(ln \) = Log Natural
- \(N(d_1) \) = It is the probability of spot at maturity i.e. \(X \).
- \(N(d_2) \) = It is the probability of exercising the Option at \(X \)
1. As per Interest Rate Parity:
 \[\text{Forward}_{bc} = \frac{\text{Spot}_{bc} \times (1+\text{Int}_{vc})}{(1+\text{Int}_{bc})} \]
 where:
 \(bc \) = base currency
 \(vc \) = variable currency

2. As per Purchasing Power Parity:
 \[\text{Forward}_{bc} = \frac{\text{Spot}_{bc} \times (1+\text{Inflation}_{vc})}{(1+\text{Inflation}_{bc})} \]

3. \(\text{NCF} = \text{RCF} \times (1+\text{Inflation}) \)

4. \(\text{RCF} = \frac{\text{NCF}}{(1+\text{Inflation})} \)

5. Modified Internal Rate of Return:
 \[\left(\frac{\text{FV}}{\text{PV}} \right)^{\frac{1}{t}} - 1 \]
 (MIRR)
CA FINAL

PAPER – 6B: FINANCIAL SERVICES & CAPITAL MARKETS

BEGIN YOUR JOURNEY FROM AMATEUR TO ANALYST

BATCH DETAILS:
WEEKENDS ONLY BATCH
STARTS: 3RD AUGUST, 2019
ENDS: 1ST SEPTEMBER, 2019
TIMINGS: 10:30AM TO 4:30PM

CONTACT: 9920546547 / 7977674844
FACEBOOK PAGE – EDUINVEST ACADEMY
YOUTUBE CHANNEL – KUNALDOSHI_CFA

KUNAL DOSHI, CFA
Money Market

1. Discount Yield = \(\frac{FV - \text{Price}}{FV} \times 100 \times \frac{365}{t} \)

 where, \(FV \) = Face Value
 \(t \) = Period / time

2. Bond Equivalent Yield = \(\frac{FV - \text{Price}}{\text{Price}} \times 100 \times \frac{365}{t} \)

3. Effective Annualised Yield = \(\left(1 + \frac{r}{n}\right)^{tn} - 1 \)

 where, \(n \) = no of times compounded in a Year
 \(t \) = Period / time

Kunal Doshi, CFA
Contact: 9920546547
CAPITAL BUDGETING DECISION

A) Basics

1. **Cash flow after tax** = Net profit after tax + Depreciation.

2. **Payback Period** = \(E + \frac{R}{C} \)

 where: \(E \) = Proceeding year to the year of recovery of initial investment.

 \(R \) = Balance amount to be recovered.

 \(C \) = Total cash flow in the year of recovery.

4. **Profitability Index (PI)** = \(\frac{\text{Present Value of Cash Inflows}}{\text{Present Value of Cash Outflows}} \)

5. **Annualised NPV / Equivalent Annualised Cost (EAC)**

 \[\text{EAC} = \frac{\text{NPV}}{\text{PV of Net Cash Outflows \cdot PVIFA (x%, t)}} \]

 where: \(\text{PVIFA} = \text{Present Value Interest Factor Annuity} \)

 \(x \) = Rate of Interest

 \(t \) = Time / Period.
3. Average Rate of Return (ARR)

\[\text{ARR} = \frac{\text{Average NPAT}}{\text{Average Investment}} \times 100 \]

where; Average Investments = Opening + Closing invt

[OB can be taken as closing invt]

8. Inflation in Capital Budgeting.

As per Fisher's Effect; Nominal Rate = Inflation + Real Rate

\[(1+N) = (1+\text{Inflation}) \times (1+R) \]

9. RCF \times (1 + \text{Inflation}) = NCF

where; RCF = Real Cash Flow

NCF = Nominal Cash Flow

10. \[\frac{\text{NCF}}{1+\text{Inflation}} = \text{RCF} \]

\[\text{Risk Analysis} \]

1. Coefficient of Variation = Risk = \[\frac{\varepsilon}{\bar{x}} \] (Risk-Reward Ratio)

\[\begin{align*}
\text{Particulars} & & \text{without probability} & & \text{with Probability} \\
2. \bar{x} (\text{Return}) & & \frac{\sum x}{N} & & \sum x(\text{x} \times p) \\
3. \varepsilon (\text{Risk}) & & \sqrt{\frac{\sum (x-\bar{x})^2}{N}} & & \sqrt{\sum (\text{x} - \bar{x})^2 \times \text{p}}
\end{align*} \]
Calculation of Risk of the Project -

i) If cash flows are dependent
\[SNPV = (CF_0 \times DF) + (CF_1 \times DF) + (CF_2 \times DF) \]

ii) If cash flows are independent
\[SNPV = \sqrt{(CF_0 \times DF)^2 + (CF_1 \times DF)^2 + (CF_2 \times DF)^2} \]

5. Standard Normal Distribution Curve

\[Z = \text{Target Value} - \frac{\bar{x}}{\sigma} \]

Leasing & Borrowing Decision

1. Calculation of Lease Rental (Break Even Lease)

\[PVCO = \text{Lease Rental} \times (1 - \frac{r}{t}) \times PVIFA(\frac{r}{t}, t) \]

where; \(r \) = required return by the lessor / CFC of lessor

2. Calculation of EAI - Equated Annual Installment

i) If installments are on end of year

\[\text{loan amount} = \text{EAI} \times PVIFA(\frac{r}{t}, t) \]

ii) If installments are on beginning of year

\[\text{loan amount} = \text{EAI} \times [1 + PVIFA(\frac{r}{t}, t-1)] \]
FACTORIZING

1. Debtors T/O Ratio = \(\frac{\text{Credit Sales}}{\text{Average Debtors/Accounts Receivable}} \)

2. Debtors Velocity Ratio = \(\frac{\text{Debtors Turnover Ratio}}{\text{Average Collection Period}} \)

 OR

 \(\frac{\text{Debtors Turnover Ratio}}{\text{Credit Sales}} \times \frac{\text{Avg. Debtors}}{\text{Credit Sales}} = 12 \)

3. Average Debtors = \(\frac{\text{Credit Sales} \times \text{Average Collection Period}}{12} \)

4. Credit Sales = \(\frac{\text{Receivables} \times 12}{\text{R}} \)

5. Effective rate of Factoring = \(\frac{\text{Net annualised cost of factoring}}{\text{Actual advance granted}} \times 100 \)
DIVIDEND POLICY

1. Walter's Model

\[P = \frac{D + (E - D) \times x \times \frac{x}{R_e}}{R_e} \]

Where:
- \(P \) = Price of share / Intrinsic Value
- \(D \) = Dividends (DPS)
- \(E \) = Earnings (EPS)
- \(x \) = Return on investment / Return on Equity or Return on retained earnings; IRA
- \(R_e \) = Cost of equity / Required return by equity shareholders
- \(R_m \) = Intra Kamaya / Intra Karna sabhe main

2. Gordon's Growth

\[P_o = \frac{D_o}{R_e - g} \]

or

\[P_o = \frac{D_o \times (1+g)}{R_e - g} \]

Where:
- \(P_o \) = Intrinsic Value / Equilibrium Price / Ideal Price
- \(D_o \) = Current dividend / Last year dividend / Dividend paid / Already given
- \(D_{e} \) = Expected dividend / dividend in future / Div to be paid in next year
- \(g \) = Growth \[g = \frac{b \times \% R_e \times retenion ratio \times return on equity \%}{R_e \text{ Cost of equity } \% \text{ as per CAPM}} \]

Kunal Doshi, CFA
Contact: 9920546547
3. Graham & Dodd Model (Traditional Model)

\[\text{Price} = \left(\frac{D + E}{2} \right) \times M \]

where; \(M = \text{Multiplier} \)

4.Lintner's Model

\[D_t = D_0 \times C + \left(\frac{\text{Target P/E ratio} \times \text{EPS}}{1 - \delta} \right) \]

where; \(D_0 = \text{Current dividend or last year's dividend} \)
\(D_t = \text{Expected dividend or next year's dividend} \)
\(C = \text{Adjustment factor/weight} \)
\(\text{EPS} = \text{Earnings per share} \)

5. Modigliani & Miller

\[P_t = \frac{D_t + P_t}{(1 + R_t)} \]

where; \(P_t = \text{Current Price} \)
\(D_t = \text{Expected Price} \)
\(P_t = \text{Expected Dividend} \)
\(R_e = \text{Cost of equity} \)

* Dividend Irrelevance Theory of PPM

\[N_P = \frac{P(m+n) - I + E}{1 + R_e} \]

where; \(N_P = \text{Total market value of firm} \)
\(P = \text{Price of share / Intrinsic Value} \)
\(m = \text{Old shares} \)
\(n = \text{New shares} \)
\(I = \text{Investment made} \)
\(E = \text{Total Earnings} \)
\(R_e = \text{Cost of equity} \)

Kunal Doshi, CFA
Contact: 9920546547
Theoretical Buy-Back Price

Value of co before Buy-back = Value of co after buy-back

\[(x \times P_0) = (x - b) \times P_1\]

\[P_1 = \frac{x \times P_0}{x - b}\]

Where:
- \(x\): No of shares before buy-back
- \(b\): Buy-back shares
- \(P_0\): Price of co before buy-back
- \(P_1\): Price of co after buy-back / Buy-back price
"It was a journey. From movie rating to CRISIL rating. From Zomato reviews to Stock Analysts reports. From discussing Cricket to discussing Bitcoins. The various concepts linked with practical scenarios helped me not only to grasp syllabus related things easily but also helped me to understand and analyse various practical things. Yes, academically Kunal Sir’s teachings has helped me drastically. Not only in CA Final but also in CS Professional I was able to touch the 70 line. But as it is rightly said that education is what remains when what has been learned has been forgotten, every concept learned with him is still fresh in my mind. It was a great journey from being an AMATEUR to an ANALYST! Now, not only I am able to add CA prefix to my name but also able to understand things in a broad spectrum. Things such as Brexit, SAARC relations, Investment Models, Currency devaluation, Cut motions, Subprime Crisis and many other things which earlier were like Chinese for me. Lots of thanks to Kunal Sir. A teacher who not just taught how to solve sums but who instilled a love for learning."

Pratik Chowkekar

I was always scared of SFM and never thought I would score 81 in SFM. All thanks to Kunal Sir, the best SFM professor. His global financial and political knowledge is very good. He will teach the more important thing in SFM paper that is how to read the question and evaluate the answer. Thank you so much sir.

Alina Lopes

Attempted 80 marks SFM paper and scored 69. I have done Kunal sir’s fast track course for SFM. And since then SFM became my favourite subject. His teaching is totally different. I mean, he doesn’t just stick to the syllabus. Learning from him is like you are virtually entering into the market and dealing everything there. He doesn’t just make your concepts clear but he also makes sure that you become proficient in its practical aspect too. That is one of the reason, why I learnt SFM from him. The finance subject becomes so easy that you can explain it to anyone. Most important, I attempted the paper of 80 marks and I scored 69. The subject helped me to save my group and also to earn the CA prefix!

Anagha Patil
Best professor ever! Kunal sir makes the complicated concept so easy that you can solve any problem easily. He focuses on the basics and that's the best part. I scored 76 marks in SFM just because of him. My true idol Thanks a lot Kunal Sir...!!

Preksha Patel

Kunal sir’s explanation of concepts was amazing and made SFM a cakewalk. I was a person who knew nothing and after attending sir’s 1 month batch there was a drastic change as I could completely connect the subject to the practical world. Hence proved that the punch-line "from amateur to analyst" holds true. Thanks a lot sir as scoring 72 made me achieve my dream of CA. In short, by joining Kunal Sir’s class there’s an assured guarantee that one’s future is in safe hands.

Alina Lopes

Kunal sir’s SFM class makes you fall in love with the subject. I have attended his pendrive classes. He explains even the complicated topics in simple and clear manner. His examples and ability to connect the topics to current market scenarios makes the class interesting. He also teaches how to analysis and understand the questions. Special care is taken with regard to presentation of answers and to improve speed. After attending the classes you become confident to face the exams. Thank you sir for helping me score 73 in SFM.

Christeena Sebastian

By any chance you happened to be a math phobic or person who dislikes numbers, then Kunal Sir is the right person to go to for SFM. I repose great trust in the teaching skills of Kunal Sir, solely because he knows his subject in enough depths to make students understand it easily. I was a CS student, however, studied SFM with CA students and I passed this subject in one go. Be sincere in your efforts and Sir is ready to help you pass with flying colours.

Niyati Panchal
Thanks for making this subject so much fun and easy. I scored 72 in SFM and had attended a fast track course. Awesome conceptual clarity with best study material ever!

Smruti Shah

Kunal Sir’s method of teaching is brilliant, he teaches the most complicated concepts in the simplest way possible. He continuously links current affairs with SFM which makes studying and understanding the subject even more interesting. His focus is to make sure that all his students think like analysts which ultimately helps scoring an exemption in SFM believable. Kunal sir’s teaching is highly recommended to every student aiming an exemption and best understanding of the subject

Yuti Mehta Sanghvi

Lots of Thanks to Kunal Sir, Despite May18 SFM being tricky paper, I managed to clear my CA with very good marks in SFM. All the topics of SFM are superbly taught by giving in depth knowledge of the subject linking it with practical examples of share markets, various economic policies etc. which made flow of learning very practical & making SFM concepts very strong. Kunal sir is really a good motivator and equal attention is given to each & every student. He encourages involvement and participation of every student to make SFM topics lively and easy to remember

Kevin Lodaya

Special thanks to Kunal Doshi sir got exemption in SFM by just revising once for 3 days. He is the best teacher for SFM. His approach towards giving practical knowledge of stock markets, proving you the formula with their derivation makes it easy to understand and remember the concepts. He proves the tag line of becoming amateur to analyst!

Smita Shah
Kunal Doshi Sir is the one you should go to if you not only want to score good in SFM but also learn new things. His teaching style is very impressive and he won't let you feel bored anytime. Also he is just a call away just in case you want to clear your doubts or even in exam time. He is also available on whatsapp which not every teacher does.

Sahil Kapoor

For Forex and Derivatives, No one comes close to Kunal Sir. Conceptually well versed and one will fall in love with the subject. I just loved it, SFM plays a very big part for aggregate. Just join Kunal Sir’s class and love the journey! Definitely Good Marks will follow.

Ashwin Sundaram

His conceptual teaching, linking a particular topic with the current market scenario, constant motivation, student wise attention and instant reply to all the doubts and queries of any student is something that will help you to achieve great marks in SFM. Also the current affair updates with the international market make it interesting learning with Kunal Sir.

Jesal Chavda

Kunal Sir’s methods of teaching makes us understand the toughest of concepts in a very simple way and he makes sure to relate it with current affairs and also encourages to come up with different topics for discussion. If it’s SFM, it’s definitely Kunal Doshi.

Riddhi Dhakan
Our Offerings:

CA – FINAL – SFM
Full Course – 3 Month batch
Fast Track – 20 Days programme
Pen Drive – 160 hours recorded lecture with Notes
Mock Test – a 3 Level test evaluated by experts

CA – FINAL – FSCM (Elective)
Full Course – 1 Month batch
Fast Track – 10 Days programme
Pen Drive – 100 hours recorded lecture with Notes

CA – IPCC – FM & Economics
Full Course – 1 Month batch
Fast Track – 10 Days programme
Pen Drive – 100 hours recorded lecture with Notes
Mock Test – a 3 Level test evaluated by experts

FOR DEMO VISIT OUR CHANNEL ON

YouTube - KUNAL DOSHI, CFA

Reach us on:

Facebook Eduinvest Academy

WhatsApp 7977674844/ 9920546547