CA Final OLD Course S.F.M.

» Strategic Financial Management

Practice Manual In DKC Format

Chapter-2 Project Planning \& Capital Budgeting

For Free Soft Copy Kindly Whats app 9920443322
723, ECSTASY, CITY OF JOY, JSD ROAD,
NEAR STATION, MULUND (W), MUMBAI 400080 MOBILE : 9920443322 | Email id: educare@coppergate.in Website:-www.coppergateeducare.in

2

Project Planning and Capital Budgeting

BASIC CONCEPTS AND FORMULAE

1. Feasibility Study

Project feasibility is a test by which an investment is evaluated.
2. Types of Feasibilities
(a) Market Feasibility: Demand and price estimates are determined from the market feasibility study. The market feasibility study for a product already selling in the market consists of:

- Study of economic factors and indicators;
- Demand estimation;
- Supply estimation;
- Identification of critical success factors; and
- Estimation of demand-supply gap, which is as follows:

Demand Surplus: \quad Minimum $=$ Min demand - Max supply
Likely = Likely demand - Likely supply
Maximum = Max demand - Likely supply
(b) Technical Feasibility: The commercial side of technical details has to be studied along with the technical aspects so that commercial viability of the technology can be evaluated. Project costs along with operating costs are derived from technical feasibility study.
(c) Financial Feasibility: Financial feasibility study requires detailed financial analysis based on certain assumptions, workings and calculations like Projections for prices and cost, Period of estimation, Financing alternatives, Financial statements and Computation of ratios such as debt-service coverage ratio (DSCR), net present value (NPV) or internal rate of return (IRR), Projected balance sheet and cash flow statement.

3. Contents of a Project Report

- Details about Promoters;
- Industry Analysis;
- Economic Analysis;
- Cost of Project;
- Inputs regarding raw material, suppliers, etc;
- Technical Analysis;
- Financial Analysis;
- Social Cost Benefit Analysis;
- SWOT Analysis; and
- Project Implementation Schedule.

4. Post Completion Audit

Post-completion audit evaluates actual performance with projected performance. It verifies both revenues and costs.
5. Social Cost Benefit Analysis

Social cost benefits analysis is an approach for evaluation of projects. A technique for appraising isolated projects from the point of view of society as a whole. It assesses gains/losses to society as a whole from the acceptance of a particular project.

Estimation of shadow prices forms the core of social cost benefit methodology. Economic resources have been lategorized into goods, services, labour, foreign exchange, shadow price of investment vis-à-vis consumption, shadow price of future consumption vis-à-vis present consumption viz. social rate of discount.
6. Capital Budgeting Under Risk and Uncertainty

Risk denotes variability of possible outcomes from what was expected. Standard Deviation is perhaps the most commonly used tool to measure risk. It measures the dispersion around the mean of some possible outcome.
(a) Risk Adjusted Discount Rate Method- The use of risk adjusted discount rate is based on the concept that investors demands higher returns from the risky projects. The required return of return on any investment should include compensation for delaying consumption equal to risk free rate of return, plus compensation for any kind of risk taken on.
(b) Certainty Equivalent Approach- This approach allows the decision maker to incorporate his or her utility function into the analysis. In this approach a set of
risk less cash flow is generated in place of the original cash flows.
(c) Other Methods-
(i) Sensitivity Analysis: Also known as "What if" Analysis. This analysis determines how the distribution of possible NPV or internal rate of return for a project under consideration is affected consequent to a change in one particular input variable. This is done by changing one variable at one time, while keeping other variables (factors) unchanged.
(ii) Scenario Analysis: Although sensitivity analysis is probably the most widely used risk analysis technique, it does have limitations. Therefore, we need to extend sensitivity analysis to deal with the probability distributions of the inputs. In addition, it would be useful to vary more than one variable at a time so we could see the combined effects of changes in the variables.
(iii) Simulation Analysis (Monte Carlo): Monte Carlo simulation ties together sensitivities and probability distributions. The method came out of the work of first nuclear bomb and was so named because it was based on mathematics of Casino gambling. Fundamental appeal of this analysis is that it provides decision makers with a probability distribution of NPVs rather than a single point estimates of the expected NPV. Following are main steps in simulation analysis:

- Modelling the project. The model shows the relationship of NPV with parameters and exogenous variables;
- Specify values of parameters and probability distributions of exogenous variables;
- Select a value at random from probability distribution of each of the exogenous variables;
- Determine NPV corresponding to the randomly generated value of exogenous variables and pre-specified parameter variables;
- Repeat steps (3) \& (4) a large number of times to get a large number of simulated NPVs; and
- Plot frequency distribution of NPV.
(iv) Decision Trees - By drawing a decision tree, the alternations available to an investment decision are highlighted through a diagram, giving the range of possible outcomes.
The stages set for drawing a decision tree is based on the following rules:
- It begins with a decision point, also known as decision node, represented by a rectangle while the outcome point, also known as
chance node, denoted by a circle.
- Decision alternatives are shown by a straight line starting from the decision node.
- The Decision Tree Diagram is drawn from left to right. Rectangles and circles have to be next sequentially numbered.
- Values and Probabilities for each branch are to be incorporated next.
- The expected monetary value (EMV) at the chance node with branches emanating from a circle is the aggregate of the expected values of the various branches that emanate from the chance node.
- The expected value at a decision node with branches emanating from a rectangle is the highest amongst the expected values of the various branches that emanate from the decision node.

7. Capital Budgeting Under Capita! Rationing

Investment appraisals under capital rationing should be to maximise NPV of the set of investments selected. Due to disparity in the size of the projects, the objective cannot be fulfilled by merely choosing projects on the basis of individual NPV ranking till the budget is exhausted. Combinations approach is adopted in such decisions, which is as follows:
(a) Find all combinations of projects, which are feasible given the capital budget restriction and project interdependencies; and
(b) Select the feasible combination having highest NPV.
8. Capital Budgeting Under Inflation

Adjustment for inflation is a necessity for capital investment appraisal as inflation will raise the revenues and costs of the project. Costs of capital considered for investment appraisals contain a premium for anticipated inflation. Due to inflation investors require the nominal rate of return to be equal to:
Required Rate of Return in real terms plus Rate of Inflation.
Formula
$R_{N}=R_{R}+P$
$R_{N} \rightarrow$ Required rate of return in nominal terms.
$R_{R} \rightarrow$ Required rate of return in real terms.
$P \rightarrow$ Anticipated inflation rate.
If cost of capital (required rate of return) contains a premium for anticipated inflation, the inflation factor has to be reflected in the projected cash flows.
If there is no inflation, then it has to be discounted at required rate of return in real terms.

NPV based on consideration that inflation rate for revenue and cost are different shall be computed as follows:

$$
N P V=\sum_{L_{i=1}}\left[\left\{R_{t}\left(1+i_{r}\right)-C_{t}+\Sigma_{[=1}\left(1+i_{c}\right)\right\}(1-T)+D_{t} T\right] /(1+k)^{t}-I_{0}
$$

$\mathrm{R}_{\mathrm{t}} \rightarrow$ revenues for the year ' t ' with no inflation.
$\mathrm{i}_{\mathrm{r}} \rightarrow$ annual inflation rate in revenues for ' r th ' year.
$\mathrm{C}_{\mathrm{t}} \rightarrow$ costs for year ' t ' with no inflation.
$\mathrm{i}_{\mathrm{c}} \rightarrow$ annual inflation rate of costs for year ' r '.
$\mathrm{T} \rightarrow$ tax rate.
$\mathrm{D}_{\mathrm{t}} \rightarrow$ depreciation charge for year ' t '.
$l_{0} \rightarrow$ initial outlay.
$\mathrm{k} \rightarrow$ cost of capital (with inflation premium).
9. Capital Asset Pricing Model Approach to Capital Budgeting

It is based on the presumption that total risk of an investment consists of two components (1) Systematic risk (2) Unsystematic risk.
10. Estimating the Beta of a Capital Project: CAPM can be used to calculate appropriate discount taking into account the systematic risk of the project.
Systematic risk is indicated by β any can be calculated as follows:
(i) Regression Method: This model is based on the assumption that a linear relationship exists between a dependent variable and an independent variable.
The formula of regression equation is as follows:
$E R_{l}=\alpha+\beta R_{m}$
$E R_{I}=$ Expected return security
a = Estimated return from security if market return as zero
$\mathrm{R}_{\mathrm{m}}=$ Market Return
$\beta=$ Beta of security
(ii) Correlation Method: As per this method, the Beta of any security can be calculated as follows:
$\beta_{j}=\frac{{ }^{\mathrm{j}_{\mathrm{j}} \sigma_{\mathrm{j}} \sigma_{m}}}{\sigma_{\mathrm{m}}^{2}}$
$\sigma_{\mathrm{im}}=$ Coefficient of co-relation between return of security and market return
$\sigma_{j}=$ Standard Deviation of Return on investment
$\sigma_{\mathrm{m}}=$ Standard Deviation of Return on Market return (Market Portfolio or Index) With the help of β of any security the expected return of any security can be calculated using Capital Asset Pricing Model (CAPM) as follows:
$E R=R_{f}+\beta\left(R_{m}-R_{f}\right)$
Where,
$E R=$ Expected return
$R_{f}=$ Risk free rate of return
$\mathrm{R}_{\mathrm{m}}=$ Market return
$\beta=$ Beta of security
$\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}=$ Market risk premium

12. Replacement Decision

A decision concerning whether an existing asset should be replaced by a newer version of the same machine or even a different type of machine that does the same thing as the existing machine.
Replacement decision follows certain steps:
Step I. Net cash outflow (assumed at current time /[Present value of cost]):
a. (Book value of old equipment - market value of old equipment) \times Tax Rate $=T a x$ payable/savings from sale
b. Cost of new equipment - [Tax payable/savings from sale + market value of old equipment] = Net cash outflow
Step II. Estimate change in cash flow per year, if replacement decision is implemented.

Change in cash flow $=[($ Change in sales + Change in operating costs) - Change in depreciation] (1 - tax rate) + Change in depreciation
Step III. Present value of benefits = Present value of yearly cash flows + Present value of estimated salvage of new system
Step IV. Net present value $=$ Present value of benefits - Present value of costs
Step V. Decision rule:
Accept when present value of benefits > present value of costs.
Reject when the opposite is true.

13. Real Option in Capital Budgeting

Real Options methodology is an approach to capital budgeting that relies on option
pricing theory to evaluate projects. Real options approach is intended to supplement, and not replace, capital budgeting analyses based on standard DCF methodologies.

Options in Capital Budgeting

The following is a list of options that may exist in a capital budgeting project.
Long call:

- Right to invest at some future date, at a certain price
- Generally, any flexibility to invest, to enter a business, to expand a business

Long put:

- Right to sell at some future date at a certain price
- Right to abandon at some future date at zero or some certain price
- Generally, any flexibility to disinvest, to exit from a business.

Short call:

- Promise to sell if the counterparty wants to buy
- Generally, any commitment to disinvest upon the action of another party Short put:
- Promise to buy if the counterparty wants to sell
- Generally, any commitment to invest upon the action of another party

Valuation of Real Options

Broadly, following methods are employed in Valuation of Financial Options.
(a) Binomial Model
(b) Risk Neutral Method
(c) Black-Scholes Model

Type of Real Options

Following are broad type of Real Options
(a) Growth Options
(b) Abandonment Option
(c) Timing Option

Question 1

Distinguish between Net Present-value and Internal Rate of Return.

Abstract

Answer NPV and IRR: NPV and IRR methods differ in the sense that the results regarding the choice of an asset under certain circumstances are mutually contradictory under two methods. IN case of mutually exclusive investment projects, in certain situations, they may give contradictory results such that if the NPV method finds one proposal acceptable, IRR favours another. The different rankings given by the NPV and IRR methods could be due to size disparity problem, time disparity problem and unequal expected lives. The net present value is expressed in financial values whereas internal rate of return (IRR) is expressed in percentage terms.

In net present value cash flows are assumed to be re-invested at cost of capital rate. In IRR re-investment is asslimed to be made at IRR rates.

Question 2

Write short note on Certainty Equivalent Approach.

Answer

Certainty Equivalent Approach (CE): This approach recognizes risk in capital budgeting analysis by adjusting estimated cash flows and employs risk free rate to discount the adjusted cash-flows. Under this method, the expected cash flows of the project are converted to equivalent riskless amounts. The greater the risk of an expected cash flow, the smaller the certainty equivalent values for receipts and longer the CE value for payment. This approach is superior to the risk adjusted discounted approach as it can measure risk more accurately.
This is yet another approach for dealing with risk in capital budgeting to reduce the forecasts of cash flows to some conservative levels. In certainty Equivalent approach we incorporate risk to adjust the cash flows of a proposal so as to reflect the risk element. The certainty Equivalent approach adjusts future cash flows rather than discount rates. This approach explicitly recognizes risk, but the procedure for reducing the forecasts of cash flows is implicit and likely to be inconsistent from one investment to another.

Question 3

What is the sensitivity analysis in Capital Budgeting?

Answer

Sensitivity Analysis in Capital Budgeting: Sensitivity analysis is used in Capital budgeting for more precisely measuring the risk. It helps in assessing information as to how sensitive are the estimated parameters of the project such as cash flows, discount rate, and the project life to the estimation errors. Future being always uncertain and estimations are always subject to error, sensitivity analysis takes care of estimation errors by using a number of possible
outcomes in evaluating a project. The methodology adopted in sensitivity analysis is to evaluate a project by using a number of estimated cash flows so as to provide to the decision maker an insight into the variability of outcome. Thus, it is a technique of risk analysis which studies the responsiveness of a criterion of merit like NPV or IRR to variation in underlying factors like selling price, quantity sold, returns from an investment etc.
Sensitivity analysis answers questions like,
(i) What happens to the present value (or some other criterion of merit) if flows are, say $₹ 50,000$ than the expected $₹ 80,000$?
(ii) What will happen to NPV if the economic life of the project is only 3 years rather than expected 5 years?
Therefore, wherever there is an uncertainty, of whatever type, the sensitivity analysis plays a crucial role. However, it should not be viewed as the method to remove the risk or uncertainty, it is only a tool to analyse and measure the risk and uncertainty. In terms of capital budgeting the possible cash flows are based on three assumptions:
(a) Cash flows may be worst (pessimistic)
(b) Cash flows may be most likely.
(c) Cash flows may be most optimistic.

Sensitivity analysis involves three steps
(1) Identification of all those variables having an influence on the project's NPV or IRR.
(2) Definition of the underlying quantitative relationship among the variables.
(3) Analysis of the impact of the changes in each of the variables on the NPV of the project.

The decision maker, in sensitivity analysis always asks himself the question - what if?

Question 4

Write short note on Social Cost Benefit analysis.

Answer

Social Cost Benefit Analysis: It is increasingly realised that commercial evaluation of projects is not enough to justify commitment of funds to a project especially when the project belongs to public utility and irrespective of its financial viability it needs to be implemented in the interest of the society as a whole. Huge amount of funds are committed every year to various public projects of all types-industrial, commercial and those providing basic infrastructure facilities. Analysis of such projects has to be done with reference to the social costs and benefits since they cannot be expected to yield an adequate commercial rate of return on the funds employed at least during the short period. A social rate of return is more important. The actual costs or revenues do not necessarily reflect the monetary measurement of costs or benefits to the society. This is because the market price of goods and services are
often grossly distorted due to various arifificial restrictions and controls from authorities; hence a different yardstick has to be adopted for evaluating a particular project of social importance and its costs and benefits are valued at 'opportunity cost' or shadow prices to judge the real impact of their burden as costs to the society. Thus, social cost benefit analysis conducts a monetary assessment of the total cost and revenues or benefits of a project, paying particular attention to the social costs and benefits which do not normally feature in conventional costing.
United Nations Industrial Development Organisation (UNIDO) and Organisation of Economic Cooperation and Development (OECD) have done much work on Social Cost Benefit analysis. A great deal of importance is attached to the social desirability of projects like employment generation potential, value addition, foreign exchange benefit, living standard improvement etc. UNIDO and OECD approaches need a serious consideration in the calculation of benefits an.d costs to the society. This technique has got more relevance in the developing countries where public capital needs precedence over private capital.

Question 5

Comment briefly on the social cost benefit analysis in relation to evaluation of an Industrial project.

Answer

Social Cost-Benefit Analysis of Industrial Projects: This refers to the moral responsibility of both PSU and private sector enterprises to undertake socially desirable projects - that is, the social contribution aspect needs to be kept in view.
Industrial capital investment projects are normally subjected to rigorous feasibility analysis and cost benefit study from the point of view of the investors. Such projects, especially large ones often have a ripple effect on other sections of society, local environment, use of scarce national resources etc. Conventional cost-benefit analysis ignores or does not take into account or ignores the societal effect of such projects. Social Cost Benefit (SCB) is recommended and resorted to in such cases to bring under the scanner the social costs and benefits.

SCB sometimes changes the very outlook of a project as it brings elements of study which are unconventional yet very relevant. In a study of a famous transportation project in the UK from a normal commercial angle, the project was to run an annual deficit of more than 2 million pounds. The evaluation was adjusted for a realistic fare structure which the users placed on the services provided which changed the picture completely and the project got justified. Large public sector/service projects especially in under-developed countries which would get rejected on simple commercial considerations will find justification if the social costs and benefits are considered.
SCB is also important for private corporations who have a moral responsibility to undertake socially desirable projects, use scarce natural resources in the best interests of society, generate employment and revenues to the national exchequer.

Indicators of the social contribution include
(a) Employment potential criterion;
(b) Capital output ratio - that is the output per unit of capital;
(c) Value added per unit of capital;
(d) Foreign exchange benefit ratio.

Question 6

Write a brief note on project appraisal under inflationary conditions.

Answer

Project Appraisal under Inflationary Conditions: Project Appraisal normally involves feasibility evaluation from technical, commercial, economic and financial aspects. It is generally an exercise in measurement and analysis of cash flows expected to occur over the life of the project. The project cash outflows usually occur initially and inflows come in the future.
During inflationary conditions, the project cost increases on all heads viz. labour, raw material, fixed assets such as equipments, plant and machinery, building material, remuneration of technicians and managerial personnel etc. Beside this, inflationary conditions erode purchasing power of consumers and affect the demand pattern. Thus, not only cost of production but also the projected statement of profitability and cash flows are affected by the change in demand pattern. Even financial institutions and banks may revise their lending rates resulting in escalation in financing cost during inflationary conditions. Under such circumstances, project appraisal has to be done generally keeping in view the following guidelines which are usually followed by government agencies, banks and financial institutions.
(i) It is always advisable to make provisions for cost escalation on all heads of cost, keeping in view the rate of inflation during likely period of delay in project implementation.
(ii) The various sources of finance should be carefully scruitinised with reference to probable revision in the rate of interest by the lenders and the revision which could be effected in the interest bearing securities to be issued. All these factors will push up the cost of funds for the organization.
(iii) Adjustments should be made in profitability and cash flow projections to take care of the inflationary pressures affecting future projections.
(iv) It is also advisable to examine the financial viability of the project at the revised rates and assess the same with reference to economic justification of the project. The appropriate measure for this aspect is the economic rate of return for the project which will equate the present value of capital expenditures to net cash flows over the life of the projects. The rate of return should be acceptable which also accommodates the rate of inflation per annum.
(v) In an inflationary situation, projects having early payback periods should be preferred because projects with long payback period are more risky.
Under conditions of inflation, the project cost estimates that are relevant for a future date will suffer escalation. Inflationary conditions will tend to initiate the measurement of future cash flows. Either of the following two approaches may be used while appraising projects under such conditions:
(i) Adjust each year's cash flows to an inflation index, recognising selling price increases and cost increases annually; or
(ii) Adjust the 'Acceptance Rate' (cut-off) suitably retaining cash flow projections at current price levels.
An example of approach (ii) above can be as follows:

Normal Acceptance Rate	$:$	15.0%
Expected Annual Inflation	$:$	5.0%
Adjusted Discount Rate	$:$	15.0×1.05 or 15.75%

It must be noted that measurement of inflation has no standard approach nor is easy. This makes the job of appraisal a difficult one under such conditions.

Question 7

What is Capital rationing?

Abstract

Answer Capital Rationing: When there is a scarcity of funds, capital rationing is resorted to. Capital rationing means the utilization of existing funds in most profitable manner by selecting the acceptable projects in the descending order or ranking with limited available funds. The firm must be able to maximize the profits by combining the most profitable proposals. Capital rationing may arise due to (i) external factors such as high borrowing rate or non-availability of loan funds due to constraints of Debt-Equity Ratio; and (ii) Internal Constraints Imposed by management. Project should be accepted as a whole or rejected. It cannot be accepted and executed in piecemeal. IRR or NPV are the best basis of evaluation even under Capital Rationing situations. The objective is to select those projects which have maximum and positive NPV. Preference should be given to interdependent projects. Projects are to be ranked in the order of NPV. Where there is multi-period Capital Rationing, Linear Programming Technique should be used to maximize NPV. In times of Capital Rationing, the investment policy of the company may not be the optimal one. In nutshell Capital Rationing leads to: (i) Allocation of limited resources among ranked acceptable investments. (ii) This function enables management to select the most profitable investment first.

(iii) It helps a company use limited resources to the best advantage biy investing only in the projects that offer the highest return.
(iv) Either the internal rate of return metnod or the net present value method may be used in ranking investments.

Question 8

Explain the concept 'Zero date of a Project' in project management.

Answer

Zero Date of a Project means a date is fixed from which implementation of the project begins. It is a starting point of incurring cost. The project completion period is counted from the zero date. Pre-project activities should be completed before zero date. The pre-project activities should be completed before zero date. The pre-project activities are:
a. Identification of project/product
b. Determination of plant capacity
c. Selection of technical help/collaboration
d. Selection of site.
e. Selection of survey of soil/plot etc.
f. Manpower planning and recruiting key personnel
g. Cost and finance scheduling.

Question 9

What are the steps for Simulation Analysis?

Answer

Steps for simulation analysis.

1. Modelling the project- The model shows the relationship of N.P.V. with parameters and exogenous variables. (Parameters are input variables specified by decision maker and held constant over all simulation runs. Exogenous variables are input variables; which are stochastic in nature and outside the control of the decision maker).
2. Specify values of parameters and probability distributions of exogenous variables.
3. Select a value at random from probability distribution of each of the exogenous variables.
4. Determine N.P.V. corresponding to the randomly generated value of exogenous variables and pre-specified parameter variables.
5. Repeat steps (3) \& (4) a large number of times to get a large number of simulated N.P.V.s.
6. Plot frequency distribution of N.P.V.

Question 10

What is simulation analysis and how it is beneficial?

Answer

Simulation is the exact replica of the actual situation. To simulate an actual situation, a model shall be prepared. The simulation Analysis is a technique, in which infinite calculations are made to obtain the possible outcomes and probabilities for any given action.
Munte Carlo simulation ties together sensitivities and probability distributions. The method came out of the work of first nuclear bomb and was so named because it was based on mathematics of Casino gambling. Fundamental appeal of this analysis is that it provides decision makers with a probability distribution of NPVs rather than a single point estimates of the expected NPV.
This analysis starts with carrying out a simulation exercise to model the investment project. It involves identifying the key factors affecting the project and their inter relationships. It involves modeling of cash flows to reveal the key factors influencing both cash receipt and payments and their inter relationship.
This analysis specifies a range for a probability distribution of potential outcomes for each of model's assumptions.

1. Modelling the project: The model shows the relationship of NPV with parameters and exogenous variables. (Parameters are input variables specified by decision maker and held constant over all simulation runs. Exogenous variables are input variables, which are stochastic in nature and outside the control of the decision maker).
2. Specify values of parameters and probability distributions of exogenous variables.
3. Select a value at random from probability distribution of each of the exogenous variables.
4. Determine NPV corresponding to the randomly generated value of exogenous variables and pre-specified parameter variables.
5. Repeat steps (3) \& (4) a large number of times to get a large number of simulated NPVs.
6. Plot probability distribution of NPVs and compute a mean and Standard Deviation of returns to gauge the project's level of risk.
Advantages of Simulation Analysis:
(1) We can predict all type of bad market situation beforehand.
(2) Handle problems characterized by
(a) numerous exogenous variables following any kind of distribution.
(b) Complex inter-relationships among parameters, exogenous variables and endogenous variables. Such problems defy capabilities of analytical methods.
(c) Compels decision maker to explicitly consider the inter-dependencies and uncertainties featuring the project.

Question 11

Explain in brief the contents of a Project Report.

Answer

The following aspects need to be taken into account for a Project Report -

1. Promoters: Their experience, past records of performance form the key to their selection for the project under study.
2. Industry Analysis: The environment outside and within the country is vital for determining the type of project one should opt for.
3. Economic Analysis: The demand and supply position of a particular type of product under consideration, competitor's share of the market along with their marketing strategies, export potential of the product, consumer preferences are matters requiring proper attention in such type of analysis.
4. Cost of Project: Cost of land, site development, buildings, plant and machinery, utilities e.g. power, fuel, water, vehicles, technical know how together with working capital margins, preliminary/pre-operative expenses, provision for contingencies determine the total value of the project.
5. Inputs: Availability of raw materials within and outside the home country, reliability of suppliers cost escalations, transportation charges, manpower requirements together with effluent disposal mechanisms are points to be noted.
6. Technical Analysis: Technical know-how, plant layout, production process, installed and operating capacity of plant and machinery form the core of such analysis.
7. Financial Analysis: Estimates of production costs, revenue, tax liabilities profitability and sensitivity of profits to different elements of costs and revenue, financial position and cash flows, working capital requirements, return on investment, promoters contribution together with debt and equity financing are items which need to be looked into for financial viability.
8. Social Cost Benefit Analysis: Ecological matters, value additions, technology absorptions, level of import substitution form the basis of such analysis.
9. SWOT Analysis: Liquidity/Fund constraints in capital market, limit of resources ảvailable with promoters, business/financial risks, micro/macro economic considerations subject to government restrictions, role of Banks/Financial Institutions in project assistance, cost of equity and debt capital in the financial plan for the project are factors which require careful examinations while carving out SWOT analvsis.
10. Project Implementation Schedule: Date of commerivement, duration of the project, trial runs, cushion for cost and time over runs and date of completion of the project through Network Analysis have all to be properly adhered to in order to make the project feasible.

CTATEMENT SHOCOINU
 Question 12

A manufacturing unit engaged in the production of automobile parts is considering a proposal of purchasing one of the two plants, details of which are given below:

Particulars	Plant \mathbf{A}	Plant B
Cost	$₹ 20,00,000$	$₹ 38,00,000$
Installation charges	$₹ 4,00,000$	$₹ 2,00,000$
Life	20 years	15 years
Scrap value after full life	$₹ 4,00,000$	$₹ 4,00,000$
Output per minute (units)	200	400

The annual costs of the two plants are as follows:

Particulars	Plant A	Plant B
Running hours per annum	2,500	2,500
Costs:	(ln ₹)	(In ₹)
Wages	$1,00,000$	$1,40,000$
Indirect materials	$4,80,000$	$6,00,000$
Repairs	80,000	$1,00,000$
Power	$2,40,000$	$2,80,000$
Fixed Costs	60,000	80,000

Will it be advantageous to buy Piant A or Plant B? Substantiate your answer with the help of comparative unit cost of the plants. Assume interest on capital at 10 percent. Make other relevant assumptions:
Note: 10 percent interest tables

	20 Years	15 Years
Present value of ₹ 1	0.1486	0.2394
Annuity of ₹ 1 (capital recovery factor with 10\% interest)	0.1175	0.1315

STATEMFNT SHOWINY NIPV OE oxifiow

PLAN	A	B
LIFE	2oyears	$15 y$ ars.

PV. of ourflow
ybar
(0) INSTALLAIION (400000) (200000) CHARCESS $=59440=95760$
SURAP $\quad\binom{400000}{\times 1486}\binom{400000}{\times .2394}$

	(2340560)	(3904240)
		$(2315$
ANNUITY-FACTOR	$x .1175$	
Q10\%	$=(275016)$	(513408)

Stetemisni stowiny Cust Pre UNHA

Question 13

XYZ Ltd., an infrastructure company is evaluating a proposal to build, operate and transfer a section of 35 kms . of road at a project cost of ₹ 200 crores to be financed as follows:
Equity Shares Capital ₹ 50 crores, loans at the rate of interest of 15% p.a. from financial institutions ₹ 150 crores. The Project after completion will be opened to traffic and a toll will be collected for a period of 15 years from the vehicles using the road. The company is also required to maintain the road during the above 15 years and after the completion of that
penod, it will be handed over to the Highway authorities at zero value. It is estimated that the toll revenue will be ₹ 50 crores per annum and the annual toll collection expenses including maintenance of the roads will amount to 5% of the project cost. The company considers to write off the total cost of the project in 15 years on a straight line basis. For Corporate Incometax purposes the company is allowed to take depreciation @ 10% on WDV basis. The financial institutions are agreeable for the repayment of the loan in 15 equal annual instalments consisting of principal and interest.
Calculate Project IRR and Equity IRR. Ignore Corporate taxation.
Explain the difference in Project IRR and Equity IRR.

Answer

Computation of Project IRR

Project IRR is computed by using the following equation:
Where,
$\mathrm{CO}_{0}=$ Cash outflow at time zero
$C F_{i}=$ Net cash inflow at different points of time
$N=$ Life of the project and
$R=$ Rate of discount (IRR)
Now,
$\mathrm{CO}_{0}=₹ 200$ crores
$C F_{i}=₹ 40$ crores p.a, for 15 years
(Refer to working note (i))
Therefore,

$$
₹ 200 \text { crore }=\frac{₹ 40 \text { crores }}{(1+r)^{15}}
$$

The value of IRR of the project:

1. An approximation of IRR is made on the basis of cash flow data. A rough approximation may be made with reference to the payback period. The payback period in the given case is 5 years i.e. $\left(\frac{₹ 200 \text { crores }}{₹ 40 \text { crores }}\right)$. From the PVAF table the closest figures are given in rate 18% (5.092) and the rate 19% (4.876). This means the IRR of the project is expected to be between 18% and 19%.
2. The estimate of IRR cash inflow of the project for both these rates is as follows:

At $18 \%=₹ 40$ crores $\times \operatorname{PVAF}$ ($18 \%, 15$ years)

$$
\begin{aligned}
& =₹ 40 \text { crores } \times 5.092 \\
& =₹ 203.68 \text { crores } \\
\text { At } 19 \% & =₹ 40 \text { crores } \times \operatorname{PVAF}(19 \%, 15 \text { years }) \\
& =₹ 40 \text { crores } \times 4.876 \\
& =₹ 195.04 \text { crores }
\end{aligned}
$$

3. The exact IRR by interpolating between 18% and 19% is worked out as follows:

$$
\begin{aligned}
\operatorname{IRR}=18 \% & +\frac{₹ 203.68 \text { crores }-₹ 200 \text { crores }}{₹ 203.68 \text { crores }-₹ 195.04 \text { crores }} \times 1 \% \\
& =18 \%+\frac{₹ 3.68 \text { crores }}{₹ 8.64 \text { crores }} \times 1 \% \\
& =18 \%+0.426 \% \\
& =18.43 \%
\end{aligned}
$$

Therefore, the IRR of the project is 18.43%.

Working Notes:

(i) Net cash inflow of the project

Cash inflow

Toll revenue
50 crores p.a. for 15 years

Cash outflow
₹

Toll collection expenses including maintenance of the roads 10 crores.p.a. for 15 years
(5% of ₹ 200 crores) Net cash inflow

Note: Since corporate taxes is not payable. The impact of depreciation need not be considered.

Computation of Equity IRR

Equity IRR is computed by using the following equation:
Cash inflow at zero date from equity shareholders $=\frac{\text { Cash inflow available for equity shareholders }}{(1+r)_{n}}$ Where,
$r=$ Equity IRR
$n=$ Life of the project
Here, Cash inflow at zero date from equity shareholders $=₹ 50$ crores

Cash inflow for equity shareholde:- = ₹ 14.35 crores p.a.
(Refer to working note)
Therefore:
$₹ 50$ crores $=\frac{₹ 14.35 \text { crores }}{(1+r)^{15}}$
The value of equity IRR of the project is calculated as follows:

1. An approximation of IRR is made on the basis of cash flow data. A rough approximation may be made with reference to the payable period. The payback period in the given case is $3.484\left(\frac{₹ 50 \text { crores }}{₹ 14.35 \text { crores }}\right)$. From the PVAF table the closest figure may be about 25% and 30%. This means the equity IRR of project must be between 25% and 30%.
2. The estimated NPV of the project at $25 \%=₹ 14.35$ crores $\times 3.859=₹ 55.3766$ crores. The estimated NPV of the project at $30 \%=₹ 14.35$ crores $\times 3.268=$ ₹ 46.896 crores
3. IRR by using Interpolation Formula will be

$$
\begin{aligned}
& =25 \%+\frac{55.377-50}{55.3766-46.896} \times 5 \% \\
& =25 \%+\frac{5.377}{8.4806} \times 5 \% \\
& =25 \%+3.17 \%=28.17 \%
\end{aligned}
$$

(ii) Equated annual instalment (i.e. principal + interest) of loan from financial institution:

Amount of loan from financial institution	$₹ 150$ crores
Rate of interest	15% p.a.
No. of years	15
Cumulative discount factor for $1-15$ years	5.847

Hence, equated yearly instalment will be ₹ 150 crores/5.847 i.e. ₹ 25.65 crores.
(iii) Cash inflow available for equity shareholders

Net cash inflow of the project
[Refer to working note (i)]
Equated yearly instalment of the project
[Refer to working note (ii)]
Cash inflow available for equity shareholders
₹ 40.00 crores
₹ 25.65 crores
₹ 14.35 crores

Difference in Project IRR and Equity IRR:

The project IRR is 18.4% whereas Equity IRR is 28%. This is attributed to the fact that XYZ Ltd. is earning 18.4% on the loan from financial institution but paying only 15%. The difference between the return and cost of funds from financial institution has enhanced equity IRR. The $3.4 \%(18.4 \%-15 \%)$ earnings on ₹ 150 crores goes to equity shareholders who have invested ₹ 50 crore i.e.
$3.4 \% \times \frac{₹ 150 \text { crores }}{₹ 50 \text { crores }}=10.2 \%$ is added to the project IRR which gives equity IRR of 28%.

Question 14 System B, which have lives of 6 years and 4 years respectively. The initial investment outlay and annual operating costs for the two systems are expected to be as follows:

	System A	System B
Initial Investment Outlay	$₹ 5$ million	$₹ 4$ million
Annual Operating Costs	$₹ 1.5$ million	$₹ 1.6$ million
Salvage value	$₹ 1$ million	$₹ 0.5$ million

If the hurdle rate is 15%, which system should $A B C$ Chemicals choose? The PVIF @ 15\% for the six years are as below:

Year	1	2	3	4	5	6
PVIF	0.8696	0.7561	0.6575	0.5718	0.4972	0.4323

STATE MFA SHOOING P.V: OF OHPFIN

QNO 5
Skylark Airways is planning to acquire a light commercial aircraft for flying class clients at an investment of ₹ $50,00,000$. The expected cash flow after tax for the next three years is as follows:

Year 1		Year 2		Year 3	
CFAT	Probability	CFAT	Probability	CFAT	Probability
$14,00,000$	0.1	$15,00,000$	0.1	$18,00,000$	0.2
$18,00,000$	0.2	$20,00,000$	0.3	$25,00,000$	0.5
$25,00,000$	0.4	$32,00,000$	0.4	$35,00,000$	0.2
$40,00,000$	0.3	$45,00,000$	0.2	$48,00,000$	0.1

The Company wishes to take into consideration all possible risk factors relating to airline operations. The company wants to know:
(i) The expected NPV of this venture assuming independent probability distribution with 6 per cent risk free rate of interest.
(ii) The possible deviation in the expected value.
(iii) How would standard deviation of the present value distribution help in Capital Budgeting decisions?

STATEMENT SIODOINU EXPEGIRD N.PV.

STATEMENT SHDNINY POSSIBLE DEVIANON FROM EXPEGISD VALE

Standard deviation about the expected value:

$$
=\sqrt{\frac{85.4}{(1.06)^{2}}+\frac{98.61}{(1.06)^{4}}+\frac{74.29}{(1.06)^{6}}}=14.3696
$$

(iii) Standard deviation is a statistical measure of dispersion; it measures the deviation from a central number i.e. the mean.
In the context of capital budgeting decisions especially where we take up two or more projects giving somewhat similar mean cash flows, by calculating standard deviation in such cases, we can measure in each case the extent of variation. It can then be used to identify which of the projects is least riskier in terms of variability of cash flows.
A project, which has a lower coefficient of variation will be preferred if sizes are heterogeneous.
Besides this, if we assume that probability distribution is approximately normal we are able to calculate the probability of a capital budgeting project generating a net present value less than or more than a specified amount

Question
(a) Cyber Company is considering two mutually exclusive projects. Investment outlay of both the projects is $₹ 5,00,000$ and each is expected to have a life of 5 years. Under three possible situations their annual cash flows and probabilities are as under:

		Cash Flow (₹)	
Situation	Probabilities	Project	Project
		A	B
Good	0.3	$6,00,000$	$5,00,000$
Normal	0.4	$4,00,000$	$4,00,000$
Worse	0.3	$2,00,000$	$3,00,000$

The cost of capital is 7 per cent, which project should be accepted? Explain with workings.
(b) A company is considering Projects X and Y with following information:

Project	Expected NPV (\%)	Standard deviation
X	$1,22,000$	90,000
Y	$2,25,000$	$1,20,000$

(i) Which project will you recommend based on the above data?
(ii) Explain whether your opinion will change, if you use coefficient of variation as a measure of risk.
(iii) Which measure is more appropriate in this situation and why?

STATRMFNI SODWINY S.D

$(x-\bar{x})^{2} \times$ Prob $_{2}=$	$=$
$A \quad(600000-400000) \times 30$	$=12000000000$
$(400000-400000)^{2} \times 10=$	-
$(200000-400000)^{2} \times 30$	$=12000,00,0,000$
$S \cdot D=\sqrt{24,000000,000}$	

'B' $(500000-400000)^{2} \times \cdot 30=3,000,000,000$

$$
\begin{aligned}
& (400000-400000)^{2} \times 140=- \\
& (300000-400000)^{2} \times 30=\frac{300000000}{6000000000}
\end{aligned}
$$

S.D $\sqrt{6000000000}=77549.66$

DE ASION

$$
\begin{array}{ll}
N \cdot P V & - \text { SAMV } B O T H \\
S \cdot D & -L O W F A-B
\end{array}
$$

(LESS RISKY) - B
$\operatorname{ANNO}(b)(\infty)$
$\frac{S \cdot D}{\operatorname{anc}}$
(LESS-RISKY)
(MORE-RISKY)
STATEMFNV SHOWINU COPFRCEFANT OF VANAION

$$
C \cdot \cdot=\left(\frac{S D}{I N P V}\right)
$$

(x)C•V $\left(\frac{90000}{122000}\right)=.738 \quad($ RSSH $)$
(x) $C \cdot V\left(\frac{120000}{225000}\right)=.533$
(Lisencray)

DECISIONTY
(iii) HOWEUER, THE N.P.V. METHUD IN SUCH CONFIUCTINY SITIUATION IS BEST BECAUSE THE N.PV METHOD IS COMPATIBFLETY OF THE OBJEGIVE OF WEALEH MAXIMISATION IN TEIRMS OF TIME VALUE.

Question 17
KLM Ltd., is considering taking up one of the two projects-Project-K and Project-So Both the projects having same life require equal investment of ₹ 80 lakhs each. Both are estimated to have almost the same yield. As the company is new to this type of business, the cash flow arising from the projects cannot be estimated with certainty. An attempt was therefore, made to use probability to analyse the pattern of cash flow from other projects during the first year of operations. This pattern is likely to continue during the life of these projects. The results of the analysis are as follows:

Project K		Project S	
Cash Flow (in ₹)	Probability	Cash Flow (in ₹)	Probability
11	0.10	09	0.10
13	0.20	13	0.25
15	0.40	17	0.30
17	0.20	21	0.25
19	0.10	25	0.10

Required:
(i) Calculate variance, standard deviation and co-efficient of variance for both the projects.
(ii) Which of the two projects is more risky?

STATEMENT SHOCDNU (I) VARIANGE
(ii) SGANDAND STEUATINN (iii) COFFFICIENE OE YARIPION to

$$
\begin{aligned}
\begin{aligned}
\text { COFAFICFENE } \\
\text { Of VARIMON }
\end{aligned} & =\binom{\text { STANDAND }}{\frac{\text { DTVIAIUN }}{\text { IARPRAD }}} \\
& =\left(\frac{2.19}{15}\right) \\
& =.146
\end{aligned}
$$

PRUJECH- हo 's'

$$
\begin{aligned}
& (9-17)^{2} \times \quad 10 \\
& (13-17)^{2} \times \quad .25 \\
& (17-17)^{2} \times 30 \\
& (21-17)^{2} \times 1.25=400 \\
& (25-17)^{2} \times \quad 10 \\
& S \cdot D=\sqrt{20.80} \\
& =4.56 \\
& \begin{array}{l}
\text { CORFFICFNT } \\
\text { OF UARATION }
\end{array}=\left(\frac{4.56}{17}\right) \\
& =.268
\end{aligned}
$$

PROJECH 'S' IS RISKY AS IT HAS HIaHAR COMFF raEnt of VARIOION.

Question 18

Project X and Project Y are under the evaluation of $X Y$ Co. The estimated cash flows and their probabilities are as below:

Project X : Investment (year 0) ₹ 70 lakhs

Probability weights	0.30	0.40	0.30
Years	₹lakhs	₹lakhs	₹lakhs
1	30	50	65
2	30	40	55
3	30	40	45

Project Y: Investment (year 0) ₹ 80 lakhs.

Probability weighted	Annual cash flows through life
	₹lakhs
0.20	40
0.50	45
0.30	50

(a) Which project is better based on NPV, criterion with a discount rate of 10% ?
(b) Compute the standard deviation of the present value distribution and analyse the inherent risk of the projects.

STATrminNe syowiny entarlanion OF N.PV of $x y$-COMPANy. PROJFGAX'

ANSNO-(B)
STATrIMINNI SHOWINY STANDARD
DELIATION

$$
\begin{aligned}
& \text { YFAR } \\
& 2(30-41.50) \times \cdot 30=\frac{\frac{81675}{185.25}}{39.675} \\
& (40-41.50) \times .40=190 \\
& \begin{aligned}
(55-41.50) \times \quad 30 & =\frac{54.675}{95.25} \\
(30-38.50) \times \cdot 30 & =\frac{1.675}{20} \\
(40-38.50) \times 140 & =\frac{120}{}
\end{aligned} \\
& \begin{array}{l}
(40-38.5) \times 140=\frac{190}{35.25} \\
(45-38.5) \times-30=\frac{12.65}{30}
\end{array}
\end{aligned}
$$

YEAR
S.D
$\frac{\text { YEAC }}{1}$

$$
\begin{aligned}
1 \sqrt{185.25} & =13.61 \\
2 \sqrt{95.25} & =9.75 \\
3 \sqrt{35.25} & =5.93
\end{aligned}
$$

Shivam Ltd. is considering two mutually exclusive projects A and B. Project A costs $₹ 36,000$ and project B ₹ 30,000 . You have been given below the net present value probability Q 619 distribution for each project.

Project A		Project B	
NPV estimates (₹)	Probability	NPV estimates (i)	Probability
15,000	0.2	15,000	0.1
12,000	0.3	12,000	0.4
6,000	0.3	6,000	0.4
3,000	0.2	3,000	0.1

(i) Compute the expected net present values of projects A and B.
(iii) Compute the risk attached to each project i.e. standard deviation of each probability distribution.
(iii) Compute the profitability index of each project.
(iv) Which project do you recommend? State with reasons.

Ansndistarempnt stowing Fexpecind N.P.V
Prustect A \& B

Project-B

		PROB	Exp -N.1V
15000	x	10	1500
$12000 \times$	40	4800	
6000	x	40	2400
$3000 \times$	$\cdot 10$	300	
EXPEGFD	VALUE $=$	9000	

Ansno(ii)
STATEMFNT SHOWINY STANDARD DEVIAIIN OF EACH ProDU
Pratiser-A:-

STACRMENT
Poo ms
PPI $=\binom{$ DISCOUNTED INFLOW }{ DISCOUNTED OUTPD00. }
$\quad A=\left(\frac{9000+36000}{36000}\right)=1.25$
$B=\left(\frac{9000+36000}{36000}\right)=1.30$
(iv) Measurement of risk is made by the possible variation of outcomes around the expected value and the decision will be taken in view of the variation in the expected value where two projects have the same expected value, the decision will be the project which has smaller variation in expected value. In the selection of one of the two projects A and B, Project B is preferable because the possible profit which may occur is subject to less variation (or dispersion). Much higher risk is lying with project A .

Question 21
Following are the estimates of the net cash flows and probability of a new project of M/s X Ltd.:

	Year	$P=0.3$	$P=0.5$	$P=0.2$
Initial investment	0	$4,00,000$	$4,00,000$	$4,00,000$
Estimated net after tax cash inflows per year	1 to 5	$1,00,000$	$1,10,000$	$1,20,000$
Estimated salvage value (after tax)	5	20,000	50,000	60,000

Required rate of return from the project is 10%. Find:
(i) The expected NPV of the project.
(ii) The best case and the worst case NPVs.
(iii) The probability of occurrence of the worst case if the cash flows are perfectly dependent overtime and independent overtime.
(iv) Standard deviation and coefficient of variation assuming that there are only three streams of cash flow, which are represented by each column of the table with the given probabilities.
(v) Coefficient of variation of $X L t d$. on its average project which is in the range of 0.95 to 1.0. If the coefficient of variation of the project is found to be less risky than average, 100 basis points are deducted from the Company's cost of Capital
Should the project be accepted by $X L t d$?

STATEMENT SHOWING N.P.V.
EXPEGIED VALE OF PRESENT OUTFIT.

$0400000 \times 130=120000$

$400000 x$	150	$=200000$
$400000 x$	120	$=80000$

$$
\begin{aligned}
& \frac{\text { YFAA }}{1-5} \frac{\text { INFLOW }}{100000} \times \frac{\text { PROB }}{30}=\frac{\text { EXP-FNF } W}{30000} \\
& 110000 \times \cdot 50=55000 \\
& 120000 \times \cdot 20=\frac{24000}{109000} \times \frac{\text { C.D.Flo }}{31791} \\
& =413219
\end{aligned}
$$

5

$$
\begin{aligned}
\text { SCRAPVAUE } & \text { FXPVACNK } \\
20000 \times \cdot 30 & =6000 \\
50000 \times \cdot 50 & =25000 \\
60000 \times .20 & =\frac{12000}{43000 x} \\
= & 26703
\end{aligned}
$$

Ansnot (1)

$$
\begin{aligned}
\text { N.P.V. } & =413219+26703-400000 \\
& =39922 \mathrm{r}
\end{aligned}
$$

Ansno (iii)
STATEMENT SHOWINY EXP EGIDD N.PVV (1) WORST-CASE

(ii) BEST-CASE

| 0 | OUFLOW $(400000) \times 1=(400000)$ |
| :---: | :---: | :---: |
| $1-5$ | INFOW $120060 \times 3.910=484800$ |
| 5 | SCRAP $60000 \times 1621=37260$ | $N \cdot P V=920609$

(iii) (a) REQUIHED PROBABILITY (.30)

$$
(130)^{5}=.00243
$$

(IV)

BASE-CASE

STATEMFNT SHOWINY VARIANCE \& STANDARD DEVAIION

$$
\begin{aligned}
& \frac{\text { NPV PROBABFLAY }}{8580 \times \quad .30}=(2574) \\
& 8580 \times 130=(2574)_{23975} \\
& \begin{array}{l}
47950 \quad 150=120=\frac{18412}{39813}
\end{array} \\
& (8580-39893)^{2} \times \frac{\text { Pron }}{} \times 30=702564734 \\
& (47950-39813)^{2} \times \quad 150=33105384 \\
& (92060-39813)^{2} \times \quad 20=545949801 \\
& \sqrt{3} \sqrt{=1281619919} \\
& \text { S.D }=35800
\end{aligned}
$$

Question 22

$X Y Z$ Ltd. is considering a project for which the following estimates are available:

	?
Initial Cost of the project	$10,00,000$
Sales price/unit	60
Cost/unit	40
Sales volumes	
Year 1	20000 units
Year 2	30000 units
Year 3	30000 units

Discount rate is 10\% p.a.
You are required to measure the sensitivity of the project in relation to each of the following parameters:
(a) Sales Price/unit
(b) Unit cost
(c) Sales volume
(d) Initial outlay and
(e) Project lifetime

Taxation may be ignored.

A ASUREMRNT OF STESUSTITIVY is As foollows

STACrmRNP SHOWINY N.P.V (a) If SEUMNU PRICE DECRPASTED BYSAY 10%

$$
\begin{aligned}
& \left.\frac{309800--83140}{309800} \times 100\right) \\
& =126.83 \% \quad \text { N.RV. Decreales }
\end{aligned}
$$

LNTH COST
STACE MFAN SHOWINU NIPV:
If UNIT COST INCREASFD 13 Y 10%

If SAEFS VOLUME DECREASED
BYSAY 10\% TH WILC BE AS FOCcons.

AnSivo- (d)
IF INITIAL OXPLAY INCRESED BY 101.

(e)

STATEMENT Stowinly N.P.V.

	Hear-1	year I
N.PV.	363600	495600
(ANNN-G)		
$=N P Y=140800$		
	$=859200-1000000$	

DISCOIN TIAD PAYBACK PISHOD

$$
\begin{array}{cc}
\frac{\text { Year }}{1} & \frac{\text { DISCOUNTFD INFIN }}{363600} \\
2 & \left(\frac{363600+495600)=859200}{}\right. \\
\left(\frac{1000000-859200}{450600}\right)=131 \text { year }
\end{array}
$$

$$
\begin{aligned}
&\left(\frac{1000000-859200}{450600}\right)=131 \text { year } \\
& \text { or }(365 \times 31)=113 \text { Days. } \\
&(H)=\left(\frac{3-2.311 \times 100}{3}\right)=22.96
\end{aligned}
$$

- Question 23

From the following details relating to a project, analyse the sensitivity of the project to changes in initial project cost, annual cash inflow and cost of capital:

To which of the three factors, the project is most sensitive? (Use annuity factors: for 10% 3.169 and $11 \% 3.103)$.

STATE MINT SHONINY NP IV.

$$
\frac{\text { YEAR }}{1-3} \frac{\text { CASH INFLOW }}{45000} \times \frac{\text { CD.FQ10 }}{} \times 3.169=142,605
$$

INITACCOST

$$
\text { N.PV }\left(\frac{120000}{22605}\right.
$$

STATEMENT SHOWING MOST SIENSITIVE EAcTOLES
(A) IF INITIAL PROEM COST IS VARIED ADVERSE Y BY 10%

YEAR CASH INFLOW \times C.D.F@ 10% PU.

$$
1-3 \quad 45000 \times \quad 3.169=142605
$$

COST OF PRUDFC 120000

$$
\text { INC-BY } 10 \% \frac{12000}{132000} \quad \frac{(132000)}{10605}
$$

CHANGE IN N'PV. $\left(\frac{22605-10605}{29605} \times 100\right)$

$$
=53 \cdot 0.8
$$

3) If ANNUR CASH IANFIOW is $\frac{\text { VARIED ADVERSELY BY } 10 \%}{\text { REVISED CDR }}$

$$
\begin{aligned}
& \frac{\text { YEAR }}{1-3} \quad \frac{\text { CASH INFLOW }}{40500} \times 3.169=128345 \\
& (45000 \times 9 \%) \\
& \text { INTALCOST } \frac{(120000)}{8345} \\
& \text { CHANGE IN } \quad=\left(\frac{22605-8345}{22605}\right) \times 100 \\
& =63.08 \%
\end{aligned}
$$

(C) IF COST OF CAPFTAL IS TARED ADVERSELY BY 10\%

$\left.\begin{array}{c}\text { CHANCE } \sqrt{2} \text { IN } \\ \text { NAP .V } \\ 22605-19635 \\ 2605\end{array}\right) \times 100$.

$$
13.13 \%
$$

CONCLUSION = PROTEG is mOST SENSTTIVE TO CASH ANNUAL FLOW.

Question 24
Red Ltd. is considering a project with the following Cash flows:

Years	Cost of Plant	Recurring Cost	Savings
0	10,000		
1		4,000	12,000
2		5,000	14,000

The cost of capital is 9%. Measure the sensitivity of the project to changes in the levels of plant value, running cost and savings (considering each factor at a time) such that the NPV becomes zero. The P.V. factor at 9% are as under:

$\frac{\text { Year }}{}$	$\frac{\text { Factor }}{1}$
0	0.917
1	0.842

Which factor is the most sensitive to affect the acceptability of the project?

Y FAA

Question 25
The Easygoing Company Limited is considering a new project with initial investment, for a product "Survival". It is estimated that IRR of the project is 16% having an estimated life of 5 years.
Financial Manager has studied that project with sensitivity analysis and informed that annual fixed cost sensitivity is 7.8416%, whereas cost of capital (discount rate) sensitivity is 60%.

Other information available are:
Profit Volume Ratio (PN) is 70\%,
Variable cost ₹ 60/- per unit
Annual Cash Flow ₹ 57,500/-
Ignore Depreciation on initial investment and impact of taxation.
Calculate
(i) Initial Investment of the Project
(ii) Net Present Value of the Project
(iii) Annual Fixed Cost
(iv) Estimated annual unit of sales
(v) Break Even Units

Cumulative Discounting Factor for 5 years

8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%
3.993	3.890	3.791	3.696	3.605	3.517	3.433	3.352	3.274	3.199	3.127

Ansina(i)

(ii) N.P.V. \rightarrow NET-PRESENV-NANE

$$
N \cdot P . V . \rightarrow
$$

LET-COST-OF-CAPFTAR $=X$

$$
\frac{16-x}{x}=160
$$

$$
\begin{aligned}
& .60 x=16-x \\
& 1.60 x=16 \\
& x=10 \\
& \text { P.V.FAGOR } \Rightarrow 10 \%
\end{aligned}
$$

STATE MFAN SHOWINY NeP.V.

$$
\begin{aligned}
\frac{\text { YFAR }}{1-5} \frac{\text { FNFLOW }}{57500 \times \frac{C \cdot D \cdot F(910 \%}{3 \cdot 791}}= & =\frac{P V}{217982.50} \\
\text { ONFLOW (ANSNOI) } & =(188255) \\
& =29727.50)
\end{aligned}
$$

Ansno(iii)

LET- CHANGF IN - FIXFAD COST WHICH MAFES N.P.V. ZFRO IS'X'

$$
\begin{aligned}
29727.50 & -3.791 x=0 \\
29727.50 & =3.791 x \\
x & =7841.60
\end{aligned}
$$

LET- ORIGINAL FXXFD COST BE'Y'

$$
\begin{gathered}
y \times 7.8416 \%=7841.60 \\
y=100000
\end{gathered}
$$

$$
\begin{aligned}
\text { UNIES } & =\frac{\text { SACES }}{S \cdot P} \\
\underline{1125} & \left.=\frac{(225000}{200}\right)
\end{aligned}
$$

(v) $B \cdot E \cdot P=200$

Question 26
Unnat Ltd. is considering investing ₹ $50,00,000$ in a new machine. The expected life of machine is five years and has no scrap value. It is expected that $2,00,000$ units will be produced and sold each year at a selling price of ₹ 30.00 per unit. It is expected that the variable costs to be ₹ 16.50 per unit and fixed costs to be ₹ $10,00,000$ per year. The cost of capital of Unnat Ltd. is 12% and acceptable level of risk is 20%.
You are required to measure the sensitivity of the project's net present value to a change in the following project variables:
(a) sale price;
(b) sales volume;
(c) variable cost;
(d) On further investigation it is found that there is a significant chance that the expected sales volume of $2,00,000$ units per year will not be achieved. The sales manager of Uniat Ltd. suggests that sales volumes could depend on expected economic states which could be assigned the following probabilities:

State of Economy	Annual Sales (in Units)	Prob.
Poor	1,75000	0.30
Normal	$2,00,000$	0.60
Good	$2,25,000$	0.10

Calculate expected net present value of the project and give your decision whether company should accept the project or not.

STACEMENT SHOWING SENSITIVIY AnAlysis

STATEMENT SADWINY EXPYEHIED N.P.V

Question 27

XY Ltd. has under its consideration a project with an initial investment of ₹ $1,00,000$. Three probable casin inflow scenarios with their probabilities of occurrence have been estimated as below:

Annual cash inflow (き)	20,000	30,000	40,000
Probability	0.1	0.7	0.2

The project life is 5 years and tine desired rate of return is 20%. The estimated terminal values for the project assets under the three probability alternatives, respectively, are ₹ $0,20,000$ and 30,000 .

You are required to:
(i) Find the probable NPV;
(ii) Find the worst-case NPV and the best-case NPV; and
(iii) State the probability occurrence of the worst case, if the cash flows are perfectly positively correlated over time.
GIVEN OUTFLOW $=100000$

EXP- INFLOW

$$
\begin{aligned}
& \text { ANNUAR PROBABILEYY }=\frac{\text { EXP- }}{}=\frac{\text { INFlow }}{2 \%} \\
& \text { INFLOW }
\end{aligned}
$$

$20000 x \cdot 10=2000$
$30000 \cdot 70=21000$
$40000 \times 20=\frac{8000}{31000}$
EXIEGIID SIRAP

$$
\begin{aligned}
& \text { PROBABICy }=\frac{6 \times P \text {-value }}{0} \\
& 0 x \cdot 10=0 \\
& 20000 \times \cdot 70=14000 \\
& 30000 \times 20=\frac{6080}{20000}
\end{aligned}
$$

STATEMENT SHOWINY EXPEGID N.P.V

STATEMENT SHOWINY N.P.V

BEST-COVRSE

AnsNO(iii)

The Textile Manufacturing Company Ltd., is considering one of two mutually exclusive proposals, Projects M and N, which require cash outlays of $₹ 8,50,000$ and $₹ 8,25,000$ respectively. The certainty-equivalent (C.E) approach is used in incorporating risk in capital budgeting decisions. The current yield on government bonds is 6% and this is used as the risk free rate. The expected net cash flows and their certainty equivalents are as follows:

Project M			Project N	
Year-end	Cash Flow ₹	C.E.	Cash Flow ₹	C.E.
1	$4,50,000$	0.8	$4,50,000$	0.9
2	$5,00,000$	0.7	$4,50,000$	0.8
3	$5,00,000$	0.5	$5,00,000$	0.7

Present value factors of ₹ 1 discounted at 6% at the end of year 1, 2 and 3 are 0.943, 0.890 and 0.840 respectively.
Required:
(i) Which project should be accepted?
(ii) If risk adjusted discount rate method is used, which project would be appraised with a higher rate and why?
STATEMENT SHOWING THE N.PV OE ' M '

CATRMPN showing N.P.V (N)

(ii) Certainty - Equivalent (C.E.) Co-efficient of Project $M(2.0)$ is lower than Project $N(2.4)$. This means Project M is riskier than Project N as "higher the riskiness of a cash flow, the lower will be the CE factor". If risk adjusted discount rate (RADR) method is used, Project M would be analysed with a higher rate.
RADR is based on the premise that riskiness of a proposal may be taken care of, by adjusting the discount rate. The cash flows from a more risky proposal should be discounted at a relatively higher discount rate as compared to other proposals whose cash flows are less risky. Any investor is basically risk averse. However, he may be ready to take risk provided he is rewarded for undertaking risk by higher returns. So, more risky the investment is, the greater would be the expected return. The expected return is expressed in terms of discount rate which is also the minimum required rate of return generated by a proposal if it is to be accepted. Therefore, there is a positive correlation between risk of a proposal and the discount rate.

Question ONO -29
Determine the risk adjusted net present value of the following projects:

					X	Y	Z
Net cash outlays (₹)	$2,10,000$	$1,20,000$	$1,00,000$				
Project life	5 years	5 years	5 years				
Annual Cash inflow (₹)	70,000	42,000	30,000				
Coefficient of variation	1.2	0.8	0.4				

The Company selects the risk-adjusted rate of discount on the basis of the coefficient of variation:

Coefficient of Variation	Risk-Adjusted Rate of Return	P.V. Factor 1 to 5 years At risk adjusted rate of discount
0.0	10%	3.791
0.4	12%	3.605
0.8	14%	3.433
1.2	16%	3.274
1.6	18%	3.127
2.0	22%	2.864
More than 2.0	25%	2.689

STATİMENT SHOWINY Relic Acijustiod

Question 30

New Projects Ltd. is evaluating 3 projects, P-I, P-II, P-III. Following information is available in respect of these projects:

	P-I	P-II	P-III
Cost	$₹ 15,00,000$	$₹ 11,00,000$	$₹ 19,00,000$
Inflows-Year 1	$6,00,000$	$6,00,000$	$4,00,000$
Year 2	$6,00,000$	$4,00,000$	$6,00,000$
Year 3	$6,00,000$	$5,00,000$	$8,00,000$
Year 4	$6,00,000$	$2,00,000$	$12,00,000$
Risk Index	1.80	1.00	0.60

Minimum required rate of returr, of the firm is 15% and applicable tax rate is 40%. The risk free interest rate is 10%.

Required:
(i) Find out the risk-adjusted discount rate (RADR) for these projects.
(ii) Which project is the best?

STATEMTENT SHOWINCH NiPD. V.

Question 31
A firm has projected the following cash flows from a project under evaluation:

Year	₹ lakhs
0	(70)
1	30
2	40
3	30

(70)

30
40

The above cash flows have been made at expected prices after recognizing inflation. The firm's cost of capital is 10%. The expected annual rate of inflation is 5%.
Show how the viability of the project is to be evaluated.

STATH Miry stovoincy Nifv. z-lacs

DECUION - YEAR - N.PV. POSITIVE

Question 32
Shashi Co. Ltd has projected the following cash flows from a project under evaluation:

Year	0	1	2	3
$₹$ (in lakhs)	(72)	30	40	30

The above cash flows have been made at expected prices after recognizing inflation. The firm's cost of capital is 10%. The expected annual rate of inflation is 5%. Show how the viability of the project is to be evaluated. PVF at 10% for $1-3$ years are $0.909,0.826$ and 0.751. \qquad

YEAS CASH-FLOW \times INPCPIION $\times D \cdot F$

$$
05 \% \quad-\frac{D F}{10 \%}=R v
$$

$0(72) \times 1=(72)$
$130 \times .952 \times .909=25.97$
$240 \times 1907 \times .826=29.97$
$330 \times .864 \times .751=\frac{19.47}{3.41}$

$$
\text { N.PV } 3.41
$$

DECISION- YEAS
N.P.V. is POSITNE

Question 33
KLM Ltd. requires ₹ $15,00,000$ for a new project.
Useful life of project is 3 years.
Salvage value - NIL.
Depreciation is $₹ 5,00,000$ p.a.
Given below are projected revenues and costs (excluding depreciation) ignoring inflation:

Year \rightarrow	$\mathbf{1}$	$\mathbf{2}$	3
Revenues in $₹$	$10,00,000$	$13,00,000$	$14,00,000$
Costs in $₹$	$5,00,000$	$6,00,000$	$6,50,000$

Applicable tax rate is 35\%. Assume cost of capital to be 14\% (after tax). The inflation rates for revenues and costs are as under:

Year	Revenues $\%$	Costs $\%$
1	9	10
2	8	9
3	6	7

PVF at 14\%, for 3 years $=0.877,0.769$ and 0.675
Show amount to the nearest rupee in calculations.
You are required to calculate net present value of the project.

STATEMENT SHOWING INFLATION
ADJUSTED REVENUES

$\frac{\text { YEAR }}{1} \frac{\text { COST }}{500000 \times} \times \frac{\text { ENC ATON }}{110 \%}=\frac{\text { Aqusted }}{550000}$.
$2600000 \times 110 \% \times 109 \%=719400$

$$
100 \% \times 109 \times \times 107 \%
$$

A firm has an investment proposal, requiring an outlay of ₹ 80,000 . The investment proposal is expected to have two years' economic life with no salvage value. In year 1, there is a 0.4 probability that cash inflow after tax will be ₹ 50,000 and 0.6 probability that cash inflow after tax will be ₹ 60,000 . The probability assigned to cash inflow after tax for the year 2 is as follows :

The firm uses a 10% discount rate for this type of investment. Required:
(i) Construct a decision tree for the proposed investment project and calculate the expected net present value (NPV).
(ii) What net present value will the project yield, if worst outcome is realized? What is the probability of occurrence of this NPV?
(iii) What will be the best outcome and the probability of that occurrence?
(iv) Will the project be accepted?
(Note: 10\% discount factor 1 year 0.909; 2 years 0.826)

STATFmPar sHowing N.P.v@ 10%

(ii) If the worst outcome is realized the project will yield NPV of $-₹ 14,726$. The probability of occurrence of this NPV is 8% and a loss of ₹ 1,178 (path 1).
(iii) The best outcome will be path 5 when the NPV is at $₹ 15,840$. The probability of occurrence of this NPV is 30% and a expected profit of ₹ $4,752$.
five The project should be accepted berg se

Question 35

Jumble Consultancy Group has determined relative utilities of cash flows of two forthcoming projects of its client company as follows:

Cash Flow in ₹	-15000	-10000	-4000	0	15000	10000	5000	1000
Utilities	-100	-60	-3	0	40	30	20	10

The distribution of cash flows of project A and Project B are as follows:

Project A

Cash Flow (₹)	-15000	-10000	15000	10000	5000
Probability	0.10	0.20	0.40	0.20	0.10

Project B

Cash Flow (₹)	-10000	-4000	15000	5000	10000
Probability	0.10	0.15	0.40	0.25	0.10

Which project should be selected and why?

Answer

Evaluation of project utilizes of Project A and Project B

	Project A		
Cash flow	Probability	Utility	Utility value
(in ₹)			
$-15,000$	0.10	-100	-10
$-10,000$	0.20	-60	-12
15,000	0.40	40	16
10,000	0.20	30	6
5,000	0.10	20	$\underline{2}$
			$\underline{2}$

Cash flow			
(in ₹)	Project B		
$-10,000$	0.10	Utility	Utility value
$-4,000$	0.15	-60	-6
15,000	0.40	-3	-0.45
5,000	0.25	40	16
10,000	0.10	20	5
		30	$\underline{3}$

Project B should be selected as its expected utility is more

Question 36

You own an unused Gold mine that will cost $₹ 10,00,000$ to reopen. If you open the mine, you expect to be able to extract 1,000 ounces of Gold a year for each of three years. After that the deposit will be exhausted. The Gold price is currently ₹ 5,000 an ounce, and each year the price is equally likely to rise or fall by ₹ 500 from its level at the start of year. The extraction cost is $₹ 4,600$ an ounce and the discount rate is 10 per cent.
Required:
(a) Should you open the mine now or delay one year in the hope of a rise in the Gold price?
(b) What difference would it make to your decision if you could costlessly (but irreversibly) shut down the mine at any stage? Show the value of abandonment option.

Answer

(a) (i) Assume we open the mine now at $t=0$. Taking into account the distribution of possible future price of gold over the next three years, we have
$N P V=-$ Rs. $10,00,000+\frac{1,000 \times[(0.5 \times 5,500+0.5 \times 4,500)-4,600]}{1.10}$
$+\frac{1,000 \times\left[(0.5)^{2}(6,000+5,000+5,000+4,000)-4,600\right]}{(1.10)^{2}}$
$+\frac{1,000 \times\left[(0.5)^{3}(6,500+5,500+5,500+4,500+4,500+5,500+4,500+3,500)-4,600\right]}{(1.10)^{3}}$
= - ₹ 5,260
Because the NPV is negative, we should not open the mine at $t=0$. It does not make sense to open the mine at any price less than or equal to ₹ 5,000 per ounce.
(ii) Assume that we delay one year until $\mathrm{t}=1$, and open the mine if the price is ₹ 5,500 .

$$
\begin{aligned}
& \text { At that point: } \\
& \text { NPV }=(-) ₹ 10,00,000+\frac{₹ 1000[(0.5 \times ₹ 6000+0.5 \times ₹ 5000)-₹ 4600]}{1.10}+ \\
& \frac{1000\left[\left((0.5)^{2} \times(₹ 6500+₹ 5500+₹ 5500+₹ 4500)\right)-₹ 4600\right]}{(1.10)^{2}}+
\end{aligned}
$$

$$
\frac{\left.1000\left[\left((0.5)^{3} \text { (₹ } 7000+₹ 6000+₹ 6000+₹ 5000+₹ 5000+₹ 6000+₹ 5000+₹ 4000\right)\right)-₹ 4600\right]}{(1.10)^{3}}
$$

$$
=₹ 12,38,167
$$

If the price at t_{1} reaches $₹ 5,500$, then expected price for all future periods is ₹ 5,500 .

$$
\text { NPV at } t_{0}=₹ 12,38,167 / 1.10=₹ 11,25,606
$$

If the price rises to $₹ 5,500$ at $t=1$, we should open the mine at that time.
The expected NPV of this strategy is:

$$
(0.50 \times ₹ 11,25,606)+(0.50 \times 0)=₹ 5,62 ., 803
$$

As already stated mine should not be opened if the price is less than or equal to ₹ 5,000 per ounce.

The NPV of strategy (2), that to open the mine at $t=1$, when price rises to ₹ 5,500 per ounce, even without abandonment option, is higher than option 1 . Therefore, the strategy (2) is preferable.

Under strategy 2, the mine should be closed if the price reaches ₹ 4,500 at $t=3$, because the expected profit is ($₹ 4,500-4,600$) $\times 1,000=-₹ 1,00,000$.

The value of the abandonment option is:

$$
0.125 \times(1,00,000) /(1,10)^{4}=₹ 8,538
$$

Note: Students may also assume that the price of the gold remains at ₹ 5,000 to solve the question.

Question 37

$A \& C o$. is contemplating whether to replace an existing machine or to spend money on overhauling it. A \& Co. currently pays no taxes. The replacement machine costs ₹ 90,000 now and requires maintenance of $₹ 10,000$ at the end of every year for eight years. At the end of eight years it would have a salvage value of ₹ 20,000 and would be sold. The existing machine requires increasing amounts of maintenance each year and its salvage value falls each year as follows:

Year	Maintenance (Y)	Salvage (7)
Present	0	40,000
1	10,000	25,000
2	20,000	15,000
3	30,000	10,000
4	40,000	0

The opportunity cost of capital for A \& Co. is 15%.
Required:
When should the company replace the machine?
(Notes: Present value of an annuity of Re. 1 per period for 8 years at interest rate of 15% : 4.4873; present value of Re .1 to be received after 8 years at interest rate of $15 \%: 0.3269$).

A 8 COMPANY
STATV MENT SHOWINY EQUIVLINTT COST OF ($F A C$) OF NEW MACHINE

EquIVALENT AnNuA cose $\quad \div 4.4$

Question 38

A company has an old machine having book value zero - which can be sold for $₹ 50,000$. The company is thinking to choose one from following two alternatives:
(i) To incur additional cost of $₹ 10,00,000$ to upgrade the old existing machine.
(ii) To replace old machine with a new machine costing ₹ $20,00,000$ plus installation cost ₹ 50,000 .

Both above proposals envisage useful life to be five years with salvage value to be nil.
The expected after tax profits for the above three alternatives are as under :

Year	Old existing Machine ($)$	Upgraded Machine (()	New Machine (() $)$
1	$5,00,000$	$5,50,000$	$6,00,000$
2	$5,40,000$	$5,90,000$	$6,40,000$
3	$5,80,000$	$6,10,000$	$6,90,000$
4	$6,20,000$	$6,50,000$	$7,40,000$
5	$6,60,000$	$7,00,000$	$8,00,000$

The tax rate is 40 per cent.
The company follows straight line method of depreciation. Assume cost of capital to be 15 per cent.
P.V.F. of $15 \%, 5=0.870,0.756,0.658,0.572$ and 0.497 . You are required to advise the company as to which alternative is to be adopted.
(6)

STATE MFNT SHOWNY NUPIV.
(A) INHCASE- MACHINE IS UPGRADIID

YFAR UPAKADANONCOS \times D.RQ15
0

2) STATEmpart shown NiPV
IN-CASH-MACHINE - INSTALCED
$\frac{\text { YEAR }}{0}$ Cose $2000000 \times$ DFCO 15% PV.
0 COST 2000000$) \times 1=(2000000)$
0 INSTALLAIION COO (50000 KV $=(50000)$

- DISpOSAR OF DLD

Pv. Inficu

Question 39
(a) Company X is forced to choose between two machines A and B. The two machines are designed differently, but have identical capacity and do exactly the same job. Machine A costs $₹ 1,50,000$ and will last for 3 years. It costs $₹ 40,000$ per year to run. Machine B is an 'economy' model costing only ₹ $1,00,000$, but will last only for 2 years, and costs ₹ 60,000 per year to run. These are real cash flows. The costs are forecasted in rupees of constant purchasing power. Ignore tax. Opportunity cost of capital is 10 per cent. Which machine company X should buy?
(b) Company Y is operating an elderly machine that is expected to produce a net cash inflow of ₹ 40,000 in the coming year and $₹ 40,000$ next year. Current salvage value is $₹ 80,000$ and next year's value is $₹ 70,000$. The machine can be replaced now with a new machine, which costs $₹ 1,50,000$, but is much more efficient and will provide a cash inflow of $₹ 80,000$ a year for 3 years. Company Y wants to know whether it should replace the equipment now or wait a year with the clear understanding that the new machine is the best of the available alternatives and that it in turn be replaced at the

STATEMISNY SHOWING NIPV

STATEMFNT SHOWINY N.P.Y

DECIION- APTPR-ONNYEar.

Question 40

A machine used on a production line must be replaced at least every four years. Costs incurred to run the machine according to its age are:

Age of the Machine (years)					
	0	1			
Purchase price (in ₹)	60,000				
Maintenance (in ₹)		16,000	18,000	20,000	20,000
Repair (in ₹)		0	4,000	8,000	16,000
Scrap Value (in ₹)		32,000	24,000	16,000	8,000

Future replacement will be with identical machine with same cost. Revenue is unaffected by the age of the machine. Ignoring inflation and tax, determine the optimum replacement cycle. PV factors of the cost of capital of 15% for the respective four years are $0.8696,0.7561$, 0.6575 and 0.5718 .

SAATEmpnt stowiny Npv
ONR \Rightarrow YIAR - HRPLACRMENT GCer

Question 41

Trouble Free Solutions (TFS) is an authorized service center of a reputed domestic air conditioner manufacturing company. All complaints/service related matters of Air conditioner are attended by this service center. The service center employs a large number of mechanics, each of whom is provided with a motor bike to attend the complaints. Each mechanic travels approximately 40000 kms per annuam. TFS decides to continue its present policy of always buying a new bike for its mechanics but wonders whether the present policy of replacing the bike every three year is optimal or not. It is of believe that as new models are entering into market on yearly basis, it wishes to consider whether a replacement of either one year or two years would be better option than present three year period. The fleet of bike is due for replacement shortly in near future.
The purchase price of latest model bike is ₹ 55,000 . Resale value of used bike at current prices in market is as follows:

Period

1 Year old
35,000
2 Year old 21,000

3 Year old 9,000

Running and Maintenance expenses (excluding depreciation) are as follows:

Year	Road Taxes Insurance etc. (₹)	Petrol Repair Maintenance etc. (₹)
1	3,000	30,000
2	3,000	35,000
3	3,000	43,000

Using opportunity cost of capital as 10% you are required to determine optimal replacement period of bike.

Answer

In this question the effect of increasing running cost and decreasing resale value have to be weighted upto against the purchase cost of bike. For this purpose we shall compute Equivalent Annual Cost (EAC) of replacement in different years shall be computed and compared.

Year	Road Taxes $(₹)$	Petrol etc. $(₹)$	Total $(₹)$	PVF @10\%	PV $(₹)$	Cumulative PV (₹)	PV of Resale Price (₹)	Net Outflow $(₹)$
1	3,000	30,000	33,000	0.909	29,997	29,997	31,815	$(1,818)$
2	3,000	35,000	38,000	0.826	31,388	61,385	17,346	44,039
3	3,000	43,000	46,000	0.751	34,546	95,931	6,759	89,172

Computation of EACs

Year*	Purchase Price of Bike $(₹)$	Net Outflow $(₹)$	Total Outflow $(₹)$	PVAF $@ 10 \%$	EAC* $(₹)$
1	55,000	$(1,818)$	53,182	0.909	58,506
2	55,000	44,039	99,039	1.735	57,083
3	55,000	89,172	$1,44,172$	2.486	57,993

Thus, from above table it is clear that EAC is least in case of 2 years, hence bike should be replaced every two years.

Question 42
DEF Ltd has been regularly paying a dividend of $₹ 19,20,000$ per annum for several years and it is expected that same dividend would continue at this level in near future. There are $12,00,000$ equity shares of $₹ 10$ each and the share is traded at par.
The company has an opportunity to invest $₹ 8,00,000$ in one year's time as well as further $₹ 8,00,000$ in two year's time in a project as it is estimated that the project will generate cash inflow of ₹ $3,60,000$ per annum in three year's time which will continue for ever. This investment is possible if dividend is reduced for next two years.

Whether the company should accept the project? Also analyze the effect on the market price of the share, if the company decides to accept the project.

STACEMFNT SNOWINY N.PV

Question 43

Ramesh owns a plot of land on which he intends to construct apartment units for sale. No. of apartment units to be constructed may be either 10 or 15. Total construction costs for these alternatives are estimated to be ₹ 600 lakhs or ₹ 1025 lakhs respectively. Current market price for each apartment unit is $₹ 80$ lakhs. The market price after a year for apartment units will depend upon the conditions of market. If the market is buoyant, each apartment unit will be sold for ₹ 91 lakhs, if it is sluggish, the sale price for the same will be $₹ 75$ lakhs. Determine the value of vacant plot of land. Assuming that the construction cost will remain same in year 1 should Ramesh start construction now or keep the land vacant? The yearly rental per apartment unit is $₹ 7$ lakhs and the risk free interest rate is 10% p.a.

Assume that the construction cost will remain unchanged.

Answer

Presently 10 units apartments shall yield a profit of ₹ 200 lakh ($₹ 800$ lakhs - ₹ 600 lakhs) and 15 unit apartment will yield a profit of ₹ 175 lakh (₹ 1200 lakhs - ₹ 1025 lakhs). Thus 10 units apartment is the best alternative if Ramesh has to construct now.

However, Ramesh waits for 1 year his pay-off will be as follows:

	Market Condilions	
	Buoyant Market	Sluggish Market
10 units apartments	₹ 91 lakhs X 10 - ₹ 600 lakhs = ₹ 310 lakhs	₹ 75 lakhs X 10 - ₹ 600 lakhs = ₹ 150 lakhs
15 units apartments	₹ 91 lakhs X 15 - ₹ 1025 lakhs = ₹ 340 lakhs	₹ 75 lakhs X 15 - ₹ 1025 lakhs $=₹ 100$ lakhs

Thus if market conditions turnout to be buoyant the best alternative is 15 units apartments and net pay-off will be ₹ 340 lakhs and if market turnout to be sluggish the best alternative is the 10 units apartments and net pay-off shall be ₹ 150 lakhs.

To determine the value of vacant plot we shall use Binomial Model (Risk Neutral Method) of option valuation as follows:

$$
\text { ₹ } 91 \text { lakhs }+ \text { ₹ } 7 \text { lakhs = ₹ } 98 \text { lakhs }
$$

Alternatively student can calculate these values as follows (Sale Value + Rent):
If market is buoyant then possible outcome $=₹ 91$ lakh $+₹ 7$ lakh $=₹ 98$ lakhs
If market is sluggish then possible outcome = ₹ 75 lakh + ₹ 7 lakh $=$ ₹ 82 lakhs
Let p be the probability of buoyant condition then with the given risk-free rate of interest of 10% the following condition should be satisfied:

$$
\begin{aligned}
& ₹ 80 \text { lakhs }=\frac{[(p \times ₹ 98 \text { lakhs })+(1-p) \times ₹ 82 \text { lakhs }]}{1.10} \\
& p=\frac{3}{8} \text { i.e. } 0.375
\end{aligned}
$$

Thus $1-\mathrm{p}=0.625$
Expected cash flow next year
$0.375 \times ₹ 340$ lakhs $+0.625 \times ₹ 150$ lakhs $=₹ 221.25$ lakhs
Present Value of expected cash flow:
₹ 221.25 lakhs (0.909) = ₹ 201.12 lakhs
Thus, the value of vacant plot is ₹ 201.12 lakhs
Since the current value of vacant land is more than profit from 10 units apartments now $₹ 200$ lakh) the land should be kept vacant.

Question 44

Ram Chemical is in production Line of Chemicals and considering a proposal of building new plant to produce pesticides. The Present Value (PV) of new proposal is ₹ 150 crores (After considering scrap value at the end of life of project). Since this is a new product market, survey indicates following variation in Present Value (PV):

Condition Favourable in first year	PV will increase 30% from original estimate
Condition sluggish in first year	PV will decrease by 40% from original Figures.

In addition Rama Chemical has a option to abandon the project at the end of Year and dispose it at ₹ 100 crores. If risk free rate of interest is 8%, what will be present value of put option?

Answer

Decision Tree showing pay off
Year 0 Year $1 \quad$ Pay off

First of all we shall calculate probability of high demand (P) using risk neutral method as follows:
$8 \%=p \times 30 \%+(1-p) \times(-40 \%)$
$0.08=0.30 p-0.40+0.40 p$
$p=\frac{0.48}{0.70}=0.6857$ say 0.686

The value of abandonment option will be as follows:
Expected Payoff at Year 1

$$
\begin{aligned}
& =p \times 0+[(1-p) \times 10] \\
& =0.686 \times 0+[0.314 \times 10]=₹ 3.14 \text { crore }
\end{aligned}
$$

Since expected pay off at year 1 is 3.14 crore, present value of expected pay off will be:

$$
\frac{3.14}{1.08}=2.907 \text { crore. }
$$

This is the value of abandonment option (Put Option).

Question 45

The municipal corporation of a city with mass population is planning to construct a flyover that will replace the intersection of two busy highways X and Y. Average traffic per day is 10,000 vehicles on highway X and 8,000 vehicles on highway $Y .70 \%$ of the vehicles are private and rest are commercial vehicles. The flow of traffic across and between aforesaid highways is controlled by traffic lights. Due to heavy flow, 50% of traffic on each of the highways is delayed. Average loss of time due to delay is 1.3 minute in highway X and 1.2 minute in highway Y. The cost of time delayed is estimated to be ₹ 80 per hour for commercial vehicle and ₹ 30 for private vehicle.
The cost of stop and start is estimated to be $₹ 1.20$ for commercial vehicle and $₹ 0.80$ for private vehicle. The cost of operating the traffic lights is ₹ 80,000 a year. One policeman is required to be posted for 3 hours a day at the crossing which costs ₹ 150 per hour.
Due to failure to obey traffic signals, eight fatal accidents and sixty non-fatal accidents occurred in last 4 years. On an average, insurance settlements per fatal and non-fatal accidents are $₹ 5,00,000$ and $₹ 15,000$ respectively.
To eliminate the delay of traffic and the accidents caused due to traffic light violations, the flyover has been designed. It will add a quarter of kilometer to the distance of 20% of total traffic. No posting of policeman will be required at the flyover. The flyover will require investment of ₹ 3 Cr. Extra maintenance cost would be ₹ 70,000 a year.
The incremental operating cost for commercial vehicle will be ₹ 5 per km and ₹ 2 for noncommercial vehicle. Expected economic life of the flyover is 30 years having no salvage value. The cost of capital for the project is 8%. (corresponding capital recovery rate is 0.0888).
You are required to calculate:
(i) total net benefits to users,
(ii) annual cost to the state; and
(iii) benefit cost ratio

Answer

Benefit to the Users (when 365 days taken in a year)

(i)	Annual Savings in Cost of Delays:	
	Highway $X\left(10000 \times 365 \times 0.50 \times \frac{1.3}{60}\right)(0.70 \times 30+0.30 \times 80)$	₹ $17,79,375$
	Highway Y $\left(8000 \times 365 \times 0.50 \times \frac{1.2}{60}\right)(0.70 \times 30+0.30 \times 80)$	₹ $13,14,000$
	(a)	₹ $30,93,375$
(ii)	Annual Savings in Cost of Stops and Starts	
	Highway $X(10000 \times 365 \times 0.50)(0.70 \times 0.80+0.30 \times 1.20)$	₹ $16,79,000$
	Highway $Y(8000 \times 365 \times 0.50)(0.70 \times 0.80+0.30 \times 1.20)$	₹ $13,43,200$
	(b)	₹ $30,22,200$
(iii)	Annual Saving in Accidents Claims (c)	
	$\begin{equation*} \frac{8}{4} \times 500000+\frac{60}{4} \times 15000 \tag{c} \end{equation*}$	₹ $12,25,000$
	Total Benefits (d) $=(\mathrm{a})+(\mathrm{b})+(\mathrm{c})$	₹ $73,40,575$
	Less.' Incremental Expenditures due to added distance	
	Highway $\mathrm{X}(10000 \times 365 \times 0.20 \times 0.25)(0.70 \times 2+0.30 \times 5)$	₹ $5,29,250$
	Highway Y $(8000 \times 365 \times 0.20 \times 0.25)(0.70 \times 2+0.30 \times 5)$	₹ $4,23,400$
	(e)	₹ $9,52,650$
	Total Net Benefits (d) - (e)	₹ 63,87 ;925

Annual Cost to State

Investment Cost (₹ $3,00,00,000 \times 0.0888$)	₹ $26,64,000$ Extra Annual Maintenance Less: Saving in Cost of operating traffic lights (₹ $80,000+3 \times 365 \times ₹ 150$)

$$
\begin{aligned}
& \text { Cost Benefit Ratio }=\frac{\text { PV of Benefits }}{\text { PV of Costs }}=\frac{₹ 63,87,925 \text { PVAF }\left(\frac{1}{0.0888}\right)}{₹ 24,89,750 \text { PVAF }\left(\frac{1}{0.0888}\right)} \\
&=\frac{₹ 7,19,36,092}{₹ 2,80,37,725}=2.57
\end{aligned}
$$

OUR BEST FACULTIES FOR CA FINAL/INTER Video Lectures \& Books Available

Prof Dani Khandelwal (Costing)

Prof Chander Dureja (SFM)

Prof Khushboo Sanghavi (Audit)

Prof Harsh Kachalia (Law)

Prof Siddharth Surana (DT)

Prof Vidhyadhar Vaidya

Prof Bhavana Gargg (ITSM)

Prof Farooq Haque (IDT)

Prof Manish Ramuka (SFM)

Prof Kanwarpreet Jassal
(SFM)

Prof Vaishali Chaudhary (Audit)

Prof Mayank Khothari (SFM)

Prof Ankit Sarvaiya (SFM)

Prof Ravi Taori (Audit)

Prof Jignesh Cheddha (ISCA)

Prof Manoj Gupta (FR)

Prof Deepak Jaggi (Accounts)

Prof Brindavan Giri (IDT)

Prof Sannidhya Saraf (AUDIT)

Prof Guru Gupta (EISM)

Prof Mahesh Gour (IDT)

Prof Rahul Malkan (SFM)

Israr Shaikh (AS - IND AS)

Prof Aseem Trivedi (Audit)

Full Course, Crash Course, LMR (Last Minute Revision) Video Lectures \& Books Available.

For More Details:-
Coppergate Educare
https://coppergateeducare.in/ Contact:9920443322

