CHAPTER 2 - MATERIAL COST

ECONOMIC ORDER QUANTITY (EOQ)

- How Much to order in single order so that Carrying \& Ordering cost are minimized Assuming Total Annual Purchase Cost remain Same.

1. Ordering cost (Cost of placing an order),
2. Carrying cost (cost of keeping material safe and usable till use in production) and
3. Purchase cost (Quantity purchased x price per unit)

Carrying Cost (\%) = Insurance cost (\%)+interest cost(\%)+storage space cost(\%)+obsolescence cost rate(\%)

Carrying cost per unit per annum normally remain same. Carrying cost shall change if it is given as a \% of material price and material price keeps on Changing

$$
\text { Formula } Q=\sqrt{\frac{2 \times A \times O}{C}} \text { Derivation Covered in class }
$$

Annual Ordering cost $=$ Total number of orders in a year X Ordering cost per order
$=\frac{\text { Annual requirement of raw material (} \mathrm{A})}{\text { Quanity ordered each time }(\mathrm{Q})} \mathrm{XO}$ Ordering cost per order (O) $=\frac{\mathrm{AXO}}{\mathrm{Q}}$
nual carrying cost $=$ Average Inventory X Average
carrying cost per unit
$=\frac{\text { Quantity ordered each time }(Q)}{2} \times$ Avg. carrying cost per unit $(C)=\frac{Q \times C}{2}$

Frequency of order

FOO is the time gap between placing two consecutive orders e.g
FOO = Total number of days in a year
Total number of orders

Lead TIme:

- it is time gap between date of placing the order with supplier and date of receipt of ordered material e.g. if order is placed on 4th Nov. 2016 and material is received on 8th Nov. 2016 then the lead time is 4 days.

- When to Order
- It is that level of stock of raw material at which a fresh order for raw material should be placed otherwise the firm may face stock-out situation. This level lies between maximum and minimum level.

A Car tank petrol normal full capacity is 25 litre. Reserve level is 5 litre.

Formula 1 :- Maximum Usage X Max lead time
Formula 2 :- Minimum Stock + Avg. Usage X Avg. Lead Time Formula 3 :- Safety Stock + Avg. Usage X Avg. Lead Time

Minimum Leve:

- It is that level of stock below which stock in hand of raw material should not be allowed to fall.

Formula

F1 - Re-order Level - Avg. Usage X Avg. Lead Time OR
F2 - Max. Lead Time X Max. Usage - Avg. Lead Time X Avg. Usage OR
F3 - Safety Stock

Maximum leve:

- It is that level of stock above which stock in hand of raw material should not be allowed to exceed. Like $\mathbf{2 5}$ litre in car petrol.

F1 - Re-order Level + Re-order quantity - Minimum Usage X Minimum Lead Time.

Average Stock Leve

Formula 1

Avg. stock held by an organization
$=\frac{\text { Max.Stock Level+Minimum Stock Level }}{2}$
Formula 2 :-
$=$ Min. Stock Level $+\frac{\text { Re-order Quanity }}{2}$

Danger Level:-

- It is the level at which raw material kept for - It is the level at which raw material kept for (Normal issues of raw material is not possible).

When all petrol in car is used. Now car is running on reserve. This is danger level.

Danger Level = Avg. Usage X Max. Lead Time for emergency purchase

Material Turnover Ratio / Inventory Turnover Ratio for raw material MTR :- It is a ratio between raw material consumed during a year and average stock of raw material maintained during the year.
MTR Formula $=\frac{\text { Raw material consumed during a year }}{}$
Avg.stock of raw material
Avg. stock of raw material $=\frac{\text { Opening Stock }+ \text { Closing stock }}{2}$
Raw Material holding period or Inventory
Turnover period:- it is a ratio between No. of days/months in a year and MTR.

365 Days or 12 months Material Turnover Ratio

It tell number of days material is kept (holded) in godown before further use.

- Low MTR means High RM holding period which means high carrying cost hence unfavourable. (RM called slow moving)
- High MTR means low RM holding period which means less carrying cost hence favourable.(RM Called fast moving)

CHAPTER 2 - MATERIAL COST

PAGE -2

Valuation of raw material
while calculating per unit cost of raw material purchased, some items are considered as follows:-

1. Trade Discount	Deduct from purchase price
2. Quantity Discount	Deduct from purchase price
3. Cash Discount	Not Deduct from purchase price since it is finance benefit.
4. Road Tax/Toll Tax / Octroi / Entry Tax	Add to purchase cost
5. GST Integrated GST - paid on inter-state supply of goods and services State GST - Paid on intra-state supply of goods and services Central GST - Paid on mfd\& supply of goods .	Add to purchase cost if no input tax credit availed. Unless specifically mentioned in question, it will be excluded from cost of purchase assuming that credit is available
6. Demurrages / Detention Charges / Fine / Penalty	Deduct from purchase price since it is a penalty
7. Insurance Cost / Comm. I Brokerage Paid / Freight Inwards	Add to purchase cost
8.Cost of containers (if specifically charged)	- Add to purchase cost if it is non-returnable. - Don't add to purchase cost if it is returnable.
9.Normal Loss	Good units shall absorb cost of normal loss of material.

Note:-Cost per unit $=\frac{\text { Total Cost }}{\text { Total units }- \text { normal loss units }}$

How to Calculate cost of material consumed and cost of closing stock of material if material purchase prices keeps on changing
3 methods

1. FIFO (First in First Out):- Material issued for production shall be priced at the price of material purchased first till its quantity exhausts. When the quantity exhausts, next price shall be used as basis.
2. LIFO (Last in First Out):-Material issued for production shall be priced at the price of material purchased LAST till its quantity exhausts. When the quantity exhausts, previous price shall be used as basis.
3. Weighted Average method:- With every receipt of material, price is averaged and this averaged price used for issue of material till next receipt of material. On next receipt of material, average price changes. Used when difficult to identify material physically e.g. petrol storage in a tank.

Treatment of normal and abnormal loss of units in valuation
a. Normal Loss in units:- Price per unit of remaining material shall be increased. b. Abnormal loss in units:- it shall be treated as issue of material. Cost of material lost shall be charged to costing P\&L A/c as loss.
If given in question "Shortage will be charged as overhead" then it means cost of such issues shall be treated as overhead cost (material Cost became indirect material cost). It is neither normal loss nor abnormal loss.

ABC ANALYSIS

Practical steps to classify material in category A, B and C
Step 1:- Calculate value of each raw material by multiplying annual consumption of each raw material by its unit price.
Step 2:- Calculate total value of all raw materials.
Step 3:- Calculate \% of value of each raw material in relation to total value of all raw materials.
Step 4:- Assign ranking to above calculated \% i.e. Rank 1 to highest \%, Rank 2 to second highest \% and so on.
Step 5:- Classify items having nearly 70\% value under category A 20\% value under category B and 10% value under category C.

Input-output ratio

It explains the relationship between inpu

 consumption and output produced using that input.Formula $=\frac{\text { input }}{\text { output }} \times 100$
Example:-
suppose in a manufacturing process, output obtained is 200 kg from use of input of 260 kg then input-output ratio shall be 130%
i.e $\frac{260 \mathrm{~kg}}{200 \mathrm{~kg}} \times 100$

If input-output ratio is 130%, it means tha - Input consumption is 130% of the output. - manufacturing loss is of 30% of output.

This ratio is treated as unfavorable if it is more than 100% while it is regarded as favorable if it is near 100%

Material cost for 1 unit of output = Input - Output Ratio x Purchase price of RM

Stock-out situation When a supplier could not supply ordered units of FG then such a situation is called Stock out situation.

Stock-out ratio (Finished Goods) $=$ units for which order got cancelled total units for which orders
received in whole year

Inventory turnover ratio for FG (ITR for FG)

1. Inventory turnover ratio for finished goods

Cost of sales
$=\overline{\text { Average inventory of finshed goods }}$
2. Average inventory of finished goods
$=\frac{\text { Opening stock of FG+closing stock of FG }}{2}$
3. Avg. stock of finished goods
$=\frac{365 \text { days or } 12 \text { months }}{\text { inventory turnover ratio of FG }}$
Low ITR for FG means High inventory holding period which means high holding cost hence unfavourable.

High ITR for FG means Low Inventory holding period which means low holding cost hence favourable.

Stock out cost = stock out units \mathbf{x} Stock out cost per unit x probability (\%). CA Purushottam Aggarwal

CHAPTER 3 - EMPLOYEE COST AND DIRECT EXPENSES

Chapter 4 - Overheads Absorption Costing Method

PAGE -1

Chapter 4 - Overheads Absorption Costing Method

PAGE -2

CA. Inter \& Final - costing facuity

Chapter 5 - Activity Based Costing

Under ABC Costing

All overheads are divided into 2 parts:

1. Overhead which is activity oriented i.e. set-up cost is indirect cost (OH) which will increase if number of set-ups on machine increases and vice-versa.
2. Overhead which is not activity oriented i.e. Factory rent, depreciation on machine on SLM. This overhead is apportioned among products using single recovery rate.

Steps in ABC system

1. Statement of Car Pool (Car Allocation) :- Group of overhead 2.Statement of Cost

Statement of Cost Pool				
Overhead	Amount	Basis	No. of Activities	Cost per activity
Set up Cost	$\mathbf{X X}$	No. of Set Ups	$\mathbf{X X}$	$\mathbf{X X}$
Inspection Cost	$\mathbf{X X}$	No. of inspections	$\mathbf{X X}$	XX
Stores Cost	$\mathbf{X X}$	Material Cost	$\mathbf{X X}$	$\mathbf{X X}$
Other Cost	$\mathbf{X X}$	Method of absorption (Output)	$\mathbf{X X}$	XX

CA Purushottam Aggarwal
CA. Inter \& Final - costing faculty

Chapter 6 - COST SHEET

1. No. of units produced $=$ Sales (units) + Closing Stock (units) - Opening Stock (units)
2. No. of units Sold = Opening Stock (units) + produced (units) - closing Stock (units)
3. While preparing the cost sheet, following amounts are ignored
I. Income tax, cash discount, dividend, goodwill written off, any penalty, fine, demurrage ii. Abnormal cost

Special Note1- Interest \& Other Finance Costs

- Interest, including any payment in the nature of interest for use of non-equity funds and incidental cost that an entity incurs in arranging those funds.
- Interest \& finance charges are not included in cost of production
- Interest \& finance charges shall be presented in cost statement as a separate item of cost of sales

Special Note 2 - Any type of subsidy/GrantIncentive receivedreceivable shall be reduced from cost

Conversion cost:- It means cost incurred to convert raw material into finished goods.
Method1 :-Conversion cost $=$ direct labour cost + direct expenses + factory overheads Method 2:-Conversion Cost $=$ Factory Cost-Direct material cost

Impact of a word in Costing solution

Example 1 Semi-variable overheads per annum at 75% capacity is Rs. 60,000
Case 1.: (it will increase by Rs. 4,000 per annum for increase of every 5% of the capacity utilisation or any part thereof Solution:-

Case 2:- (it will increase by Rs. 4,000 per annum for increase of every 5% of the capacity utilisation thereof) Solution:-

Meaning of Change in Labour eficiciency \& Its impact

Case 1:-When Labour Efficiency reduced
 -Reduction in efficiency or workers means workers are producing less units in same time

Example: Suppose earlier worker was producing 4 units in 1 hour and we were paying him Rs. 100 per hour then in such direct labour cost per unit shall be Rs. 25 per unit.

If now question says that efficiency of worker has been reduced by 25%.
It means now worker is producing 3 units [4 units -4 units $\times 25 \%$] in 1 hour hence now direct labour cost per unit would be Rs 33.33 since we are paying worker on time basis i.e. Rs. 100 per hour.

Alternative way to calculate New DLC per unit
$\frac{\text { Old DLC per unit }}{100 \% \text {-Reduction in Efciency }}=\frac{\text { Rs } 25}{100 \%-25 \%}$
Case 2:-When Labour Efficiency Increased Alternative way to calculate New DLC per unit = Old DLC per unit $100 \%+$ Reduction in Efficiency

CA Purushottam Aggarwal CA. Inter \& Final - costing facuity

CHAPTER 7 - INTEGRATED AND NON-INTEGRATED ACCOUNTS AND RECONCIALITION OF PROFIT

CHAPTER 7 - INTEGRATED AND NON-INTEGRATED ACCOUNTS AND RECONCIALITION OF PROFIT

CA Purushottam Aggarwal CA. Inter \& Final - costing faculty

Chapter 8 - JOB AND BATCH COSTING

JOB AND BATCH COSTING

Job Costing is that form of specific order costing under which each job is treated as a cost unit and costs are ascertained separately for each job. A job may consist of a job, product, contract, a service or any other specific order.

Batch Costing is that form of specific order costing under which each batch is treated as a cost unit and costs are accumulated and ascertained separately for each batch. Each batch consists of a number of like units.

Example:- Batch costing states that cost per unit shall be less as number of units increases and total cost of batch shall increase as number of units increases in a batch. Example Rs. 200 for 100 visiting cards while Rs. 300 for 200 visiting cards etc.

\perp

JOB AND BATCH COSTINC

Economic Batch Quantity (EBQ) (Similar as Economic order quantity)
EBQ refers to the optimum quantity batch at which Set up \& Processing Costs and Carrying Costs are together minimised.
E.B.Q = 2×Annual Demand×Set up cost per batch Cost of carrying per unit of production per annum

CHAPTER 9 - CONTRACT COSTING

CHAPTER 10 - PROCESS \& OPERATION COSTING

PAGE -1

Why we need to make process Ac?

Process costing is applicable when 2 or more process are required in mfd a product.
We need it to calculate

- All cost incurred in each process.
- Cost of FG transferred to next process.
- Cost of FG directly sold in market \& held as stock

2 types of losses arise in process costing:-

1. Normal loss:- loss which arise generally. Suppose 10,000 units are introduced in process \& 2% is normal loss then 200 units will be normal loss units.
2. Abnormal loss:- if Actual loss is above normal loss. If in above example, 300 units are lost in processing then 100 units are abnormal loss.
Sometimes actual loss is less than normal loss. If in above example, only 150 units are lost in processing then 50 units are treated as abnormal gain.

Following Alcs are prepared in process costing

Following Acs are prepared in process costing:-

.Process Alc
2. Finished goods Alc
3.Normal loss A/c
4.Abnormal loss A/C
5. Abnormal gain A/c
6.P\&LAccount
7.Any other A/c as required in question.

Process Account					
Particulars	Units	Amount	Particulars	Units	Amount
To material input	XX	XX	By normal loss Alc	XX	= Scrap value
To All Expenses incurred		XX	By abnormal loss Alc	XX	- Cost of good units
To Rectification cost of normal loss units		XX	By Next process A/c (units TF to next process)	XX	$=$ Cost of good units
To Abnormal gain Alc	XX	$\begin{aligned} & =\text { Cost of } \\ & \text { good units } \end{aligned}$	By finished goods Alc (units held as stock + units sold in mkt)	XX	$=$ Cost of good units
	XXX	XXX		XXX	XXX

Finished goods A/c/Finished stock A/c					
Particulars	Units	Amount	Particulars	Units	Amount
To process Ac (TF from process Ac)	XX	= Cost of good units	By Sales	XX	= Sale value
To P\&LAlc		Profit on sale	By balance Cld	XX =	Cost of good units
	XXX	XXX		XXX	XXX
Normal loss A/c					
Particulars	Units	Amount	Particulars	Units	Amount
To process Ac (TF from process Alc)	XX	=scrap value	By Bank Ac (Note 1)	XX abnormal gain units	=scrap value
			By abnormal gain Alc	XX	= Bal. Fig.
	XXX	XXX		XXX	XXX

Note 1:- Sale of normal loss units cannot exceed actual loss units.

When output of one process is transferred to next process not at cost but at transfer price. Transfer price means cost plus some profit.

Particulars	Cost (A)	Profit (B)	Transfer Price (A+B)
Opening stock	XXX	XXX	XXX
Add:-			
Direct Material cost	XXX		XXX
Direct Labour cost	XXX		XXX
Dierct Expenses	XXX		XXX
Cost from previous process	XXX		XXX
Prime Cost	XXX(D)	XXX	XXX (E)
Less closing stock	XXX (X F / E)	XXX (Bal. Fig)	XXX (F)
Net Balance	XXX	XXX	XXX
Add:- Factory Overhead	XXX	$\mathbf{X X X}$	
Total Cost	$\mathbf{X X X}$	XXX	XXX
Add:- costing P\&L A/c (Profit)	$\mathbf{X X X}$	XXX	XXX
Grand Total	$\mathbf{X X X}$		

Some Special Points
(a) No Selling \& distribution OH, Adm. OH Since it is internal transfer of goods.
(b) Opening \& closing stock in process 1 shall not include any profit since it has not been transferred from any previous process.
(c) Profit included in opening stock of process II and onwards is
normally given in question. Hence we need not to calculate it.
(d) Costing Profit and loss Account
a. Shall be credited by unrealized profit on opening stock.
b. Shall be debited by unrealized profit on closing stock.
c. Shall be credited by profit of process A/c \& finished goods A/c.
d. Bal. Fig. shall be net profit / loss

CHAPTER 10 - PROCESS \& OPERATION COSTING

PAGE -2

1

Prepare process Ac when Opening \& closing WIP is given cost item wise. We need to prepare additional 3 statements as follows:-
Statement 1: Prepare Statement of Equivalent Production
Siatement 2: Prepare Statement of Cost per Equivalent Unit
statement 3: Prepare Statement of Evaluation

t. of equivalent production

Equivalent production units (EPU) $=\mathrm{N}$ o. of units x degree (\%) of completion performed in current period EPU is calculated separately for each element of cost e .g. material, labour $\& \mathrm{OH}$ because $\%$ of completion with regard to each element of cost is different.

Example: Suppose 900 units are incomplete at end of year (Closing WIP) \& degree of completion is:
Material 80%, Labour 70\%, Overheads 30\% then EPU of closing WIP shall be
EPU for material cost $=900$ units $\times 80 \%=720$ units
EPU for labour cost $=900$ units $\times 70 \%=630$ units
EPU for OH Cost $=900$ units $\times 30 \%=270$ units
Explanation:-
Material cost of 900 incomplete units $=$ material cost of 720 completed units.
Labour cost of 900 incomplete units $=$ labour cost of 630 completed units.
OH cost of 900 incomplete units $=$ overheads of 270 completed units.

Degree (\%) of completion performed in current period shall be
(100\% - degree of completion performed in previous period) for Opening
100\% for units introduced in current period and completed
As given in question for closing WIP
Always ZERO for normal loss units

- As given in question for abnormal loss units. (100% if $n o t$ given in question)
- Always 100\% for abnormal gain units

Calculation of Normal loss Units

In exam Normal loss may be given as a \% of Current Input, Total Input, Production or Units Processed.
Opening WIP XXX
Add: Units Introduced \quad XXX - Also Called Current Input
Total input units
Less:- Closing Stock
Units Processed / Production

XXXX) XXX

$\frac{x \times x}{x X x}$

St. of cost per equivalent production

Material cost per equivalent unit, labour cost per equivalent unit and overhead cost per equivalent unit is
calculated
Formula $=$ Total cost
St. of evaluation
Cost of units completed, closing WIP, abnormal loss units and abnormal gain units is calculated Formula $=$ No. of equivalent units x cost per equivalent unit.

Mehod 1 FIFO MEIHOD

FIFO means units transferred as 100% complete shall comprise all opening WIP and balance from units introduced in current period Units Transferred $=$ Opening WIP + Units Introduced and completed Total Cost of units Transferred to next process $=$ Cost incurred in previous period on opening WIP + Cost incurred in current period on Opening WIP + Cost incurred in current period on units introduced \& completed

Statement $1 \gg$ Statement of Equivalent Production:

Input		Output		Material		Labour		Overheads	
Particulars	Units	Particulars	Units	$\begin{array}{c\|} \hline \% \\ \text { Completion } \end{array}$	Units	$\begin{gathered} \% \\ \text { Completion } \end{gathered}$	Units	$\begin{array}{c\|} \hline \% \\ \text { Completion } \end{array}$	Units
Opening WIP	XXX	Opening WIP completed	XXX	XXX*	XXX-1	XXX*	XXX-2	XXX *	XXX-3
Units introduced	XXX	Units introduced and completed [Units Transferred - Op.VIP	XXX	100\%	XXX-4	100\%	XXX-5	100\%	XXX-6
		Closing WIP	XXX	XXX	XXX-7	XXX	XXX-8	XXX	XXX-9
		Normal loss	XXX	---	-	--	---	---	-
		Abnormal Loss	XXX	XXX	XXX-10	XXX	XXX-11	XXX	XXX-12
		Abnormal Gain	(XXX)	100\%	(XXX)-13	100\%	(XXX)-14	100\%	(XXX)-15
Total	XXX	Total	XXX		XXX-16		XXX-17		XXX-18

*100\% - Degree of Completion of Opening WIP in previous period
Statement 2 Statement of Cost per Equivalent unit

Particulars	Net Material cost (Rs)*	Labour Cost (Rs.)	Overheads (Rs.)
Cost (Rs.) (A)	XXX	XXX	XXX
Equivalent units (B)	XXX -16	XXX ...17	XXX -..18
Cost per equivalent unit (AB)	XXX -19	XXX …20	XXX .-21

Cost per equivalent unit (AB)
Statement3 Statement of Evaluation:

Particulars	Cost Elements	Equivalent Units A	Cost per Equivalent UnitRs. B	Cost of Equivalent UnitsRs (AxB)	TotalRs. (AXB)
Opening WIP					
Costincurred inprevious period				XXX	
Cost incurred in current period:	Material	XXX-1	XXX-19	XXX	
	Labour	XXX-2	XXX-20	XXX	
	Overhead	XXX-3	XXX-21	XXX	
Units introduced \& completed	Material	XXX-4	XXX-19	XXX	
	Labour	XXX-5	XXX-20	XXX	
	Overhead	XXX-6	XXX-21	XXX	
Total Cost of Units tf to next process:					XXX-22
Closing WIP	Material	XXX-7	XXX-19	XXX	
	Labour	XXX-8	XXX-20	XXX	
	Overhead	XXX-9	XXX-21	XXX	XXX-23
Abnormal Loss	Material	XXX-10	XXX-19	XXX	
	Labour	XXX-11	XXX-20	XXX	
	Overhead	XXX-12	XXX-21	XXX	XXX-24
Abnormal gain	Material	XXX-13	XXX-19	XXX	
	Labour	XXX-14	XXX-20	XXX	
	Overhead	XXX-15	XXX-21	XXX	XXX-25
Process Account					
Particulars	Units	Rs	Particulars	Units	Rs.
To Opening WIP	XXX	XXX	By Normal Loss	XXX	Scrap Value
To Direct Material		XXX	By Abnormal Loss	XXX	XXX-24
To Direct Labour		XXX	By Process II Alc (Transfer to next process)	s) XXX $^{\text {a }}$	XXX-22
To Factory Overheads		XXX	By Closing WIP	XXX	XXX-23
To abnormal gain	XXX	XXX-25			
	XXX	XXX		XXX	XXX

Method 2 - Weighted Average Method

Average method is used when it is not possible to identify opening WIP units in units transferred to next process Average cost per equivalent unit is calculated

Cost incuured in previous period on Opening WIP+Cost Incurred in current period@-Scrap value of normal loss units Total Equivalent Units
Total Cost of units Transferred to next process $=$ Equivalent Units x Average Cost per unit Statement $1 \rightarrow$ Statement of Equivalent Production:-

Input	Output			Material		Labour		Overheads	
Particulars	Units	Particulars	Units	Completion	Units	$\begin{gathered} \% \\ \text { Completion } \end{gathered}$	Units	$\begin{gathered} \% \\ \text { Completion } \end{gathered}$	Units
Opening WIP	XXX	Units transferred to next process	XXX	100\%	XXX-4	100\%	XXX-5	100\%	XXX-6
Units intoduced	XXX	Closing WIP	XXX	XXX	XXX-7	XXX	XXX-8	XXX	XXX-9
		Normal loss	XXX	-	--	\cdots	-	-	---
		Abnorma Loss	XXX	XXX	XXX-10	XXX	XXX-11	XXX	XXX-12
		Abnormal Gain	(XXX)	100\%	(XXX)-13	100\%	(XXX)-14	100\%	(XXX) - 15
Total	XXX	Total	XXX		XXX-16		XXX -17		XXX-18
Statement 2 Statement of Cost per Equivalent per unit									
Particulars				Net Material Cos		Labour Cost		Overhead cost	
Opening WIP- Cost (A)				XXX		XXX		XXX	
Costincurred in current period (B)				XXX		XXX		XXX	
Less Scrap value of normal loss (C)				(XXX)		--		--	
Total Cost ($A+B-C)$				XXX		XXX		XXX	
Equivalent units				XXX - 16		XXX - 17		XXX - 18	
Cost per equivalent unit				XXX - 19		XXX - 20		XXX - 21	

Statement $3 \gg$ Statement of Evaluation					
Particulars	Elements	Equivalent UnitsA	Cost per Equivalent Unit Rs. B	Cost of Equivalent Units Rs (A×B)	Total Rs.
Units transferred to next process	Material	XXX-4	XXX-19	XXX	
	Labour	XXX-5	XXX-20	XXX	
	Overhead	XXX-6	XXX-21	XXX	XXX-22
Closing WIP	Material	XXX-7	XXX-19	XXX	
	Labour	XXX-8	XXX-20	XXX	
	Overhead	XXX-9	XXX-21	XXX	XXX-23
Abnormal Loss	Material	XXX-10	XXX-19	XXX	
	Labour	XXX-11	XXX-20	XXX	
	Overhead	XXX-12	XXX-21	XXX	XXX-24
Abnormal gain	Material	XXX-13	XXX-19	XXX	
	Labour	XXX-14	XXX-20	XXX	
	Overhead	XXX-15	XXX-21	XXX	XXX-25

Process Account						
Particulars	Units	Rs.	Particulars	Units	Rs.	
To Opening WII	XXX	XXX	By Normal Loss	XXX	Scrap Value	
To Direct Material		XXX	By Abnormal Loss	XXX	XXX-24	
To Direct Labour		XXX	By Process IIAc (Transfer to next process)	XXX	XXX-22	
To Overheads		XXX	By Closing WIP	XXX	XXX-23	
To abnormal gain	XXX	XXX-25				

CA Purushottam Aggarwal CA. Inter F Final - costing ficuly

Chapter 11 - JOINT PRODUCTS AND BY-PRODUCTS

$\sqrt{2}$
 Joint products \& By-products

How to apportion total processing cost among different joint products arising out of 1 process?
Joint products means when 2 or more products of almost equal importance are produced simultaneously using same raw material in same process e.g. Oil refining industry, joint products are kerosene and petrol etc.
Method No. 1 :- Physical unit method:- Joint cost is distributed in ratio of quantity manufactured
Method No. 2 :- Sale value at separation point method:- Joint cost is distributed in ratio of sales value at split off point. Sale value at split off point $=$ No. of units produced x selling pric
This method is used when sale price per unit is known at split off point.
Method No. 3 :- \quad Net realizable value (NRV) method:- Joint costs are apportioned in the ratio of net realizable values of joint products
NRV is calculated as follows:-
Sale value after further processing \quad XXX (No. of units manufactured x Selling price) Less:- Further processing costs $\frac{(X X X)}{X X X}$ NRV XXX

This method is used when
C.1. Sale value at split off point is not known and
C.2. Product is sold after further processing

Method No. 4 :- Average unit cost method:- under this method, first average cost per unit is calculated using following formula:-
Average cost per unit $=$

$$
\frac{\text { Total Joint Costs }}{\text { Total No.of units of jonts products }}
$$

Share of each product in joint cost $=$ No. of units of each product X Average cost per unit
Method No. 5 :- Contribution margin method
Under this method, joint costs are divided into variable cost and fixed cost.
Variable cost portion of joint cost is divided among products on the basis of physical units (Quantity / Units Ratio) Fixed cost portion of joint cost is divided among products on the basis of contribution ratio.

Contribution $=$ Sales $\boldsymbol{-}$ Total variable cost
Contribution Ratio $=\underline{\text { Contrinution of an individual product }} \times 100$ Total contribution of all products
Method No. 6 Constant gross margin \% NRV method (Extension of NRV method)
Joint cost of joint products is calculated as balancing figure
St. of joint cost apportionment

Particulars	Product A	Product B
Sale value after further processing	XXX	XXX
(No. of units manufactured \times Selling price)	$($ XXX)	(XXX)
Less further processing cost	(XXX)	(XXX)
Less Gross Margin (Sales x G. Margin Ratio)	XXX	XXX
Joint cost apportioned		

| Joint cost apportioned |
| :--- | :--- |

Format to Calculate Overall Gross Margin \%

Sale value after further processing of all joint products	XXX
Less joint cost and Further processing costs of all joint products	(XXX)
Gross Margin / Profit	XXX

Gross Margin (\%) $=\frac{\text { gross margin }}{\text { total }} \times 100$ $\frac{\text { total sales value }}{}$

Note:-Joint cost calculated under this method may be negative sometimes since balancing figure. Note:- Joint cost calculated among all methods need not to be same.

Decision as to go for further processing or not.
Yes process if incremental sales < incremental cost i.e. if Profit increases.
St. Showing incremental profit / loss
Particulars
\square

Amount (Rs.)
Sales value after further processing (A)

$X X X$

Incremental Sales revenue (C) $=\{(\mathrm{A})-(\mathrm{B}$
Further processing cost: (D)
Profit (Loss) arising due to further processing $\{(\mathrm{C})-(\mathrm{D})\}$
Decision:- Go for further processing if profit increase as a result of further processing otherwise don't go for further processing.

How to calculate joint cost of main products and by-products When 2 or more products arise from same process using same raw material and almost of equal importance they are called joint products but when any product has less selling price in market. It is called by-products.

Step 1:- Calculate Joint cost of by-product using following formula

Particulars	Amount (Rs.)
Sales value of by products	XXX
Less:-	
Cost incurred after separation	$(X X X)$
Estimated Profit	(XXX)
Estimated Expenses	XXX)
Joint Cost	XXX

Step 2:- Calculate Joint cost of main product = Total joint cost of all products -Net joint cost of all by-product.

CHAPTER 12 - OPERATING COSTING OR TRANSPORT COSTING OR SERVICE COSTING

CA Purushottam Aggarwal

CA. Inter \& Final - costing faculty

Chart Can Be Downloaded From purushottamaggarwal.com

chapter 13 - Standard Costing

Chart Can Be Downloaded From purushottamaggarwal.com

CHAPTER 14 - MARGINAL COSTING

I		
Merger of 2 depariments or companies	Absorpion Vs Marginal costing:-	
If management of 2 or more companies decides to merge companies which are operating at same or different capacity level then Merged company desires to know following things:- 1. PN Ratio 2. BEP in rupees 3. Capacity utilization at BEP 4. Desired Sales 5. Desired Profit 6. Desired capacity utilization of merged plant	Income statement under Marginal costing approach	
	Particulars	Amount (Rs.)
	Variable (Direct Material Cost)	XX
	Variable (Direct Labour Cost)	XX
	Variable (Direct Expenses)	XX
	Variable Factory OH	XX
	Variable manufacturing cost of Quantity Produced	XX
	Add: Opening FG	XX
Step1 - Make marginal cost coution of all commenies at 100\% capaity level	Less:- Closing FG	(XX)
Step 2:- Add all figures to calculate Sales, Variable Costs, Fixed Costs and Contribution of	Variable manufacturing cost of Quantity Sold	XX
merged company.	Add:- Variable Office \& Admin OH	XX
Note :- Fixed cost shall include additional fixed cost involved in merger, if any	Add:- Variable Selling \& Distribution OH	$\frac{X X}{}$
$\begin{aligned} & \text { PN Ratio of merged } c 0 .=\frac{\text { Total contribution of all co.at } 100 \% \text { capacity }}{\text { Total sales of all co.at } 100 \% \text { capacity }} \times 100 \\ & \text { BEP in rupees of merged } c 0 .=\frac{\text { Total Fixed cost of all co.+Additiona FC of merger,if any }}{\text { PV Ratio of merged } c 0 .} \times 100 \end{aligned}$	Sales (B)	$\frac{x X}{x X}$
	Contribution (B-A)	XX
	Less:- Fixed Factory OH	(XX)
	Fixed Office and Admin OH	(XX)
	Fixed Selling \& Distribution OH	(XX)
	Profit	XX
Capacity utilization at BEP of merged co . $=$ \qquad $\times 100$	Income statement under Absorption costing approach	
Total sales of merged co.at 100\% capacity	Particulars	Amount(Rs.)
	Variable (Direct Material Cost)	XX
Desired sales to earn given profit $=\frac{\text { Fixed cost of merged co.tdesired proit }}{\text { PV Ratio of merged }}$ (XX
PV Ratio of merged co.	Variable (Direct Labour Cost) Variable (Direct Expenses)	XX
$\text { Capacity utilization at desired sales }=\frac{\text { desired sales }}{\text { Total sales of merged co.at } 100 \% \text { capacity }} \times 100$	Variable Factory OH Fixed Factory OH absorbed units produced x standard rate per unit	XX
		XX
Cash BEP	Add: Opening FG	(XX)
Minimum level of sales at which company is able to recover out fixed cost incurred in cash.	Less:- Closing FG	XX
Cash BEP in units= Cash Fixed cost	Total manufacturing cost of Quantity Sold	XX
Cash BEP in rupees $=$ cash Fixed cost	Fixed Office and Admin OH	XX
	Variable Selling \& Distribution OH	XX
Cash fixed cost = Total FC - Non - FCC	Fixed Selling \& Distribution OH	XX
Non-cash FC are those which do not involve cash outflow e.g. depreciation	Add:- Under absorbed OH (Actual OH incurred - OH absorbed) Less:- Over absorbed OH (OH absorbed - Actual OH incurred)	$\begin{gathered} X X \\ (X X) \\ \hline \end{gathered}$
Shut down Point	Total Cost of Sales (A)	XX
Decision as to whether Produce or discontinue loss making product	Sales (B) Profit $(B-A)$	$\frac{x \mathrm{x}}{\underline{x x}}$
FC is divided in 2 category :- Unavoidable FC :- FC which has to be incurred whether or not item is produced. Avoidable FC :- FC which can be avoided by stopping production.		
	Reason for difierence in profit Particulars	Amount (Rs.)
	Profit under marginal costing	Xxx
SDP Sales (units) $=\frac{\text { Avoidable Fixed Cost }}{\text { contribution per unit }}$SDP Sales (Rs.) $=\frac{\text { Aviodable FC }}{\text { PV Ratio }}$Avoidable FC $=$ Total FC-Unavoidable FC	Add: Opening stock Excess in marginal costing Closing stock Excess in absorption costing	XXx
		Xxx
	Less:- Opening stock Excess in absorption Costing Closing stock Excess in Marginal costing	(xxx)
		$\frac{(x x x)}{x_{x x}}$
	Profit under absorption costing	Xxx

Chapter 15 - BUDGETARY CONTROL

