

Raise3D Rigid 3K Grey V1 Resin Technical Data Sheet¹

© 2023 by Raise3D. All rights reserved. Specification subject to change without notice.

Material with high strength, rigidity and heat-resistance

Rigid 3K Resin is designed for stiff and strong parts where high strength, high rigidity and heat resistance are required. This material delivers excellent results in part accuracy as well as mechanical and thermal properties.

Features

- 3263 MPa Young's modulus
- 78 MPa tensile strength
- 97°C HDT @ 0.45 MPa
- 30 J/m Izod notched impact

Benefits

- High rigidity
- Excellent part strength
- Heat resistance
- Rigidity similar to glass fiber reinforced thermoplastic materials

Applications

- Robust prototypes
- Thin-wall parts
- Connectors
- Mounts and brackets

¹ The cover shows jigs.

Physical Properties

Property	Testing Method	Typical Value		
Порсту	1 Toperty Testing Method		Imperial	
Appearance	1	Liquid, Grey		
Density (liquid resin)	ASTM D4052	1.148 g/cm ³	9.58 lb/gal	
Density	ASTM D792	1.26 g/cm ³	10.52 lb/gal	
Liquid Viscosity	ASTM D7867	515 cps@25°C	515 cps@77°F	
Shore D Hardness	ASTM D2240	/	/	

Mechanical Properties*

Bronorty	Testing Method	Green		Post-Cured	
Property		Metric	Imperial	Metric	Imperial
Young's Modulus	ASTM D638	1766 MPa	256.13 ksi	3263 MPa	473.24 ksi
Tensile Strength	ASTM D638	38 MPa	5.51 ksi	78 MPa	11.31 ksi
Elongation at Break	ASTM D638	30%	30%	14%	14%
Flexural Modulus	ASTM D790	1278 MPa	185.35 ksi	3252 MPa	471.65 ksi
Flexural Strength	ASTM D790	52 MPa	7.54 ksi	139 MPa	20.166 ksi
Notched Izod	ASTM D256	24 J/m	0.45 ft-lbf/in	30 J/m	0.56 ft-lbf/in

*Note:

All test specimens were printed with Raise3D DF2 printer (2 mW/cm² at 405 nm, 100µm thickness, 5.5s).

All post-cured test specimens were cured with DF Cure for 30 minutes per side at room temperature.

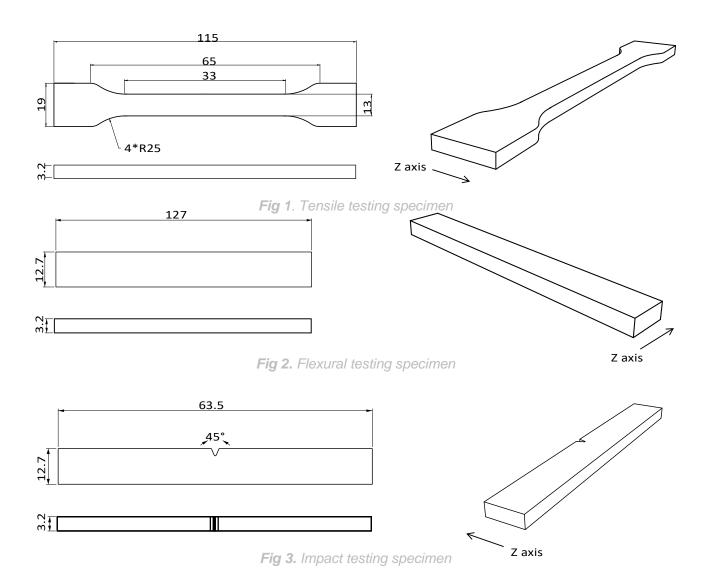
All specimens were conditioned in ambient lab conditions at 20-25 °C / 40-60% RH for 16 to 24 hours.

Test performance differs depending on part geometry, print placement orientation, print settings and temperature.

Thermal Properties*

Discountry	Teeting Mathed	Post-Cured		
Property	Testing Method	Metric	Imperial	
Heat Deflection Temp. @0.45 MPa/66 psi	ASTM D648	97°C	206.6°F	
Heat Deflection Temp. @1.82 MPa/264 psi	ASTM D648	64°C	147.2°F	

*Note:


All test specimens were printed with Raise3D DF2 printer (2 mW/cm² at 405 nm, 100µm thickness, 5.5s) and cured with DF Cure for 30 minutes per side at room temperature.

All specimens were conditioned in ambient lab conditions at 20-25 °C / 40-60% RH for 16 to 24 hours.

Test performance differs depending on part geometry, print placement orientation, print settings and temperature.

Testing Geometries

Disclaimer

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End-use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Raise3D materials for the intended application. Raise3D makes no warranty of any kind, unless announced separately, to the fitness for any particular use or application. Raise3D shall not be made liable for any damage, injury or loss induced from the use of Raise3D materials in any particular application.

