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SUMMARY
COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million
fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to
consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to
hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein bind-
ing to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase
inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial
cells via an HIF-1a-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication,
showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance
of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF
prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.
The COVID-19 pandemic, caused by the novel coronavirus

SARS-CoV-2, is a global health issue. Although multiple public

health approaches, including mass vaccination and social

distancing, are needed to bring the pandemic under control,

there is an urgent need for prophylactic measures or early treat-

ment that can be targeted to vulnerable groups. This is of partic-

ular importance given the emergence of SARS-CoV-2 variants

and the uncertainty of future vaccine efficacy. SARS-CoV-2 pri-

marily targets the respiratory tract and infection is mediated by

spike (S) protein binding to the human angiotensin-converting

enzyme 2 (ACE2), where the transmembrane protease serine 2
This is an open access article und
(TMPRSS2) triggers fusion of the viral and cell membranes (Hoff-

mann et al., 2020; Wan et al., 2020). ACE2 is highly expressed in

epithelial cells of the respiratory tract as well as those of the kid-

ney and intestine (Hamming et al., 2004; Tipnis et al., 2000; Zhao

et al., 2020b). Although COVID-19 is mild in most cases, a

defining feature of severe disease is systemic low-oxygen levels

(hypoxemia), which is often disproportionate to lung injury. There

is evidence to suggest that this profound hypoxemia may alter

the ability of SARS-CoV-2 to infect host cells. Hypoxia has

been reported to regulate the replication of a number of viruses

(Jiang et al., 2006; Kraus et al., 2017; Zhao et al., 2020a; Zhuang
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Figure 1. Hypoxia or FG-4592 (Roxadustat) inhibits the expression of SARS-CoV-2 entry factors in vitro and in vivo

(A) ACE2 and TMPRSS2 transcript levels across a panel of cell lines: HepG2 hepatoma, SH-SY5Y neuronal, RKO colon epithelial, Caco-2 colon epithelial, U937

monocyte/macrophage, Vero E6 monkey epithelial kidney, Calu-3 airway epithelial, A549 airway epithelial, EA.hy926 umbilical vein endothelial, and U-2OS

osteosarcoma endothelial. Cells with minimal ACE2 and TMPRSS2 mRNA expression (SH-SY5Y, RKO, U937, A549, EA.hy926, and U-2OS) are displayed as

black dots. Data are expressed relative to HPRT (hypoxanthine-guanine phosphoribosyl transferase).

(B) ACE2-expressing cell lines from (A) were treated with FG-4592 (50 mM) or 1%O2 for 24 h, and ACE2 and TMPRSS2mRNAwas assessed. Data are presented

relative to untreated cells; n.d., not detected.

(C) HepG2 cells were treated with increasing concentrations of FG-4592 for 24 h, and ACE2/TMPRSS2mRNA was quantified and expressed as a percentage of

the maximal induction/inhibition. CAIX mRNA levels were analyzed in parallel as an established HIF-1a-regulated host gene.

(D) HepG2 cells were cultured at 1% O2 for 16 h and were re-oxygenated over a 0.5–24-h period, and ACE2/TMPRSS2 mRNA levels were analyzed at the

indicated times.

(E) Calu-3 cells were treated with an increasing concentration of FG-4592 (0–100 mM) or 18%, 5%, 3%, and 1% O2 for 24 h, and ACE2/TMPRSS2 protein

expression was assessed by immunoblot. Densitometric values are expressed relative to b-actin.

(F) siRNAs targeting either HIF-1 or 2a were delivered into Calu-3 cells individually or in combination. Cells were treated with FG-4592 (50 mM) or 1% O2 for 24 h,

and ACE2 mRNA levels were quantified. Data are expressed relative to the normoxic siScramble (siScram) control. Statistical significance was determined by

(legend continued on next page)
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et al., 2020), enhancing the replication of Epstein-Barr virus

(Jiang et al., 2006; Kraus et al., 2017), but suppressing HIV and

influenza infection (Zhao et al., 2020a; Zhuang et al., 2020),

demonstrating that the interaction between hypoxia signaling

and viral infection is context specific and dependent on both

the host cell and viral species. Furthermore, hypoxia has been

reported to either induce or, in some cases, suppress ACE2

expression in lung pulmonary arterial smooth muscle cells

(PASMCs) (Zhang et al., 2009, 2019), hematopoietic stem cell

precursors (Joshi et al., 2019), and hepatocarcinoma cells

(Clarke et al., 2014). Because the effects of low oxygen on

both ACE2 expression and SARS-CoV-2 replication are likely

to be cell context dependent, we evaluated whether hypoxia al-

ters SARS-CoV-2 entry and replication in lung epithelial cells.

Mammalian cells adapt to low oxygen through an orchestrated

transcriptional response regulated by hypoxia-inducible factor

(HIF), a heterodimeric transcription factor comprising HIF-1a or

HIF-2a subunits, which is regulated by oxygen-dependent and

-independent stress signals. When oxygen is abundant, newly

synthesized HIFa subunits are rapidly hydroxylated by HIF

prolyl-hydroxylase domain (PHD) enzymes and are targeted for

polyubiquitination and proteasomal degradation. In contrast,

when oxygen is limited, HIFa subunits translocate to the nucleus,

dimerize with HIF-1b, and activate the transcription of genes

involved in cell metabolism, proliferation, pulmonary vasomotor

control, and immune regulation (Kaelin and Ratcliffe, 2008; Pal-

azon et al., 2014; Urrutia and Aragones, 2018). Defining how hyp-

oxia or activation of HIF affects the SARS-CoV-2 life cycle in lung

epithelial cells will increase our understanding of disease patho-

genesis and inform therapeutic strategies. Specifically, this has

the potential for pharmacological intervention because drugs

that inhibit the PHD enzymes to stabilize HIF (Pugh and Ratcliffe,

2017; Sanghani and Haase, 2019) are either in advanced clinical

trials for the treatment of renal anemia or are licensed for clinical

use (Roxadustat in China [Chen et al., 2019a, 2019b) and Japan

[Akizawa et al., 2020a, 2020c, 2020d] and Daprodustat in Japan

[Akizawa et al., 2020b]).

The host proteins ACE2 and TMPRSS2 are key determinants

of SARS-CoV-2 cell entry (Hoffmann et al., 2020). We screened

several commonly used cell lines for ACE2 and TMPRSS2

mRNA, and only four demonstrated notable expression of

ACE2: HepG2 (hepatoma), Caco-2 (colonic adenocarcinoma),

Calu-3 (lung adenocarcinoma), and Vero E6 (monkey kidney

epithelia) (Figure 1A). We noted that Vero E6 do not express

TMPRSS2 mRNA. To assess the role of HIF in regulating these

entry factors, we cultured the cells under hypoxic conditions

(1% O2) or after being treated with an inhibitor targeting the

PHDenzymes (FG-4592/Roxadustat), which stabilizes HIFa sub-

units and upregulates HIF target gene transcription. Both treat-

ments reducedACE2 and TMPRSS2 transcripts, with themagni-

tude of effect varying between cell lines (Figure 1B). Successful
two-way ANOVA. *denotes significance relative to normoxic siRNA (siScram) at

dition.

(G) C57BL/6micewere treatedwith FG-4592 (oral, 10mg/kg twice daily) or 10%O

the lungs was determined by qPCR.

mRNA expression for each target gene (relative to ActB) was compared between

Data are presented as means ± SD from (A–D), n = 3–6; (E) n = 3; (F) n = 4; and (G
activation of the HIF-signaling pathway was confirmed by induc-

tion of the HIF target genes carbonic anhydrase IX (CAIX), N-Myc

downstream regulated 1 (NDRG1), and Egl-9 homolog or HIF

prolyl hydroxylase 3 (EGLN3 or PHD3) (Figure S1A). In HepG2

cells, in which transcript suppression was most evident, FG-

4592 downregulated ACE2 and TMPRSS2 mRNA levels in a

dose-dependent manner concomitant with its induction of

CAIX, NDRG1, and EGLN3 transcription (Figures 1C and S1B).

Reoxygenation of cells previously exposed to hypoxia led to a re-

covery of both ACE2 and TMPRSS2 mRNA to near pre-hypoxic

levels (Figure 1D), suggesting a specific action of the HIF-PHD

pathway. To assess whether hypoxia/FG-4592 regulation is

evident at the protein level, we also measured ACE2 and

TMPRSS2 protein expression in human lung epithelial Calu-3

cells, a more physiologically relevant cell type for studying

SARS-CoV-2 infection. Culturing Calu-3 cells under hypoxic

conditions or treating with FG-4592 significantly reduced ACE2

protein expression in a dose-dependent manner with maximum

suppression >50 mMFG-4592 or <3% oxygen (Figure 1E) and no

effect on cell viability (Figure S1C). Similar, but more modest, ef-

fects were observed with TMPRSS2 expression (Figure 1E). The

hypoxia-induced changes in ACE2 (and, to a lesser extent,

TMPRSS2) protein expression were observed in HepG2 cells

(Figure S1D). Any differences between mRNA and protein levels

may, in part, reflect the cleavage and secretion of the TMPRSS2

catalytic domain or that additional hypoxia-stimulated factors

regulate protein stability and/or expression. To assess the role

of HIF, we silenced HIF-1a or HIF-2a expression in hypoxic

or FG-4592-treated Calu-3 cells with small interfering RNAs

(siRNAs). siRNA-mediated silencing of HIF-1a (either alone or

in combination with HIF-2a) restored ACE2 mRNA levels in FG-

4592-treated or hypoxic Calu-3 cells (Figure 1F). In contrast,

silencing HIF-2a did not restore ACE2mRNA levels in either con-

dition tested and resulted in a modest decrease under normoxic

conditions (Figure 1F). siRNA knockdown was verified by quan-

tifying the relevant HIFa transcripts CAIX, NDRG1, EGLN3, and

VEGFA (Figure S2). These data reveal a role for HIF-1a in repres-

sing ACE2 mRNA and protein expression.

To expand these observations to an in vivo setting, mice

were treated with hypoxia (10% O2) or FG-4592 for 24 h, with

a dosing regimen (oral, 10 mg/kg twice daily) similar to that pre-

viously used to induce polycythemia (Schley et al., 2019) and

the clinical dose for treating renal anemia (Provenzano et al.,

2016). Both treatments reduced Ace2 and Tmprss2 transcripts

in the lung, along with an increase in Endothelin 1 (Edn1) mRNA

(Figure 1G), a host gene previously reported to be induced by

HIF activation in the respiratory tract (Hickey et al., 2010).

Collectively, these data show a role for hypoxia in reducing

ACE2 and TMPRSS2 in vitro across multiple cell lines, and

this is recapitulated in the lungs of mice after systemic hypoxia

or FG-4592 treatment.
18% O2, whereas indicates significance relative to the control siRNA per con-

2 for 24 h, andmRNA expression ofAce2, Tmprss2, andHIF target geneEdn1 in

biological groups using a Student’s two-tailed t test, **p < 0.01, ****p < 0.0001.

) n = 4 (n = 3 for Ace2 in FG-4592 or vehicle-treated mice). See also Figure S1.
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Figure 2. Hypoxia or FG-4592 (Roxadustat) inhibits SARS-CoV-2 entry in a HIF-1a-dependent manner

(A) Calu-3 and primary bronchial epithelial cells (PBECs) pre-treated for 24 h with either FG-4592 (50 mM) or 1% O2 were infected with SARS-CoV-2 pseudo-

particle (pp), and infection wasmeasured after 48 h. To demonstrate the specificity of entry via the spike protein, the ppwas incubated with anti-spikemonoclonal

antibody (mAb) FI-3A (1 mg/mL) for 30 min before infection. Data are expressed relative to untreated (UT) cells.

(B) Calu-3 cells were treated with FG-4592 (50 mM) or 1% O2 and infected with wild-type (WT) or mutant (D614G or Furin knockout [KO]) SARS-CoV-2pp, and

infection was measured 48 h later. Data are expressed relative to UT cells.

(C) Calu-3 cells were cultured at 1%O2 for 16 h and re-oxygenated over a 0.5–6-h period. Cells were infected with SARS-CoV-2pp at the indicated times, and the

pp entry levels were measured 48 h after infection. Data are expressed relative to normoxic cells.

(D) siRNAs against HIF-1a and HIF-2a were delivered into Calu-3 cells either individually or in combination. Cells were treated with FG-4592 (50 mM) 24 h after

transfection and then infected with SARS-CoV-2pp. Data are expressed relative to an siScrambled (siScram) control. * denotes significance relative to control

siRNA (siScram) at 18% O2, whereas # indicates significance relative to control siRNA per condition.

(E) Calu-3 cells were treated with FG-4592 (50 mM) or cultured at 1% O2 for 24 h before inoculation with SARS-CoV-2 (MOI 0.001) for 2 h. Infected cells were

washed to remove the residual inoculum, and viral replication was assessed 24 h after infection by measuring intracellular and extracellular viral RNA along with

infectious titer (particle infectivity) through quantification of plaque-forming units (PFU)/mL. As a control to measure the cellular response to FG-4592 or 1% O2,

CAIX mRNA was quantified by qPCR. All data (except particle infectivity) is expressed relative to the UT control.

(legend continued on next page)
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We hypothesized that the HIF-dependent reduction in ACE2

expression would limit SARS-CoV-2 entry into naive target cells.

To assess that, we used lentiviral pseudoparticles (pp) express-

ing SARS-CoV-2-encoded spike glycoprotein and confirmed

that infectivity was ACE2 dependent by infection of human em-

bryonic kidney cells engineered to express ACE2 (Figure S3A).

Culturing Calu-3 or primary bronchial epithelial cells (PBECs) un-

der hypoxic conditions or treating with FG-4592 significantly

reduced SARS-CoV-2pp infection (Figure 2A). In contrast, viral

pp expressing the vesicular stomatitis virus glycoprotein (VSV-

G) infected Calu-3 cells and PBEC with comparable efficiency

at both oxygen levels (Figure S3B), demonstrating a SARS-

CoV-2-specific phenotype. We next sought to test whether hyp-

oxia/FG-4592 limits entry of the novel SARS-CoV-2 spike protein

variants; these have emerged throughout the course of the

pandemic, with some conferring a fitness advantage to viral en-

try. The most notable of these to date, D614G, is globally preva-

lent in the pandemic, consistent with a reported fitness advan-

tage for infecting cells in the upper respiratory tract (Weissman

et al., 2021; Korber et al., 2020). Further, deletion of the unique

furin cleavage site (which mediates membrane fusion) in the

SARS-CoV-2 spike protein has been observed in vitro (Davidson

et al., 2020) and in animal models of infection (Peacock et al.,

2020). Importantly, hypoxia or FG-4592 treatment of Calu-3 cells

reduced infection of pp containing either the spike variant to a

similar degree as the wild type (Figure 2B). Reoxygenation of

hypoxic Calu-3 cells induced a recovery of SARS-CoV-2pp entry

(Figure 2C), consistent with our earlier data showing post-hypox-

ic recovery of ACE2 and TMPRSS2 mRNA levels. Silencing

HIF-1a reversed the anti-viral effect of FG-4592 (Figure 2D),

demonstrating that HIF-1a represses SARS-CoV-2 entry,

consistent with its role in regulating ACE2. In contrast, we

observed a negligible effect of silencing HIF-2a on SARS-CoV-

2 entry (Figure 2D). In summary, these data show that hypoxic/

FG-4592 activation of HIF-1a represses ACE2 and impairs entry

of SARS-CoV-2 entry pp.

We next assessed whether our observations with SARS-CoV-

2pp translate to authentic viral replication. Infecting hypoxic (1%

O2) Calu-3 cells with SARS-CoV-2 (Victoria 01/20 strain) resulted

in a 90% reduction in viral RNA compared with that of normoxic

cells (Figure 2E). A similar repression in SARS-CoV-2 RNA levels

was also observed when culturing Calu-3 cells in 3% oxygen

(Figure S4A). Importantly, FG-4592 (50 mM)mimicked the hypox-

ic inhibition of SARS-CoV-2 replication, leading to a significant

reduction in the genesis of new particles (Figure 2E). To define

whether hypoxia altered the infectivity of SARS-CoV-2 particles,
(F) Calu-3 cells were treated with FG-4592 (50 mM) for 24 h before inoculation with

were washed to remove the residual inoculum, and viral replication was assessed

relative to the UT control.

(G) Calu-3 cells were treated with increasing concentrations of Daprodustat (GS

infected with SARS-CoV-2, and viral replication was assessed 24 h later. Data a

(H) siRNA targeting either HIF-1 or 2awas delivered into Calu-3 cells individually or

1% O2 before inoculating with SARS-CoV-2 (MOI 0.001). Intracellular RNA was q

siScramble (siScram) control. * denotes significance relative to the control siRNA

per condition.

Data are presented asmeans ±SD from (A) n = 4 (Calu-3) and n = 5 (PBEC donors)

E, and G) or two-way (D and F) ANOVA. *p or #p < 0.05, **p or ##p < 0.01, ***p o
we assessed the ratio of RNA copies per plaque-forming unit

(PFU), finding no significant difference between virus produced

from cells at either 18% O2 or 1% O2 (9.3 3 103 ± 6.7 3 103

and 2.6 3 103 ± 1.6 3 103 means ± SD. RNA copies/PFU,

respectively). Notably, we demonstrated comparable antiviral

efficacy of FG-4592 treatment against the recently identified

B.1.1.7 (United Kingdom) and B1.351 (South Africa) SARS-

CoV-2 variants (Figure 2F). Treating Calu-3 cells with FG-4592

or two additional PHD inhibitors of the same class: Daprodustat

and Molidustat, inhibited SARS-CoV-2 replication in a dose-

dependent manner with maximal inhibition noted at approxi-

mately 6 mM (Figure 2G), which is in the range of reported plasma

levels in human subjects after oral administration of these drugs

at clinical doses (Provenzano et al., 2016). Efficacy of either PHI

treatment or hypoxic culture in the activation of HIF was vali-

dated by assessing the induction of CAIX mRNA (Figures 2E

and S4B). siRNA silencing of HIF-1a, but not HIF-2a, in Calu-3

cells reversed the hypoxic or FG-4592-mediated suppression

of viral infection, demonstrating a role for HIF-1a in repressing

SARS-CoV-2 RNA replication (Figure 2H). These data show a

key role for HIF-1a in repressing ACE2-dependent, authentic

SARS-CoV-2 entry and infection.

To define whether hypoxia signaling regulates additional post-

entry steps in the SARS-CoV-2 life cycle, we evaluated the effect

of hypoxia on viral replication when applied throughout or after

virus inoculation. Hypoxia reduced viral RNA levels in both con-

ditions and at all multiplicities of infection (MOIs) tested (Fig-

ure 3A). Importantly, treating SARS-CoV-2-infected Calu-3 with

FG-4592 or hypoxia for 24 h significantly reduced both intracel-

lular and extracellular SARS-CoV-2 RNA (Figure 3B). To further

define the post-entry effects of HIFs on viral replication, we in-

fected Calu-3 cells and treated them with either FG-4592 or

1% oxygen 8 h later, once replication complexes were estab-

lished. We noted a significant reduction in intracellular and extra-

cellular viral RNA with both treatments and an induction of CAIX

mRNA (Figure 3C), demonstrating a role for HIFs in the regulation

of post-entry viral RNA replication.

Given the marked reduction in the cellular viral RNA burden

observed under hypoxic conditions, we sought to understand

the effect of hypoxia on the initial establishment of viral replica-

tion complexes and quantities of positive genomic-strand viral

RNA at the single-cell level. Using single-molecule fluorescence

in situ hybridization (smFISH), wemeasured the effect of hypoxia

and FG-4592 on positive-strand viral RNAs within the first 6 h of

infection, which represents the first cycle of infection (eclipse

phase) before the secretion of infectious particles (Figure S5).
SARS-CoV-2 Victoria 01/20, B1.1.7, or B1.351 (MOI 0.003) for 2 h. Infected cells

24 h after infection bymeasuring intracellular viral RNA, and data are expressed

K: 1278863), Molidustat (Bay 85-3934), and Roxadustat (FG-4592) and were

re expressed relative to UT cells.

in combination, and 24 h after transfectionwas treatedwith FG-4592 (50 mM) or

uantified 24 h after infection, and data are expressed relative to the normoxic

(siScram) at 18%O2, whereas # indicates significance relative to control siRNA

; and (B–G) n = 4. Statistical significancewas determined using a one-way (A, B,

r ###p < 0.001, ****p or ####p < 0.0001. See also Figures S2–S4.
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Figure 3. Hypoxia or FG-4592 (Roxadustat) inhibits SARS-CoV-2

replication post-entry

(A) Calu-3 cells were treated with 1% O2 before or after infection with SARS-

CoV-2 at the indicated MOIs, and intracellular RNA was quantified by qPCR

24 h later. Data are expressed as RNA copies 3 108/mg of total cellular RNA.

(B) Calu-3 cells were inoculated with SARS-CoV-2 (MOI 0.001) for 2 h; un-

bound virus was removed by washing, and cells were treated with FG-4592

(50 mM) or cultured at 1% O2. Viral replication was assessed by measuring
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Hypoxia and FG-4592 treatment significantly reduced the levels

of viral RNA per cell (Figures 4A and 4B). We noted a reduction in

the frequency of infected cells, as judged by the detection of

genomic RNA (Figure 4C). Because de novo generated viral par-

ticles were first detected at 6 h after infection (Figure S5), these

RNA signals represent primary infection events.

In conclusion, we describe striking inhibitory effects of hypoxia

and FG-4592 (Roxadustat) treatment on SARS-CoV-2 entry

(including spike variants), replication, and secretion of infectious

particles in lung epithelial cells. These effects were mediated by

a HIF-1a-dependent repression of SARS-CoV-2 replication, in

concert with the reduced expression of ACE2 across a range

of cell lines and mouse lung tissue. Of note, there are reports

of hypoxic induction ofACE2 gene expression in other cell types,

albeit often transient (Clarke et al., 2014; Joshi et al., 2019; Zhang

et al., 2009). Although this contrasts with our findings, the

discrepancy may reflect the minimal ACE2 expression detected

in many cell lines we examined, whereas in this study, we

focused on cell lines that express greater levels of ACE2 and

are relevant to the clinical sites of infection. Alternatively, the re-

ported differences in ACE2 transcriptional regulation may reflect

cell-type-specific metabolic phenotypes that modulate HIF

signaling (Codo et al., 2020) or expression of co-regulators that

mediate indirect effects of HIF stabilization. For example, a study

of hypoxic regulation of ACE2 in PASMCs suggests an indirect

mechanism through HIF-1a induction of ACE1 and ANG-II/

ATR1 signaling (Zhang et al., 2009); however, ACE1 was not

regulated by hypoxia or FG-4592 in Calu-3 cells (Figure S2).

Interestingly, recent evidence describes a HIF-1a-dependent in-

duction of the microRNA LET7b, which directly targets the ACE2

coding sequence to suppress its expression in hypoxic PASMCs

(Zhang et al., 2019). Although the precise mechanism by which

HIF-1a represses ACE2 mRNA in lung epithelial cells is unclear,

the reversible nature of this repression, combined with the pres-

ence of a hypoxia responsive element in the ACE2 promoter

(Zhang et al., 2009), may be consistent with direct HIF-mediated

repression.

Beyond effects on ACE2-mediated viral entry, we observed

marked suppression of SARS-CoV-2 RNA and genesis of infec-

tious particles by hypoxia or pseudohypoxia. Notably, treatment

with additional prolyl hydroxylase inhibitors Daprodustat and

Molidustat exhibited a comparable antiviral capacity, suggesting

a class effect that extends beyond Roxadustat. HIF has been

shown to regulate the replication of other RNA viruses through

effects on host cell metabolism (Farquhar et al., 2017; Frakolaki

et al., 2018; Zhao et al., 2020a). For example, HIFwas reported to

repress hepatitis C virus replication in the liver via activation of
intra- and extracellular levels of SARS-CoV-2 RNA. The cellular response to

FG-4592 or 1% O2 was assessed through CAIXmRNA quantification. All data

are expressed relative to the UT control. Data are presented as means ± SD

from (A and B) n = 4, and statistical significance was determined using a two-

way ANOVA.

(C) Calu-3 cells were infected with SARS-CoV-2 as detailed above and 8 h later

were cultured under 1%O2 or treated with FG-4592 (50 mM) for 24 h. Intra-

cellular and extracellular viral RNA, along with CAIX transcripts, were

measured by qPCR, and data are expressed relative to UT control.

Data are presented as means ± SD from (A–C) n = 4, and statistical signifi-

cance was determined using a two-way ANOVA. *p < 0.05, **p < 0.01.
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Figure 4. Hypoxia inhibits SARS-CoV-2 RNA replication

(A) Calu-3 cells were inoculated with SARS-CoV-2 at an MOI of 1.0 for 2 h; unbound virus was removed by washing, and the cells were cultured at 18% or 1%O2

or treated with FG-4592 (50 mM) for 4 h. Cells were fixed, and viral infection was visualized by smFISH, where representative two-dimensional (2D) images

depicting positive-strand SARS-CoV-2 genomic RNA are shown. Cells are counter-stained with DAPI to visualize the nucleus; inset images show the individual

and merged images, and the scale bar depicts 20 mm.

(B) Viral RNAwas quantified by integrating the three-dimensional (3D) signal density of individual cells, in which each symbol represents a single cell at 18%or 1%

O2 or in FG-4592-treated cells.

(C) The frequency of SARS-CoV-2 positive-strand RNA expressing cells at the different oxygen levels and after FG-4592 treatment was quantified per field of

view, in which each symbol reflects a single field.

Data represent the means ± SD percentage of viral RNA derived from n = 3, and significance was assessed by Mann-Whitney test. See also Figure S5.
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the autotaxin-lysophosphatidic acid signaling pathway to regu-

late virus particle genesis (Farquhar et al., 2017). Moreover, our

understanding of how HIF regulates respiratory viruses is exem-

plified by influenza A virus, whose replication was enhanced in

mice, with HIF-1a inactivation restricted to type II alveolar
epithelial cells (Zhao et al., 2020a), highlighting a role for HIF-

1a in repressing this respiratory pathogen. Our findings contrast

to those reported by Codo et al. (2020) who showed that treat-

ment of monocytes with the HIF prolyl hydroxylase inhibitor

BAY 85-3934 (Molidustat) increased SARS-CoV-2 RNA levels
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in an HIF-1a-dependent manner. This may relate to cell-type-

specific differences; for example, monocytes have limited per-

missivity to support SARS-CoV-2 replication, and viral RNA

levels were substantially lower than those measured from in-

fected lung epithelial cells. Further work is needed to charac-

terize the HIF-1a-dependent mechanisms of SARS-CoV-2

repression described here, which are likely mediated via HIF-

1a regulation of host factors essential for viral RNA replication

and/or stability.

Our observations raise clear questions as to how cellular hyp-

oxia translates to humans, both in terms of SARS-CoV-2 suscep-

tibility and clinical progression of COVID-19. There has been

some speculation that chronic hypoxiamay beprotective,with re-

ports of reduced incidence of COVID-19 disease in high-altitude

human populations (Pun et al., 2020) (although these observa-

tions are complicated by geographic and socioeconomic factors).

Some clinical studies suggest that smokers and patients with

chronic respiratory diseases (e.g., asthma and COPD) are un-

der-represented co-morbidities in hospitalized patients with

COVID-19 (Halpin et al., 2020). However, these conditions are

also associatedwith a higher risk of poor outcomes in established

infections (Lippi and Henry, 2020; Sanchez-Ramirez andMackey,

2020) and,more generally, hypoxemia is a negative prognostic in-

dicator in severe COVID-19 (Berenguer et al., 2020; Petrilli et al.,

2020; Yadaw et al., 2020). Although this is seemingly at odds

with our findings, clinical hypoxemia is a complex state that re-

flects multiple pathogenic processes, including vascular inflam-

mation, coagulopathy, andmicrothrombotic disease (McGonagle

et al., 2020; Varga et al., 2020), which may confound any protec-

tive effects of hypoxia on SARS-CoV-2 infection.

A key finding from our study is the potential therapeutic appli-

cation of Roxadustat, and other related HIF prolyl hydroxylase in-

hibitors, in COVID-19, especially because these act on multiple

stages of the viral life cycle (impairing entry and replication) and,

as such, may be effective against emerging SARS-CoV-2 vari-

ants. These drugs have been developed as erythropoiesis-stimu-

lating agents in patients with anemic and chronic kidney disease

and are currently being used in both pre-dialysis and dialysis set-

tings. Thus, it is likely that substantial numbers of patients who are

at risk of severe COVID-19 (Williamson et al., 2020; Wu et al.,

2020) will be receiving these drugs. Our work highlights the urgent

need to monitor these patients for any evidence that PHD inhibi-

tors provide prophylactic and/or therapeutic activity against

COVID-19. However, clinical translation of Roxadustat may be

complex because HIF has multiple systemic effects that could

affect COVID-19 disease progression. Moreover, ACE2 is protec-

tive in models of lung injury (Kuba et al., 2005), so it is uncertain

whether reducing ACE2 expression would have a net benefit in

severe lung disease. Regardless of the potential complexity, the

marked effects of Roxadustat in protecting naive cells from

SARS-CoV-2 entry and in inhibiting viral replicationwithin infected

cells merits further evaluation in animal models and consideration

for study in human clinical trials.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jane

McKeating (jane.mckeating@ndm.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The authors declare that all data supporting the findings of this study are available in the article. Original data have been deposited to

Mendeley Data: https://doi.org/10.17632/yvgx2sgsf6.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animal procedures were carried out in accordance with the Animals (Scientific Procedures) Act 1986 Amendment Regulations

2012. Mice were housed in the Functional Genetics Facility of the Wellcome Trust Centre for Human Genetics (University of Ox-

ford) in individually ventilated cages with food and water provided ad libitum and on a 13h light/11h dark cycle. Wild-type male

mice on a C57BL/6 genetic background, approximately 8 weeks old and littermate controlled were used for the experiments.

Mice were treated over the course of 24h with 3 oral gavages of 10mg/kg FG-4592 prepared as a 2.5mg/mL solution in 5mg/

mL methyl cellulose, 0.5% Tween80 vehicle (or vehicle alone). Hypoxic mice were housed in a normobaric altitude chamber

held at 10% O2 with controlled temperature, humidity and carbon dioxide levels and compared against mice held in normoxia.

Animals were sacrificed by an overdose of Isoflurane (Primal Critical Care) and exsanguination, after which lungs were collected

and immediately frozen in liquid nitrogen.

Cell culture
RKO, U2-OS, Caco-2 and Vero E6 cell lines were cultured in standard DMEM; SH-SY5Y cell line in DMEM/F-12; Calu-3 in Advanced

DMEM; U937 in RPMI; and A549 in F-12K; all supplemented with: 10% fetal bovine serum, 2mML-glutamine, 100U/mL penicillin and

10 mg/mL streptomycin. EA.hy926 and HepG2 cells were cultured in standard DMEM additionally supplemented with endothelial cell

growth supplement or non-essential amino acids, respectively. All cell lines were maintained at 37�C and 5% CO2 in a standard cul-

ture incubator and exposed to hypoxia using an atmosphere-regulated workstation set to 37�C, 5%CO2:1%–5%O2:balance N2 (In-

vivo 400, Baker-Ruskinn Technologies). Human PBECs were obtained using flexible fiberoptic bronchoscopy under light sedation

with fentanyl and midazolam from healthy control volunteers. Participants provided written informed consent. The study was re-

viewed by the Oxford Research Ethics Committee B (18/SC/0361). Airway epithelial cells were taken by 2mm diameter cytology

brushes from 3rd to 5th order bronchi and cultured in Airway Epithelial Cell medium (PromoCell, Heidelberg, Germany) in submerged

culture.

Viral strains
SARS-CoV-2 strains: Victoria 01/20 (BVIC01) (Caly et al., 2020) (provided by PHE Porton Down after supply from the Doherty

Centre Melbourne, Australia); B1.1.7 (Tegally et al., 2020) (20I/501Y.V1.HMPP1) (provided by PHE Porton Down) and B1.351

(201/501.V2.HV001) (Cele et al., 2021) (Centre for the AIDS Programme of Research in South Africa) were passaged in Vero E6

cells.
Cell Reports 35, 109020, April 20, 2021 e3
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METHOD DETAILS

SARS-CoV-2 pseudoparticle genesis and infection
SARS-CoV-2 lentiviral pseudoparticles (pp) were generated by transfecting 293T cells with p8.91 (Gag-pol), pCSFW (luciferase re-

porter) and a codon optimized expression construct pcDNA3.1-SARS-CoV-2-Spike, as previously described (Thompson et al.,

2020). The Furin cleavage site mutant was generated by mutagenesis of a pcDNA3.1 based clone expressing a C-terminally flag-

tagged SARS-CoV-2 Spike protein (Wuhan-Hu-1 isolate; MN908947.3). The polybasic cleavage site TNSPRRA in SARS-CoV-2

Spike was replaced with the corresponding SARS-CoV variant sequence SLL. The pNBF SARS-CoV2 FL D614G mutant was a

kind gift from Dr. Daniel Watterson and Dr. Naphak Modhiran (University of Queensland, Australia) and Furin KO mutant from Dr

Daniel Bailey (Pirbright Institute, UK). Supernatants containing viral pp were harvested at 48 and 72h post-transfection. Viral titers

were determined by infecting Calu-3 cells with a serial dilution of virus and 48h later measuring cellular luciferase. As a control for

non-specific lentivirus uptake, stocks were generated with no envelope glycoprotein (No Env). This control was included in all pp

experiments and the luciferase values obtained subtracted from values acquired with the SARS-CoV-2pp. To define spike-depen-

dent infection, SARS-CoV-2pp were incubated with the anti-S-mAb FI-3A (1mg/mL) (Hauang et al., 2020) for 30min prior to infection.

SARS-CoV-2 propagation and infection
Naive Vero E6 cells were infected with SARS-CoV-2 at an MOI of 0.003 and incubated for 48-72h until visible cytopathic effect was

observed. At this point, cultures were harvested, clarified by centrifugation to remove residual cell debris and stored at �80�C. Viral
titer was determined by plaque assay. Briefly, Vero E6 cells were inoculated with serial dilutions of SARS-CoV-2 viral stocks for 2h

followed by addition of a semi-solid overlay consisting of 1.5% carboxymethyl cellulose (SIGMA). Cells were incubated for 72h,

visible plaques enumerated by fixing cells using amido black stain and plaque-forming units (PFU) per mL calculated. For infection

of Calu-3 cells with SARS-CoV-2, cells were plated 24h before infection with the stated MOI. Cells were inoculated for 2h after which

the residual inoculum was removed with three PBS washes. Unless otherwise stated, infected cells were maintained for 24h before

harvesting for downstream applications.

Immunoblotting
Cell lysates were prepared bywashing cells with phosphate buffered saline (PBS), then lysing in Igepal lysis buffer (10mMTris pH 7.5,

0.25M NaCl, 0.5% Igepal) supplemented with Complete TM protease inhibitor cocktail (Sigma Aldrich) at 4�C for 5min, followed by

clarification by centrifugation (3min, 12,000 rpm). Supernatant was mixed with Laemmli sample buffer, separated by SDS-PAGE and

proteins transferred to polyvinylidene difluoride membrane (Immobilon-P, Millipore). Membranes were blocked in 5% milk in PBS/

0.1% Tween-20, then incubated with anti-ACE2 (Abcam ab108252) or anti-TMPRSS2 (SCBT sc-515727) primary antibodies and

appropriate HRP-conjugated secondary antibodies (DAKO). Chemiluminescence substrate (West Dura, 34076, Thermo Fisher Sci-

entific) was used to visualize proteins using a ChemiDoc XRS+ imaging system (BioRad). Anti-b-actin-HRP conjugate (Abcam

ab49900) and/or Coomassie brilliant blue stainingwas then used to verify equal protein loading and densitometric analysis performed

using ImageJ software (NIH).

RT-qPCR
Cells were washed in PBS then lysed using Tri-reagent (Sigma), and mRNA extracted by phase separation. Equal amounts of cDNA

were then synthesized using the High Capacity cDNA Kit (Applied Biosystems) and mRNA expression determined using Fast SYBR

master mix using a StepOne thermocycler (Applied Biosystems) using the DDCt method. See Key resources table for primer se-

quences. Frozen lungs were homogenized in RLT buffer (QIAGEN) using a Standard Micro-Homogenizer (ProScientific) and

mRNA was extracted using the RNeasy Mini kit (QIAGEN), according to manufacturer’s instructions. Equal amounts of cDNA

were synthesized using the QuantiTect Reverse Transcription Kit (QIAGEN) and mRNA expression was quantified in triplicates in

a duplex quantitative real-time PCR using TaqMan Fast Advanced Master Mix and Ace2 FAM (Mm01159006_m1), Tmprss2 FAM

(Mm00443677_m1), Edn1 FAM (Mm00438656_m1) and ActB VIC (Mm01205647_g1) assays (Thermo Fisher). The reaction was car-

ried out in the StepOnePlus Real-Time PCR System (Applied Biosystems). DCT was defined as the difference between the Target

gene CT and the ActB CT. –DDCT values were calculated for each replicate as follows: -(FG-4592 DCT – Vehicle DCT) (Livak and

Schmittgen, 2001). Fold change in the target gene mRNA expression in each genotype group was expressed as 2–DDCT.

FISH quantification of SARS-CoV-2 RNA
SARS-CoV-2 single-molecule fluorescence in situ hybridization (smFISH): smFISH was carried out as previously reported (Yang

et al., 2017) with minor modifications. Briefly, cells were grown on #0 round glass coverslips in 24 well plate and fixed in 4% para-

formaldehyde for 30min at room temperature. Cells were permeabilised in PBS/0.1% Triton X-100 (PBST) for 10min at room temper-

ature followed by washes in PBS and 2x SSC. Cells were pre-hybridized in prewarmed (37�C) wash solution (2x SSC, 10% form-

amide) twice for 20min each at 37�C. Hybridization was carried out in hybridization solution (2x SSC, 10% formamide, 10%

dextran sulfate) containing 500nM FISH probes overnight at 37�C. SARS-CoV-2 positive and negative genomic RNA FISH probes

were labeled with ATTO633 and ATTO565 (ATTO-Tec), respectively (See Table S1), according to published protocols (Gaspar

et al., 2017). Individual probe sequences are listed in supplemental data. After the overnight hybridization, cells were washed for
e4 Cell Reports 35, 109020, April 20, 2021
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20min in pre-warmedwash solution at 37�C followed by counterstaining with DAPI (1mg/mL) and Phalloidin-AlexaFluor 488 conjugate

(264nM), diluted in wash solution. Cells were then washed once with wash solution for 20min at 37�C and twice with 2xSSC for 5min

each at room temperature. Coverslips were dipped in pure water and mounted on slides using Vectashield HardSet (Vector Labs).

Image acquisition and analysis
Mounted cells were imaged on anOlympus SoRa spinning disc confocal with Orca Flash4CMOS camera using 60x silicone oil objec-

tive (1.3 NA, UPLSAPO60XS2) or 100x silicone oil objective (1.35 NA, UPLSAPO100XS). Specimens were imaged in at least ten

different locations per condition and replicate. 3D-stacked images were taken with voxel size of 80nm x 80nm x 200nm in x:y:z

and images were deconvolved with maximum likelihood algorithm using cellSens (5 iterations, default PSF, Olympus). Background

subtraction was performed on all channels using rolling ball subtraction (radius = 100px) in ImageJ (National Institutes of Health).

smFISH signal was quantified using intensity-based methods by manually segmenting individual infected cells using phalloidin stain

on a maximum projected image and integrating signal intensity across all slices within region of interest. Integrated intensity was

divided by cell volume to obtain signal density per volume, which was normalized by subtracting average signal density of uninfected

cells. Infection frequency was quantified per field of view for each 3D image. To get total number of cells, DAPI channel was Gaussian

filtered (radius = 10px) in ImageJ and nuclei were automatically counted using spot tool in Imaris (diameter = 6mm, Bitplane). Infected

cells were counted manually.

Materials
All reagents and chemicals were obtained from Sigma-Aldrich (now Merck) unless stated otherwise. Roxadustat, Molidustat and

Daprodustat were obtained from either Selleckchem or MedChemExpress. See Key resources table for details

QUANTIFICATION AND STATISTICAL ANALYSIS

Data was analyzed using GraphPad Prism version 8.0.2 (GraphPad, San Diego, CA, (USA). P values < 0.05 were considered signif-

icant; significance values are indicated as *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Please see individual figure legends for

further details.
Cell Reports 35, 109020, April 20, 2021 e5
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Supplemental Figures 
 
 
 

  
 
Fig.S1 Hypoxic gene induction in ACE2 expressing cells. [Related to Fig.1] (A) Calu-3, Caco-2, Vero E6 and HepG2 
cells were treated with FG-4592 (50μM) or 1% O2 for 24h with CAIX, NDRG1, and EGLN3 mRNA assessed by qPCR. 
Data are expressed relative to normoxic untreated (UT) cells as mean ± S.D. from n=3 biological replicates. (B) HepG2 
cells were treated with increasing concentrations of FG-4592 for 24h with NDRG1 and EGLN3 mRNA quantified. Half-
maximal effective concentration (EC50) values for both genes in response to FG-4592 treatment were calculated. (C) 
The impact of either FG-4592 or hypoxic incubation on the viability of Calu-3 cells was assessed through 
quantification of extracellular lactate dehydrogenase (LDH) 24h post-treatment. (D) HepG2 cells were treated with 
FG-4592 (50μM) or 1% O2 for 24h and ACE2/TMPRSS2 protein expression assessed by immunoblot. β-Actin was used 
to show equal protein loading.  
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Fig.S2: Validating siRNA silencing of HIF-1α and HIF-2α in Calu-3 cells. [Related to Fig.2]. 
siRNAs targeting either HIF-1 or 2α were delivered into Calu-3 cells either individually or in combination along with 
a control scrambled siRNA. 48h post-transfection the cells were treated with FG-4592 (50μM) or 1% O2 for 24h and 
total cellular RNA extracted. siRNA knock-down was confirmed by qPCR quantification of HIF-1α, HIF-2α, ACE1, CAIX, 
NDRG1, EGLN3 and VEGFA mRNA levels. Bars represent mean ± S.D. from n=4 biological replicates and data plotted 
relative to siScram at 18% O2 with statistical significance determined by two-way ANOVA, * p<0.05 ** p<0.01, *** 
p<0.001, **** p<0.0001. 
 
 

18% O2 FG-4592 1% O2

6XSSOHPHQWDU\�)LJ����9DOLGDWLQJ�VL51$�VLOHQFLQJ�RI�+,)��Į�DQG�+,)��Į�LQ�&DOX���FHOOV��VL51$V�WDUJHWLQJ�HLWKHU�+,)���RU��Į�
were delivered into Calu-3 cells either individually or in combination along with a control scrambled siRNA.  48h post-transfection
 the cells were treated with FG-4592 (50µM) or 1% O2 for 24h and total cellular RNA extracted. siRNA knock-down was confirmed 
E\�T3&5�TXDQWLILFDWLRQ�RI�+,)��Į��+,)��Į��&$,;��$&(���1'5*���(*/1��DQG�9(*)$�P51$�OHYHOV��%DUV�UHSUHVHQW�PHDQ���6�'�
 from n=4 biological replicates and data plotted relative to siScram at 18% O2 with statistical significance determined by two-way 
ANOVA, * P<0.05 ** P < 0.01, *** P < 0.001, **** P < 0.0001.  
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Fig.S3: SARS-CoV-2pp entry is ACE2 dependent. [Related to Fig.2]. (A) Human embryonic kidney 293T cells were 
transfected with a control or human ACE2 overexpression plasmid and infected with SARS-CoV-2 pseudoparticles 
(pp) 48h post-transfection. ACE2 expression was confirmed by immunoblot. SARS-CoV-2pp were pre-treated with or 
without an anti-Spike mAb FI-3A (1μg/ml) for 30min prior to infection. Data is mean ± S.D. from n=4 biological 
replicates. (B) Calu-3 or PBECs were cultured under 18% or 1% O2 for 24h before infection with viral pseudoparticles 
expressing vesicular stomatitis virus glycoprotein (VSV-G). Infection was assessed 48h later by quantification of 
luciferase activity. Data is expressed relative to the normoxic samples and is the mean ± S.D. of n=4 biological 
replicates.  
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Fig.S4: Dose dependent Inhibition of SARS-CoV-2 by hypoxia and HIF prolyl hydroxylase inhibitors. [Related to 
Fig.2]. (A) Calu-3 cells were incubated at 18%, 3% or 1% O2 for 24h prior to infection with SARS-CoV-2 at the indicated 
MOIs. Viral RNA was quantified from infected cells 24h post infection. (B) Calu-3 cells were treated increasing 
concentrations of Daprodustat (GSK1278863), Molidustat (Bay 85-3934) or Roxadustat (FG-4592), infected with 
SARS-CoV-2 and CAIX mRNA quantified by qPCR. All data is n=4 biological replicates and presented as mean ± S.D. 
with statistical significance determined by two-way ANOVA, * p<0.05 ** p<0.01. 

 
 
 
 
 
 
 
 
 
 
 
 

A

B

Supplementary Fig.6: Inhibition of SARS-CoV-2 with PHD inhibitors and  different oxygen tensions.
(A) Calu-3 cells were treated increasing concentrations of Daprodustat (GSK1278863), Molidustat (Bay 85-3934)
 and Roxadustat (FG-4592), then infected with SARS-CoV-2 with viral RNA quantified by qPCR. (B) Calu-3 cells 
were incubated at 3% and 1% O2  for 24h prior to infection with SARS-CoV-2 at the indiacted MOIs. Viral RNA 
was quantified from infected cells 24h post infection. All data is n=4 biological replicates and presented as 
mean ± S.D with statistical significance determined by two-way ANOVA, * p<0.05 ** p< 0.01, *** p< 0.001. 
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Fig.S5. Single step growth curve of SARS-CoV-2. [Related to Fig.4].  Calu-3 cells were inoculated with SARS-CoV-2 
for 1h at an MOI of 1, unbound virus removed by washing and cells cultured in 18% O2. At the indicated times 
extracellular samples were collected and SARS-CoV-2 RNA quantified by qPCR. Data is presented as mean ± range of 
n=2 biological replicates.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Fig.7. Single step growth curve of SARS-CoV-2. 
Calu-3 cells were inoculated with SARS-CoV-2 for 1h at an MOI of 1.0, unbound virus removed by washing and cells cultured 
in 18% O2. At the indicated times extracellular samples were collected and SARS-CoV-2 RNA quantified by qPCR. Data is 
presented as mean ± range of n=2 biological replicates.
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Supplementary Table 1: Probe sequences for quantification of SARS-CoV-2 RNA by smFISH [Related to STAR 
METHODS] 
 
Positive gRNA probes 
TAGATCGGCGCCGTAACTAT 
TCCTTTATTACCGTTCTTAC 
AGAAGAACCTTGCGGTAAGC 
TACTGAATGCCTTCGAGTTC 
AGCATCCGAACGTTTGATGA 
TAGTAGTTGTCTGATTGTCC 
GTCTTGTTGACCAACAGTTT 
CTCATATTGAGTTGATGGCT 
AGTAGTATGTAGCCATACTC 
TCTAAATCAATGCCCAGTGG 
GTAATTCAGATACTGGTTGC 
CCTTTGAGTGTGAAGGTATT 
GAGCAACATAAGCCCGTTAA 
AGGTTGTTCTAATGGTTGTA 
CATAGGGCTGTTCAAGTTGA 
GCTTTTAGAGGCATGAGTAG 
TGCGTGACAAATGTTTCACC 
AAGGCTTTAAGTTTAGCTCC 
CCCAACCGTCTCTAAGAAAC 
AAGCCAATCAAGGACGGGTT 
TTAGTTAGCCACTGCGAAGT 
ACTGAACAACACCACCTGTA 
GTAGGCCATTACAACTAGAT 
AGTAGCCAAATCAGATGTGA 
TTATAGCGGCCTTCTGTAAA 
TTGACGTGCCTCTGATAAGA 
TGCGGGAGAAAATTGATCGT 
GGCGATCTCTTCATTAAGTT 
GGTTGTCATTAAGACCTTCG 
ACAACCTATGTTAGCGCTAG 
ATAGGCACACTTGTTATGGC 
TCCAAAGGCAATAGTGCGAC 
AAGACTATGCTCAGGTCCTA 
AGTAACCACAAGTAGTGGCA 
TCACACTTCATGAGAGTTGA 
GCACATTTGGTTGCATTCAT 
CAAAGCCACGTACGAGCACG 
GGTGACGCAACTGGATAGAC 
CCTTGGTTGAATAGTCTTGA 
TTTCAGAACGTTCCGTGTAC 
CCAGTTGTTCGGACAAAGTG 
TTACCAGCACGTGCTAGAAG 
AATGCACTCAAGAGGGTAGC 
GTTATCGACATAGCGAGTGT 
TAAGCTCACGCATGAGTTCA 
CTTCATAAGGATCAGTGCCA 
CTCGTCGCCTAAGTCAAATG 
GCGAACCTGTAAAACAGGCA 
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