INTRODUCTION

COMPULSION

Congratulations on purchasing a Felt Compulsion. As with all of our bikes and components, our aim is to provide the rider with the best product and riding experience. Read this manual supplement thoroughly, as it’s to help you set your bike up correctly, and care for it.

For further information, visit: FELTBICYCLES.COM

STATS

• Rear Wheel Travel: 165mm.
• Fork: Designed around 170mm fork, compatible with forks up to 180mm.
• Tire size: 27.5x2.6 max (with proper ISO clearance).
• Bottom Bracket: English Threaded (AKA ‘BSA’ Standard), 73mm wide.
• Headset: Zero Stack 1 1/8-1.5 tapered. FSA calls this ‘no. 57’. Cane Creek calls this ZS44/28.6 Upper, ZS56/40 Lower.
• Seatpost: 30.9mm diameter. Compatible with internally-routed dropper posts only.
• Seatpost collar: 34.9mm diameter.
• Rear Axle: 148x12, Syntace standard (12x1.0 thread).
• Rear Shock: 205x65mm Metric standard. Trunnion top, Ø8x30mm reducers bottom.
• Chainring: 52mm (Boost) chainline. Maximum 38t round, or 36t oval.
• Di2 Compatible: Yes
• Rear Brake: 160mm direct Post Mount.
• 1x drivetrain ONLY.

CONTENTS

EQUILINK EXPLAINED ... 2
GEOMETRY ... 4
SHOCK SETUP ... 5
FLIP CHIP ... 6
HEAD TUBE CABLE GUIDES .. 7
BOTTOM BRACKET CABLE GUIDES .. 8
DROPPER POST ROUTING .. 9
REAR BRAKE ROUTING ... 11
REAR SHIFTER ROUTING ... 13
SUSPENSION PIVOT EVALUATION .. 15
PIVOT TORQUE VALUES ... 16
LOWER LINK PIVOTS .. 18
SEAT TUBE PIVOTS ... 21
SEATSTAY YOKE PIVOTS .. 23
SHOCK MOUNTS ... 24
DROPOUT PIVOTS ... 26
EQUILINK PIVOTS .. 28
HARWARE REBUILD KIT .. 30
BEARING KIT ... 30
TOOL KIT .. 31
MASTER PARTS LIST .. 32
Equilink is a patented 6-bar linkage system that allows our engineers to deliver a unique ride quality with no compromises. Typical short-link 4-bar systems can be optimized for bump absorption or efficient pedaling, but not both. The suspension’s bump performance is dictated by the leverage curve (how much the shock compresses relative to the rear wheel travel), which is governed by the rotation of the upper link. The pedaling efficiency is determined by the anti-squat curve, which is related to the motion of the lower link. When the upper and lower links are connected through a 1-piece rear triangle (like the image below on the right), any changes the designer makes to the upper link to optimize the leverage curve will change the rotation of the lower link, affecting the anti-squat curve. Likewise, any changes to the lower link to optimize anti-squat will compromise the leverage curve.

The solution? Connect the upper and lower links with the ‘equilink.’ This allows our engineers to tune the rotation of the upper and lower links independently, to optimize both leverage and anti-squat curves. The result is a leverage curve that’s progressive, providing small bump sensitivity, mid stroke support, and bottom-out resistance; and an anti-squat curve that provides the appropriate amount of pedaling support in the beginning of suspension travel (where pedaling occurs), while limiting pedal kickback on big compressions, keeping things active.

Efficient Pedaling

To accomplish efficient pedaling, the suspension is designed with an ideal amount of anti-squat. A key benefit of the Equilink is that it allows for a downward sloping anti-squat curve which falls off more rapidly around 60% travel. This translates to a bike that pedals well and is able to absorb bumps at the same time.

Large Impacts

To provide support on large impacts, the bike has a progressive leverage ratio. This means that the suspension gets progressively harder to compress as it moves through its travel.

Small-Bump Sensitivity

For small-bump sensitivity, the shock is tuned with very little compression damping. Because the linkage is providing the pedaling efficiency and large impact support, the shock can remain active and absorb bumps when needed. The added benefit of doing this is the shock is not compensating for any shortcomings of the linkage design, therefore it is not working as hard which leads to less heat buildup and more consistent performance.
It is very important to have the correct amount of sag so that the suspension can be in the part of its travel that is most efficient and compliant. Felt recommends starting at 30% and adding/subtracting up to 5-10% to fine tune to your personal preference.

TO MEASURE SAG, FOLLOW THESE 4 STEPS:

1. Push the o-ring to the top of the shock shaft.
2. Sit on the bike with the seat at full ride height to compress the shock. Bounce a few times, then push the o-ring back to the top of the shaft.
3. Gently get off the bike, taking care not to change the position of the o-ring. On some shock models, the sag gradients will be printed on the shaft. In this case, simply read your sag percentage as it is printed on the shock shaft. If there are no sag gradients, measure the distance of the o-ring from the top of the shaft. To achieve 30% sag, the o-ring should be 20mm from the top of the shaft. If there is too much sag (>30%) add air pressure, if there is not enough sag (<30%), reduce air pressure.
4. Repeat process until desired sag is achieved.
FLIP CHIPS

The Compulsion comes with two sets of pivot hardware for the Seatstay Yoke Pivot to allow you to change the geometry of the bike. One set, called the “middle chips,” is drilled with the pivot screw centered. This is the default geometry, as shown in the geometry chart. The other set is called the “flip chips” and depending on the orientation in which they are installed, they can raise or lower the BB height by 5mm and steepen or slacken the head angle by 0.4° from the default geometry.

HEAD TUBE CABLE GUIDES

There are 3 interchangeable cable guides that fit the Compulsion.

- Two Hole 5mm x 3mm (CCN098YB) This port fits a 4 or 5mm cable or hoses as well as a E-tube wire.

- Two Hole 5mm (CCN099YB) This Cable port fits two 4 or 5mm cables or hoses.

- Blanking plate (CCN096YB) This covers the cable port when it is not used.
BOTTOM BRACKET CABLE GUIDES

The bottom bracket cable guide can be adapted to different configurations with rubber reducers for different sizes of cables. It can also be used as a battery holder.

Wrap zip tie around to hold battery in place.

Di2 (2mm)
SHIFT (4mm)
BRAKE (5mm)

DROPPER POST ROUTING

ORDER 1, 2, 3

1. Run cable in front of seat tube pivot
2.
3.
DROPPER POST ROUTING

2 Cable can be accessed through the BB shell and down tube cable port to guide it.

REAR BRAKE ROUTING

ORDER 1, 2, 3

1 Run inboard of seatstay

3 For traditional (left hand) dropper routing use 2-hole 5x3 (CCN098YB) on right side.
REAR BRAKE ROUTING

2. Cross to right side of down tube

3. For traditional (right hand rear) brake lever setups, use the 2-hole 5mm port (ccn099yb) on the left side

REAR SHIFTER ROUTING

ORDER 1, 2, 3

1. You can remove the right dropout pivot axle to get better access to the shift housing port in the chainstay

2. Cross to right side of down tube

3. 5mm wedgie
In order to achieve optimum suspension performance, Felt recommends performing a simple pivot checking procedure after every 100 hours of riding or annually, whichever comes first. If any issues are discovered, please refer to the bearing removal/installation section or take your bike to the nearest Felt dealer.

Pivot Checking Procedure

1. Check torque on all pivot bolts. If bolts are loose, remove, clean and apply Loctite 242, then tighten to correct torque (see technical section for torque values).

2. With the shock installed, apply pressure vertically and horizontally to feel for any play in the pivots. If play is discovered, please refer to the technical section for more information and instructions for bearing removal/installation.

3. With the shock removed, move the suspension through its travel. There should be little to no resistance. If there is any resistance, please refer to the technical section for more information and instructions for bearing removal/installation.

Rear Shifter Routing

Before tightening the BB cable guide screws, move the suspension through its entire range of travel to insure smooth articulation of the brake and shift cables.

Before tightening the BB cable guide screws, move the suspension through its entire range of travel to insure smooth articulation of the brake and shift cables.

Run shifter cable on the left side of the head tube
With the shock removed, lift the rear axle up to gain access to the lower link pinch bolts. Loosen both pinch bolts with a T25 Torx wrench before removing lower link axles.

After reinstalling and tightening both lower axles, tighten each pinch bolt to 8 N-m. Repeat torquing each pinch bolt until neither one moves.

ORDER
C 18 N-m
D 18 N-m
A 8 N-m
B 8 N-m
LOWER LINK PIVOTS

BEARING REMOVAL

Squeeze BRTK-017 to insert it into the bearing.

ALTERNATE METHOD

Use a pin drift and hammer to gently strike the inner race of the bearing. There are two cutouts at each end of the bearing support sleeve to allow access to the bearing inner race (arrows). Alternate between each cutout every few taps to drive the bearing out evenly.

Bearings in the lower link pivot of the chainstay and the seat tube pivot can be removed in the same way.

BEARING INSTALLATION

26 26 20 20

SEAT TUBE PIVOTS

Apply Loctite 242

18 N-m
SEAT TUBE PIVOTS

BEARING REMOVAL

Squeeze BRTK-017 to insert it into the bearing.

SEATSTAY YOKE PIVOTS

EXPLODED VIEW

Flip chips 12 and 13 can be substituted for middle chips 14 and 15, respectively. See page 6.

SEAT TUBE PIVOTS

BEARING INSTALLATION

SEATSTAY YOKE PIVOTS

BEARING REMOVAL
Make sure the bearing and tools are aligned with the inboard face of the upper link.

BRTK-023 and BRTK-024 will adjust to the angled outboard face of the link.
Strike end of bolt with hammer to drive bushing out of link. It may be necessary to clamp link in a vise with a rag or soft jaws.

Removal procedure is the same for lower links.

Note the orientation (forward/backwards) of the equilink when removing - it is not symmetric!
HARDWARE REBUILD KIT

Bearing Kit

BEARING KIT

Tool Kit

BRTK -001
BRTK -002
BRTK -003
BRTK -004

BRTK -005
BRTK -006
BRTK -007
BRTK -008

BRTK -009
BRTK -010
BRTK -011
BRTK -012

BRTK -013
BRTK -014
BRTK -015
BRTK -016

BRTK -017
BRTK -018
BRTK -019
BRTK -020

BRTK -023
BRTK -024
MASTER PARTS LIST

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Frame Member Front Triangle</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>Frame Member Lower Link, Left</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>Frame Member Lower Link, Right</td>
<td>1</td>
</tr>
<tr>
<td>04</td>
<td>Frame Member Equilink</td>
<td>1</td>
</tr>
<tr>
<td>05</td>
<td>Frame Member Upper Link, Left</td>
<td>1</td>
</tr>
<tr>
<td>06</td>
<td>Frame Member Upper Link, Right</td>
<td>1</td>
</tr>
<tr>
<td>07</td>
<td>Frame Member Chainstay Assembly</td>
<td>1</td>
</tr>
<tr>
<td>08</td>
<td>Frame Member Seatstay Assembly</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>Pivot Hardware Lower Shock Bolt</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Pivot Hardware Shock Bolt Collet</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Pivot Hardware Seat Stay Pivot Screw</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Pivot Hardware Flip Chip (Inside)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Pivot Hardware Flip Chip (Outside)</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Pivot Hardware Middle Chip (Inside)</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Pivot Hardware Middle Chip (Outside)</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Pivot Hardware Lower Pivot Axle</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Pivot Hardware Upper Pivot Axle</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Pivot Hardware Collet Cone</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Pivot Hardware Main Pivot Spacer</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>Pivot Hardware Lower Pivot Bearing Support</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Pivot Hardware Upper Pivot Bearing Support</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Pivot Hardware Upper Shock Bolt</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>Pivot Hardware Dropout Pivot Screw</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>Pivot Hardware Dropout Pivot Spacer</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>Pivot Hardware Lower Link Pinch Bolt</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>Bearing 3802 LLB Max</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>Bearing 6802 LLB Max</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>Bearing 68012 LLB Max</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>Bearing 3801 LLU Max</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>Bearing DRF 1017 2RS Max</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Bearing JFM1012-12</td>
<td>4</td>
</tr>
</tbody>
</table>

PLEASE NOTE

Felt offers a bearing rebuild kit as well as a complete hardware rebuild kit. There is also a tool kit for proper removal and installation of the bearings. The contents of each are displayed in the previous pages. Individual parts may also be ordered. Contact your local dealer for more information.