Table of Contents:

Continuity Eccentricity!
Function Composition A Horse of the Same Color Inverses
Logarithmic limerick
Prime Rhyme
Prime Rhyme Part Deux

$$
\frac{\mathrm{P}(\mathrm{x})}{\mathrm{Q}(\mathrm{x})}
$$

The Towers of Lanoi
Transformation
What is a Rabin?
When are We Ever Gonna Use This?
Des!
Zeno's Paradox

Continuity

You know that it shouldn't be strenuous to determine if a function's \qquad .
'Cause there's a mathematical test you can do by just checking to see that three details are \qquad .
For every value in the domain you must first find if the function at that spot is clearly \qquad .
Next look closely to see as you near it
whether the function at that point- has a \qquad .
If to both questions you answer emphatically-YES! and they're equal, the function is \qquad .
(Copyright Dane R. Camp, 1997)

Eccentricity!

It's not shocking, like electricity, that a conic's shaped by it's \qquad .
For a conic's nothing but a locus
whose ratio is fixed from directrix to \qquad .
For example, a circle's a shape we all know, its eccentricity's value's exactly \qquad . As the value gets larger, elongating the tips, the curve that you get is now an \qquad .
But when e equals one, that oughta tell ya, the locus you have is now a \qquad .
As e grows much bigger, it shouldn't perturb ya, you'll just get a shape we call a \qquad .
(Copyright Dane R. Camp, 1997)

Function Composition

(A poem which ranges across the cognitive domain)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{I} \text { know } \mathrm{x} \\
& \mathrm{f}(\text { 'functions' })= \\
& \mathrm{f}^{\circ} \mathrm{f}(\text { 'functions' })= \\
& \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}(\mathrm{functions} ')= \\
& \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}(\text { functions' })= \\
& \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f}\left(\text { 'functions' }^{\prime}\right)=
\end{aligned}
$$

(Dane R. Camp, Fractal geometry in the high school classroom, International Reviews on Mathematical Education, May, 1995:149)

A Horse of The Same Color.

Induction is easy, so easy to do, For the steps are the same and there are only \qquad .

Take a statement that's suspected of being a rule For the numbers you learned to count with in \qquad .

First show that some initial case is a fact, If you can't then the statement you hafta \qquad .

Then make the wild assumption the statement is true for some number k , (and all values \qquad
If from this you can show that $\mathrm{k}+1$ lurks, the statement is proved now, and it always \qquad !

But be careful with induction whatever you do, For it's easy to slip and make a \qquad .

For example consider the following "proof" listen and see if you can locate the \qquad
"All horses are the same color" is easily said, but can they all be brown, black, white or \qquad
The basic step quickly goes on the shelf, For if you have one horse it's the same as \qquad
Now assume for any k horses you find, they're always the same color, no matter the \qquad
Consider now, and here it gets fun, a group of horses numbering \qquad .

Remove one of the horses, so that there are k , "they're all the same color" by the assumption you \qquad
Whatever the color they are, it can't change when we take that one horse and we \qquad .

The horses again number exactly k , So they're all the same color, as before by the \qquad .

For a horse that remained in the group keeps its shade, so the color never varies and the proof now is \qquad
But there's something wrong, there must be you know, for this statement is false, at least I think \qquad .

But where is the error, please tell me will you? Or I'll go through my life thinking this statement's \qquad

"In Verse"

For ANY operation it is plain to see, things NEVER change if you use the \qquad .
when you add numbers it should be clear, oh, nothing changes if you use \qquad .
and you all know that for multiplicaTION, we've certainly got to use number \qquad .
since each domain value it guards and protects, for function composition it's $\mathrm{f}(\mathrm{x})=$ \qquad -

To undo operations and go in reverse, you apply something special we call the \qquad . anything turns to zero by adding to it, a number that's special, called it's \qquad
and the number one we always reveal, when multiplying by the \qquad . input values for a function come back unchanged if composed with it's inverse, swapping and \qquad
A function's inverse you often can try, to find by exchanging the x and the \qquad -
don't bother to do this, though it may seem fun, if the original function is not \qquad .
graphically speaking you can see this best, for it must first of all pass the \qquad -
the sketch of an inverse simply reflects, flipping across the line \qquad .
(Dane R. Camp, 1997)

Logarithmic Limerick

You'll experience a "powerful" sensation, By repeating this short incantation:
"The base stays the base, Switch the terms and replace The logarithm with exponentiation!

There's a verse which has the same rhythm about powers, and everything with'm
"The base stays the base, Switch the terms and just place in front of it all a logarithm!"
(Copyright Dane R. Camp 1995)

"Prime Rhyme"

Let's take a few moments to sketch out in rhyme, exactly what you know when you've got f \qquad .

For example, when positive, it's visually pleasing, and the graph of the function is clearly \qquad
If it's be-low zero, like days that are freezing, the graph of the function must now be \qquad .

When f prime is zero, the graph seems to tarry, and the point that you find is called \qquad .

Yet there's a lot more, as you may have guessed, a thing called the first derivative \qquad .

Find a stationary point and consider the facts, If it goes plus to minus you must have a \qquad .

If those signs are reversed, it's really no sin, you've stumbled across a point that's a \qquad .

And lastly if f prime has no change of direction, the stationary point is a point of \qquad
Now if you want to continue to something sublime, consider the meaning of f double \qquad .

If it's positive the function is shaped like a cup for the slope is increasing and the graph's concave \qquad .
And negative values will make functions frown, when the slope's getting smaller the graph's concave \qquad .

But f double prime won't help us to know the concavity if its value's \qquad .

See the derivative's power is really not strange for it gives you the low down on how functions \qquad .

Prime Rhyme (Part Deux)

So if f prime is zero it would be best to apply the second derivative \qquad .

If the second derivative's positive it must be grinning, the concavity's up, so the function is \qquad .

And if less than zero, it's sure not taxing, the graphs concave down, so the function is \qquad
But if it's equal to zero, we have no direction, as to max, min, neither, or point of \qquad .
(Copyright Dane R. Camp, 1998)

$\mathbf{P}(\mathbf{X})$ Q(X)

P of x over Q of x behaves rationally, and its secrets are clear if you think carefully.

The zeroes of the denominator tell it's not defined, if they cancel with the top, then a hole you will find.

But if the factors of the denominator are not cancelled out, then a vertical asymptote must be lurking about.

Now don't mix those up, or you'll sure pull a gaff, for you won't know your asymptote from a hole in the graph.

Though the ends of the graph may look somewhat neurotic, long division reveals that they are really asymptotic.

For the quotient, ignoring the remainder that appears, will determine the shape that the graph slowly nears.
If the degree of the top's less than that down below, a horizontal asymptote at the x -axis will show.

If the degrees are the same, the asymptote is still flat, and the quotient of the coefficients will tell where it's at.

When the numerator's degree exceeds by just one, the asymptote is oblique on a linear run.

When the discrepency's bigger, they won't just be slants, for the asymptotes will do the "polynomial dance!"

The Towers of Hanoi

In a land far away in a long distant time the priests in a temple played a game quite sublime.

With 100 disks that were set upon 3 stout upright pegs they played dusk till dawn.

For the priests of Hanoi knew when the game was done the whole world would end and so would their fun.

The rules were quite simple for there were but two, and if you listen closely, I'll share them with you.

The disks could be moved to pegs one at a time., to put larger on smaller was considered a crime.

There were 100 priests, who all played this game they each had one disk and took turns by name.

The 100th priest would utter a curse, for he could not move, till the others moved first.

So the job was now left to priest 99, who also cursed softly, and took place in line.

And so they all lined up
cursing and recursing, waiting their turn, and mentally rehearsing, their one special move their own sacred place in the cosmic scheme and the human race.

So let us attempt to act out this drama for 4 little disks to lessen the trauma.

And when we are through with this smaller version, you will then understand, what we call recursion.
(Copyright Dane R. Camp, 1996)

The transformation of $f(x)$

If you add to a function you'll give it a lift, for the graph will be moved with a vertical shift, But if you multiply take a close look and see, the graph's stretched by that factor vertically, and negating the function will cause a reflection, across the x -axis in an up-down direction.

But if you add before the function's used, hey The shift's horizontal the opposite way! And multiplication by a factor inside reveals, the graph's being stretched by the reciprocal's And negating the values before f is applied reflects across the y axis--it flips side to side!
(Copyright Dane R. Camp, 1996)

What is a Radian?

At Baker's Square I crossed my eyes and every circle became two pies!

It took but a moment to realize, that to get a central angle's size divide the arc's length by the radii's!

When are we ever gonna use this?

When are we gonna use this? Mmmm, let me see... Perhaps never if you win the state lottery,
Or maybe tomorrow there's a chance that you may, To be perfectly honest, I really can't say!
For mathematics is a lot like a language and, yes
To predict when you'll use it is anyone's guess.
Just as there are those words that we use all the time And others that we seldom say, like "sublime," There are math skills we happen to use every day, Like estimating change and computing gross pay, There are others that have a more specialized function, Like Trigonometric ratios and 'mathematical induction.

But I can tell you this, if you do your part, And learn with your head as well as your heart, You'll solve real problems and comfortably mingle With the world's greatest minds who are also "bi-lingual," And you math fluency will grow through the years, For you'll know when to use it when the right time appears.
(Copyright Dane R. Camp, 1995)

Yes!

Yes! Feel the magic as tingles run up your spine trigonometry.
(Copyright Dane R. Camp, 1995)

