Chapter 1 Practice Test

Directions:

This is a 30 -question practice test. It does not count toward your overall score, and you may take it as many times as you choose. Once you've completed a take, click on the Guide button in the Results section below for a study guide covering the questions that you missed.

1) QID: 42701

The points $A(4,-2), B(-3,5)$, and $C(1,-2)$ determine a triangle. Find the distance between the midpoints of sides $A C$ and $B C$.

- $\frac{7 \sqrt{2}}{2}$
- $\sqrt{2}+7$
- $\sqrt{2}-7$
$\sqrt{2}$
- None of the above

2) QID: 43940

Given the equation.
$x^{2}+6 \sqrt{5} x+y^{2}+4 \sqrt{2} y=5$ of the circle.

$$
\begin{aligned}
& \text { Given the equation. } \\
& x^{2}+6 \sqrt{5} x+y^{2}+4 \sqrt{2} y=5 \\
& \text { complete the square for both } x \text { and } y \text { and find the equation } \\
& \text { of the circle. }
\end{aligned} \begin{aligned}
& (x+3 \sqrt{5})^{2}+(y+2 \sqrt{2})^{2}=58 \\
& (x+3 \sqrt{5})^{2}+(y+2 \sqrt{2})^{2}=24 \\
& (x+3 \sqrt{5})^{2}+(y+2 \sqrt{2})^{2}=53 \\
& (x+3 \sqrt{5})^{2}+(y+2 \sqrt{2})^{2}=18
\end{aligned}
$$

- None of the above

3) QID: 44045

What is the radius of the circle between and tangent to the circles with these equations:
$\frac{\sqrt{257}}{2}$
$(x+6)^{2}+(y+8)^{2}=1$
$(x+5)^{2}+(y-8)^{2}=1$
$\frac{\sqrt{257}-3}{2}$

- $\sqrt{257}+2$
- $\sqrt{257}$
- None of the above

Over what interval is the following piecewise function increasing?
$f(x)= \begin{cases}-1-x & \text { for } x<-2 \\ 3 x+7 & \text { for }-2 \leq x \leq-1 \\ 1 & \text { for } x>-1\end{cases}$
($-\infty,-2$)

- $[-2,-1]$
- $(-1, \infty)$
- The function is not increasing over any range.

None of the above
5) QID: 44738

Given the function $\circ-1$
$f(x)=\left\{\begin{array}{ccc}-3 x & \text { if } & x<-4 \\ 2 x-3 & \text { if } & -4 \leq x \leq 1, \\ -5 x & \text { if } & x>1\end{array}\right.$

- -3
- -5
- None of the above
evaluate $f(1)$.

6) QID: 44916

A rope 18 feet long is cut into two pieces. One piece is used to form a circle and the other used to form a square. Find a function representing the area of both square and circle as a function of the length of one side of the square.

$\frac{81+4 s^{2}+\pi s^{2}}{\pi}$
$\frac{81+4 s^{2}+36 \pi s+\pi s^{2}}{\pi}$
Done of the above

What is the domain of the following function?

- $(-4, \infty)$
- $[-3,-1) \cup(0, \infty)$
- $[-4,-2) \cup[-2, \infty)$
- $[-4, \infty)$
. None of the above

8) QID: 9419

Which of the following graphs most likely represents $y=-\sqrt{3 x+12} ?$

0

Find the graph of the function.
$f(x)= \begin{cases}\sqrt{x}+2, & x \geq 0 \\ -3 x-2, & x<0\end{cases}$

Graph:
$y=\left\{\begin{array}{lll}-2 & \text { if } & x<-3 \\ 5+3 x & \text { if } & -3 \leq x<0 \\ -x & \text { if } & x \geq 0\end{array}\right.$

In a baseball game, a batter pops a ball straight up in the air and the height of the ball is given by the function $f(t)=-16 t^{2}+128 t$, where t is the elapsed time in seconds. A seagull then plucks the ball out of the air and swallows it. If the ball never reached its maximum height, and the seagull had an altitude of 192 feet when it swallowed the ball, find the time when the seagull ate the ball.

1

- 2

3

- 4

None of the above
13) QID: 48541

A fence of 300 feet is used to enclose a rectangular garden. Find the maximum area possible for the garden.

75 square feet

- 3000 square feet
- 5000 square feet
- 3600 square feet
- None of the above

14) QID: 47144

Beginning with the graph of the function $y=3(x+3)^{2}-4, \quad y=-\frac{3}{4}(x-2)^{2}+4$
which of the following shows the changes you would make
to the function so that the vertex lies at $(2,4)$ and the
$y=-\frac{3}{4}(x-2)^{2}$ parabola becomes 4 times wider and it opens in a negative direction?
$x=-\frac{3}{4}(y-2)^{2}+4$
$y=\frac{1}{2}(x-2)^{2}+4$
None of the above
15) QID: 48911

If $f(x)$ is an even function and the
point $(-5,-3)$ lies on the graph of $f(x)$, identify an additional point on the graph.

- $(-5,3)$
$(-5,0)$
- None of the above

Determine if the function is even, odd, or neither:
$f(x)=2 x^{5}-x^{3}$

Even

Odd
Neither

If $f(x)=3+2 x$ and $g(x)=x^{2}+2$,
find (a) $(f \circ g)(x)$ and (b) $(g \circ f)(x)$.
(a) $x^{2}+2 x+5$
(b) $2 x^{2}+7$
(a) $4 x^{2}+12 x+11$
(b) $x^{2}+2 x-5$
(a) $x^{2}+2 x-5$
(b) $2 x^{2}+11 x$
(a) $2 x^{2}+7$
(b) $4 x^{2}+12 x+11$

- None of the above

- None of the above

19) QID: 47332

Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ for the function $f(x)=-2 x^{2}+x+6$.
$-4 x-2 h+1-\frac{4 x^{2}+2 x+12}{h x}$

- $-4 x-4 h+1$
- $-4 x-4 h+7$
$-4 x-2 h+1$
Done of the above

What is the range of this graph?

($0, \infty$)

- $(-\infty,-2) \cup(-2, \infty)$
- $(-\infty, 0) \cup(0, \infty)$
- $(0,5)$

21) QID: 51365

Find the vertical asymptote(s), if any, of $f(x)=\frac{x-1}{x^{2}+6 x-7}$
$x=1, x=-7$

- $x=-1$
- $x=7, x=-1$
$x=-7$

22) QID: 50056

Find the horizontal asymptotes, if any, of the graph of
$f(x)=\frac{4 x^{5}+2}{3 x^{5}+3 x+8}$
$y=0$

- $y=\frac{1}{4}$
$y=\frac{4}{3}$
- No horizontal asymptotes
- None of the above

Graph the following rational function:
$f(x)=\frac{x}{x-3}$

Graph the following function:
$f(x)=\frac{(-2 x-4)(x-1)}{(x+3)(x-2)}$

Graph:
$f(x)=\frac{x^{2}-25}{x-5}$

Graph:
$f(x)=\frac{x^{2}+5 x}{x^{2}+3 x-10}$

$\begin{array}{ll}\text { True or false? } & \text { true } \\ f(x)=\frac{6}{x} \text { is a one-to-one function. } & \text { false }\end{array}$
28) QID: 50761

Algebraically verify whether f and g are inverses of each
no
other or not:
, yes
$f(x)=\sqrt{8+x}$, domain $[-8, \infty)$
$g(x)=8+x^{2}$, domain $[0, \infty)$

Graph the inverse f^{-1} of the function f, and find each value (if it exists).

Find $f^{-1}(0)$

- $f^{-1}(0)$ does not exist

- $f^{-1}(0)=-2$

- $f^{-1}(0)=2$
- $f^{-1}(0)=2$

16 of 17

Write the equation of the inverse of the given function. Then find the listed value.
$h(x)=\sqrt[4]{-6-3 x}, x \leq-2$
Find $h^{-1}(2)$.

$$
\begin{aligned}
& h^{-1}(x)=-\frac{x^{4}}{3}-2, x \geq 0 ; h^{-1}(2)=\frac{22}{3} \\
& h^{-1}(x)=-\frac{x^{4}}{3}-2, x \geq 0 ; h^{-1}(2)=-\frac{22}{3} \\
& h^{-1}(x)=\sqrt[4]{6-3 x}, x \leq 2 ; h^{-1}(2)=0 \\
& h^{-1}(x)=6 x^{4}+3, x \geq 0 ; h^{-1}(2)=99
\end{aligned}
$$

- None of the above

