Unit 4 Practice Test

Directions:

This is a 25-question practice test. It does not count toward your overall score, and you may take it as many times as you choose.

1) QID: 6681

A cart weighing 5 N is pushed a distance of 7.5 m by a constant force of 3 N . There is no friction between the cart and the track it is on. Which of the following is the amount of work done by the force?
37.5 J
22.5 J
12.5 J
2.5 J

2) QID: 6682

A meteorite with a mass of 25 kilograms falls to Earth in a direction perpendicular to the Earth's surface. At $t=0$
 seconds the meteorite is 1000 meters above the Earth. At $t=$ 2 seconds it is 750 meters above the Earth. Assume the meteorite's acceleration due to gravity is constant during

183,750 J
$-6,250$ J this time. Which of the following is the amount of work the Earth's gravitational force has done on the meteorite between $t=0$ and $t=2$?
3) QID: 6612

A rope that makes a 15° angle with the horizontal pulls a block weighing 3 Na distance of 10 meters to the right at a constant velocity. The tension in the rope is a 2 N force. How much work is done by the rope acting on the block in the horizontal direction? Let F_{x} be the tension in the rope and Δx be the displacement in the x-direction.

Two ropes are pulling on a box. The first rope is pulling the box from the right and is parallel to the floor. The second rope, pulling from the left, forms a 110°
angle with the first rope. If the tension in the second rope is 5 N and the box moves 3 meters to the left, what is the work done by the second rope on the box? Let \vec{F}_{L} be the tension in rope pulling from the left and $\Delta \vec{x}$ the displacement.

For a variable force acting on an object from
Position 1 to Position 2, the work done can be approximated by $W=\Sigma F_{x} \Delta x$. How can the approximation be improved?

6) QID: 7870

Suppose a force $F=3 x^{2}$ N is acting on an object that undergoes a displacement from $x=1 \mathrm{~m}$ to $x=2 \mathrm{~m}$. What is the work done on the object?

- By making Δx smaller
- By making Δx bigger
- Bymaking F_{x} constant
- 7 J
- (7/3) J
- 21 J

3 J

Which of the following expresses the work done by a spring on an object that moves from position x_{i} to x_{f} ?

$$
\begin{aligned}
& W=-k(\Delta x)^{2} \\
& W=\int_{x_{i}}^{x_{f}} k x d x \\
& W=\int_{x_{i}}^{x_{f}}(-k x) d x \\
& W=F \Delta x
\end{aligned}
$$

8) QID: 331

If we decrease the displacement of an object attached to a spring, the magnitude of the force on the object
\qquad -.
doesn't change
increases
decreases
is zero
9) QID: 7875

The kinetic energy is halved.
10) QID: 7879

In kinematics, the final velocity v_{f} of an
object undergoing constant acceleration is given by which of the following equations?
$v_{f}{ }^{2}=v_{i}{ }^{2}+2 a_{x} \Delta v$
$v_{f}{ }^{2}=v_{i}{ }^{2}-2 a_{x} \Delta x$
$v_{f}{ }^{2}=v_{i}{ }^{2}+a_{x} \Delta x$
$v_{f}{ }^{2}=v_{i}{ }^{2}+2 a_{x} \Delta x$
11) QID: 7542

A bobsled team begins at the top of a frozen track that runs down a hill that is 0.2 km tall. The total length of the track as it winds its way down the hill is 1.2 km . Ignoring friction, how fast is the bobsled moving when it gets to the finish line?

- $2.0 \mathrm{~m} / \mathrm{s}$
- $140 \mathrm{~m} / \mathrm{s}$
$63 \mathrm{~m} / \mathrm{s}$
$153 \mathrm{~m} / \mathrm{s}$

Suppose you push with a constant force on a box with a mass of 20 kg and it moves at a constant speed of $1.5 \mathrm{~m} / \mathrm{s}$ along a horizontal surface. How much force are you using on the box? The coefficient of sliding friction is 0.5 .

- 10 N
- 98 N
- 196 N

More than 200 N
13) QID: 7513

A 50 kg girl runs up a staircase in 20 s , and a 60 kg boy runs up the same staircase in 15 s . Which of the following is the ratio of the power generated by the girl to the power generated by the boy?

5:6
5:8

- $8: 5$
- $2: 1$

14) QID: 7525

A variable force described by the equation
$24 a+20 b$
$F(t)=a t^{2}+5 b t$, where a and b are positive constants,
$36 a+60 b$ moves an object 4 m in 3 s . The force is directed in the direction of motion of the object. Which of the following is the average power used to move the object?

$6 a+5 b$
15) QID: 18535

If an object is shot straight up in the air with a velocity of 5 m / s, how high will it go?
12.5 m
2.6 m
1.3 m

This can't be determined without knowing the object's mass.
16) QID: 18539

Two objects at rest with the same mass

$$
\begin{aligned}
v_{2} & =v_{1} \\
v_{2} & =2 v_{1} \\
\nu_{1} & =\sqrt{2} v_{2} \\
\nu_{1} & =\sqrt{\nu_{2}}
\end{aligned}
$$

Which of the following is a nonconservative force?
Gravity

- Spring force

Viscosity
Electric force
18) QID: 103

Which of the following formulas can be used to calculate the work done by a nonconservative force?
$W=\Delta U$
$W=\Delta K$
$W=|F \Delta x|$
$W=F \Delta x$.
19) QID: 6888

A conservative force is given by the
formula $F=Q x^{2}$, where Q is a constant.
Which of the following is the potential Which of the following is the potential
energy associated with this force, as suming
the potential energy is zero at $x=0$?
20) QID: 6890

Which of the following is true based on
the equation
$\Delta U=-\int_{x_{i}}^{x_{f}} F_{x} d x$
$F_{x}=-\frac{d U}{d x}$
$F_{x}=-\frac{U}{x}$
$F_{x}=-\frac{\Delta U}{\Delta x}$
$F_{x}=$ constant
21) QID: 7555

A diver starts on a 20 m tower. His total potential energy is $10,000 \mathrm{~J}$. After jumping off the tower toward a pool of water, which of the following is the diver's potential energy at the heights of $15 \mathrm{~m}, 10 \mathrm{~m}$, and 2 m , respectively? Ignore any air resistance.

2,500 J; 5,000 J; 9,000 J
1,000 J; 5,000 J; 7,500 J
7,500 J; 5,000 J; 1,000 J
$10,000 \mathrm{~J}$ at all three heights

If a car, moving at $15 \mathrm{~m} / \mathrm{s}$, drives over a 30 m cliff, how fast is it moving vertically when it hits the ground?

- $28.5 \mathrm{~m} / \mathrm{s}$

D $24.2 \mathrm{~m} / \mathrm{s}$

- $15 \mathrm{~m} / \mathrm{s}$
$39.2 \mathrm{~m} / \mathrm{s}$

23) QID: 7775

At which of the following is the velocity of a particle the

- E fastest?

C
B
24) QID: 7652

Consider a car weighing $1,500 \mathrm{~kg}$ with an engine that can exert a constant maximum force of $3,750 \mathrm{~N}$. The car has moved 50 m when it reaches its maximum velocity. When the car is moving at its maximum velocity, the driver hits the brakes, which apply a decelerating force of $5,000 \mathrm{~N}$.
How far will the car travel before it stops?
25) QID: 7624

In the formula $\Delta K+\Delta U=0$, potential energy \qquad -.

- must come from a conservative force.
o must be mechanical in nature.
is any form of energy.
depends on position.

