Finding an Angle Given the Value of a Trigonometric Function

- You can sometimes find the measure of an angle θ given the value of one of its trigonometric functions by analyzing a right triangle with θ as one of its angles.

1)

Suppose $\cot \theta=1$. Given that θ is an acute angle in a right triangle, what is its measure in radians?
folution: $\frac{\pi}{4}$
Ex lanation: By definition, cotangent $\theta=\frac{\text { adjacent }}{\text { opposite }}$. Therefore, let the length of the adjace tit ide be 1 , and let the length of the opposite side be 1 . The sides are equal, so this iy an sonceles right triangle. Therefore, $\theta=45^{\circ}=\frac{\pi}{4}$.
2)

Suppose $\sin \theta=\frac{\sqrt{2}}{2}$. Give at at θ is an acute angle in a right triangle, what is its measure in radians?
Solution: $\frac{\pi}{4} \mathrm{rad}$
0
Explantion: By definition, $\sin \theta=\frac{\text { op, oss te }}{\text { hypotenys }}$. Therefore, let the length of the side opposite the angle θ be $\sqrt{2}$, and let the length of the hypotenuse be 2 . Use the Pythagorean theorem to find the missing length: $b^{2}=c^{2} ;(\sqrt{2})^{2}+x^{2}=2^{2}$; $2+x^{2}=4 ; x^{2}=2 ; x=\sqrt{2}$. Since both legs of the tringe equal, the triangle is isosceles. Therefore, $\theta=45^{\circ}=\frac{\pi}{4} \mathrm{rad}$.
3)

Suppose $\cos \theta=\frac{\sqrt{3}}{2}$. Given that θ is an acute angle in a right triangle, what is its measure in radians?
Solution: $\frac{\pi}{6} \mathrm{rad}$
Explanation: By definition, $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{\sqrt{3}}{2}$. Therefore, let the length of the adjacent side be $\sqrt{3}$, and the length of the hypotenuse be 2 . Use the Pythagorean th ormm to find the missing length. $a^{2}+b^{2}=c^{2} ;(\sqrt{3})^{2}+x^{2}=2^{2} ; 3+x^{2}=4$; $x^{2}=\lambda, 2=1$. The sides are not equal, so reflect the triangle across the leg with the greater $n g y^{\prime}$ to form an equilateral triangle. An equilateral triangle has equal angles of 60°. Since θ is adjacent to the longer leg, it is added to itself to form one of the 60° angles. Divane by to find the original measure: $\frac{60^{\circ}}{2}=30^{\circ}=\frac{\pi}{6} \mathrm{rad}$.

