Exponents and Roots

Square Roots and the Pythagorean Theorem

The Pythagorean Theorem and the Distance Formula

Page [1 of 1]

Example 1

Use the Pythagorean Theorem to find each missing measure.

3.

Example 2

Find the distances between the points to the nearest tenth.

4. A and B5. B and C6. A and C

Example 3

Tell whether the given side lengths form a right triangle.

7. 3, 4, 5

8. 8, 10, 14

9. 0.5, 1.2, 1.3

Exponents and Roots

Square Roots and the Pythagorean Theorem

The Pythagorean Theorem and the Distance Formula

Page [1 of 1]

1.
$$a^2 + b^2 = c^2$$

 $12^2 + 16^2 = c^2$
 $144 + 256 = c^2$
 $400 = c^2$
 $\sqrt{400} = \sqrt{c^2}$
 $20 = c$

The length of the hypotenuse is 20 m.

2.
$$a^{2} + b^{2} = c^{2}$$

 $15^{2} + b^{2} = 17^{2}$
 $225 + b^{2} = 289$
 -225 -225
 $b^{2} = 64$
 $\sqrt{b^{2}} = \sqrt{64}$
 $b = 8$

15² + b² = 17²
225 + b² = 289
-225

$$b^2 = 64$$

 $\sqrt{b^2} = \sqrt{64}$
 $b = 8$
The length of the leg, b, is 8 ft.
3. $a^2 + b^2 = c^2$
 $a^2 + 10^2 = 26^2$
 $a^2 + 100 = 676$
 -100 -100
 $a^2 = 576$
 $\sqrt{a^2} = \sqrt{576}$
 $a = 24$
The length of the leg, a, is 24
4. $AB^2 = 8^2 + 6^2$
 $AB^2 = 100$
 $AB = \sqrt{100} = 10$
6. $AC^2 = 5^2 + 2^2$
 $AC^2 = 29$
 $AC = \sqrt{29} \approx 5.4$
5. $BC^2 = 3^2 + 4^2$
 $BC^2 = 25$
 $BC = \sqrt{25} = 5$
7. $3^2 + 4^2 = 5^2$
 $9 + 16 = 25$
 $25 = 25$
The lengths 3, 4, and 5 form a right triangle.
8. $8^2 + 10^2 = 14^2$
 $64 + 100 - 196$

4.
$$AB^2 = 8^2 + 6^2$$

 $AB^2 = 100$
 $AB = \sqrt{100} = 10$

6.
$$AC^2 = 5^2 + 2^2$$

 $AC^2 = 29$
 $AC = \sqrt{29} \approx 5.4$

8.
$$8^2 + 10^2 = 14^2$$

 $64 + 100 = 196$
 $164 \neq 196$

The lengths 8, 9, and 14 do not form a right triangle.

5.
$$BC^2 = 3^2 + 4^2$$

 $BC^2 = 25$
 $BC = \sqrt{25} = 5$
7. $3^2 + 4^2 = 5^2$

7.
$$3^2 + 4^2 = 5^2$$

 $9 + 16 = 25$
 $25 = 25$

9.
$$0.5^2 + 1.2^2 = 1.3^2$$

 $0.25 + 1.44 = 1.69$
 $1.69 = 1.69$

The lengths 0.5, 1.2, and 1.3 form a right triangle.