Finding the Value of a Logarithmic Function

- When calculating logs, think of the expression in terms of the exponential form. Ask yourself "what exponent would I need to make this statement true."
- A log written without a "b" value is the common log.
 y = logx

In a common log, the "b" value is understood to be 10. In other words, $y = \log x$ is equivalent to the statement $10^y = x$.

1)

Find the value of the logarithmic expression $\log_2 32$ without using a calculator. Solution: 5

Explanation: Express the logarithmic equation $\log_2 32 = x$ as an exponential equation: $2^x = 32$.

To solve for x, express each side with a common base: $2^x = 2^5$, so x = 5. Thus, $\log_2 32 = 5$.

2)

Find the value of the logarithmic expression $\log_5 \frac{1}{625}$ without using a calculator. Solution: -4

Explanation: Express the logarithmic equation $\log_5 \frac{1}{625} = x$ as an exponential equation: $5^x = \frac{1}{625}$. Express each side with a common base and solve for *x*.

 $5^{x} = \frac{1}{625}$ $5^{x} = 625^{-1}$ Negative Exponent Property $5^{x} = (5^{4})^{-1}$ Express 625 as a power of 5. $5^{x} = 5^{-4}$ Power of a Power Property x = -4

3)

Find the value of the logarithmic expression $\log_{10} 0.0001$ without using a calculator. <u>Solution</u>: -4 <u>Explanation</u>: Express the logarithmic equation $\log_{10} 0.0001 = x$ as an exponential equation using 10 as the base: $10^x = 0.0001$. To solve for x, express each side with a common base: $10^x = 10^{-4}$, so x = -4. Thus, $\log_{10} 0.0001 = -4$.

4)

Simplify. 15^{log₁₅ 0.8} Solution: 0.8

Explanation: Let the expression be equal to x. Then, apply the law of logarithms, $b^y = x \Rightarrow \log_b x = y$, to simplify: $15^{\log_{15} 0.8} = x \Rightarrow \log_{15} x = \log_{15} 0.8$. Because of the equality, it can be seen that x = 0.8. Thus, $15^{\log_{15} 0.8} = 0.8$.

5)

Find the value of the logarithmic expression $\frac{1}{4}\log_7 \sqrt[3]{7^2}$ without using a calculator.

Solution: $\frac{1}{6}$

Explanation: Express the logarithmic equation $\log_7 \sqrt[3]{7^2} = x$ as an exponential equation: $7^x = \sqrt[3]{7^2}$. To solve for x, express the radical as a rational exponent.

 $7^{x} = \sqrt[3]{7^{2}}$ $7^{x} = (7^{2})^{\frac{1}{3}}$ Express the radical as a rational exponent. $7^{x} = 7^{\frac{2}{3}}$ Power of a Power Property $x = \frac{2}{3}$

Now, simplify the expression: $\frac{1}{4}\log_7 \sqrt[3]{7^2} = \frac{1}{4}\left(\frac{2}{3}\right) = \frac{1}{6}$.

6)

Find the value of the logarithmic expression $\log_8\left(\frac{\sqrt[5]{16}}{2}\right)$, without using a calculator.

Solution: $-\frac{1}{15}$

Explanation: Begin by simplifying the expression inside the parentheses:

$$\frac{\sqrt[5]{16}}{2} = \frac{16^{\frac{1}{5}}}{2} = \frac{\left(2^{4}\right)^{\frac{5}{5}}}{2} = \frac{2^{\frac{4}{5}}}{2} = 2^{\frac{4}{5}-1} = 2^{-\frac{1}{5}}.$$
 So, $\log_8\left(\frac{\sqrt[5]{16}}{2}\right) = \log_8\left(2^{-\frac{1}{5}}\right).$

Express the logarithmic equation $\log_8\left(2^{-\frac{1}{5}}\right) = x$ as an exponential equation: $8^x = 2^{-\frac{1}{5}}$.

To solve for x, express each side with a common base: $2^{3x} = 2^{-\frac{1}{5}}$; $3x = -\frac{1}{5}$; $x = -\frac{1}{15}$.

copyright © Thinkwell Corp.