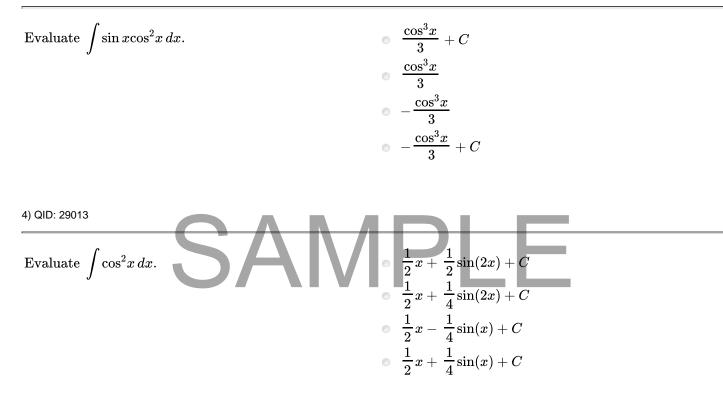
# **Chapter 2 Practice Test**

## Directions:

This is a 20-question practice test. It does not count toward your overall score, and you may take it as many times as you choose. Once you've completed a take, click on the **Guide** button in the **Results** section below for a study guide covering the questions that you missed.

## 1) QID: 26850


Evaluate the integral 
$$\int \frac{dx}{x^2 \sqrt{x^2 - 9}}$$
 using  
the integration table below.  
Table of Integrals  
 $\int \frac{x \, dx}{a + bx} = \frac{1}{b^2} (bx - a \ln |a + bx|) + C$   
 $\int \frac{dx}{a (a + bx)} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right| + C$   
For  $a > 0$ :  
 $\int \frac{\sqrt{a^2 + x^2}}{x} \, dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right| + C$   
 $\int \frac{dx}{x \sqrt{a^2 + x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right| + C$   
 $\int \frac{dx}{x \sqrt{a^2 + x^2}} = -\frac{\sqrt{a^2 + x^2}}{a^2 x} + C$   
 $\int \frac{dx}{x^2 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2 x} + C$   
 $\int \frac{x^2 \, dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$   
 $\int \frac{x^2 \, dx}{\sqrt{x^2 - a^2}} = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + C$ 

## Evaluate the integral

$$\int_0^{\left(\ln 2
ight)^2}rac{e^{\sqrt{x}}}{\sqrt{x}}\,dx$$

using the substitution  $u = \sqrt{x}$ .

## 3) QID: 29016



 $\frac{2}{\ln 2}$ 

4ln 2

• The integral cannot be evaluated.

0

• 2

5) QID: 29292

Evaluate  $\int \tan^3 x \, dx$ .

•  $\tan x - \ln |\sec x| + C$ •  $\frac{\tan^2 x}{2} - \ln |\sec x| + C$ •  $\frac{\tan^2 x}{2} + \sec^2 x + C$ •  $\tan x + \sec^2 x + C$ 

Evaluate 
$$\int \tan^5 x \sec^7 x \, dx$$
.  
•  $\frac{\sec^{11} x}{11} + \frac{2\sec^9 x}{9} + \frac{\sec^7 x}{7} + C$   
•  $\frac{\sec^{11} x}{11} - \frac{2\sec^9 x}{9} + \frac{\sec^7 x}{7} + C$   
•  $\frac{\sec^{10} x}{10} - \frac{\sec^8 x}{8} + \frac{\sec^6 x}{6} + C$   
•  $\frac{\sec^{10} x}{10} + \frac{\sec^8 x}{8} + \frac{\sec^6 x}{6} + C$ 

Evaluate 
$$\int \frac{dx}{x(x-7)}$$
.  
(a)  $\frac{1}{7x^2} + \frac{1}{7(x-7)^2} + C$   
(b)  $\frac{1}{7}\ln|x| + \frac{1}{7}\ln|x-7| + C$   
(c)  $\frac{1}{7}x^2 + \frac{1}{7(x-7)^2} + C$   
(c)  $\frac{1}{7}\ln|x| + \frac{1}{7}\ln|x-7| + C$   
(c)  $\frac{1}{7}\ln|x| + \frac{1}{7}\ln|x-7| + C$   
(c)  $\frac{1}{7}\ln|x| + \frac{1}{7}\ln|x-7| + C$   
(c)  $\frac{1}{7}\ln|x| + \frac{1}{8}\ln|x+1| + C$   
(c)  $\frac{1}{x^2 + 4x + 3}dx$   
(c)  $\frac{1}{x^2 + 4x + 3}dx$   
(c)  $\frac{1}{8}\ln|x+3| + 6\ln|x+1| + C$   
(c)  $\frac{1}{8}\ln|x+3| - 6\ln|x+1| + C$ 

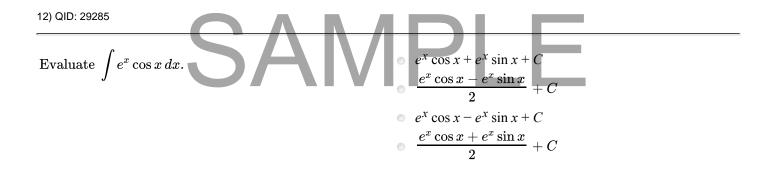
9) QID: 29445

Evaluate 
$$\int \frac{5x^3 + 15x + 19x^2 + 14}{x^4 + 5x^2 + 4x^3 + 4x + 4} dx.$$

$$3\ln(x+2) - \frac{4}{x+2} + \ln|x^2 + 1|$$

$$+ \arctan x + C$$

$$3\ln|x+2| - \frac{4}{x+2} + \ln|x^2 + 1|$$


$$+ \arctan x + C$$

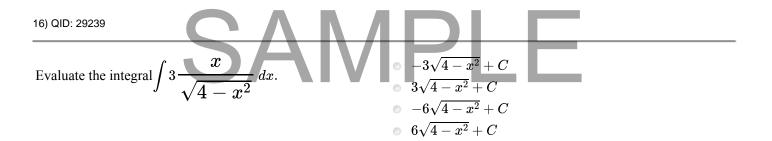
$$3\ln|x+2| - \frac{4}{x+2} + \ln|x^2 + 1| + \tan x + C$$

$$3\ln|x+2| - \frac{4}{x+2} + \ln|x^2 + 1| + \tan x + C$$

Evaluate 
$$\int \frac{3e^x + 7}{e^{2x} + 4e^x + 4} e^x dx.$$
  
•  $3\ln|e^x + 2| - \frac{1}{e^x + 2} + C$   
•  $3\ln|u + 2| - \frac{1}{u + 2} + C$   
•  $3\ln|e^x + 2| + \frac{1}{e^x + 2} + C$   
•  $3\ln|u + 2| + \frac{1}{u + 2} + C$ 

Evaluate the integral 
$$\int x^2 \cos(3x) \, dx$$
.  
•  $\frac{1}{3}x^2 \sin(3x) + \frac{2}{27}\sin(3x) - \frac{2}{9}x\cos(3x) + C$   
•  $\frac{1}{3}x^2 \sin(3x) - \frac{2}{27}\sin(3x) + \frac{2}{9}x\cos(3x) + C$   
•  $x^2 \sin(x) - \frac{2}{9}\sin(x) + \frac{2}{3}x\cos(x) + C$   
•  $x^2 \sin(x) + \frac{2}{9}\sin(x) - \frac{2}{3}x\cos(x) + C$ 




13) QID: 29304

Evaluate  $\int 2e^x \sin x \, dx$ .

• 
$$\frac{e^x \sin x - e^x \cos x}{2}$$
  
• 
$$\frac{e^x \sin x + e^x \cos x}{2} + C$$
  
• 
$$e^x \sin x - e^x \cos x + C$$
  
• 
$$e^x \sin x + e^x \cos x$$

Evaluate 
$$\int \ln(x)x^2 dx$$
.  
•  $\frac{1}{3}\ln(x)x^3 - \frac{1}{9}x^3 + C$   
•  $\frac{1}{3}\ln(x)x^3 + \frac{1}{9}x^3 + C$   
•  $\frac{1}{3}\ln(x)x^3 + \frac{1}{3}x^3 + C$   
•  $\frac{1}{3}\ln(x)x^3 - \frac{1}{3}x^3 + C$ 

Evaluate the integral 
$$\int 4 \frac{1}{(4-x^2)^{3/2}} dx$$
.  
•  $-\frac{x}{\sqrt{4-x^2}} + C$   
•  $\frac{1}{\sqrt{4-x^2}} + C$   
•  $\frac{1}{\sqrt{4-x^2}} + C$   
•  $-\frac{1}{\sqrt{4-x^2}} + C$ 



17) QID: 29259

Evaluate 
$$\int_{-2}^{3} rac{x}{\left(4+x^{2}
ight)^{3/2}} dx.$$

• 
$$\frac{1}{13}\sqrt{13} + \frac{1}{4}\sqrt{2}$$
  
•  $-\frac{1}{13}\sqrt{13} - \frac{1}{4}\sqrt{2}$   
•  $\frac{1}{13}\sqrt{13} - \frac{1}{4}\sqrt{2}$   
•  $-\frac{1}{13}\sqrt{13} + \frac{1}{4}\sqrt{2}$ 

Approximate the integral 
$$\int_{1}^{4} \frac{3}{x} dx$$
 using the  
trapezoidal rule with  $N = 4$ .

| $r^7$ 1                                                       | 0 | 0.442 |
|---------------------------------------------------------------|---|-------|
| Approximate the integral $\int_{1}^{7} \frac{1}{5x} dx$ using | 0 | 0.332 |
| the trapezoidal rule with $N = 3$ .                           | 0 | 0.884 |
| -                                                             | 0 | 0.554 |

20) QID: 29257

-

Evaluate 
$$\int_{7}^{13} 2 \frac{1}{x^2 \sqrt{x^2 - 9}} dx$$
.  
**Solution**  
**So**