Chapter 2 Practice Test

Directions:

This is a 20-question practice test. It does not count toward your overall score, and you may take it as many times as you choose. Once you've completed a take, click on the Guide button in the Results section below for a study guide covering the questions that you missed.

1) QID: 22036

The limit does not exist.

4
6

For what value(s) of x does the function in the graph not have a limit?

Enter your answer as $x=[v a l u e]$. For example, if the answer is 1 , enter " $x=1$ "
If there is more than one value, separate each value with a comma (ie: " $x=1,2$ ").
4) QID: 70313

The velocity of the cyclist in feet per second as a function of time is given in the table below.

t	0	1	2	3	4

$\square-$
$f(t) \quad 5 \quad 10 \quad 12 \quad 11 \quad 9$
The approximate acceleration (rate of change of the velocity with respect to time) of the cyclist at time $t=2$ seconds is which of the following?

- $1 \mathrm{ft} / \mathrm{s}^{2}$
- $-1 \mathrm{ft} / \mathrm{s}^{2}$

5) QID: 70315

Suppose that $\lim _{x \rightarrow 3} 2 x-1=5$.
Find the largest value of δ such
that $|(2 x-1)-5|<\varepsilon$ whenever
$|x-3|<\delta$, for $\varepsilon=0.001$.

- 0.001
- 0
- 0.0005
0.002

None of the above

Suppose that $\lim _{x \rightarrow a} f(x)=500$,
$\lim _{x \rightarrow a} g(x)=6$, and $\lim _{x \rightarrow a} h(x)=0.06$.
Then $\lim _{x \rightarrow a} \frac{f(x) h(x)}{g(x)}$ is equal to
which of the following?
$\frac{f(a) h(a)}{g(a)}$
The limit is undefined.

The limit cannot be determined from the given information.
none of the above
7) QID: 70319
$f(x)=\left\{\begin{array}{cl}2 x-3, x<1 \\ x+1, x>1\end{array}\right.$
Evaluate $\lim _{x \rightarrow 1^{-}} f(x)$
8) QID: 70321
$f(x)=\sqrt{3 x-6}$
Evaluate $\lim _{x \rightarrow 2^{+}} f(x)$.

- 0
- 2

The limit is undefined.
None of the above
9) QID: 70323

Which of the following is a necessary and sufficient condition for a function, f, to be continuous at the point $x=4$?
$\lim _{x \rightarrow 4} f(x)$ exists

- $\lim _{x \rightarrow 4} f(x)$ does not exist
- $\lim _{x \rightarrow 4} f(x)=f(4)$
- f is defined on an open interval that contains $x=4$.
- None of the above

Determine, if it exists, $\lim _{x \rightarrow 3} \frac{x^{2}+1}{x+3}$.
$\frac{x^{2}+1}{x+3}$

- $\frac{10}{6}$
- ∞

D The limit does not exist.
11) QID: 22037

Determine, if it exists, $\lim _{x \rightarrow 3} \frac{x+1}{x^{2}-9}$.

- The limit does not exist.
$-\frac{10}{6}$
$-\frac{4}{6}$
- $\frac{4}{6}$

12) QID: 22040

Determine, if it exists, $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-4}$.
$-\frac{1}{4}$
13) QID: 22045

Determine, if it exists, $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-9}$.

- -1
- 1
- 0

The limit does not exist.
14) QID: 22048

Determine, if it exists, $\lim _{x \rightarrow-2} \frac{1+\frac{2}{x}}{x-\frac{4}{x}}$
$\frac{1}{4}$

- $-\frac{1}{4}$

1
The limit does not exist.

Determine, if it exists, $\lim _{x \rightarrow 3} \frac{1-\frac{6}{x}+\frac{9}{x^{2}}}{1-\frac{9}{x^{2}}} . \quad \begin{aligned} & 0 \\ & \end{aligned}$

- The limit does not exist.

16) QID: 22089

Determine, if it exists, $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$.
The limit does not exist.

- -4
- 1
- 4

17) QID: 22094

Determine, if it exists, $\lim \frac{x^{2}-2 x+1}{\sqrt{x+3}-2}$. 1
Determine, if it exists, $\lim _{x \rightarrow 1} \frac{x^{2}}{\sqrt{x+3}-2}$. 2
18) QID: 22030

Evaluate the following as a true or false. The limit of a function $f(x)$ at $x=2$ is always the value of the function at x - true false $=2$, that is $f(2)$.

For what value(s) of x does the function in the graph not have a limit?

Enter your answer as $x=[v a l u e]$. For example, if the answer is 1 , enter " $x=1$ "
If there is more than one value, separate each value with a comma (ie: " $x=1,2$ ").
20) QID: 26465

For what value(s) of x does the function in the graph not have a limit?

Enter your answer as $x=[v a l u e]$. For example, if the answer is 1 , enter " $x=1$ " If there is more than one value, separate each value with a comma (ie: " $x=1,2$ ").

