5.1 PRE-TEST

Course name: Precalculus Precalculus Essential Skills
Professor name: Homeschool Studies
College name: Homeschool Studies

Directions: Ready to test your smarts?

All exercises, quizzes, and tests are delivered online.

This is a sample print of an online Test.
Have a shot at this 20 -question practice test!
Take it as many times as you want to. Once you're done, be sure to click the "Guide" button to review any questions you missed, a step-by-step explanation for the question, and a link to the video where that content is discussed.

Need Help? No Problem! Contact support@thinkwell.com with questions.

Question: 3

Simplify the expression: $\tan ^{2} x \cdot \csc ^{2} x$
$\tan ^{2} x\left(\frac{1}{\sin ^{2} x}\right)$
1
$\sec ^{2} x$
$\frac{1}{\cos ^{2} x}$

Question: 4

Simplify the expression.
$\left(\sec ^{2} \theta-1\right)\left(\csc ^{2} \theta \cos ^{2} \theta\right)$$\tan ^{2} \theta \cos \theta$
$\sin \theta$
1
$\tan ^{4} \theta$

Simplify the expression.
$(\csc x+\cot x)(\csc x-\cot x)$$\csc x-\cot x$$\csc ^{2} x-\cot ^{2} x$
1
-1

Question: 8

Simplify the expression $(\csc \theta-\cos \theta)^{2}$.

$$
\begin{aligned}
& \csc ^{2} \theta+\cos ^{2} \theta \\
& \csc ^{2} \theta-2 \csc \theta \cdot \cos \theta+\cos ^{2} \theta \\
& \csc ^{2} \theta-2 \cot \theta+\cos ^{2} \theta \\
& 1+2 \cot ^{2} \theta
\end{aligned}
$$

Question: 9

Question: 12

What is the smallest positive solution to the equation? $\tan x=\sqrt{3}$
$\frac{\pi}{3}$
$-\frac{2 \pi}{3}$
There is no solution to the equation.

Question: 13

$\theta=\frac{\pi}{2}$ and $\frac{7 \pi}{6}$
$\theta=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$
$\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}$ and $\frac{11 \pi}{6}$
○
$\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$ and $\frac{3 \pi}{2}$

Solve the equation $\sin x \tan x=\sin x$ on the interval $[0,2 \pi) . \quad x=0$, or $x=\pi$

Question: 15

Find all solutions in the interval $[0,2 \pi)$
of the equation $\sin 2 \theta=-\frac{\sqrt{3}}{2}$.
$\theta=\frac{4 \pi}{3}$ and $\frac{5 \pi}{3}$
$\theta=\frac{2 \pi}{3}$ and $\frac{5 \pi}{6}$
$\theta=\frac{2 \pi}{3}$ and $\frac{5 \pi}{3}$
$\theta=\frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{5 \pi}{3}$, and $\frac{11 \pi}{6}$

Question: 16

Find all solutions to the equation
$2 \cos \left(\frac{x}{2}\right)-\sqrt{3}=0$ on $[0,2 \pi]$.

Question: 17

Solve the equation $\sin ^{2} x+\sin x-1=0$ on [$0,2 \pi$], rounding your answers to three decimal places.
$x=\frac{\pi}{6}$
$x=\frac{\pi}{12}$
$x=\frac{\pi}{3}$, or $x=\frac{11 \pi}{3}$
$x=\frac{\pi}{3}$

Question: 18

A weight suspended from a spring is vibrating vertically according to the equation
$f(t)=10 \sin \left(\frac{3}{4} \pi(t-3)\right)$
where $f(t)$ is the directed distance (in cm) of the weight

3
$\frac{13}{3}$
$\frac{1}{3}$
$x=0.618$ or $x=-1.618$
$x=0.666$
$x=0.666$ or $x=2.475$
The equation has no solution.
\qquad from its central position at t seconds. Find the smallest positive value of t for which the weight will be at its central $\frac{3}{4}$ position.

Question: 19

A child is playing with a yo-yo. The yo-yo's position relative to the child's hand is given by $S(t)=\cos (2 \pi t)-1$, where t is the time in seconds. How long does it take for the yo-yo to return to the child's hand?
2π seconds
2 seconds
t
1 second

Question: 20

What is the smallest positive solution to the equation $\sin x=-1$.
$\frac{3 \pi}{2}$
$\frac{3 \pi}{4}$
$\frac{\pi}{2}$

