Using the Second Derivative to Examine Concavity

- The second derivative can be used to determine where the graph of a function is concave up or concave down, and to find inflection points.
- Knowing the critical points, local extreme values, increasing and decreasing regions, the concavity, and the inflection points of a function enables you to sketch an accurate graph of that function.
Examples sketch the graph of $g(x)=x^{3}-3 x^{2}-9 x+1$.

f is increasing where $f^{\prime}(x)>0$.
f is decreasing where $f^{\prime}(x)<0$.
f is concave up for $x>0$ because $f^{\prime \prime}(x)>0$ for $x>0$.
f is concave down for $x<0$ because $f^{\prime \prime}(x)>0$ for $x<0$.
f has a point of inflection at $x=0$, where $f^{\prime \prime}(x)=0$.

For the function f shown in red, examining the graph of its first and second derivatives can lead to knowledge about where the function is increasing and decreasing (first derivative), where it is concave up and concave down, and where there is an inflection point.

The x values where the first derivative is positive (the graph of f^{\prime} lies above the x-axis) are the x values where f is increasing. Similarly, the x values where the first derivative is negative (the graph of f^{\prime} lies below the x-axis) are the x values where f is decreasing.

The x values where the second derivative is positive (the graph of f " lies above the x-axis) are the x values where f is concave up. Similarly, the x values where the second derivative is negative (the graph of $f^{\prime \prime}$ lies below the x-axis) are the x values where f is concave down.

At $x=0, f^{\prime \prime}(x)=0$, and $x=0$ is a point of inflection, since f is concave down to the left of $x=0$ and concave up to the right of $x=0$.

