The Summation of Infinite Series

Given an **infinite series** $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$ and the sequence $\{s_m\}$ of **partial sums**, then $\sum_{n=1}^{\infty} a_n$ **converges** if $\lim_{m \to \infty} s_m = S$.

In this case, $\sum_{n=1}^{\infty} a_n = S$. The series $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{m \to \infty} s_m$ does not exist.

• You will not be able to determine the sum of most series. However, you can determine whether the series converges or diverges.

Partial sums of an infinite seriesPartial sums of an infinite series $\sum_{n=1}^{n} a_n = a_1 + a_2 + a_3 + a_4 + \dots$ Considerthe general infinite series: $\sum_{n=1}^{n} a_n = a_1 + a_2 + a_3 + a_4 + \dots$ QuestionHow do you make sense of adding up infinitely many terms?ConstrainedSolve an easier problem instead and use the result as a starting point for the original question.Start by adding a few terms at a time.First sum: $s_1 = a_1 + a_2$ Second sum: $s_2 = a_1 + a_2 + a_3$ The last term of each is one larger than the index which is one larger than the index of the sum.General term: $s_m = a_1 + a_2 + a_3 + a_4 + \dots + a_{m+1}$	To add up an infinite series , start by looking at the sequence of partial sums . A partial sum is the value you get when you examine only a finite number of terms of the series. Notice that to evaluate the first partial sum requires two terms of the sequence of the series. In general, to evaluate the <i>n</i> th partial sum will require $n + 1$ terms.
You can compute the general term, because you are only adding finitely many numbers. The sums s_1, s_2, s_3 form a sequence of numbers, $\{s_m\}$. $\{s_m\}$ is the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ Question ? What is the limit of the sequence $\{s_m\}$? If the limit of the sequence $\{s_m\}$ answer of the partial sum exists, then the terms of the infinite series can be summed up. The limit of the sequence equals the sum. Thus the infinite series converges. If the limit does not exist, then the series diverges.	 Putting each partial sum in an ordered list creates the sequence of partial sums. Notice that the sequence of partial sums tells what the series would equal if it was a finite series. It is possible to determine what value the sequence of partial sums is approaching by taking a limit. If the limit of a sequence of partial sums approaches some value, then the sequence has a limit. If the sequence has a limit, the series converges to the same limit. This is how you add infinite series. If the sequence of partial sums does not have a limit, the series diverges.

Summation of a well-known series	Consider this series, sometimes called the devil's series
Example Look at the following series again:	because it perplexed mathematicians for so long.
$\sum_{n=1}^{\infty} (-1)^{n+1} = 1 - 1 + 1 - 1 + 1 \dots$ Now look at the associated sequence of partial sums. odd $s_1 = 1 - 1 = 0$ even $s_2 = 1 - 1 + 1 = 1$ odd $s_3 = 1 - 1 + 1 - 1 = 0$ even $s_4 = 1 - 1 + 1 - 1 + 1 = 1$ Question ? Is this sequence approaching a particular value?	You saw before how you could argue that the sum of the series was one or zero depending on how you grouped the terms. Now instead of adding terms, look at the sequence of partia sums. The sequence of partial sums changes at each term, switchin
No, the $\lim_{m \to \infty} s_m$ does not exist. Therefore the \bigcirc Answer infinite series $\sum_{n=1}^{\infty} (-1)^{n+1} = 1 - 1 + 1 - 1 + 1 \dots$ \frown Diverges	The sequence does not approach a single value, therefore in does not have a limit. That means the series diverges.
A successful of a successful succes	
A practical consideration To determine if an infinite series converges, take the limit of the sequence of partial sums. $s_1 = a_1 + a_2$	Although it seems like you could use this approach to find the value of any series, in truth it is kind of hard to add an infinite number of terms together to find out if a series is approaching some value.
Solution $s_2 = a_1 + a_2 + a_3$ Solution $s_2 = a_1 + a_2 + a_3 + a_4$ Solution $s_m = a_1 + a_2 + a_3 + a_4 + \dots + a_{m+1}$ Question $s_m = a_1 + a_2 + a_3 + a_4 + \dots + a_{m+1}$ Question $s_m = a_1 + a_2 + a_3 + a_4 + \dots + a_{m+1}$ And how do you find the sequence of partial sums?	