The Summation of Infinite Series

- Given an infinite series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots$ and the sequence $\left\{s_{m}\right\}$ of partial sums, then $\sum_{n=1}^{\infty} a_{n}$ converges if $\lim _{m \rightarrow \infty} s_{m}=S$. In this case, $\sum_{n=1}^{\infty} a_{n}=S$. The series $\sum_{n=1}^{\infty} a_{n}$ diverges if $\lim _{m \rightarrow \infty} s_{m}$ does not exist.
- You will not be able to determine the sum of most series. However, you can determine whether the series converges or diverges.

Summation of a well-known series

Example! Look at the following series again:

$$
\sum_{n=1}^{\infty}(-1)^{n+1}=1-1+1-1+1 \ldots
$$

Now look at the associated sequence of partial sums.

Question ? Is this sequence approaching a particular value?
No, the $\lim _{m \rightarrow \infty} s_{m}$ does not exist. Therefore the $\because \quad$ Answer infinite series $\sum_{n=1}^{\infty}(-1)^{n+1}=1-1+1-1+1 \ldots \longmapsto$ Diverges

A practical consideration

To determine if an infinite series conv
take the limit of the sequence of parti
$s_{1}=a_{1}+a_{2}$
$s_{2}=a_{1}+a_{2}+a_{3}$
$s_{3}=a_{1}+a_{2}+a_{3}+a_{4}$
\vdots
$s_{m}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots+a_{m+1}$

Question? How can you find the sequence of partial sums? And how do you find its limit?

In most cases, it is too complicated to do either. :- Answer Therefore, you cannot determine what the infinite series sums to.
You can only determine whether the series sums to a number or not.

Consider this series, sometimes called the devil's series because it perplexed mathematicians for so long.

You saw before how you could argue that the sum of the series was one or zero depending on how you grouped the terms.

Now instead of adding terms, look at the sequence of partial sums.

The sequence of partial sums changes at each term, switching between one and zero.

The sequence does not approach a single value, therefore it does not have a limit. That means the series diverges.

Although it seems like you could use this approach to find the value of any series, in truth it is kind of hard to add an infinite number of terms together to find out if a series is approaching some value.

A lot of different series problems out there cannot be evaluated directly. But it isn't always necessary to find the summation of the series. Sometimes just knowing that the series converges is enough information. In the following tutorials you will learn about some common series, as well as some ways to test series for convergence.

