To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
KSD882
NPN Epitaxial Silicon Transistor

Recommended Applications
- Audio Frequency Power Amplifier

Features
- Low Speed Switching
- Complement to KSB772.

Absolute Maximum Ratings* $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_CBO</td>
<td>Collector-Base Voltage</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>BV_CEO</td>
<td>Collector-Emitter Voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>BV_EBO</td>
<td>Emitter-Base Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>IC</td>
<td>Collector Current(DC)</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>IC</td>
<td>Collector Current(Pulse)**</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>IB</td>
<td>Base Current</td>
<td>0.6</td>
<td>A</td>
</tr>
<tr>
<td>PD</td>
<td>Total Device Dissipation($T_a=25^\circ C$)</td>
<td>10</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Total Device Dissipation($T_a=25^\circ C$)</td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>TJ, TSTG</td>
<td>Junction and Storage Temperature</td>
<td>-55~150</td>
<td>°C</td>
</tr>
</tbody>
</table>

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
** PW=10ms, Duty Cycle=50%

Electrical Characteristics $T_a=25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_CBO</td>
<td>Collector-Base Breakdown Voltage</td>
<td>$I_C=500\mu A, I_E=0$</td>
<td>40</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BV_CEO</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>$I_C=5mA, I_B=0$</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BV_EBO</td>
<td>Emitter-Base Breakdown Voltage</td>
<td>$I_C=500\mu A, I_C=0$</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IC</td>
<td>Collector Cut-off Current</td>
<td>$V_CB=30V, I_E=0$</td>
<td>1</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>IB</td>
<td>Emitter Cut-off Current</td>
<td>$V_{EB}=3V, I_C=0$</td>
<td>1</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>hFE1</td>
<td>*DC Current Gain</td>
<td>$V_CE=2V, I_C=20mA$</td>
<td>30</td>
<td>150</td>
<td>400</td>
<td>MHz</td>
</tr>
<tr>
<td>hFE2</td>
<td>*DC Current Gain</td>
<td>$V_CE=2V, I_C=1A$</td>
<td>60</td>
<td>160</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>V_CE(sat)</td>
<td>*Collector-Emitter Saturation Voltage</td>
<td>$I_C=2A, I_B=0.2A$</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_BE(sat)</td>
<td>*Base-Emitter Saturation Voltage</td>
<td>$I_C=2A, I_B=0.2A$</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>fT</td>
<td>Current Gain Bandwidth Product</td>
<td>$V_CE=5V, I_E=0.1A$</td>
<td>90</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>C_oe</td>
<td>Output Capacitance</td>
<td>$V_CB=10V, I_E=0$</td>
<td>45</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

* Pulse Test: PW=350\mu s, Duty Cycle=2%. Pulsed
h_{FE} Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>R</th>
<th>O</th>
<th>Y</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>h<sub>FE2</sub></td>
<td>60 ~ 120</td>
<td>100 ~ 200</td>
<td>160 ~ 320</td>
<td>200 ~ 400</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>Package</th>
<th>Packing Method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSD882OSTU</td>
<td>D882O</td>
<td>TO-126</td>
<td>TUBE</td>
<td>hFE1 R grade</td>
</tr>
<tr>
<td>KSD882RSTU</td>
<td>D882R</td>
<td>TO-126</td>
<td>TUBE</td>
<td>hFE1 O grade</td>
</tr>
<tr>
<td>KSD882YSTU</td>
<td>D882Y</td>
<td>TO-126</td>
<td>TUBE</td>
<td>hFE1 Y grade</td>
</tr>
<tr>
<td>KSD882GSTU</td>
<td>D882G</td>
<td>TO-126</td>
<td>TUBE</td>
<td>hFE1 G grade</td>
</tr>
</tbody>
</table>

1. Affix "-S-" means the standard TO126 Package. If the affix is "-STS-" instead of "-S-", that means the short-lead TO126 package.
2. Suffix "-TU" means the tube packing. The Suffix "TU" could be replaced to other suffix character as packing method.
Typical Characteristics

Figure 1. Static Characteristic

Figure 2. DC current Gain

Figure 3. Base-Emitter Saturation Voltage
Collector-Emitter Saturation Voltage

Figure 4. Current Gain Bandwidth Product

Figure 5. Collector Output Capacitance

Figure 6. Safe Operating Area
Typical Characteristics

Figure 7. Derating Curve Of Safe Operating Areas

Figure 8. Power Derating
TRADemarks
The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

- ACEx®
- Build it Now™
- CorePLUS™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- EcoSPARK®
- Fairchild®
- Fairchild Semiconductor®
- FACT Quiet Series™
- FACT®
- FAST®
- FastvCore™
- FPS™
- FRFET®
- Global Power ResourceSM
- Green FPS™
- Green FPS™ e-Series™
- GTO™
- i-Lo™
- IntellIMAX™
- ISOPLANAR™
- MegaBuck™
- MICROCOUPLER™
- MicroFET™
- MicroPak™
- Motion-SPM™
- OPTOLOGIC®
- OPTOPLANAR®
- PDP-SPM™
- Power220®
- Power247®
- POWEREDGE®
- Power-SPM™
- PowerTrench®
- Programmable Active Droop™
- QFET®
- QS™
- QT Optoelectronics™
- Quiet Series™
- RapidConfigure™
- SMART START™
- SPM®
- STEALTH™
- SuperFET™
- SuperSOT™
- SuperSOT™-3
- SuperSOT™-6
- SyncFET™
- The Power Franchise®
- TinyBoost™
- TinyBuck™
- TinyLogic®
- TINYOPTO™
- TinyPower™
- TinyPWM™
- TinyWire™
- µSerDes™
- UHC®
- UniFET™
- VCX™

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>