User Manual ## MPS-5KVA-80 HYBRID INVERTER CHARGER # **Table Of Contents** | ABOUT THIS MANUAL | | |---------------------------------------|----| | Purpose | 1 | | Scope | | | SAFETY INSTRUCTIONS | 1 | | | | | INTRODUCTION | 2 | | Features | 2 | | Basic System Architecture | 2 | | Product Overview | 3 | | INSTALLATION | 4 | | Unpacking and Inspection | 4 | | Preparation | | | Mounting the Unit | 4 | | Battery Connection | 5 | | Generator Input/Output Connection | 6 | | PV Connection | 7 | | Final Assembly | | | Communication Connection | | | Dry Contact Generator Signal | 9 | | OPERATION | 10 | | Power ON/OFF | 10 | | Operation and Display Panel | | | LCD Display Icons | | | LCD Setting | 13 | | Display Setting | 20 | | Operating Mode Description | 23 | | Fault Reference Code | 25 | | Warning Indicator | 26 | | BATTERY EQUALIZATION | 27 | | SPECIFICATIONS | 29 | | Table 1 Generator Mode Specifications | 29 | | Table 2 Inverter Mode Specifications | | | Table 3 Charge Mode Specifications | | | TROUBLE SHOOTING | 32 | ## **ABOUT THIS MANUAL** ### **Purpose** This manual describes the assembly, installation, operation and troubleshooting of this unit. Please read this manual carefully before installations and operations. Keep this manual for future reference. ### **Scope** This manual provides safety and installation guidelines as well as information on tools and wiring. ## SAFETY INSTRUCTIONS WARNING: This chapter contains important safety and operating instructions. Read and keep this manual for future reference. - 1. Before using the unit, read all instructions and cautionary markings on the unit, the batteries and all appropriate sections of this manual. - 2. **CAUTION** --To reduce risk of injury, charge only deep-cycle type rechargeable batteries. Other types of batteries may burst, causing personal injury and damage. - 3. Do not disassemble the unit. Take it to a qualified service center when service or repair is required. Incorrect re-assembly may result in a risk of electric shock or fire. - 4. To reduce risk of electric shock, disconnect all wirings before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk. - 5. **CAUTION** Only qualified personnel can install this device with battery. - 6. **NEVER** charge a frozen battery. - 7. For optimum operation of this inverter/charger, please follow required spec to select appropriate cable size. It's very important to correctly operate this inverter/charger. - 8. Be very cautious when working with metal tools on or around batteries. A potential risk exists to drop a tool to spark or short circuit batteries or other electrical parts and could cause an explosion. - 9. Please strictly follow installation procedure when you want to disconnect AC or DC terminals. Please refer to INSTALLATION section of this manual for the details. - 10. Fuse is provided as over-current protection for the battery supply. - 11. GROUNDING INSTRUCTIONS -This inverter/charger should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this inverter. - 12. NEVER cause AC output and DC input short circuited. - 13. Warning!! Only qualified service persons are able to service this device. If errors still persist after following troubleshooting table, please send this inverter/charger back to local dealer or service center for maintenance. ## INTRODUCTION This is a stand-alone hybrid inverter/charger system, combining functions of inverter, MPPT solar charger and battery charger to offer uninterruptible power support with portable size. Its comprehensive LCD display offers user-configurable and easy-accessible button operation such as battery charging current, generator/solar charger priority, and acceptable input voltage based on different applications. ### **Features** - Pure sine wave inverter - Built-in MPPT solar charge controller - Configurable input voltage range for home appliances and personal computers via LCD setting - Configurable battery charging current based on applications via LCD setting - Configurable Generator/Solar Charger priority via LCD setting - Compatible with pure sine wave generator (only) - Auto restart when batteries recover - Overload/Over temperature/ short circuit protection - Smart battery charger design for optimized battery performance - Cold start function ### **Basic System Architecture** The following illustration shows basic application for this inverter/charger. It also includes following devices to have a complete running system: Batteries, Solar Panels, Generator. Consult with your system integrator for other possible system architectures depending on your requirements. This inverter can power all kinds of appliances in home or office environment, including motor-type appliances such as tube light, fan, refrigerator and air conditioner. Figure 1 Hybrid Power System ### **Product Overview** - 1. LCD display - 2. Status indicator - 3. Charging indicator - 4. Fault indicator - 5. Function buttons - 6. Power on/off switch - 7. Generator input (only) - 8. AC output - 9. PV input - 10. Battery input - 11. Circuit breaker - 12. RS232 communication port - 13. Parallel communication cable - 14. Current sharing cable - 15. Dry contact - 16. USB communication port ## **INSTALLATION** ### **Unpacking and Inspection** Before installation, please inspect the unit. Be sure that nothing inside the package is damaged. You should have received the following items inside of package: - The unit x 1 - · User manual x 2 - Communication cable x 4 - · Software CD x 1 ## **Preparation** Before connecting all wirings, please take off bottom cover by removing two screws as shown below. ## **Mounting the Unit** Consider the following points before selecting where to install: - Do not mount the inverter on flammable construction materials. - Mount on a solid surface - Install this inverter at eye level in order to allow the LCD display to be read at all times. - The ambient temperature should be between 0°C and 55°C to ensure optimal operation. - The recommended installation position is to be adhered to the wall vertically. - Be sure to keep other objects and surfaces as shown in the right diagram to guarantee sufficient heat dissipation and to have enough space for removing wires. SUITABLE FOR MOUNTING ON CONCRETE OR OTHER NON-COMBUSTIBLE SURFACE ONLY. Install the unit by screwing three screws. It's recommended to use M4 or M5 screws. ## **Battery Connection** CAUTION: For safety operation and regulation compliance, it's requested to install a separate DC over-current protector or disconnect device between battery and inverter. It may not be requested to have a disconnect device in some applications, however, it's still requested to have over-current protection installed. Please refer to typical amperage in below table as required fuse or breaker size. ### **WARNING!** All wiring must be performed by a qualified personnel. WARNING! It's very important for system safety and efficient operation to use appropriate cable for battery connection. To reduce risk of injury, please use the proper recommended cable and terminal size as below. Ring terminal: #### Recommended battery cable and terminal size: | | Massimoum | Dattan | | R | ing Termin | al | Toware | | | |-------|-----------|-------------------|-----------|-----------------------------------|------------|-----------------|-----------------|--------|-------| | Model | Maximum | Battery | Wire Size | Cable | Dimen | sions | Torque
value | | | | | Amperage | Amperage capacity | | Amperage Capacity mm ² | | mm ² | D (mm) | L (mm) | value | | 5KVA | 100A | 150AH | 1*2AWG | 38 | 6.4 | 39.2 | 2~ 3 Nm | | | | JNVA | | IJUAN | 2*6AWG | 28 | 6.4 | 33.2 | Zi~ O INIII | | | Please follow below steps to implement battery connection: - 1. Assemble battery ring terminal based on recommended battery cable and terminal size. - 2. Connect all battery packs as units requires. It's suggested to connect at least 150AH capacity battery. - 3. Insert the ring terminal of battery cable flatly into battery connector of inverter and make sure the bolts are tightened with torque of 2-3 Nm. Make sure polarity at both the battery and the inverter/charge is correctly connected and ring terminals are tightly screwed to the battery terminals. \triangle #### **WARNING: Shock Hazard** Installation must be performed with care due to high battery voltage in series. **CAUTION!!** Do not place anything between the flat part of the inverter terminal and the ring terminal. Otherwise, overheating may occur. **CAUTION!!** Do not apply anti-oxidant substance on the terminals before terminals are connected tightly. **CAUTION!!** Before making the final DC connection or closing DC breaker/disconnector, be sure positive (+) must be connected to positive (+) and negative (-) must be connected to negative (-). ### **Generator Input/Output Connection** #### **CAUTION!!** This system does not comply to a AS/NZS 4777 and cannot be connected directly to the mains grid as an input source this system can only be operated with a generator input, Before connecting to generator input power source, please install a separate AC breaker between inverter and generator input power source. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current of generator input. The recommended spec of AC breaker is 50A. CAUTION!! There are two terminal blocks with "IN" and "OUT" markings. Please do NOT mis-connect input and output connectors. **WARNING!** All wiring must be performed by a qualified personnel. **WARNING!** It's very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable size as below. Suggested cable requirement for AC wires | Model | Gauge | Torque Value | |-------|-------|--------------| | 5KVA | 8
AWG | 1.4~ 1.6Nm | Please follow below steps to implement generator input/output connection: - 1. Before making AC input/output connection, be sure to open DC protector or disconnector first. - 2. Remove insulation sleeve 10mm for six conductors. And shorten phase L and neutral conductor N 3 mm. - 3. Insert generator input wires according to polarities indicated on terminal block and tighten the terminal screws. Be sure to connect PE protective conductor () first. Ground (yellow-green) **L→LINE** (brown or red) N→Neutral (blue or black) \bigwedge #### **WARNING:** Be sure that AC power source is disconnected before attempting to hardwire it to the unit. 4. Then, insert generator output wires according to polarities indicated on terminal block and tighten terminal screws. Be sure to connect PE protective conductor () first. **Ground** (yellow-green) L→LINE (brown or red) N→Neutral (blue or black) 5. Make sure the wires are securely connected. #### **CAUTION: Important** Be sure to connect the generator wires with correct polarity. If L and N wires are connected incorrect, it may cause the generator to be short-circuited when these inverters are worked in parallel operation. **CAUTION:** Appliances such as air conditioner are required at least 2~3 minutes to restart because it's required to have enough time to balance refrigerant gas inside of circuits. If a power shortage occurs and recovers in a short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it's equipped with time-delay function before installation. Otherwise, this inverter/charger will trig overload fault and cut off output to protect your appliance but sometimes it still causes internal damage to the air conditioner. #### **PV** Connection **CAUTION:** Before connecting to PV modules, please install separately a DC circuit breaker between inverter and PV modules. **WARNING!** Do switch off the inverter before connecting to PV modules. Otherwise, it will cause inverter damage. WARNING! Do NOT connect negative and positive terminal of PV modules to the ground. **WARNING!** All wiring must be performed by a qualified installer. WARNING! It" very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below. | Model | Typical Amperage | Cable Size | Torque | |-------|------------------|------------|------------| | 5KVA | 80A | 10AWG | 1.4~1.6 Nm | #### **PV Module Selection:** When selecting proper PV modules, please be sure to consider below parameters: - 1. Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter. - 2. Open circuit Voltage (Voc) of PV modules should be higher than min. battery voltage. | Solar Charging Mode | | | | | |------------------------------------|--|--|--|--| | INVERTER MODEL | 5KVA | | | | | Max. PV Array Open Circuit Voltage | 120Voc for Australian use / Max 145Voc | | | | | PV Array MPPT Voltage Range | 60~115Vdc | | | | Please follow below steps to implement PV module connection: - 1. Remove insulation sleeve 10 mm for positive and negative conductors. - 2. Check correct polarity of connection cable from PV modules and PV input connectors. Then, connect positive pole (+) of connection cable to positive pole (+) of PV input connector. Connect negative pole (-) of connection cable to negative pole (-) of PV input connector. 3. Make sure the wires are securely connected. ## **Final Assembly** After connecting all wirings, please put bottom cover back by screwing two screws as shown below. ### **Communication Connection** Please use supplied communication cable to connect to inverter and PC. Insert bundled CD into a computer and follow on-screen instruction to install the monitoring software. For the detailed software operation, please check user manual of software inside of CD. ## **Dry Contact Signal** There is one dry contact (3A/250VAC) available on the rear panel. It is used to deliver signal to a generator when battery voltage reaches set warning level. | Unit Status | | (| Condition | Dry contact port: | | | |-------------|------------------------------|---------------------------|--|-------------------|-------|--| | | | | NC&C | NO&C | | | | Power Off | Unit is off and | d no output is p | powered. | Close | Open | | | | Output is pov | vered from Util | ity. | Close | Open | | | | Output is powered | Program 01 set as Utility | Battery voltage < Low DC warning voltage | Open | Close | | | Power On | from
Battery or
Solar. | , | Battery voltage > Setting value in
Program 13 or battery charging
reaches floating stage | Close | Open | | | | | Program 01 is set as | Battery voltage < Setting value in Program 12 | Open | Close | | | | | SBU or
Solar first | Battery voltage > Setting value in
Program 13 or battery charging
reaches floating stage | Close | Open | | ## **OPERATION** ### **Power ON/OFF** Once the unit has been properly installed and the batteries are connected well, simply press On/Off switch (located on the button of the case) to turn on the unit. ## **Operation and Display Panel** The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes three indicators, four function keys and a LCD display, indicating the operating status and input/output power information. #### **LED Indicator** | LED Indicator | | | Messages | | |---------------------------------|--------------------|----------|---|--| | AC/XINV Green Solid On Flashing | | Solid On | Output is powered by generator input mode. | | | | | Flashing | Output is powered by battery or PV in battery mode. | | | ☼ CHG Green | | Solid On | Battery is fully charged. | | | | | Flashing | Battery is charging. | | | ▲ FAULT | FAULT Red Solid On | | Fault occurs in the inverter. | | | ZI FAULI | Reu | Flashing | Warning condition occurs in the inverter. | | #### **Function Keys** | Function Key | Description | |--------------|--| | ESC | To exit setting mode | | UP | To go to previous selection | | DOWN | To go to next selection | | ENTER | To confirm the selection in setting mode or enter setting mode | ## **LCD Display Icons** | Icon | Function description | | | | | | |----------------------------|---|--|--|--|--|--| | Input Source In | Input Source Information | | | | | | | AC | Indicates the generator inpu | t. | | | | | | PV | Indicates the PV input | | | | | | | INPUTBATT KW VA %c Hzc | Indicate input voltage, input and charger current. | Indicate input voltage, input frequency, PV voltage, battery voltage | | | | | | Configuration P | rogram and Fault Informati | on | | | | | | 88 | Indicates the setting program | ms. | | | | | | | Indicates the warning and fault codes. Warning: flashing with warning code. Fault: lighting with fault code | | | | | | | Output Informa | tion | | | | | | | OUTPUTBATTLOAD KW % Hz | | | | | | | | Battery Informa | tion | | | | | | | CHARGING | Indicates battery level by 0-2 battery mode and charging s | 24%, 25-49%, 50-74% and 75-100% in status in line mode. | | | | | | In AC mode, it wil | present battery charging statu | IS. | | | | | | Status | Battery voltage | LCD Display | | | | | | Constant
Current mode / | <2V/cell 2 ~ 2.083V/cell 2.083 ~ 2.167V/cell | 4 bars will flash in turns. Bottom bar will be on and the other three bars will flash in turns. Bottom two bars will be on and the other | | | | | | Constant Voltage mode | > 2.167 V/cell | two bars will flash in turns. Bottom three bars will be on and the top bar will flash. | | | | | | Floating mode. B | atteries are fully charged. | 4 bars will be on. | | | | | | In battery mode, it will present battery capacity. | | | | | | |--|---|---------|---------------------|-----------------|----------| | Load Percentage | | Batter | y Voltage | LCD Display | , | | | | < 1.7 | 17V/cell | | | | | | 1.717 | V/cell ~ 1.8V/cell | | | | Load >50% | | 1.8 ~ | 1.883V/cell | | | | | | > 1.8 | 83 V/cell | | | | | | < 1.8 | 17V/cell | | | | | | 1.817 | V/cell ~ 1.9V/cell | | | | 50%> Load > 20 ⁴ | % | 1.9 ~ | 1.983V/cell | | | | | | > 1.9 | 83 | | | | | | < 1.8 | 67V/cell | | | | | | 1.867 | V/cell ~ 1.95V/cell | | | | Load < 20% | | 1.95 | ~ 2.033V/cell | | | | | | > 2.033 | | | | | Load Information | 1 | | | | | | OVER LOAD | Indicates ove | erload. | | | | | | Indicates the | load I | evel by 0-24%, 25-4 | 19%, 50-74% and | 75-100%. | | M 🗐 100% | 0%~24 | % | 25%~49% | 50%~74% | 75%~100% | | 25% | [7 | | ; / | ! / | 7 | | Mode Operation | Information | | | | | | • | Indicates unit connects to the mains. | | | | | | | Indicates unit connects to the PV panel. | | | | | | BYPASS | Indicates load is supplied by generator power. | | | | | | | Indicates the generator charger circuit is working. | | | | | | | Indicates the DC/AC inverter circuit is working. | | | | | | Mute Operation | | | | | | | | Indicates uni | t alarn | n is disabled. | | | ## **LCD Setting** After pressing and holding ENTER button for 3 seconds, the unit will enter setting mode. Press "UP" or "DOWN" button to select setting programs. And then, press "ENTER" button to confirm the selection or ESC button to exit. **Setting Programs:** | Program | Description | Selectable option | |
---------|-------------------|-----------------------|---| | 00 | Exit setting mode | Escape OD ESC | | | | | Solar first | Solar energy provides power to the loads as first priority. If solar energy is not sufficient to power all connected loads, battery energy will supply power the loads at the same time. Generator provides power to the loads only when any one condition happens: - Solar energy is not available - Battery voltage drops to either low-level warning voltage or the setting point in program 12. | | | source priority | O _o l_UEI_ | Solar and battery energy will provide power to the loads only when generator power is not available. | | | | SBU priority | Solar energy provides power to the loads as first priority. If solar energy is not sufficient to power all connected loads, battery energy will supply power to the loads at the same time. Generator provides power to the loads only when battery voltage drops to low-level warning or to set point in program 12. | | | Т | | Г | |----------|--|-----------------------------|---| | | | 10A | 20A | | | | 0Š 0 · | 05 50° | | | Marrian una abaucia a arrumante | 30A | 40A | | | Maximum charging current: current for solar and | 00 00 | 05 40, | | 0.2 | generator | iig <u> </u> | UC | | 02 | chargers.
(Max. charging current = | 50A | 60A (default) | | | Generator charging current + solar charging current) | 02 SO. | 0Š 60, | | | 1 Solar Charging Carrenty | 70A | 80A | | | | 00 | | | | | 0 <u>5</u> | 0 <u>\$ 80 </u> | | | | Appliances (default) | If selected, acceptable AC input | | | AC/generator input voltage | 183 API | voltage range will be within 90-280V | | 03 | range | UPS | If selected, acceptable AC input | | | | ND LIGE | voltage range will be within 170-280V | | | | U2 <u> U75</u> | 1 .a.gag 20a 170 2007 | | | | Saving mode disable | If disabled, no matter connected load | | | | (default) | is low or high, the on/off status of | | 04 | Power saving mode enable/disable | U¼ 585 | inverter output will not be effected. | | 04 | | Saving mode enable | If enabled, the output of inverter will | | | | Ny con | be off when connected load is pretty | | | | U _Ø ' <u>][</u> | low or not detected. | | | | AGM (default) | Flooded | | | | U՝ ACn | ԱՃ եՐԳ | | 05 | Battery type | User-Defined | If "User-Defined" is selected, battery | | | , ,, | OS LICE | charge voltage and low DC cut-off | | | | <u> </u> | voltage can be set up in program 26, | | | | B | 27 and 29. | | | Auto roctart when averland | Restart disable | Restart enable | | 06 | Auto restart when overload occurs | (default) | <u> </u> | | | | UD | | | | | Restart disable | Restart enable | | 07 | Auto restart when over | (default) | O] | | | temperature occurs | [비교 논문점 | Ø <u> </u> | | | | 220V | 230V (default) | | | | 0 <u>8</u> 550, | Ω8 pan√ | | 08 | Output voltage | - <u>∅</u> <u></u> | <u> </u> | | | | 240V | | | | | 10g - 540, | | | <u> </u> | l | · — | <u> </u> | | 09 | Output frequency | 50Hz (default) | 60Hz | |----|--|--|-------------------------| | | | 2A | 10A | | 11 | Maximum generator charging current | 40A
 | 50A
 SOR
 70A | | | | | | | | | Available options in 48V 44V BATT 46V (default) BATT 6v | 45V | | 12 | Setting voltage point back
to AC source when
selecting "SBU priority" or
"Solar first" in program 01. | 48V | 49V | | | | 54V | 2 | | | | 56V | 57V | | | | Available | entions in 49\/ | modolou | | | |----|---|--------------|--------------------------------|-----------|-------------|----------| | | | | options in 48V
Illy charged | 48V | | \dashv | | | | 13 F | BATT | | BATT V | | | | | 49V
] | BATT V | 50V
 | BATT V | | | | | 51V
 | BATT V | 52V
 | BATT V | | | | | 53V
 | BATT J v | 54V (defa | ult) BATT V | | | 13 | Setting voltage point back
to battery mode when
selecting "SBU priority" or
"Solar first" in program 01. | 55V
 | BATT 5 v | 56V
 | BATT V | | | | | 57V
 | BATT V | 58V
 | BATT V | | | | | 59V
 | Satt
SS v | 60V | BATT V | | | | | 61V
 3 — | BATT V | 62V
 | BATT V | | | | | 63V | BATT V | 64V | BATT V | | | | | | s working in Line, Standby or Fault in be programmed as below: | |----|---|--|---| | | | Solar first | Solar energy will charge battery as first priority. | | | | Generator first | Generator will charge battery as first
Priority. | | 16 | To configure charger source priority | Sofar and Utility | | | | priority | (default) | Solar energy and generator will charge Together | | | | Only Solar | Solar energy will be the only charger source | | | | saving mode, only solar | s working in Battery mode or Power
energy can charge battery. Solar | | | | · · · · · · | ry if it's available and sufficient. | | 10 | Alayma cantural | Alarm on (default) | Alarm off | | 18 | Alarm control | ib <u> PN </u> | i₿ <u> 6UF </u> | | 19 | Auto return to default display screen | Return to default display screen (default) | If selected, no matter how users switch display screen, it will automatically return to default display screen (Input voltage /output voltage) after no button is pressed for 1 minute. | | | | Stay at latest screen | If selected, the display screen will stay at latest screen user finally switches. | | 20 | Backlight control | Backlight on (default) | Backlight off CO LOF | | 22 | Beeps while primary source is interrupted | Alarm on (default) | Alarm off 22 ROF | | 23 | Overload bypass: When enabled, the unit will transfer to generator mode If overload occurs in battery | Bypass disable (default) | Bypass enable | | | mode. | _9 | | | 25 | Record Fault code | Record enable | Record disable (default) | | | | default setting: 56.4V | | | |---------------------------|---|--|--|--| | 26 | Bulk charging voltage
(C.V voltage) | If self-defined is selected in program 5, this program can be | | | | | | set up. Setting range is from 48.0V to 64.0V. Increment of each click is 0.1V. | | | | | | default setting: 54.0V | | | | 27 | Floating charging voltage | <u> </u> | | | | | | If self-defined is selected in program 5, this program can be set up. Setting range is from 48.0V to 64.0V. Increment of each click is 0.1V. | | | | | | default setting: 42.0V | | | | 20 | Low DC cut-off voltage | 5 <u>\$</u> 4 <u>\$</u> ;0, | | | | 29 Low DC cut-off voltage | | If self-defined is selected in program 5, this program can be set up. Setting range is from 40.0V to 54.0V. Increment of each click is 0.1V. Low DC cut-off voltage will be fixed to setting value no matter what percentage of load is connected. | | | | | Solar power balance: | Solar power balance enable (Default): If selected, solar input power will be automatically adjusted according to the following formula: Max. input solar power = Max. battery charging power + Connected load power. | | | | 31 | When enabled, solar input power will be automatically | Solar power balance If selected, the solar input power will be the same to max. battery | | | | | adjusted according to connected load power. | charging power no matter how much loads are connected. The max. battery charging power will be based on the setting current in program 02. (Max. solar power = Max. battery charging power) | | | | | | Automatically (Default): If selected, inverter will judge this charging time automatically. | | | | 32 | | 32 RUE | | | | | Bulk charging time
(C.V stage) | 5 min The setting range is from 5 min to 900 min. Increment of each click is | | | | | | <u> うぱ </u> | | | | | | 900 min | | | | | | ⊃ <u>© 700</u> | | | | | | If "USE" is selected in program 05, this program can be set up. | | | | 33 | Battery equalization | Battery equalization 33 EEП | Battery equalization disable (default) | | |----|------------------------------------|---|--|--| | | | If "Flooded" or "User-Defined" program can be set up. | is selected in program 05, this | | | | | Default setting is 58.4V. Settin Increment of each click is 0.1V | | | | 34 | Battery equalization voltage | En 34 E | BATT V | | | | | | Io.;; | | | 35 | Battery equalized time | 60min (default) | Setting range is from 5min to 900min. Increment of each | | | | | <u> </u> | click is 5min. | | | 36 | Datham, annalized times and | 120min (default) | Setting range is from 5min to 900 min. Increment of each | | | 30 | Battery equalized timeout | 3\$ <u> 150</u> | click is 5 min. | | | 27 | Facelination internal | 30days (default) | Setting range is from 0 to 90 | | | 37 | Equalization interval
| 3 <u>0</u> | days. Increment of each click is 1 day | | | | | Enable | Disable (default) | | | | | 3 <u>9 AEN</u> | 3 <u>9 AdS</u> | | | 39 | Equalization activated immediately | If equalization function is enabled in program 33, this program can be set up. If "Enable" is selected in this program, it's to | | | | | | activate battery equalization immediately and LCD main page | | | | | | will shows " . If "Disable" equalization function until next | activated equalization time | | | | | arrives based on program 37 setting. At this time, " will not be shown in LCD main page. | | | ## **Display Setting** The LCD display information will be switched in turns by pressing "UP" or "DOWN" key. The selectable information is switched as below order: input voltage, input frequency, PV voltage, MPPT charging current, MPPT charging power, charging current, charging power, battery voltage, output voltage, output frequency, load percentage, load in VA, load in Watt, DC discharging current, main CPU Version and second CPU Version. | Selectable information | LCD display | |--|--| | Input voltage/Output voltage
(Default Display Screen) | Input Voltage=230V, output voltage=230V | | Input frequency | Input frequency=50Hz OUTPUT | | PV voltage | PV voltage=200V INPUT OUTPUT OUT | | MPPT Charging current | Current ≥10A STATE OUTPUT 230 V OVERAGE CHARGING OUTPUT 25% CHARGING OUTPUT 25% OUTPUT 25% OWARDING | | Battery voltage/ DC discharging current | Battery voltage=25.5V, discharging current=1A BATT A BATT A 100% 25% | |---|--| | Output frequency | Output frequency=50Hz OUTPUT SYPASS OUTPUT FINANCING OUTPUT OUTPUT FINANCING FINANCING OUTPUT FINA | | Load percentage | Load percent=70% BATT V CYPASS GYARGING LOAD % 100% 25% | | Load in VA | When connected load is lower than 1kVA, load in VA will present xxxVA like below chart. BATT STATE WHEN LOAD WA WHEN load is larger than 1kVA (≥1KVA), load in VA will present x.xkVA like below chart. BATT STATE WA BYPASS BYPASS STATE | ## **Operating Mode Description** | Operation mode | Description | LCD display | |--|---|--| | Standby mode / Power saving mode Note: *Standby mode: The inverter is not turned on yet but at this | No output is supplied by the | Charging by generator and PV energy. Charging by generator. Charging by generator. | | time, the inverter can charge battery without AC output. *Power saving mode: If enabled, the output of inverter will be off when connected load is pretty low or not detected. | unit but it still can charge batteries. | Charging by PV energy. | | | | No charging. | | 1 | 1 | | |---|---|--| | Fault mode Note: *Fault mode: Errors are caused by inside circuit error or external reasons such as over temperature, output short circuited and so on. | PV energy and generator can charge batteries. | Generator and PV energy. Charging by AC. Charging by PV energy. Charging by PV energy. No charging. | | Line Mode | The unit will provide output power from the generator. It will also charge the battery in generator mode. | Charging by AC and PV energy. EYPASS Charging by AC. EYPASS CHARGING CH | | | The unit will provide output power from the generator | If battery is not connected, solar energy and the generator
will provide the loads. Power from generator BYPASS 100% 25% | | | | Power from battery and PV energy. | |---------------|--|--| | | The unit will provide output power from battery and PV | 25% | | Battery Mode | | PV energy will supply power to the loads and | | | power. | charge battery at the same time | | | | 25% | | | | Power from battery only. | | Battery Mode | The unit will provide output power from battery and PV | 25% | | Duccory Frode | | Power from PV energy only. | | | power. | 25% | ## **Fault Reference Code** | Fault Code | Fault Event | Icon on | |------------|--|---------| | 01 | Fan is locked when inverter is off. | | | 02 | Over temperature | | | 03 | Battery voltage is too high | | | 04 | Battery voltage is too low | | | 05 | Output short circuited or over temperature is detected by internal converter components. | [DS] | | 06 | Output voltage is abnormal. (For 1K/2K/3K model) Output voltage is too high. (For 4K/5K model) | | | 07 | Overload time out | | | 08 | Bus voltage is too high | (DB) | | 09 | Bus soft start failed | | | 10 | PV over current | | | 11 | PV over voltage | | | 12 | DC over current | | | 51 | Over current or surge | 5 | | 52 | Bus voltage is too low | [52] | | 53 | Inverter soft start failed | [53] | | 55 | Over DC voltage in AC output | [55] | |----|------------------------------|---------| | 56 | Battery connection is open | <u></u> | | 57 | Current sensor failed | | | 58 | Output voltage is too low | 28, | NOTE: Fault codes 51, 52, 53, 55, 56, 57 and 58 are only available in 5K model. ## **Warning Indicator** | Warning
Code | Warning Event | Audible Alarm | Icon flashing | |-----------------|------------------------------------|-------------------------------|---------------| | 01 | Fan is locked when inverter is on. | Beep three times every second | | | 03 | Battery is over-charged | Beep once every second | | | 04 | Low battery | Beep once every second | | | 07 | Overload | Beep once every 0.5 second | OVER LOAD | | 10 | Output power derating | Beep twice every 3 seconds | | | 15 | PV energy is low | Beep twice every 3 seconds | | | E 9 | Battery equalization | None | [E9]A | | <u></u> БР. | Battery is not connected | None | [6P]A (| ## **BATTERY EQUALIZATION** Equalization function is added into charge controller. It reverses the buildup of negative chemical effects like stratification, a condition where acid concentration is greater at the bottom of the battery than at the top. Equalization also helps to remove sulfate crystals that might have built up on the plates. If left unchecked, this condition, called sulfation, will reduce the overall capacity of the battery. Therefore, it's recommended to equalize battery periodically. #### How to Apply Equalization Function You must enable battery equalization function in monitoring LCD setting program 33 first. Then, you may apply this function in device by either one of following methods: - 1. Setting equalization interval in program 37. - 2. Active equalization immediately in program 39. #### When to Equalize In float stage, when the setting equalization interval (battery equalization cycle) is arrived, or equalization is active immediately, the controller will start to enter Equalize stage. #### Equalize charging time and timeout In Equalize stage, the controller will supply power to charge battery as much as possible until battery voltage raises to battery equalization voltage. Then, constant-voltage regulation is applied to maintain battery voltage at the battery equalization voltage. The battery will remain in the Equalize stage until setting battery equalized time is arrived. However, in Equalize stage, when battery equalized time is expired and battery voltage doesn't rise to battery equalization voltage point, the charge controller will extend the battery equalized time until battery voltage achieves battery equalization voltage. If battery voltage is still lower than battery equalization voltage when battery equalized timeout setting is over, the charge controller will stop equalization and return to float stage. ## **SPECIFICATIONS** Table 1 Line Mode Specifications | INVERTER MODEL | 5KVA | | | |--|---|--|--| | Input Voltage Waveform | Pure Sine Wave (generator only) | | | | Nominal Input Voltage | 230/240Vac | | | | Low Loss Voltage | 170Vac± 7V (UPS)
90Vac± 7V (Appliances) | | | | Low Loss Return Voltage | 180Vac± 7V (UPS);
100Vac± 7V (Appliances) | | | | High Loss Voltage | 280Vac± 7V | | | | High Loss Return Voltage | 270Vac± 7V | | | | Max AC Input Voltage | 300Vac | | | | Nominal Input Frequency | 50Hz / 60Hz | | | | Low Loss Frequency | 47± 1Hz | | | | Low Loss Return Frequency | 48± 1Hz | | | | High Loss Frequency | 53± 1Hz | | | | High Loss Return Frequency | 52± 1Hz | | | | Output Short Circuit Protection | Generator mode: Circuit Breaker Battery mode: Electronic Circuits | | | | Efficiency (Line Mode) | >95% (Rated R load, battery full charged) | | | | Transfer Time | 10ms typical (UPS);
20ms typical (Appliances) | | | | Output power derating: When AC input voltage drops to 95V or 170V depending on models, the output power will be derated. | Output Power Rated Power 50% Power 90V 170V 280V Input Voltage | | | Table 2 Inverter Mode Specifications | INVERTER MODEL | 5KVA | | |-------------------------------|-----------------------------------|--| | Rated Output Power | 5KVA/4KW | | | Output Voltage Waveform | Pure Sine Wave | | | Output Voltage Regulation | 230Vac± 5% | | | Output Frequency | 60Hz or 50Hz | | | Peak Efficiency | 92% | | | Overload Protection | 5s@≥150% load; 10s@110%~150% load | | | Surge Capacity | 2* rated power for 5 seconds | | | Nominal DC Input Voltage | 48Vdc | | | Cold Start Voltage | 46.0Vdc | | | Low DC Warning Voltage | | | | @ load < 20% | 44.0Vdc | | | @ 20% ≤ load < 50% | 42.8Vdc | | | @ load ≥ 50% | 40.4Vdc | | | Low DC Warning Return Voltage | | | | @ load < 20% | 46.0Vdc | | | @ 20% ≤ load < 50% | 44.8Vdc | | | @ load ≥ 50% | 42.4Vdc | | | Low DC Cut-off Voltage | | | | @ load < 20% | 42.0Vdc | | | @ 20% ≤ load < 50% | 40.8Vdc | | | @ load ≥ 50% | 38.4Vdc | | | High DC Recovery Voltage | 59Vdc | | | High DC Cut-off Voltage | 60Vdc | | Table 3 Charge Mode Specifications | | ge Mode Specii
Charging Mode | | | | | |---|---------------------------------|--|--|--|--| | Generator Charging Mode INVERTER MODEL | | 5KVA | | | | | Charging Current (UPS) @ Nominal Input Voltage | | 60A | | | | | Bulk | Flooded
Battery | 58.4 | | | | | Charging
Voltage | AGM / Gel
Battery | 56.4 | | | | | Floating Ch | arging Voltage | 54Vdc | | | | | Overcharge | Protection | 60Vdc | | | | | Charging Algorithm | | 3-Step | | | | | Charging Curve | | Battery Voltage, per cell Charging Current, % Voltage 100% To T1 = 10* T0, minimum 10mins, maximum 8hrs Bulk (Constant Current) Response to the control of contro | | | | | Solar Input | | | | | | | INVERTER MODEL | | 5KVA | | | | | Rated Powe | _ | 4000W | | | | | Max. PV Array Open Circuit
Voltage | | 120Voc for Australian use / Max 145Voc | | | | | PV Array MPPT Voltage
Range | | 60~115Vdc | | | | | Max. Input Current | | 80A | | | | | | | | | | | **Table 4 General Specifications** | INVERTER MODEL | 5KVA | | |-----------------------------|--|--| | Safety Certification | CE ISO IEC SAA (CEC Pending) | | | Operating Temperature Range | -10°C to 50°C | | | Storage temperature | -15°C~ 60°C | | | Humidity | 5% to 95% Relative Humidity (Non-condensing)
 | | Dimension
(D*W*H), mm | 115 x 290 x 450 | | | Net Weight, kg | 10 | | ## **TROUBLE SHOOTING** | Problem | LCD/LED/Buzzer | Explanation / Possible cause | What to do | | |---|---|--|--|--| | Unit shuts down automatically during startup process. | LCD/LEDs and buzzer will be active for 3 seconds and then complete off. | The battery voltage is too low (<1.91V/Cell) | Re-charge battery. Replace battery. | | | No response after power on. | No indication. | The battery voltage is far too low. (<1.4V/Cell) Battery polarity is connected reversed. | Check if batteries and the wiring are connected well. Re-charge battery. Replace battery. | | | | Input voltage is displayed as 0 on the LCD and green LED is flashing. | Input protector is tripped | Check if AC breaker is tripped
And generator and AC wiring
is connected well. | | | Mains exist but the unit works in battery mode. | Green LED is flashing. | Insufficient quality of AC power.
(Shore or Generator) | Check if AC wires are too thin and/or too long. Check if generator (if applied) is working well or if input voltage range setting is correct. (UPS→Appliance) | | | | Green LED is flashing. | Set "Solar First" as the priority of output source. | Change output source priority to Utility first. | | | When the unit is turned on, internal relay is switched on and off repeatedly. | LCD display and LEDs are flashing | Battery is disconnected. | Check if battery wires are connected well. | | | | Fault code 07 | Overload error. The inverter is overload 110% and time is up. | Reduce the connected load by switching off some equipment. | | | | - II | Output short circuited. | Check if wiring is connected well and remove abnormal load. | | | | Fault code 05 | Temperature of internal converter component is over 120°C. (Only available for 1-3KVA models.) | Check whether the air flow of the unit is blocked or whether the ambient temperature is too high. | | | | Fault code 02 | Internal temperature of inverter component is over 100°C. | | | | | | Battery is over-charged. | Return to repair center. | | | Buzzer beeps continuously and | Fault code 03 | The battery voltage is too high. | Check if spec and quantity of batteries are meet requirements. | | | red LED is on. | Fault code 01 | Fan fault | Replace the fan. | | | | Fault code 06/58 | Output abnormal (Inverter voltage below than 190Vac or is higher than 260Vac) | Reduce the connected load. Return to repair center | | | | Fault code
08/09/53/57 | Internal components failed. | Return to repair center. | | | | Fault code 51 | Over current or surge. | Restart the unit, if the error | | | | Fault code 52 | Bus voltage is too low. | happens again, please return | | | | Fault code 55 | Output voltage is unbalanced. | to repair center. | | | | Fault code 56 | Battery is not connected well or fuse is burnt. | If the battery is connected well, please return to repair center. | | For More Information Go To: www.arrayenergy.com.au