Dewo57P2N

Integrated digital hybrid servo Instruction manual

I, Product description

1,Overview

JSS57 is a new motor-driven integrated hybrid servo drive system with communication function. Using a new generation of 32-bit DSP control technology and closed-loop control technology, it can prevent out-of-step and ensure the accuracy of the product; High-speed torque attenuation is much lower than traditional open-loop drive, which can greatly improve the high-speed performance and torque of stepper motor. Load-based current control technology can effectively reduce motor temperature rise and extend motor life. Built-in position and alarm output Signal, convenient for monitoring and control of the host computer; The position error alarm function ensures the safe operation of the processing equipment. It is an ideal upgrade for traditional open-loop stepper drives and can replace some traditional AC servo systems at a price of only 50% of the AC servo system.

2. Characteristics

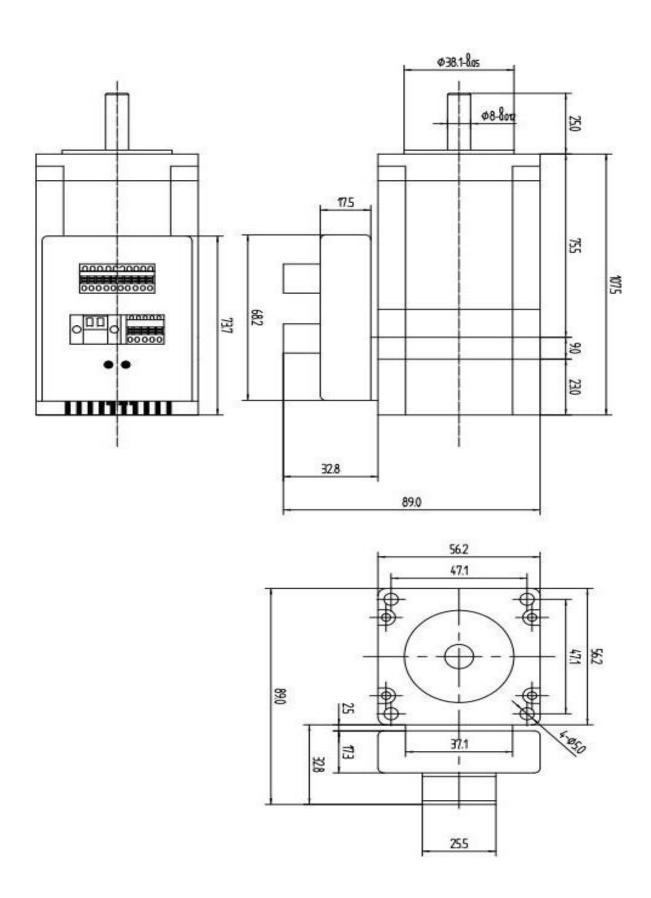
- ◆ Adopt advanced 32-bit motor control dedicated DSP chip and vector closed-loop control technology;
- ◆ The default work is in closed loop mode, no loss of step, and it also supports working in open loop mode.;
- ◆ Increase the output torque and running speed of the motor;
- ◆ The current level is intelligently adjusted according to the load, reducing the temperature rise of the motor, locking the current, and adjusting the closed-loop peak current.;
- ◆ Adapt to various mechanical load conditions (including low-rigidity loads such as pulleys and pulleys) without adjusting the gain parameters;
- ◆ The position command smoothing filter can be set, the motor runs smoother, the vibration is lighter, and the acceleration and deceleration dynamic performance is improved.;
- ◆ Zero-speed static capability without vibration after positioning;
- ◆ Support single and double pulse input, pulse response frequency up to 200KHZ;
- ◆ Support 15 fixed subdivisions, and support software to set any subdivision (200~65535);
- Support modbus RTU protocol on RS232, position and speed control controlled by communication:
- ◆ Support monitoring of motor operating conditions, including speed, position deviation, bus voltage, operating current, etc.等。
- ◆ Voltage range: DC+24V~48V;
- With overcurrent, overvoltage, positional tolerance and other protection;

1. Typical application

Suitable for all kinds of small and medium-sized automation equipment and instruments, such as industrial robots, textile machinery, special industrial sewing machines, wire stripping machines, marking machines, cutting machines, laser phototypesetting, plotters, CNC

machine tools, engraving machines, automatic assembly equipment, etc. Excellent application in devices where users expect low noise and high speed.

II, Electrical, mechanical and environmental indicators


1.Electrical index

Power supply	DC36VRecommended power supply DC36V
Output current	Peak 6.0A (current varies with load)
Logic input current	10mA7~16mA, recommended 10mA
Pulse frequency	0~200KHz
Encoder line number	1000
Insulation resistance	>=500MΩ

2.Use environment and parameters

cooling method	Natural cooling or external heat sink				
Use environment	Use occasion Try to avoid dust, oil and corrosiv				
	gases				
	Temperature 0~40°C				
	Humidity 40~90%RH				
	Vibration	5.9m/s ² Max			
Storage temperature	-20℃~80℃				
weight	About 1.3Kg				

3. Mechanical installation size

$\overline{111}$, Drive interface and wiring introduction

1. Interface definition

(1) Power input port

Terminal	Symbol	Name	Description
number			
1	+Vdc	DC power positive terminal	DC+24V~48V
2	GND	DC power ground	Recommended DC+36V
			power supply

(2) Control signal port

Terminal number	Symbol	Name	Description
1	PUL+	Pulse positive input	Support 5~24V
2	PUL-	Pulse negative input	
3	DIR+	Positive input	
4	DIR-	Negative input	
5	ENA+	Enable positive input	
6	ENA-	Enable negative input	
7	PEND+	In-position signal positive output	OC gate output, the default closure indicates that the positioning is
8	PEND-	In-position signal negative output	completed, and the open indication indicates that the positioning is not completed.
9	ALM+	Alarm signal positive output	OC gate output, the default close
10	ALM-	Alarm signal negative output	indication has an alarm signal, and the open indication indicates no alarm signal.

(3) RS232 communication port

Termin	Symbol	Name
al		
numbe		
r		
1	+5V	Positive power
		terminal
2	TXD	RS232 sender
3	GND	Power ground
4	RXD	RS232 receiver
5	NC	

(4) Status indication

PWR: Power Indicator. The green indicator lights when power is applied.

ALM: Fault indicator. Red light flashes 1 time within 3 seconds: Overcurrent or phase-to-phase short-circuit fault; red light flashes continuously 2 times in 3 seconds:

Overvoltage fault; red light flashes continuously in 7 seconds 7 times: position error tolerance alarm.

IV. DIP switch setting

JSS57 uses a six-digit dial switch to set the filter time, motor rotation direction and subdivision accuracy.

SW1, filter time setting. The default on=3ms, off=25ms, the larger the filtering time, the smoother the motor runs and the lower the noise. Moreover, in the on state, the filtering time can be flexibly set by the upper computer software setting.

SW2, motor rotation direction setting.

On=CW,off=CCW.

SW3、SW4、SW5、SW6: Subdivision setting。

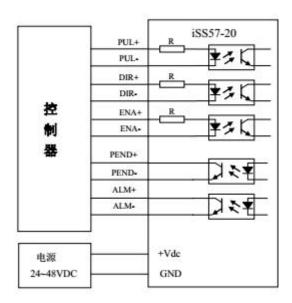
Steps / circle	SW3	SW4	SW5	SW6
default	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off

The default file segmentation defaults to 400, which can be modified by the host computer software.

V, Drive parameter settings

The parameter setting of SS57 integrated hybrid servo drive must pass the RS232 serial communication port of PC, and the special debugging software is used to complete the parameter setting. The driver has a set of default factory configuration parameters corresponding to the

motor. The user only needs to follow the specific use. Adjust the number of subdivisions inside the drive. For details, see the Protuner debugging software instructions. The specific adjustable parameters and functions are shown in the table below.


Parameter	project	Description	Predetermine	Defaults	Project note
number			d area		
0	Drive model	Read only	57	Corresp	Read only, no need
				onding	to modify
				motor	
				model	
1	Open loop closed	0-open loop mode,	0~1	1	In open loop mode,
	mode selection	1-closed loop mode			set the motor current
					with parameter 11,
					the value of the open
					loop holding current.
					In closed loop mode,
					the current is
					automatically
					adjusted according to
					the load.
2	Motor type	No need to modify	0~2	0	No need to modify
3	Current loop	Read only			Read only, no need
	proportional gain				to modify
	Кр				
4	Current loop	Read only			Read only, no need
	integral gainKi				to modify
5	Position loop		0~1000	300	The larger the
	proportional				setting, the higher the
	gainKp				gain and the greater
					the stiffness, but the
					value is too large to
					cause oscillation or
					overshoot.
6	Speed loop		0~1000	400	The larger the setting
	proportional gain				value, the higher the
	Kp				gain and the higher
					the stiffness. In
					general, the load
					inertia needs to be set
					larger.
7	Speed loop		0~300	80	The larger the
	integral gain Ki				setting, the higher the
					gain and the greater
					the stiffness, but the
					value is too large to

					cause oscillation or overshoot.
8	The number of pulses per revolution corresponding to the dial switch of the default file		200~65535	400	Any number of other subdivisions other than the 15 fixed subdivisions
9	Encoder resolution	Default 1000 line encoder, 4 times frequency	200~20000	4000	Default 1000 line encoder, 4 times frequency
10	Tracking error alarm threshold	Encoder pulse number	40~65535	1000	In the case of some tracking error alarms, this value can be solved by raising this value.
11	Open loop holding current	Unit 100mA	0~80	30	
12	Closed loop hold current peak	Unit 100mA	0~80	60	
13	Pulse command filtering time	Unit 50us	0~600	60	The larger the value, the smoother the motor runs and the noise, but the position tracking lag time also increases.
14	Enable level polarity	When the optocoupler is turned on, the enable signal is valid. When the 1-optocoupler is not turned on, the enable signal is valid.	0~1	1	Generally do not need to modify
15	Fault output level polarity	0- When the alarm signal is valid, the optocoupler is turned on, and when the 1-alarm signal is valid, the optocoupler is not turned on.	0~1	0	Generally do not need to modify
16	Pulse input mode	0-PUL/DIR , 1-CW/CCW	0~1	0	PUL/DIR single pulse, CW/CCW double pulse
17	Pulse effective edge	0-up and down edge, 1-down edge	0~1	0	

18	PEND output	0-bit output	0~1	0	PEND defaults to the
	function selection	1-Brake output			in-position output
		T Brake output			signal. If it is needed
					to control the brake
					device, you can set
					this value to 1 to
					control the relevant
				_	brake coil.
19	PEND output	When the 0-PEND	0~1	0	Generally do not
	level polarity	signal is valid, the			need to modify
		optocoupler is turned			
		on, and when the			
		1-PEND signal is valid,			
		the optocoupler is not			
		turned on.			
20	Low acceleration	Unit pulse/s^2	0~2 ³¹ -1	6400	Acceleration of
	16bit				trapezoidal
21	High acceleration			0	acceleration and
	16bit				deceleration
					algorithm
22	Low deceleration	Unit pulse/s^2	0~2 ³¹ -1	6400	Deceleration of
	16bit				trapezoidal
23	High acceleration			0	acceleration and
	16bit				deceleration
					algorithm
24	Low maximum	Unit pulse/s	$-2^{31}\sim 2^{31}-1$	1600	The maximum speed
	speed 16bit				of the trapezoidal
25	最大速度高16bit			0	acceleration/decelera
23	以大足及同100H				tion algorithm is
					used. In the
					continuous operation
					mode, positive and
					negative numbers are
					used to determine the
					positive and negative
26	T	TT :- 1	231 221 1	2200	reversal.
26	Low target pulse	Unit pulse	$-2^{31} \sim 2^{31} - 1$	3200	The total number of
	count 16bit				running pulses of the

27	The total number			0	trapezoidal
	of pulses in the				acceleration/decelera
	target stroke is				tion algorithm. In the
	high. 16bit				fixed-length
					operation mode,
					positive and negative
					numbers are used to
					determine the
					positive and negative
					rotation.
					Totation.
28	Motion control	Motion control	0~4	0	
	instruction	commands (1-position,			
		fixed length operation,			
		2-speed, continuous			
		operation,			
		3-deceleration stop,			
		4-stop immediately)			
29	Position mode	Position mode	0~1	0	It is valid in the
		(0-increment,			fixed-length
		1-absolute)			operation mode.
					Increment refers to
					the current position
					as the reference for
					each stroke, and
					absolutely refers to
					the zero position of
					the above electric
					power as a
					reference. o
30	Absolute position	Unit pulse, read only		0	
<u> </u>	is low16bit				
31	Absolute			0	
l	position16bit				
32	Internal pulse	Internal pulse state (1-	0~1	1	Read-only, indicating
	state	internal pulse is sent,			the current motion
		0-internal pulse has not			control status
<u></u>		occurred)			
33	Save parameter	Write 1 save parameter	0~1	0	
		to EEPROM			
34	reset	Write 1 to factory	0~1	0	
		settings			

VI, Typical wiring diagram

Typical wiring diagram