

2530 South Birch Street - Santa Ana, CA 92707

March 26, 2009

John,

This is to verify that the CEE data on the "Proof of Concept" testing using a proprietary liquid oil catalyst, Project #: CEE-ML-1104, was accomplished at and by CEE. The data results as indicated by the July 8, 2005 test letter is both authentic and accurate as reflected in Figure 1, comparative results. The tests were accomplished at the CEE test facility located in Santa Ana, California. Reductions in tailpipe emissions and improvement in fuel economy were notable throughout the test sequence as reflected by the comparative results.

Regards,

Job-Jones Research Director California Emissionmental Engineering 2530 South Birch Street Sunta Ann, California 92707 Tela: (714) 515-9822 Pag; (714) 515-7667

CEE, LLC 2530 S. Birch Street Santa Ana, CA 92707 (714) 545-9822 - FAX (714) 545-7667

July 8, 2005

Motor Life CTD, Inc. Combustion Technologies Division 12515 Ccrise Ave. Hawthorne, Ca 90250

Attn: Charlie Stewart

RE: Proof of Concept testing using a Proprietary Liquid Oil Catalyst, Project # CEE-ML-1104

This report summarizes a light-duty gasoline vehicle test series conducted at the California Environmental Engineering (CEE) center for environmental research in Santa Ana, California. The program was designed to measure and compare exhaust (tailpipe) emissions and fuel consumption before and after use of an oil catalyst. A CVS (FTP)-75 test protocol was selected to obtain accurate, repeatable and verifiable comparative data validating the effect of the liquid oil catalyst on measured emissions and fuel consumption.

The CVS-75 test is a "three bag", "cold" test accomplished on a dual roll transient dynamometer. The test protocol is accepted to be a very reliable procedure for establishing a gasoline vehicle engine's emissions characteristics and fuel consumption.

A 1988 model year Jeep Cherokee was identified and selected as the candidate test vehicle. The single-owner, well-maintained vehicle had accumulated in excess of 100,000 miles. The test vehicle's existing fuel supply was drained and a 40% tank capacity of "indolene" test fuel was introduced. Additionally, the oil and filter were changed. The vehicle was driven 106 miles on a prescribed test route to allow it to adapt to the test fuel characteristics. Preceded by preconditioning cycles, two baseline tests were conducted. After introducing the oil catalyst to the oil reservoir, an additional 106 miles were accumulated, the vehicle was preconditioned and two tests conducted with the Liquid Oil Catalyst. The baseline test(s) average was compared to the average figure(s) obtained with the oil catalyst. The results are shown in Figure #1.

		Grams / Mi.	WENT NAME OF THE PARTY OF THE P	
	HC	CO	Nox	MPG
Baseline	1.561	35.140	0.505	16.504
With Catalyst	0.424	2.828	0.346	17.265
% Difference	-72.8	-92.0	-31.5	4.4
	FIGURE 1	COMPARATIVE	RESULTS	

July 8, 2005 Charlie Stewart Motor Life CTD, Inc. Page - 2

The results are both noteworthy and significant with respect to lowering tailpipe emissions and improving fuel economy. While the data considered is based on a single vehicle the detailed testing with time provided a positive statistical pattern.

Joseph Jones Director of Research

PROOF OF CONCEPT TESTING USING A PROPRIETARY ENGINE LIQUID OIL CATALYST

GASOLINE VEHICLES

CHASSIS DYNO

TEST PARAMETERS (HC, CO, NOx, FC)

DRAIN EXISTING FUEL

FILL TANK TO 40% WITH TEST FUEL (Indolene, Phase II)

CHANGE OIL
RUN DOUBLE PREP CYCLE(S) 23 minutes fest/computer software for wrbun during

RUN TWO (2) BACK-TO-BACK CVS/FTP TESTS FOR BASELINE EARH TEST MUST BE 10% in Range CVS-78 ADD LIQUID OIL CATALYST

PUT 100 MILES ON VEHICLE USING AMA-ROUTE

RE-CONSTITUTE TEST FUEL TO 40%

RUN DOUBLE PREP CYCLE(S)

12-HOUR CONTROLLED SOAK

RUN TWO BACK-TO-BACK CVS/FTP TESTS

California Environmental Engineering 3231 S. Standard Ave. Santa Ana California *******

KEMAKKS	V5025450 79590 1JCMU77448JT07 MIKE CARTER RAZ JEEP CHEROKEE 1988 40%= 173440 AUTO BASELINE 2	DATE A.C. PS9 ENGINE FAM EVAP.FAM. TEST TYPE SHIFT FILE INERTIA WG' ACTUAL HP INDIC. HP HP Spd/Sec		RANGE FUEL TYPE DENSITY DENSITY GET.C/gal. FUEL Fract. GP. GRAVITY J.H.V. WT FACTOR
# EVENT 1 CRANK 2 phase 1 3 phase 2 4 eng off 5 phase 2 6 soak+bl 7 soak 8 ready 9 crank 3 10 phase 3 11 delay15 12 bags 13 end 14 end 15 end	MILES Km 0.000 0.000 3.598 5.783 3.864 6.211 0.000	TIME TIME traces 3.3 0.0 for 505.0 0.0 for 5	TIME tra 119.5 for 121.1 for 121.1 for 121.2 for 123.4 f	ace ERROR GrCtrl 0.1 19219 0r -0.2 19219 0r -0.2 20259 0r 0.9 20267 0r 0.6 3875 0r -0.1 2051 0r -0.1 2891 0r -0.1 2883 0r -0.1 2883 0r 0.1 2051 0r 0.5 2883 0r 0.1 2051 0r 0.5 0 0r 0.5
PHASE 1 SAMPLE AMBIENT GRAMS 6 GMS/MI 1	THC CO 83.6 774.1 3.6 3.2 5.544 127.000 .819 35.298	NOX CO2 11.3 0.728 0.0 0.039 2.923 1790.76 0.812 497.71	Tdry = BARO.= 7 NoxKf= MPG = Km =	73.7 Tdp = 55.5 763.00 SEC = 508.3 0.956 VOLc= 4995.5 16.02 DF = 16.467 5.78 MI = 3.598
PHASE 2 SAMPLE AMBIENT GRAMS 6 GMS/MI 1	48.2 541.2 3.8 4.2 5.224 151.523 1.611 39.214	2.8 0.0 0.0 1.225 0.317 494.37	BARÓ.= 7 NoxKf= MPG Km =	75.9 Tdp = 54.3 763.00 SEC = 870.9 0.944 VOLc= 8555.6 15.94 DF = 25.334 6.21 MI = 3.864
DIII OF O	THC CO 51.9 505.4 3.8 4.6 1.474 93.739 1.245 26.075	NOX CO2 8.2 0.577 0.0 0.042 2.359 1580.01	Tdry = BARO.= NoxKf= MPG = Km =	75.2 Tdp = 53.5 763.00 SEC = 576.6 0.936 VOLc= 5674.8 18.44 DF = 21.178
WEIGHTED GRAMS/MI 1 GRAMS/KM 0	THC CO 1.553 34.792 0.966 21.646	NOX CO2 0.513 479.99 0.319 298.63	ura acura mang acusa dalah dana adah asuna atah dalah canar Alam adah adah adah atah dalah atah dalah atah dalah atah	FUEL ECONOMY M.P.G. 16.57 L/100k 14.19

** ** ** * * * * * * * * * * * * * * *				
VEHICLE REF 7 V.I.N. 1 OPERATOR MAKE FOR STANKE STANK CAP ODOMETER TRANS. REMARKS REMARKS REMARKS REMARKS REMARKS	75025452 79590 LJCMU77448JT07959 MIKE CARTER RAZ JEEP CHEROKEE L988 40%= L73483 AUTO BASELINE 3	EVAP.FAM. JT-24	FUEL 2T5LND7 2H-1S SPEC: Gr.C Gr.C FUEL SP. (N.H.) WT FA WT FA 2 / 0 WT FA	TYPE INDOLENE
4 eng off 5 phase 2 6 soak+bl 7 soak 8 ready 9 crank 3 10 phase 3 11 delay15 12 bags 13 end 14 end 15 end TEST COMPLETE PHASE 1 SAMPLE MODAL AMBIENT GRAMS	3.584 5.760 505 3.841 6.174 864 0.000 0.000 1 0.000 0.000 525 0.000 0.000 44 0.000 0.000 20 3.590 5.770 505 0.000 0.000 15 0.000 0.000 15 0.000	.1 0.0 for 0.0 .0 0.0 for 0.0 .2 0.0 for 0.0 .7 0.0 for 0.0 .0 0.0 for 0.0	22.8 for 23.1 for 23.7 for 123.5 for 1678.4 for 725.5 for 1096.8 for 1183.4 for 1183.4 for 1183.6 for	-0.1 19219 -0.2 19219 -0.2 20259 0.8 20267 -0.9 2051 -0.1 2883 0.2 2883 0.7 2051 0.6 -0.4 00 Tdp = 54.6 -0.4 0.0 0 Tdp = 508.1 -0.4 40.0 0 Tdp = 4989.3 A-H = 4989.3 DF = 16.424 3.584
PHASE 2 SAMPLE MODAL AMBIENT GRAMS GMS/MI G/Mwgt O	THC CO NO 47.9 573.6 2 52.8 558.6 2 3.5 5.1 .199 159.815 1.1 .614 41.608 0.3 .807 20.804 0.1	CO2 .7 0.474 .9 0.495 .0 0.040 .79 1925.09 .07 501.19 .53 250.60	Tdry= 73.9 BARO.= 762.9 TQavg= 4.7 NoxKf= 0.94 M.P.G. 15.5 MPGnhv 15.6 R-H = 50.8	0 SEC = 870.0 1 A-H = 62.9 6 VOLC= 8523.4 1 DF = 24.993 4 MI = 3.841
SAMPLE 5 MODAL 6 AMBIENT GRAMS 4	THC CO NO 8 61.4 499.0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	CO2 .3 0.600 .2 0.644 .1 0.043 .49 1570.91 .26 437.58	Tdry= 75.3 BARO.= 762.9 TQavg= 10.8 NoxKf= 0.93 M.P.G. 18.4 MPGnhv 18.6 R-H = 46.2	0 SEC = 551.9 2 A-H = 59.9 4 VOLC= 5418.9 7 DF = 20.451 1 MI = 3.590
WEIGHTED GRAMS/MI 1. GRAMS/KM 0.	THC CO NC .568 35.488 0.4 .976 22.079 0.3	97 483.26	FUEL ECONOMY M.P.G. 16.3 L/100k 14.4	0 NHVmpg 16.437 3 NHVkbl 6.989

7741.26

California Environmental Engineering 2530 S. Birch Street. Santa Ana California ********

TEST NUMBER V5025466 VEHICLE REF V.I.N. OPERATOR MIKE CARTER BRAZ MAKE JEEP MODEL CHEROKEE 1988 TANK CAP ODOMETER 173781 TRANS. REMARKS REMARKS REMARKS REMARKS START TIME 10:20:35	DATE A.C. ENGINE FAM EVAP.FAM. TEST TYPE SHIFT FILE INERTIA WG' ACTUAL HP INDIC. HP HP Spd/Sec	JT-242H-1S EPAAM_8S.LA4 AUTO .L_4 3500 13.6 11.2	RANGE FUEL TYPE DENSITY SPECIF. CO2 Gr.C/gal. FUEL Fract. SP. GRAVITY N.H.V. WT FACTOR WT FACTOR WT FACTOR WT FACTOR FINAL ODO. 173792.0
# EVENT MILES Kr 1 CRANK 0.000 0.00 2 phase 1 3.591 5.73 3 phase 2 3.864 6.23 4 eng off 0.000 0.00 5 phase 2 0.000 0.00 6 soak+bl 0.000 0.00 7 soak 0.000 0.00 9 crank 3 0.000 0.00 10 phase 3 3.587 5.76 11 delay15 0.000 0.00 12 bags 0.000 0.00 13 end 0.000 0.00 14 end 0.000 0.00 15 end 0.000 0.00 15 end 0.000 0.00 15 end 0.000 0.00 16 sample 43.1 165.3 PHASE 1 THC SAMPLE 43.1 165.3 MODAL 48.7 162.3 AMBIENT 4.2 GRAMS 3.200 26.243 GMS/MI 0.891 7.303 G/Mwgt 0.185 1.514	0 2.9 0.0 for	0.0 115.0 119.4 119.8 120.0 123.4 427.6 678.4 724.7 1097.0 1241.4 0.0 1241.4 0.0 1241.4 0.0 0.	for 0.0 0 for 0.0 0 72.9 Tdp = 56.8 764.50 SEC = 507.9 11.79 A-H = 68.3 0.969 VOLc= 5006.0 16.25 DF = 16.754
G/Mwgt 0.185 1.514 PHASE 2 THC CO SAMPLE 9.3 10.5 MODAL 10.0 10.6 AMBIENT 4.0 4.5 GRAMS 0.768 1.706 GMS/MI 0.199 0.446 G/Mwgt 0.099 0.226	NOX CO2 2.2 0.507 2.4 0.530 0.1 0.047 0.953 2065.40	R-H = Tdry= BARO.= TQavq= NoxKf= M.P.G. MPGnhv R-H =	57.10 KM = 5.772 74.4 Tdp = 56.9 764.50 SEC = 870.8 4.77 A-H = 68.5 0.970 VOLC= 8626.1 16.54 DF = 26.327 16.55 MI = 3.864
PHASE 3 THC CO SAMPLE 26.4 75.9 MODAL 29.0 77.8 AMBIENT 4.0 3.8 GRAMS 1.852 11.959 GMS/MI 0.516 3.334 G/Mwgt 0.142 0.919	0.1 0.046 1.555 1684.08 0.433 469.49	Tdry= BARO.= TQavq= NoxKf= M.P.G. MPGnhv R-H =	11.80 A-H = 68.3 0.969 VOLc= 5016.9 18.61 DF = 19.109 18.66 MI = 3.587
WEIGHTED THC CO GRAMS/MI 0.429 2.65	NOx CO2 0.397 515.97	FUEL E M.P.G.	17.00 NHVmpg 17.034

72.64 92.15 20.12.

