
LED Stack
User Manual

https://www.nodeudesign.com
sales@nodeudesign.com Patent # 10993323

https://www.nodeudesign.com/
mailto:sales@nodeudesign.com

Table of Contents
Table of Contents 1

Hardware 2
Electrical Characteristics 2
Stack Configuration 2

Overview 4
Hardware 4
Software 5
UDP Packet Reception 5
UDP Packet Transmission 6
Loading and Saving Settings 6
Events 7
UDP Packet Data Structure 8

Examples 11
Creating a Python 3 UDP Packet Sender 11
Configuring the Output Peripheral’s Channel 2 to PWM with 50% Duty Cycle 12
Reading the Input Peripheral’s Channel 1 Mode and Value 13

Terms and Abbreviations 14

LED Stack Manual 1511-003-0000 1

1. Hardware

1.1. Electrical Characteristics

Absolute Maximum Ratings

Max

VIN 36V

V(ESD) Electrostatic discharge 16000V

Temperature (Storage & Operating) -40℃ - 80℃

Operating Temperature -20℃ - 80℃

Recommended Maximum Ratings

Min Typical Max

Operating Voltage 7.5V - 36V

LED Stack Manual 1511-003-0000 2

1.2. Stack Configuration

1.3. Spring Terminal Pinout

LED Stack Manual 1511-003-0000 3

2. Overview

The LED Stack Module is an all-in-one control system solution designed to give the user a variety of input,
output, and status indication abilities fully controllable through Ethernet. A preset UDP packet command structure
allows the user to read/write configuration settings and execute operations remotely. An M16 Terminal Cover is
included for easy installation on a threaded pipe or corresponding cable gland.

2.1. Hardware
LED Peripheral:

The LED Peripheral is designed to display status or event information about your system. Sixteen 2800
candella RGB LEDs provide a high degree of illumination for the user to maximize noticeability. Multiple LED
configuration commands are available to the user - allowing LED color control, blink, and spin modes.
See “LED Peripheral User Manual” for full LED Peripheral specifications and information.

Ethernet Peripheral:
The Ethernet Peripheral is the primary medium for which the user communicates and controls the LED

Stack. The Ethernet Peripheral supports auto MDI-X, simplifying cabling procedures through automatic
transmission negotiation. The Ethernet Peripheral supports up to 10/100 speeds. See “Ethernet Peripheral User
Manual” for full Ethernet Peripheral specifications and information.

Output Peripheral:
The Output Peripheral consists of four output channels and one auxiliary input channel. The Output

Peripheral allows the user to drive resistive or inductive loads, while the auxiliary input channel may be used to
measure feedback externally. PWM, Voltage, Current, and Digital drive modes are available for the user to
configure. See “Output Peripheral User Manual” for full Output Peripheral specifications and information.

Input Peripheral:
The Input Peripheral’s five input channels may be configured to capture a wide range of signals, including:

Voltage (0-10V), Current(0-20mA), Digital, PWM Frequency and Duty Cycle, and Encoder signals. Not only may
the Input Peripheral be used to monitor states of a system, it may be used to drive Events. Input Trigger Events
allow the user to configure setpoints for which the Input Peripheral will alert the user if a threshold has been
crossed. See 2.2.2 Input Trigger Events. Also see “Input Peripheral User Manual” for full Input Peripheral
specifications and information.

Brain:
The Brain is the core of the stack. It runs a Python3 interpreter that processes human readable python

files off of the integrated uSD card. Python allows for easy code customization to suit the needs of every
application. See “Brain User Manual” for full Brain specifications and information. Also see “Brain Getting Started”
for more information about modifying and writing custom software solutions.

Spring Terminal Peripheral / M16 Cover
The spring terminal peripheral allows simple wire connections to whatever cable is available. Passing the

cable through the cable gland yields a water tight seal for harsh environments. Mounting the LED Stack Module
on a threaded pipe allows for highly visible mounting solutions.. See “Spring Terminal User Manual” for full Spring
Terminal Peripheral specifications and information.

LED Stack Manual 1511-003-0000 4

2.2. Software
This section describes the protocol used to read & configure the LED Stack’s peripherals, the flow of data

to their associated properties through the LED Stack’s software, and the methods of which properties are parsed,
loaded and saved. The LED Stack’s software package is designed to send, receive, and parse UDP packets
through Ethernet. When the Ethernet Peripheral has initialized it’s Ethernet Server, the LED Stack will remain
ready to receive and relay packets to the Brain for processing. All software is stored on the onboard uSD card and
may be modified for whatever application is necessary. The factory default software package is available for
download on NodeUDesign.com.

2.2.1. UDP Packet Reception
When the LED Stack receives a packet, the packet will be stored in a temporary buffer where it is queued

for processing. The packet buffer ensures that packets will be handled as soon as possible, that reception will not
interfere with processing of the most recent packet, and that packets will be processed in order of which they are
received. Each packet is directed through a multi-staged parser where it is determined if the packet is a valid. The
packet’s data contents are also examined against the minimum and maximum parameters of the targeted
property. If the packet and data check out as valid, the parser will extract the packet's command bytes, read / write
byte, and (if applicable) property data. This information will then be directed to the associated property. If the
packet is deemed invalid, the packet will be discarded. In either case, once a packet has been processed and the
property function call has been completed, processing of the next packet will then begin. For a detailed table of
writable properties, see 2.2.5 UDP Packet Structure.

LED Stack Manual 1511-003-0000 5

https://www.nodeudesign.com/

2.2.2. UDP Packet Transmission
The LED Stack is fully capable of reading / fetching properties from its peripherals and sending back the

data to the user. The LED Stack may be instructed to return data by sending a UDP packet containing the desired
property command bytes, and setting the Read / Write byte to Read (‘R’, 0x52). When the LED Stack receives the
read instruction, it will either pull the data directly from LEDStack/properties.py, or fetch the information directly
from the desired peripheral. Read response times from peripherals are often less than 10 milliseconds. For a
detailed table of readable properties, see 2.2.5 UDP Packet Structure.

2.2.3. Loading and Saving Settings
The text file LEDStack/settings.txt, located on the Brains uSD card, may be used to pre-load settings at

startup, or save and load settings at any time. Upon power-up or a reboot, the LED Stack first parses
LEDStack/settings.txt and loads its values into LEDStack/properties.py. Next, the LED Stack initializes all
attached peripherals - Ethernet, LED, Output, and Input Peripherals. When initialization is complete, the LED
Stack’s Ethernet interface is brought online. Ethernet Server initialization may take up to ten seconds from startup.
The LED Stack will then read LEDStack/property.py and configure the stack's peripherals to the user's presets.
Finally, the LED Stack will begin listening for UDP packets.

The settings in the settings file follow a few simple formatting rules. Comments are denoted by a ‘#’ as the
first character of a line. Multi-line comments are NOT supported at this time. Any empty line will be ignored and
may be used for formatting and separating sections. The setting must be given as <Name>=<value>. White space
before, after, and between the text and equal sign will be ignored.

LED Stack Manual 1511-003-0000 6

2.2.4. Events
Input Trigger Events:

The Input Peripheral may be configured to continually monitor the states of its inputs and trigger Events
when a measured value crosses user-defined threshold values. Input Trigger Events automatically alert the user
of the Input Peripheral’s channel status. When an Input Trigger Event occurs, the brain creates a UDP packet
containing the specific trigger event and the channel information. The packet is then sent to the stored destination
IP Address and Port as soon as possible. Input Trigger Events may also be used to automatically modify the state
of the LED Stack’s LED Peripheral. When enabled, Input Trigger Events may be used in applications where visual
status indication can identify the state of a system. See the flowchart below depicting how an event flows through
the LED Stack when an event is triggered.

LED Stack Manual 1511-003-0000 7

2.2.5. UDP Packet Data Structure
Description:

A properly formatted UDP packet data frame consists of two or three components depending on if the user
is reading or writing to a property. If the user wishes to read a property, the generic data packet structure contains
two parts: a peripheral property being accessed, and the read byte (‘R’, 0x52). If the user wishes to write a new
value to a property, the generic packet structure contains three parts: the property being accessed, the write byte
(‘W’, 0x57), and the byte array containing the desired properties' new data value.

LED Stack System Functions:

Description Property Read/Write

Reset 0x001 Read Only

UINT_16 UINT_8

Save Settings 0x002 Read Only

UINT_16 UINT_8

Load Settings 0x003 Read Only

UINT_16 UINT_8

Ethernet Peripheral:

Description Property Read/Write Data[0] Data[1] Data[2] Data[3]

Source IP Address 0x101 R/W ADDR 3 ADDR 2 ADDR 1 ADDR 0

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

Source Port 0x102 R/W Port H Port L

UINT_16 UINT_8 UINT_16

Destination IP Address 0x103 R/W ADDR 3 ADDR 2 ADDR 1 ADDR 0

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

Destination Port 0x104 R/W Port H Port L

UINT_16 UINT_8 UINT_16

MAC Address 0x105 Read Only ADDR 3 ADDR 2 ADDR 1 ADDR 0

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

Gateway 0x106 R/W ADDR 3 ADDR 2 ADDR 1 ADDR 0

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

NetMask 0x107 R/W ADDR 3 ADDR 2 ADDR 1 ADDR 0

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

LED Stack Manual 1511-003-0000 8

LED Peripheral:

Description Property Read/Write Data[0] Data[1] Data[2]

Effect 0x200 R/W Effect:
0 = Off
1 = On
2 = Blink
3 = Spin

Effect Speed
0 = Slow
1 = Fast

UINT_16 UINT_8 UINT_8 UINT_8

Color 0x210 -
0x212

R/W R G B

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8

Output Peripheral:

Description Property Read/Write Data[0]

Output Mode 0x301 - 0x304 R/W Mode:
0 = Inactive 2 = PWM 4 = Current
1 = Digital 3 = Voltage

UINT_16 UINT_8 UINT_8

Output Value 0x311 - 0x314 R/W Dependant on Mode

UINT_16 UINT_8 UINT_16

Output Voltage 0x321 - 0x324 Read Only Output Voltage

UINT_16 UINT_8 UINT_16

Output Current 0x331 - 0x334 Read Only Output Current

UINT_16 UINT_8 UINT_16

LED Stack Manual 1511-003-0000 9

Input Peripheral:

Description Property Read/Write Data

Input Mode 0x401 - 0x405 R/W Mode:
0 = Inactive 2 = PWM 4 = Current
1 = Digital 3 = Voltage

UINT_16 UINT_8 UINT_16

Input Value 0x411 - 0x415 Read Only Dependant on Mode

UINT_16 UINT_8 UINT_16

Input Rising Trigger Value 0x421 - 0x425 R/W Dependant on Mode

UINT_16 UINT_8 UINT_16

Input Rising Trigger Hysteresis 0x431 - 0x435 R/W Dependant on Mode

UINT_16 UINT_8 UINT_16

Input Rising Trigger 0x441 - 0x445 EVENT

UINT_16

Input Rising Trigger Clear 0x451 - 0x455 EVENT

UINT_16

Input Falling Trigger Value 0x461 - 0x465 R/W Dependant on Mode

UINT_16 UINT_8 UINT_16

Input Falling Trigger Hysteresis 0x471 - 0x475 R/W Dependant on Mode

UINT_16 UINT_8 UINT_16

Input Falling Trigger 0x481 - 0x485 EVENT

UINT_16

Input Rising Clear 0x491 - 0x495 EVENT

UINT_16

Input Trigger Event 0x4A1 - 0x4A5 R/W Rising /
Falling
Edge

LED
Number:
1-4

LED Effect:
0-3

LED Effect
Speed:
0 = Slow
1 = Fast

R G B

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

Input Clear Event 0x4B1 - 0x4B5 R/W Rising /
Falling
Edge

LED
Number:
1-4

LED Effect:
0-3

LED Effect
Speed:
0 = Slow
1 = Fast

R G B

UINT_16 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8 UINT_8

LED Stack Manual 1511-003-0000 10

Examples

1.1. Creating a Python 3 UDP Packet Sender

Python 3

import socket

import struct

TestPacket = struct.pack(‘!HBBBB’, 0x211, 0x57, 0, 255, 0)

ServerAddress = (“192.168.1.15”, 2000)

LEDStackAddress = (“192.168.1.20”, 2000)

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.bind(ServerAddress)

s.sendto(TestPacket, LEDStackAddress)

In order to open a socket and send UDP packets to the LED Stack using a Python 3 IDE,

the user must first import two libraries: socket and struct. We create three objects

containing a test packet (in this case the LEDColor packet), the server address (your

computer, or sending device), and the LEDStacks configured IP Address (sourceIPAddress in

LEDStack/settings.txt. Next, the code creates a socket for which to send UDP Packets

over, and binds the device's address to it. The device then sends the test packet to the

LED Stacks IP Address.

LED Stack Manual 1511-003-0000 11

1.2. Configuring the Output Peripheral’s Channel 2 to PWM with
50% Duty Cycle

Method 1: Parsing Settings.txt

from: settings.txt

outputMode = 0, 2, 0, 0

outputDesiredValue = 0, 500, 0, 0

In Python 3, sending device

LoadSettingsPacket = struct.pack('!HB', 0x001, 0x57)

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.sendto(LoadSettingsPacket, LEDStackAddress)

The above code first looks at LEDStack/settings.txt, where the user has defined

outputModes channel 2 as '2' (PWM Mode), and outputDesiredValue as '500' (50% Duty Cycle)

The user saves the file and opens a Python 3 IDE. The code then creates a structured

packet, LoadSettingsPacket, and passes in the proper command byte and write byte (0x001,

0x57). The code then creates a socket for which UDP packets may be sent, then sends the

packet.

Method 2: Configuring the Output Peripheral via Ethernet UDP

Python 3

OutputCh2ModeWrite = struct.pack(‘!HBB’, 0x302, 0x57, 2)

OutputCh2DesiredValue = struct.pack(‘!HBH’, 0x312, 0x57, 500)

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.sendto(OutputCh2ModeWrite, LEDStackAddress)

s.sendto(OutputCh2DesiredValue, LEDStackAddress)

The above code first creates objects containing packet structures. Note the “!”,

declaring the byte format of the struct as big-endian. The code then creates the socket

for which UDP packets may be sent. The code then sends the two packets to the LED Stack,

where they will be processed. The Output Peripheral’s Channel 2 should now be configured

in PWM Mode with 50% Duty Cycle.

LED Stack Manual 1511-003-0000 12

1.3. Reading the Input Peripheral’s Channel 1 Mode and Value

Python 3

InputCh1ModeRead = struct.pack(‘!HB’, 0x401, 0x52)

InputCh1ValueRead = struct.pack(‘!HB’, 0x411, 0x52)

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.sendto(InputCh1ModeRead, destIPAddress)

s.sendto(InputCh1ValueRead, destIPAddress)

Output: 2

Output: 770

The above code first creates objects containing packet structures to read the Input

Peripherals Channel 1 Input Mode and InputValue. The code then creates the socket for

which UDP packets may be sent. The code then sends the two packets to the LED Stack,

where they will be processed. The LED Stack fetches the values from the Input Peripheral,

and returns a UDP Packet containing the requested properties.

LED Stack Manual 1511-003-0000 13

Terms and Abbreviations

LED Stack Manual 1511-003-0000 14

