LED Peripheral
Manual

https://www.nodeudesign.com
sales@nodeudesign.com

https://www.nodeudesign.com/
mailto:sales@nodeudesign.com

Table of Contents

Electrical Characteristics

Hardware
Software

RGB Data Types:
Control Modes:

ControlMode(Fetch, Store)
OneColor(Fetch, Store)
AllColors(Store)

BlinkRate(Fetch, Store)
BlinkColor(Fetch, Store)
BlinkDutyCycle(Fetch, Store)
BlinkModeEnable(Fetch, Store)

SpinRate(Fetch, Store)
SpinColor(Fetch, Store)
SpinDirection(Fetch, Store)
SpinModeEnable(Fetch, Store)

StateMode(Fetch, Store)
StateModeState(Fetch, Store)
StateModeTime(Fetch, Store)
StateModel astState(Fetch)
StateColor(Fetch, Store)
StateModeEnable(Fetch, Store)

Importing LED Peripheral

Configuring a Blinking LED in Normal Control Mode
Configuring a Blinking LED in Blink Control Mode
Configuring Multiple Spinning LEDs in Spin Control Mode
Configuring State Mode Transitions in Timed Update Mode

Terms and Abbreviations

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

a b~ bW

»

10
11
12

13
14
15
16

17
18
19
20
21
22

23
23
23
24
24

25

Absolute Maximum Ratings

Max
VIN 36V
V(ESD) Electrostatic discharge 16000V

Temperature (Storage & Operating) | -40°C - 80°C

Operating Temperature

-20°C - 88°C

LED Power Supply Ripple Frequency TkHz

Recommended Maximum Ratings

Min

Typical Max

Operating Voltage

7.5V

- 36V

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

The LED Peripheral is designed to display status or event information about your NUD stack. Multiple
programmable LED configurations exist, including Single LED control, simultaneous LED control, Blink Mode,
Spin Mode, and State Mode. Each mode includes its own set of custom configurations, allowing the user to
customize how the LED Peripheral indicates information.

LEDs:

Eight high-performance RGB LEDs surrounding the perimeter of the LED Peripheral - each capable of
creating up to 2.8 candles of luminous intensity. The LEDs high illumination ensures color and pattern
identification for the user.

Dedicated Power Supply:

The LED Peripheral contains a dedicated power supply to maintain consistent power levels for the LEDs
regardless of input voltage. The more LEDs that are enabled, the more power that will be drawn from VIN. The
color white (255, 255, 255) draws the most power, requiring all outputs to be enabled for each tri-color LED
package.

IP-67 Sealed Carrier:

The LED Peripheral’s sealed acrylic carrier provides a translucent waterproof and dustproof enclosure for
the LED stack. The translucent barrier allows ample and diffuse light through while protecting the inner electronics
from hostile environments. The acrylic carrier is compatible with all NUD products.

Eight 2.8 Candela LEDs per Side

Dedicated Microcontroller . Dedicated LED Power Supply

Configurable LED Driver

nnnnnn

EERExERAE

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 3

(R, G, B)

is a class simply containing
RGB values. An instance of Color may be
declared and passed into functions which
only require RGB values such as
(). RGB members may be
accessed individually, or reinitialized to
new values, for easy color transitions.

(LED,)

is the parent class of
. LEDColor contains both a color
class instance as well as an associated
LED number. It's LED Number and RGB
Values are both declarable in a single line
command, or accessible individually.

(class (LED,)

LED Number (0-7) R B
‘\\\\\\\\\\\\ (101,188,71))
\' (LED=4, rgb)

An instance of Color may be initialized within the LEDColor class:

rbgLED = (LED=4, color=

Class members may be accessed individually:

rgb = (101, 188, 71)
print(rgb)

rgb.R = 255
rgb.G = 255
rgb.B = 255

print(rgb)

Output = 101, 188, 71
255, 255, 255

(101, 188, 71))

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

When is set to , the LED Peripheral is capable of configuring RGB values to all 8

sides of it's LED banks individually, as well as simultaneously. Using the () function, the user
may configure singular LED RGB values. If simultaneous configuration of all LEDs to a specific RGB color
is desired, () will quickly and efficiently accomplish this.

State Mode is available if specific LED patterns or timings are necessary for the application. Once

is set to , RGB values with their LED numbers as well as may be
assigned to any one of 8 states. Thus, each state becomes a user defined custom LED pattern with user
controlled or timed display. When is set to , state transitions are enabled. Two
control methods are currently available to facilitate state transitions. Manually transitioning the LED
Peripheral’s states is accomplished first by configuring to and then setting

to the desired state. The LED Peripheral may be configured to automatically transition

states based on a state time value by setting to . The LED Peripheral will begin
to incrementally cycle through each of the 8 states at rate . StateModeEnable may be
toggled on or off at any time during the LED Peripheral's operation to synchronize LED color preferences,
or create pauses in state mode state incrementing.

Blink Mode is an extension of State Mode with a single configurable state & blink time, as well as an

added duty cycle feature to allow precise on / off times during blink periods. When is set to
, RGB values with their LED numbers and may be configured. describes the
millisecond blinking period value of the blink state LED configuration. When is set to
, the LED peripheral will begin blinking. may be used to synchronize a blink

state configuration by configuring the blink parameters first, then enabling blink modes output.

Spin Mode is another extension of State Mode, where a configured single state of LEDs may rotate
clockwise or counterclockwise around the LED Peripheral at a defined rate of rotation.
describes the millisecond time it takes for a state of LED’s to rotate once around the perimeter of the LED

Peripheral. controls the direction of LED rotation around the LED Peripheral. To configure
Spin Mode, set to . Then, a state of specified LED RGB values may then be configured
using the method. When is set to , the configured state of LEDs
will then begin to rotate around the perimeter of the LED Peripheral. may also be used

to pause LED rotation if necessary.

Note: In any transition, state LED configurations and timings must be reinitialized.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 5

Description:

configures the LED Peripheral’s method of controlling LEDs.

.fetch(): Queues the control mode value to be transmitted to the brain. The LED
Peripheral will then reply back to the Brain with it's control mode value. This function returns nothing.
.value(): Reads the most recently updated control mode value. This function must be

called after a fetch(), and returns the LED Peripheral’s control mode value.

.store(): Configures the LED Peripheral’s control mode between Normal, Blink, Spin and

State modes. This function returns nothing.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1:
(None) (None) Control Mode: Control Mode:
@ : NORMAL @ : NORMAL
1 : BLINK 1 : BLINK
2 : SPIN 2 : SPIN
3 : STATE 3 : STATE
Example:
LED.properties. .store(ControlModes.SPIN)
LED.properties. .fetch()
ledControlMode = LED.properties. .value()
print(ledControlMode)
Output: 3
The code first configures the LED Peripheral's control mode to spin mode by calling .store(

ControlModes.SPIN). The code requests the LED peripheral to reply back with the present control
mode by calling .fetch(). Next, the LED Peripheral's control mode value is saved to the
variable “ledControlMode” by calling .value(). Finally, the LED Peripheral’s

value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 6

Description:

configures a specified LED’s RGB profile on the LED Peripheral for use in Normal control mode.
OneColor utilizes the data type Q0.

.fetch(): Queues the selected LEDs RGB values to be transmitted to the brain. The LED
Peripheral will then reply back to the Brain with the selected LEDs RGB values. This function returns

nothing.

.value(): Reads the most recently updated selected LEDs RGB values. This function must be

called after a fetch(), and returns the selected LEDs RGB values.
.store(): Sets the selected LED to the given RGB value.

Fetch:

Value(Response):

Store:

Parameter 1:

Parameter 1:

Response 1:

Parameter 1:

LED: LED: RGB Values: LEDColor()
(0-7) (0-17) R :© - 255
G :0 - 255
B : 0 - 255
Example:

LED.properties.ControlMode.store(ControlModes.NORMAL)

LED.properties.
LED.properties.

print(ledColor)

Output: 101, 188, 71

.value(4)

.store(LEDColor(LED=4, color=Color(101, 188, 71)))
.fetch(4)
ledColor = LED.properties.

The code first configures the LED Peripheral's control mode to normal by calling
LEDPeripheral.properties.ControlMode.store(ControlModes.NORMAL). Then, LED 4 is setto
the RGB value 101, 188, 71 by calling

.store(LED=4, color=

Peripheral to reply back with LED 4’s RGB value by calling

then saved to the variable “ledColor” by calling

printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

(101, 188, 71)). Next, the code requests the LED
.fetch(4). The RGB values are

.value(4). Finally, LED 4's RGB values are

Description:
configures all LED’s to an RGB color value, utilizing the () class. AllColors is intended
as a quick way to set all LED’s, saving the time of configuring each LED individually.

.store(): Sets all 8 sides of the LED Peripheral to the given RGB value.

Store:

Parameter 1:
Color (R, G, B)

Example:

LEDPeripheral.properties. .store(color= (101, 188, 71))

The code simply sets all LED’s to the RGB value 101, 188, 71 by calling
.store(color= (101, 188, 71)).

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 8

Description:

sets the millisecond time of the blink period (on + off).

.fetch(): Queues the blink rate value to be transmitted to the brain. The LED Peripheral will
then reply back to the Brain with it's blink rate value. This function returns nothing.

.value(): Reads the most recently updated blink rate value. This function must be called after
a fetch(), and returns the LED Peripheral’s blink rate value.

.store(): Set’s the blink rate of the LED Peripheral’s LEDs. This function returns nothing.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1:
(None) (None) Blink Rate: Blink Rate:
(9 - 4,294,967,295) (9 - 4,294,967,295)
[ms] [ms]
Example:

LEDPeripheral.properties.ControlMode.store(ControlModes.BLINK)

LEDPeripheral.properties.
LEDPeripheral.properties.

ledBlinkRate = LED.properties.

print(ledBlinkRate)

Output: 200

.store(200)
.fetch()
.value()

The code first configures the LED Peripheral's control mode to blink mode by calling
ControlMode.store(ControlModes.BLINK). The code then sets the LED Peripheral's blink period to

200 milliseconds by calling
reply back the present blink rate value by calling

.store(200). Next, the code requests the LED peripheral to

.fetch(). The value is then saved to the

variable “ledBlinkRate” by calling .value(). Finally, the LED Peripheral’s value
is printed in the terminal.
LED Peripheral Manual 1211-013-0101 (1212-004-0101) 9

Description:

configures a specified LED’s RGB profile on the LED Peripheral for use in Blink control mode.

BlinkColor utilizes the data type

0.

.fetch(): Queues the selected LEDs RGB values to be transmitted to the brain. The LED
Peripheral will then reply back to the Brain with the selected LEDs RGB values. This function returns

nothing.

.value(): Reads the most recently updated selected LEDs RGB values. This function must

be called after a fetch(), and returns the selected LEDs RGB values.
.store(): Sets the selected LED to the given RGB value.

Fetch:

Value(Response):

Store:

Parameter 1:

Parameter 1:

Response 1:

Parameter 1:

LED: LED: RGB Values: LEDColor()
(e-7) (8-7) R: @ - 255
G :0 - 255
B : 0 - 255
Example:

LED.properties.ControlMode.store(ControlModes.BLINK)

LED.properties.
LED.properties.

print(blinkColor)

Output: @, 255, @

.store(LEDColor(LED=1, color=Color(9,
.fetch(1)

blinkColor = LED.properties. .value(1)

255, 0)))

The code first configures the LED Peripheral's control mode to blink mode by calling

LEDPeripheral.properties.ControlMode.store(ControlModes.BLINK). Then, LED 1 is set to the
RGB value 0, 255, 0 by calling

the code requests the LED Peripheral to reply back with LED 1's RGB value by calling
.fetch(1). The RGB values are then saved to the variable “b1inkColor” by calling
.value(1). Finally, LED 1’s RGB values are printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

.store(LED=1, color=

(@, 255, @)). Next,

10

Description:

configures the LED Peripheral’s blinking on / off duty cycle when ControlMode is set to
Blink Mode. The LED Peripheral's duty cycle is calculated as the thousandths percentage of on-time
versus off-time of the .

.fetch(): Queues the LED Peripheral's blink duty cycle value to be transmitted to the
brain. The LED Peripheral will then reply back to the Brain with it’s blink duty cycle value. This function
returns nothing.

.value(): Reads the most recently updated blink duty cycle value. This function must be
called after a fetch(), and returns the LED Peripheral's blink duty cycle value.

.store(): Sets the duty cycle of the LED Peripheral's blinking.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1:
(None) (None) Duty Cycle: Duty Cycle:
(0 - 1000) (0 - 1000)
[%] [%]
Example:

LED.properties.ControlMode.store(ControlModes.BLINK)
LED.properties.BlinkRate.store(1000)

LED.properties. .store(500)
LED.properties. .fetch()
blinkDutyCycle = LED.properties. .value()

print(blinkDutyCycle)

Output: 500

The code first configures the LED Peripheral’s control mode to blink mode by calling
ControlMode.store(ControlModes.BLINK). The code then sets the LED Peripheral’s blink period to

1000 milliseconds by calling .store(1000). Next, the code sets the LED Peripheral’s blink
duty cycle to 50% by calling .store(500). Next, the code requests the LED
Peripheral to reply back with the LED Peripheral’s duty cycle value by calling .fetch().

The LED Peripheral's duty cycle value is then saved to the variable “b1inkDutyCycle” by calling
.value(). Finally, the LED Peripheral's duty cycle value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 11

Description:
enables and disables the LED Peripheral's blinking output. This function must be
enabled in order to activate the LED Peripheral's blink state transition.

.fetch(): Queues the LED Peripheral’s blink mode enable value to be transmitted to
the brain. The LED Peripheral will then reply back to the Brain with it’s blink mode enable value. This
function returns nothing.

.value(): Reads the most recently updated blink mode enable value. This function
must be called after a fetch(), and returns the LED Peripheral's blink mode value.

.store(): Enables or disables the LED Peripheral’s blink mode operation.

Fetch: Value(Response): Store:

Parameter 1: Parameter 1: Response 1: Parameter 1:

(None) (None) Blink Mode Enable: Blink Mode Enable:
@ : Disable @ : Disable
1 : Enable 1 : Enable

Example:

LED.properties.ControlMode.store(ControlModes.BLINK)

LED.properties. .store(1)

LED.properties. .fetch()

blinkModeEnable = LED.properties. .value()

print(blinkModeEnable)

Output: 1

The code first configures the LED Peripheral's control mode to blink mode by calling
ControlMode.store(ControlModes.BLINK). Then, the LED Peripheral's blink mode is enabled by
calling .store(1). Next, the code requests the LED Peripheral to reply back with it's
blink mode enable value by calling .fetch(). The LED Peripheral's blink mode enable
value is then saved to the variable “blinkEnable” by calling .value(). Finally, the
LED Peripheral's blink mode enable value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 12

Description:
sets the millisecond time of the period (on + off).

.fetch(): Queues the spin rate value to be transmitted to the brain. The LED Peripheral will
then reply back to the Brain with it’s spin rate value. This function returns nothing.

.value(): Reads the most recently updated spin rate value. This function must be called after a
fetch(), and returns the LED Peripheral’s spin rate value.

.store(): Sets the spin rate of the LED Peripheral’s LEDs. This function returns nothing.

Fetch: Value(Response): Store:

Parameter 1: Parameter 1: Response 1: Parameter 1:

(None) (None) Spin Rate: Spin Rate:
(@ - 4,294,967,295) (@ - 4,294,967,295)
[ms] [ms]

Example:

LED.properties.ControlMode.store(ControlModes.SPIN)

LED.properties. .store(750)

LED.properties. .fetch()

ledSpinRate = LED.properties. .value()

print(ledSpinRate)

Output: 750

The code first configures the LED Peripheral's control mode to spin mode by calling
ControlMode.store(ControlModes.SPIN). The code then sets the LED Peripheral's spin period to

750 milliseconds by calling .store(750). Next, the code requests the LED peripheral to reply
back the present spin rate value by calling .fetch(). The value is then saved to the variable
“ledSpinRate” by calling .value(). Finally, the LED Peripheral’s value is printed in
the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 13

Description:

configures a specified LED’s RGB profile on the LED Peripheral for use in Spin control mode.
SpinColor utilizes the data type Q0.

.fetch(): Queues the selected LEDs RGB values to be transmitted to the brain. The LED
Peripheral will then reply back to the Brain with the selected LEDs RGB values. This function returns
nothing.

.value(): Reads the most recently updated selected LEDs RGB values. This function must be
called after a fetch(), and returns the selected LEDs RGB values.

.store(): Sets the selected LED to the given RGB value.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1:
LED: LED: RGB Values: LEDColor(LED, Color (R,
(e -7) (o0 -7) R : @ - 255 G, B))

G :0 - 255

B : 0 - 255
Example:
LED.properties.ControlMode.store(ControlModes.SPIN)
LED.properties. .store(LEDColor(LED=2, color=Color(255, 255, 255)))
LED.properties. .fetch(2)
spinColor = LED.properties. .value(2)

print(spinColor)

Output: 255, 255, 255

The code first configures the LED Peripheral's control mode to spin mode by calling
LEDPeripheral.properties.ControlMode.store(ControlModes.SPIN). Then, LED 2 is set to the
RGB value 255, 255, 255 by calling

.store(LEDColor(LED=2, color=Color(255, 255, 255))). Next, the code
requests the LED Peripheral to reply back with LED 2’s RGB value by calling .fetch(2).
The RGB values are then saved to the variable “spinColor” by calling .value(2). Finally,
LED 1’s RGB values are printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 14

6.3. SpinDirection(Fetch, Store)

Description:
SpinDirection configures the LED Peripheral’s LED spinning direction.

SpinDirection.fetch(): Queues the LED Peripheral's spin direction value to be transmitted to the brain.
The LED Peripheral will then reply back to the Brain with it's spin direction value. This function returns
nothing.

SpinDirection.value(): Reads the most recently updated spin direction value. This function must be
called after a fetch(), and returns the LED Peripheral's spin direction value.

SpinDirection.store(): Sets the spin direction of the LED Peripheral's blinking.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1:
(None) (None) Spin Direction Spin Direction
0 : CCW 0 : CCW
1 : CW 1 : CW
Example:

LED.properties.ControlMode.store(ControlModes.SPIN)
LED.properties.SpinDirection.store(SpinDirections.COUNTER_CLOCKWISE)
LED.properties.SpinDirection.fetch()

spinDirection = LED.properties.SpinDirection.value()

print(spinDirection)

Output: ©

The code first configures the LED Peripheral's control mode to spin mode by calling

ControlMode.store(ControlModes.SPIN). Then, the code sets the LED Peripheral's spin direction by
calling SpinDirection.store(SpinDirections.COUNTER_CLOCKWISE). Next, the code requests the
LED Peripheral to reply back with the LED Peripheral’s spin direction value by calling
SpinDirection.fetch(). The LED Peripheral's spin direction value is then saved to the variable
“spinDirection” by calling SpinDirection.value(). Finally, the LED Peripheral’s spin direction value
is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 15

Description:
enables and disables the LED Peripheral's spinning output. This function must be
enabled in order to activate the LED Peripheral's spin state transition.

.fetch(): Queues the LED Peripheral’s spin mode enable value to be transmitted to the
brain. The LED Peripheral will then reply back to the Brain with it's spin mode enable value. This function
returns nothing.

.value(): Reads the most recently updated spin mode enable value. This function must
be called after a fetch(), and returns the LED Peripheral's spin mode enable value.

.store(): Enables or disables the LED Peripheral’s spin mode operation.

Fetch: Value(Response): Store:

Parameter 1: Parameter 1: Response 1: Parameter 1:

(None) (None) Spin Mode Enable: Spin Mode Enable:
@ : Disable @ : Disable
1 : Enable 1 : Enable

Example:

LED.properties.ControlMode.store(ControlModes.SPIN)

LED.properties. .store(1)

LED.properties. .fetch()

spinModeEnable = LED.properties. .value()

print(spinModeEnable)

Output: 1

The code first configures the LED Peripheral's control mode to spin mode by calling

ControlMode.store(ControlModes.SPIN). Then, the LED Peripheral's spin mode is enabled by calling
.store(1). Next, the code requests the LED Peripheral to reply back with it's spin mode

enable value by calling .fetch(). The LED Peripheral's spin mode enable value is then saved

to the variable “spinModeEnable” by calling .value(). Finally, the LED Peripheral's spin mode

enable value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 16

Description:

configures the LED Peripheral's state mode method of controlling LEDs.

.fetch(): Queues the state mode value to be transmitted to the brain. The LED Peripheral will
then reply back to the Brain with the state mode value. This function returns nothing.

.value(): Reads the most recently updated control mode value. This function must be called
after a fetch(), and returns the LED Peripheral’s state mode value.

.store(): Configures the LED Peripheral’s state mode between User Update and Timed
Update modes. This function returns nothing.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1:
(None) (None) State Mode: State Mode:
@ : USER_UPDATE @ : USER_UPDATE
1 : TIMED_UPDATE 1 : TIMED_UPDATE
Example:

LED.properties.StateMode.store(ControlModes.STATE)
.store(StateModes.USER_UPDATE)

LED.properties.
LED.properties.
stateMode = LED.properties.
print(stateMode)

Output: ©

.fetch()

.value()

The code first configures the LED Peripheral's control mode to state mode by calling

ControlMode.store(ControlModes.STATE). Then, the code configures the LED Peripheral's state

mode to user control by calling
requests the LED peripheral to reply back with its present state mode value by calling

by calling

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

.store(StateModes.USER_UPDATE). Next, the code

.fetch(). Next, the LED Peripheral's state mode value is saved to the variable “stateMode”

.value(). Finally, the LED Peripheral’s value is printed in the terminal.

17

Description:

is the LED Peripheral’s current state for use in state . This function may be
used to force the LED Peripheral into a specified state at any time during state mode operation.

.fetch(): Queues the current state value to be transmitted to the brain. The LED
Peripheral will then reply back to the Brain with it's control mode value. This function returns nothing.

.value(): Reads the most recently updated state value. This function must be called
after a fetch(), and returns the LED Peripheral’s current state value.

.store(): Sets the LED Peripheral’s current state to the value passed into the function.
This function returns nothing.

Fetch:

Value(Response):

Store:

Parameter 1:

Parameter 1:

Response 1:

Parameter 1:

(None) (None) State: State:
(e-7) (e-7)

Example:

LED.properties.ControlMode.store(ControlModes.STATE)

LED.properties. .store(7)

LED.properties. .fetch()

LED = LED.properties. .value()

print(stateModeState)

Output: 7

The code first configures the LED Peripheral's control mode to state mode by calling
ControlMode.store(ControlModes.STATE). The code then sets the LED Peripheral's current state to
.store(7). Next, the code requests the LED peripheral to reply back

state 7 by calling

with its present state by calling
“stateModeState” by calling
value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

.fetch(). The state value is saved to the variable
.value(). Finally, the LED Peripheral’s

18

Description:
is the millisecond time for which the selected state is active when is set to

.fetch(): Queues the selected state’s state mode time value to be transmitted to the
brain. The LED Peripheral will then reply back to the Brain with the selected state’s state mode time value.
This function returns nothing.

.value(): Reads the most recently updated selected state’s state mode time value. This
function must be called after a fetch(), and returns the selected states state mode time value.

.store(): Sets the selected state’s state mode time. This function returns nothing.

Fetch: Value(Response): Store:
Parameter 1: Parameter 1: Response 1: Parameter 1: Parameter 2:
State: State: State Mode Time: State: State Mode Time:
(0 -7) (8-7) (0 -4,294,967,295)| (0 - 7) (@ - 4,294,967,295)
[ms] [ms]

Example:

LED.properties.ControlMode.store(ControlModes.STATE)
LED.properties. .store(1, 10000)
LED.properties. .fetch(1)
stateModeTime = LED.properties. .value(1)

print(stateModeTime)

Output: 10000

The code first configures the LED Peripheral's control mode to state mode by calling
ControlMode.store(ControlModes.STATE). The code then sets the LED Peripheral's state 1 state

mode time to 10 seconds by calling .store(1, 10000). Next, the code requests the
LED peripheral to reply back state 1’s state mode time value by calling .fetch(1).The
value is then saved to the variable “stateModeTime” by calling .value(1). Finally, the
LED Peripheral’s state 1 value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 19

Description:

is the previous state before the last state transition.

.fetch(): Queues the previous state mode’s state value to be transmitted to the
brain. The Input Peripheral will then reply back to the Brain with the previous state mode’s state value.
This function returns nothing.

.value(): Reads the previous state mode’s state value. This function must be

called after a fetch(), and returns the previous state mode’s state value.

Fetch:

Value(Response):

Parameter 1:
(None)

Parameter 1:
(None)

Response 1:
State:
(e-7)

Example:

LED.properties.ControlMode.store(ControlModes.STATE)

LED.properties.StateModeState.store(1)

time.sleep ms(100)

LED.properties.StateModeState.store(2)

LED.properties.

.fetch()

stateModelLastState = LED.properties.

print(stateModelLastState)

Output: 1

.value()

The code first configures the LED Peripheral's control mode to state mode by calling

ControlMode.store(ControlModes.STATE). The code then sequentially sets the LED Peripheral's

states from 1 to 2. Next, the code requests the LED peripheral to reply back the previous state mode’s

state value by calling .fetch(). The value is then saved to the variable

“stateModeLastState” by calling .value(). Finally, the LED Peripheral’s
value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 20

Description:

configures the selected LEDs RGB profile on the LED Peripheral for use in State control
mode. StateColor utilizes the data type OF

.fetch(): Queues the specified states selected LED RGB values to be transmitted to the
brain. The LED Peripheral will then reply back to the Brain with the specified states selected LED RGB
values. This function returns nothing.

.value(): Reads the most recently updated specified states selected LED RGB values. This
function must be called after a fetch(), and returns the specified states selected LED RGB values.

.store(): Sets the specified states selected LED to the given RGB value.

Fetch: Value(Response): Store:
Parameter 1: | Parameter 2: | Parameter 1 | Parameter 2: | Response 1: Parameter 1: Parameter 2:
State: LED: State: LED: RGB Values: State: LEDColor()
(e-7) (0-7) (0 -7) (0 -7) R:©-25 |[(0-7)

G : 0 - 255

B : 0 - 255
Example:
LED.properties.ControlMode.store(ControlModes.STATE)
LED.properties. .store(5, LEDColor(LED=1, color=Color(101, 188, 71)))
LEDPeripheral.properties. .fetch(5, 1)
stateLEDColor = LED.properties. .value(5, 1)

print(stateColor)

Output: @, 255, @

The code first configures the LED Peripheral's control mode to state mode by calling
ControlMode.store(ControlModes.STATE). Then, state 5's LED 1 is set to the RGB value 101,
188, 71 by calling .store(5, LEDColor(LED=1, color=(101, 188, 71))). Next,
the code requests the LED Peripheral to reply back with state 5’s LED 1 RGB value by calling
.fetch(5, 1). The RGB values are then saved to the variable “stateLEDColor” by calling
.value(5, 1). Finally, state 5's LED 1 RGB values are printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 21

Description:
enables and disables the LED Peripheral's state transitions in

.fetch(): Queues the LED Peripheral’s state mode enable value to be transmitted to
the brain. The LED Peripheral will then reply back to the Brain with its state mode enable value. This
function returns nothing.

.value(): Reads the most recently updated state mode enable value. This function
must be called after a fetch(), and returns the LED Peripheral's state mode enable value.

.store(): Enables or disables the LED Peripheral’s spin mode operation.

Fetch: Value(Response): Store:

Parameter 1: Parameter 1: Response 1: Parameter 1:

(None) (None) Spin Mode Enable: Spin Mode Enable:
@ : Disable @ : Disable
1 : Enable 1 : Enable

Example:

LED.properties.ControlMode.store(ControlModes.STATE)

LED.properties. .store(1)

LED.properties. .fetch()

stateModeEnable = LED.properties. .value()

print(stateModeEnable)

Output: 1

The code first configures the LED Peripheral's control mode to state mode by calling
ControlMode.store(ControlModes.STATE). Then, the LED Peripheral's state mode is enabled by
calling .store(1). Next, the code requests the LED Peripheral to reply back with its
state mode enable value by calling .fetch(). The LED Peripheral's state mode
enable value is then saved to the variable “stateModeEnable” by calling .value().
Finally, the LED Peripheral's state mode enable value is printed in the terminal.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 22

Examples

1.17. 1Importing the LED Peripheral

import NUD.System as s

import NUD.Peripheral's.LED.LED as 1
import NUD.Peripheral's.LED.Values as lv
import NUD.Peripheral's.LED.Types as 1t

system = s.System()
LED = 1.LED()

system.attachPeripheral(LED, s.SideSlot.SIDE 1 SLOT A)

1.2. Configuring a Blinking LED in Normal Control Mode

Import and Attach Setup

LED.Properties.ControlMode.store(1lt.ControlModes.NORMAL)
for i in range(10)
LED.Properties.OneColor.store(LEDColor(LED = 1, color
time.sleep_ms(500)
LED.Properties.OneColor.store(LEDColor(LED
time.sleep_ms(500)

Color(101, 188, 71)))

1, color

Color(@, 0, 0)))

The above code configures LED 1 to blink at a 1s period for 10 seconds.

1.3. Configuring a Blinking LED in Blink Control Mode

Import and Attach Setup

LED.Properties.ControlMode.store(1lt.ControlModes.BLINK)
LED.Properties.BlinkColor.store(LEDColor(LED = 5, color = Color(101, 188, 71)))
LED.Properties.BlinkRate.store(500)

LED.Properties.BlinkDutyCycle.store(500)

LED.Properties.BlinkModeEnable.store(1)

The above code configures LED 5 to blink at a 500ms period at 50% Duty Cycle.

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 23

1.4. Configuring Multiple Spinning LEDs in Spin Control Mode

Import and Attach Setup

LED.Properties.ControlMode.store(lt.ControlModes.SPIN)
LED.Properties.SpinColor.store(LEDColor(LED = 2, color = Color(255, 255, 255)))
LED.Properties.SpinColor.store(LEDColor(LED = 3, color = Color(101, 188, 71)))
LED.Properties.SpinRate.store(2000)

LED.Properties.SpinDirection.store(lt.SpinDirections.CLOCKWISE)
LED.Properties.SpinModeEnable.store(1)

The above code configures LEDs 2 & 3 to spin clockwise at a 2s rotation period.

1.5. Configuring State Mode Transitions in Timed Update Mode

Import and Attach Setup

LED.Properties.ControlMode.store(lt.ControlModes.STATE)
LED.Properties.StateMode.store(1lt.StateModes.TIMED UPDATE)

Configure State ©

LED.Properties.StateColor.store(@, LEDColor(LED = 1, color = Color(101, 188, 71)))
LED.Properties.StateColor.store(@, LEDColor(LED = 2, color = Color(101, 188, 71)))
LED.Properties.SpinColor.store(@, LEDColor(LED = 3, color = Color(101, 188, 71)))
LED.Properties.StateModeTime.store(@, 2000)

Configure State 1

LED.Properties.StateColor.store(1, LEDColor(LED = 4, color = Color(@, ©, 255)))
LED.Properties.StateColor.store(1, LEDColor(LED = 5, color = Color(@, ©, 255)))
LED.Properties.SpinColor.store(1, LEDColor(LED = 6, color = Color(@, @, 255)))
LED.Properties.StateModeTime.store(1, 1000)

LED.Properties.StateModeEnable.store(1)

The above code configures State © to enable LEDs 1, 2 & 3 to light for 2s, then switch
to State 1 after 2 seconds, where LED’s 4, 5, & 6 are enabled for 1 second.

LED Peripheral Manual 1211-013-0101 (1212-004-0101)

24

Terms and Abbreviations

LED Peripheral Manual 1211-013-0101 (1212-004-0101) 25

