
Ethernet Peripheral
Manual

https://www.nodeudesign.com
sales@nodeudesign.com

https://www.nodeudesign.com/
mailto:sales@nodeudesign.com

1. Hardware

1.1. Pinouts
- Add graphic showing pinout

1.1. Electrical Characteristics

Absolute Maximum Ratings

Max

Voltage at any Output
terminal

45 V

V(ESD) Electrostatic
discharge

16000V

Temperature (Storage &
Operating)

-40℃ - 80℃

Operating Temperature -20℃ - 80℃

Recommended Maximum Ratings

Min Typical Max

Operating Voltage 7.5V - 36V

Output Voltage 0 - 36V

Ethernet Peripheral Manual (1212-TBD-0100) 1

2. Overview

The Ethernet peripheral provides a wide array of methods for transferring data from the control system to the
outside world and to receive input from auxiliary systems.

2.1. Hardware
The Ethernet Peripheral offloads communication tasks from the Brain, allowing the Brain to focus on control tasks.
The peripheral supports auto MDI-X to simplify cabling procedures and automatic negotiation of 10/100 speeds.

A microSD card is supported for local file storage.

The Ethernet Peripheral provides one Aux I/O line. TODO: What can we do with this line?

2.2. Software
The software stack on the Ethernet Peripheral supports a variety of communication protocols. Support is provided
for protocols including UDP, TCP, DHCP Client, Web Server and MQTT Client.

The Ethernet Peripheral currently supports IPv4 addressing only, both via DHCP and static assignment.

Protocol configuration and use is done through the Brain interface.

Ethernet Peripheral Manual (1212-TBD-0100) 2

3. Hardware Installation

3.1. Peripheral to Brain Connection
Locate the active port marked with an outline silhouette. Rotate to match with an open Brain port on the stack,
then seat the connections. Please make a note of the port number. This will be required to finish wiring and will be
needed to program the peripheral later.

3.2. Ethernet Wiring Connection
The ethernet cable pairs number 2 & 3 (Orange/OrangeWhite and Green/GreenWhite) must be connected to your
terminal header for the selected port. Connect a solid color wire to connector 1 and the matching white wire to
connector 2. Connect the other solid wire to connector 3 and the matching white wire to connector 4. The order of
the pair connection does not matter due to the auto MDI-X feature of the peripheral.

Connect the other end of your ethernet cable to your switch.

Ethernet Peripheral Manual (1212-TBD-0100) 3

4. Software Configuration

4.1. Imports
The following are the recommended imports to use the Ethernet Peripheral. All following examples will assume
that these imports are used.

import NUD.System as sys

import NUD.Peripherals.Ethernet.Ethernet as Eth

import NUD.Peripherals.Ethernet.Values as EthV

import NUD.Peripherals.Ethernet.Types as EthT

4.2. Connecting to the Ethernet Peripheral
The following is an example of how to create an Ethernet Peripheral in the system. Please see the NUD Brain
Manual for information on specifying the correct side and slot for the peripheral.

The Ethernet peripheral is complicated and has many user configurable parameters and cached state. While not
strictly necessary, we recommend that your initialization process include requesting a reset of the Ethernet
peripheral on Brain startup to avoid any synchronization issues.

nudSystem = sys.System()

eth = Eth.Ethernet()

nudSystem.attachPeripheral(eth, sys.SideSlot.SIDE_1_SLOT_B)

nudSystem.startAutoUpdate()

nudSystem.flushPeripheral(1)

All following examples will assume you have created an ethernet peripheral object named ‘eth’, properly attached
it, started auto update, and flushed the peripheral.

4.3. Configuration Overview
There are many parameters that can be configured on the Ethernet interface, many of which should be set prior to
initializing the ethernet connection. The following flow chart will help you initialize the peripheral to your desired
settings. Setting individual parameters will be covered in their own sections.

Ethernet Peripheral Manual (1212-TBD-0100) 4

Ethernet Peripheral Manual (1212-TBD-0100) 5

4.4. Autonegotiation, Link Speed, and Duplex Configuration
The Ethernet Peripheral supports link speeds of 10 or 100 mbps in either full or half duplex modes. By default the
Ethernet Peripheral will perform autonegotiation on startup. Manual configuration is possible prior to the
StartEthernet operation.

TODO

4.5. Initialization Event Callbacks
The Ethernet Peripheral provides several events to indicate the status of the device. The callbacks are Ethernet
Cable Link Status, IP Changed event, and Ethernet Start status. Event callbacks need to be set for these events.

It is recommended that you ensure all states are good prior to performing any other operations on the Ethernet
Peripheral. This can be accomplished by waiting on flags set by your event callbacks.

Example:

while not (isEthernetStarted and isCableConnected and isIpValid):

time.sleep_ms(100)

Ethernet Start
Ethernet Start status indicates that the basic ethernet initialization process is finished. No configuration changes
or protocol commands should be sent to the peripheral between the StartEthernet Operation and receiving the
StartEthernet event.

Example:

isEthernetStarted = False

def ethernetStartCallback(peripheral, status):

print("Etherenet Start Callback");

global isEthernetStarted

isEthernetStarted = True

eth.events.StartEthernet.setCallback(ethernetStartCallback)

Cable Link
Cable Link status reports if the cable is plugged into the ethernet port. This status can be queried through the
ConnectionStatus property or obtained on change through the ConnectionStatus event.

Example:

Ethernet Peripheral Manual (1212-TBD-0100) 6

isCableConnected = False

def connectionCallback(peripheral, status):

print("Cable Connection Status Callback: " + str(status))

global isCableConnected

isCableConnected = bool(status)

eth.events.ConnectionStatus.setCallback(connectionCallback)

IP Addresses
The current IP Address configuration (IP Address, Netmask, and Gateway) can be queried through properties or
monitored for changes through the PeripheralAddresses event. When a valid IP is sent, the value of the ip will not
be IS_ANY. This can be tested by calling the isAny() function on the IP address.

Example:

isIpValid = False

def ipChangedCallback(peripheral, ipAddresses):

print("IP Change Callback:" + str(ipAddresses))

global isIpValid

isIpValid = not ipAddresses.ip.isAny()

print("IP Changed Valid IP?:" + str(isIpValid))

eth0.events.PeripheralAddresses.setCallback(ipChangedCallback)

4.6. Ensuring cleanup
Several of the ethernet functions require cleanup on exit, such as closing TCP connections and finishing UDP
listens. To ensure that these happen, you should wrap your code with a try block and provide a finally block that
cleans up any resources.

Example:

try:

eth.operations.UdpStartListen.execute(port)

while(RUN):

periodic code here

finally:

eth.operations.UdpEndListen.execute(port)

print("Done")

Ethernet Peripheral Manual (1212-TBD-0100) 7

5. IP Configuration

5.1. Overview
Ethernet devices require configuration of an Internet Protocol address (IP address) to allow addressing on the
network. The Ethernet Peripheral supports IPv4 addresses, which are specified as 4 numbers separated by a
period, such as 192.168.1.1.

The Ethernet Peripheral supports two methods of configuration: Manual and DHCP. DHCP allows the device to
query your network to determine the correct values to use and ensures there are no addressing conflicts.

By default the Ethernet Peripheral uses DHCP to configure the device.

5.2. Manual Configuration
Manual Configuration requires the user to specify the following:

● IP Address
● Network Mask
● Gateway
● DNS Server (optional)

If you do not know the values to assign, please consult with your network administrator to avoid conflicts and
ensure the correct values.

There are two ways to set the parameters: they can be set individually or combined in one command.

Example:

ipValue = EthT.IPAddr((192,168,1,15))

eth.properties.PeripheralIP.store(ipValue)

ipValue = EthT.IPAddr((255,255,0,0))

eth.properties.PeripheralNetMask.store(ipValue)

ipValue = EthT.IPAddr((192,168,1,1))

eth.properties.PeripheralGateway.store(ipValue)

Example:

ip = EthT.IPAddr((192,168,1,15))

nm = EthT.IPAddr((255,255,0,0))

gv = EthT.IPAddr((192,168,1,1))

addresses = EthT.IPInfo(ip, nm , gw)

eth.properties.PeripheralAddresses.store(addresses)

Ethernet Peripheral Manual (1212-TBD-0100) 8

5.3. DHCP Configuration
DHCP configuration requires that a valid DHCP server is present on the same physical network as the Network
Peripheral. If you are unsure, please consult your network administrator.

To use DHCP, set the IP address to “IP_ANY” or (0,0,0,0).

Example:

ipValue = EthT.IPAddr(EthT.IPAddr.IP_ANY)

eth.properties.PeripheralIP.store(ipValue)

Ethernet Peripheral Manual (1212-TBD-0100) 9

6. DNS

6.1. DNS Overview
The Domain Name Service (DNS) provides lookup to translate host names like google.com to their corresponding
network IP addresses. It is often compared to a phone book, translating names that humans can easily recognize
into numerical addresses that the system is able to handle.

The Ethernet Peripheral supports basic DNS lookup capabilities. Prior to using DNS a service provider server
must be set. Usually a primary server and a secondary server are specified.

6.2. DNS Configuration
If the system is set to use DHCP, the DNS servers should be automatically set by the DHCP server. If you are
using manual IP Configuration you must set them yourself. You can check the current configuration by querying
the DNS servers. If they are IP_ANY you should manually configure them before performing any queries.

Example:

eth.properties.DnsServer.fetch()

time.sleep_ms(100)

dns_servers = eth.properties.DnsServer.value()

print("DNS Servers: ", str(dns_servers[0]), str(dns_servers[1]))

if(dns_servers[0].isAny()):

print("DNS Servers not set: Setting to Google’s public servers")

dns_servers = [EthT.IPAddr((8,8,8,8)),EthT.IPAddr((8,8,4,4))]

eth.properties.DnsServer.store(dns_servers)

time.sleep_ms(100)

eth.properties.DnsServer.fetch()

time.sleep_ms(100)

dns_servers = eth.properties.DnsServer.value()

print("DNS Servers: ", str(dns_servers[0]), str(dns_servers[1]))

6.3. DNS Usage
The DNS queries work in an Operation -> Event pattern. The user sends a query operation. A variable amount of
time later the Ethernet peripheral returns a result by an event. If the address is IP_ANY then the system was
unable to resolve the hostname.

Example:

def dnsCallback(peripheral, dnsResponse):

if dnsResponse.ip.isAny()

print(“DNS query failed for “, dnsResponse.hostname)

Ethernet Peripheral Manual (1212-TBD-0100) 10

else

print("DNS Response for ", dnsResponse.hostname, " : ", str(dnsResponse.ip))

eth.events.DnsQuery.setCallback(dnsCallback)

eth0.operations.DnsQuery.execute("google.com")

The DNS Query string should be the target Fully Qualified Domain Name, like “google.com” or “drive.google.com”

● Do not include a protocol header (“http://google.com”)
● Do not include trailing slashes or paths (“www.youtube.com/feed/explore”)

Ethernet Peripheral Manual (1212-TBD-0100) 11

7. UDP

7.1. Introduction
User Datagram Protocol (UDP) is a basic network protocol for sending and receiving messages with no
requirement for prior communication and with no confirmation of reception. It’s primarily used for establishing
low-latency and loss-tolerating connections between applications.

The Ethernet Peripheral supports both sending and receiving UDP messages.

7.2. UDP Send
In order to send UDP you need to know both the IP address and the port number of the receiving system.

The basic steps to send a UDP message are:
1. Initialize the Ethernet peripheral
2. Specify the target IP address
3. Create a UDPPacket using the IP address, destination port, local port (optional) and the data to send.
4. Execute the SendUDP operation using the specified packet.

Example:

remoteIp = EthT.IPAddr((192,168,1,2))

remotePort = 20001

localPort = 0 # When zero the system chooses an available port.

data = bytearray([1,2,3,4,5,6,7,8,9]`

udpPacket = EthT.UDPPacket(remoteIp, remotePort, localPort, data))

eth.operations.SendUDP.execute(udpPacket)

Note: There is no acknowledgement that the packet was sent.

Ethernet Peripheral Manual (1212-TBD-0100) 12

7.3. UDP Receive
UDP Receive is an asynchronous process using a callback. To receive UDP you only need to provide a local port
to listen on.

The basic steps to receive are:
1. Specify the callback to be executed when data is received.
2. Execute the UDPStartListen operation.
3. When finished, execute the UdpEndListen operation.

Example:

def udpCallback(peripheral, packet):

print("UDP Received:", packet)

eth.events.UdpPacketReceived.setCallback(udpCallback)

eth.operations.UdpStartListen.execute(port)

The UDPPacket type contains the following member variables:
addr: Source IP Address
srcPort: Source Port
destPort: Destination Port
data: bytearray containing the data from the UDP packet.

Ethernet Peripheral Manual (1212-TBD-0100) 13

8. TCP

8.1. Introduction
Transmission Control Protocol (TCP) is a basic network protocol that provides reliable, ordered, and error
checked delivery of a stream of bytes. It is the protocol that underlies most major networking applications. TCP is
a connection-oriented protocol and requires that a socket connection be established before any data can be sent.
A handshake process ensures that data is reliably received but lengthens latency.

The Ethernet Peripheral supports both listening as a server and connecting as a client.

The Ethernet Peripheral supports multiple TCP connections. It uses a user provided connection ID number
between 1 and 65,535 to identify connections. This number will be needed to properly route data and state
information.

8.2. Socket States
The Ethernet Peripheral handles many of the socket states and transitions for you, simplifying the process.
Socket states are reported to the Brain via the TcpSocketState event.

The states that the Ethernet Peripheral reports are:

Failed = const(0)
Closed = const(1)
New = const(2)
Connecting = const(3)
Open = const(4)
Listening = const(5)

The user MUST ensure the socket is in the Closed state when finished with the socket. Sockets can enter the
closed state due to a connection failure, the other party closing their socket, or when requested by the User.

Socket state changes are communicated using the TcpSocketState event.

8.3. Callbacks
TCP requires two callbacks to be set, the TcpSocketState and the TcpReceived.

TcpSocketState callback handles the socket state transitions. This callback should signal your application that it is
safe to start transmitting data requests when the socket enters the “Open” state. It should signal your app to stop
sending data when the socket enters the “Closed” state and provide error handling for unexpected socket
closures. Error handling can also be provided for Failed socket connections.

Example:

Ethernet Peripheral Manual (1212-TBD-0100) 14

def tcpStateCallback(peripheral, tcpconnection):

print("On Connection." + str(tcpconnection))

if tcpconnection.status == EthT.ConnectionState.Open:

startDataSend(tcpconnection)

elif tcpconnection.status == EthT.ConnectionState.Failed:

print("Connection Failed: " + str(tcpconnection))

elif tcpconnection.status == EthT.ConnectionState.Closed:

print("Connection Closed: " + str(tcpconnection))

elif tcpconnection.status == EthT.ConnectionState.Listening:

print("Listening for connections: " + str(tcpconnection))

elif tcpconnection.status == EthT.ConnectionState.Connecting:

print("Connecting on: " + str(tcpconnection))

else:

print("ConnectCallback: " + str(tcpconnection))

eth.events.TcpSocketState.setCallback(tcpStateCallback)

The TcpReceived callback handles the arrival of TCP data from the socket. Data is guaranteed to be in order.
How data is handled depends on your application.

Example:

myConnectionNumber = 1

remoteIp = EthT.IPAddr((192,168,1,2))

remotePort = 20001

localIp = None

localPort = 0 # When zero the system chooses an available port.

tcpConnection = EthT.TCPConnection(myConnectionNumber, localIp, localPort, remoteIp,

remotePort)

print("Starting TcpConnect")

eth.events.TcpReceived.setCallback(tcpCallback)

eth.events.TcpSocketState.setCallback(tcpStateCallback)

eth.operations.TcpConnect.execute(tcpConnection)

Ethernet Peripheral Manual (1212-TBD-0100) 15

8.4. Connecting to a Server
The process of connecting to a server involves establishing a connection, using a callback function to monitor the
socket state, and using a callback function to receive data from the server. Generally the server waits for requests
from the client and then transmits the requested data back to the client. The user must wait for the socket Open
state before attempting to send data.

When establishing a connection the following data must be provided:
● User provided connection ID number.
● The Local IP address (set to “None” when connecting to a server.)
● The Remote IP address for the connection.
● The Local port to use for the connection (set to 0 or “None” to allow the Ethernet Peripheral to choose)
● The Remote port for the connection.

After the TcpConnect operation is executed, the socket will transition to the “Connecting” or “Failed” state.
Reasons for failure at this point:

● Out of Memory
● The socket is already in use.

Example:

myConnectionNumber = 1

remoteIp = EthT.IPAddr((192,168,1,2))

remotePort = 20001

localIp = None

localPort = 0 # When zero the system chooses an available port.

tcpConnection = EthT.TCPConnection(myConnectionNumber, localIp, localPort, remoteIp,

remotePort)

print("Starting TcpConnect")

eth.events.TcpReceived.setCallback(tcpCallback)

eth.events.TcpSocketState.setCallback(tcpStateCallback)

eth.operations.TcpConnect.execute(tcpConnection)

Ethernet Peripheral Manual (1212-TBD-0100) 16

9. Web Server

9.1. AllMaxValues(Fetch/Reset)
Gets the maximum value of all channels in a single request

Description:
Data Type(s):
Fetch:

Parameter(s):

Response:

Example:

Reset:

Parameter(s):

Response:

Example:

Ethernet Peripheral Manual (1212-TBD-0100) 17

10. MQTT

10.1. AllMinValues(Fetch/Reset)

Description:
Gets the minimum value of all channels in a single request.

Data Type(s):
Type depends on channel mode.

Fetch:

Parameter(s):

Response:

Example:

Reset:

Parameter(s):

Response:
ACK on success
NACK otherwise

Example:

Ethernet Peripheral Manual (1212-TBD-0100) 18

11. Examples

11.1. Importing Output Peripheral

import NUD.System as s

import NUD.Peripherals.CAN.CAN as can

import NUD.Peripherals.CAN.CANValues as cv

import NUD.Peripherals.CAN.CANTypes as ct

CANperiph = can.CAN()

system = s.System()

Attach the CAN peripheral to Side 1 Slot A

system.attachPeripheral(CANperiph, s.SideSlot.SIDE_1_SLOT_A)

11.2. Filter Configuration
11.3. Scaling and Offset

Ethernet Peripheral Manual (1212-TBD-0100) 19

12. Terms and Abbreviations

Ethernet Peripheral Manual (1212-TBD-0100) 20

