

Ingredients backed by clinical research.

Over 2,000 clinical studies supporting the ingredients in the Innermost product range.

INGREDIENT LIST

5-HTP

Acacia Fibre

Acai Berries

Acetyl-L Carnitine

Alpha Lipoic Acid

Ashwaghanda

Bacopa Monnieri

BCAA Complex

Beta Alanine

Bilberries

Caffeine

Camu Camu

Capsicum

Casein

CDP-Choline

Chlorella

Chocamine

Citrulline Malate

Cocoa

Cocomineral

Creatine Monohydrate

Digezyme

Ginger Root

Glutamine

Guarana

Inulin

Kelp

L-Glycine

L-Theanine

L-Tyrosine

Lactospore

Lion's Mane Mushroom

Maca

Magnesium

Matcha Green Tea

Montmorency Cherries

Peppermint

Pink Himalayan Sea Salt

Pomegranates

Rhodiola Rosea

Selenium

Shiitake, Maitake, Reishi, Cordyceps

Siberian Ginseng

Spirulina

Turmeric

Ubiquinone CoQ10

Valerian Root

Vegan Protein

Vitamin B Complex

Vitamin C

Vitamin D

Wheatgrass

Whey Protein

Yerba Mate

7MA

5-HTP

A randomized, placebo-controlled trial of an amino acid preparation on timing and quality of sleep:

https://pubmed.ncbi.nlm.nih.gov/19417589/

5-Hydroxytryptophan: a clinically-effective serotonin precursor: https://pubmed.ncbi.nlm.nih.gov/9727088/

5-Hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796270/

Effects of 5-hydroxytryptophan on distinct types of depression: a systematic review and meta-analysis:

https://academic.oup.com/nutritionreviews/article/78/1/77/5555860?login=true

5-hydroxytryptophan:

https://pubmed.ncbi.nlm.nih.gov/9630740/

5-Hydroxytryptophan plus SSRIs for interferon-induced depression: synergistic mechanisms for normalizing synaptic serotonin: https://pubmed.ncbi.nlm.nih.gov/15893130/

L-5-hydroxytryptophan in depression and anxiety: https://pubmed.ncbi.nlm.nih.gov/3055148/

[Effect of 5-hydroxytryptophan, a serotonin precursor, on sleep disorders]: https://pubmed.ncbi.nlm.nih.gov/339807/

Acacia Fibre

Fiber and prebiotics: mechanisms and health benefits:

https://pubmed.ncbi.nlm.nih.gov/23609775/

Gut Health-Promoting Benefits of a Dietary Supplement of Vitamins with Inulin and Acacia Fibers in Rats:

https://pubmed.ncbi.nlm.nih.gov/32718017/

The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota:

https://pubmed.ncbi.nlm.nih.gov/34505973/

Dietary fiber and the microbiota: A narrative review by a group of experts from the Asociación Mexicana de Gastroenterología:

https://pubmed.ncbi.nlm.nih.gov/34144942/

Acacia Gum is a Bifidogenic Dietary Fibre with High Digestive Tolerance in Healthy Humans:

https://www.tandfonline.com/doi/abs/10.1080/08910600310014377

The effect of acacia gum and a water-soluble dietary fiber mixture on blood lipids in humans:

https://pubmed.ncbi.nlm.nih.gov/8385164/

Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits:

https://journals.lww.com/nutritiontodayonline/Fulltext/2015/03000/ Evidence_Based_Approach_to_Fiber_Supplements_and.8.aspx

Acai Berries

Antioxidant and Hypolipidemic Activity of Açai Fruit Makes It a Valuable Functional Food:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824079/

Cardiovascular and Metabolic Effects of Açaí, an Amazon Plant: https://pubmed.ncbi.nlm.nih.gov/26657713/

Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae mart. (acai):

https://pubmed.ncbi.nlm.nih.gov/17061839/

Flavonoids from acai (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities:

https://pubmed.ncbi.nlm.nih.gov/25214342/

Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts: https://pubmed.ncbi.nlm.nih.gov/28527426/

The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients:

https://pubmed.ncbi.nlm.nih.gov/29915880/

Amazon acai: chemistry and biological activities: a review:

https://pubmed.ncbi.nlm.nih.gov/25722148/

[Characterization of the acai or manaca (Euterpe oleracea Mart.): a fruit of the Amazon]:

https://pubmed.ncbi.nlm.nih.gov/17824205/

Acetyl-L Carnitine

L-Carnitine Improves Skeletal Muscle Fat Oxidation in Primary Carnitine Deficiency:

https://pubmed.ncbi.nlm.nih.gov/30219858/

L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders:

https://pubmed.ncbi.nlm.nih.gov/24148561/

Significance of l-carnitine for human health:

https://pubmed.ncbi.nlm.nih.gov/28653367/

[Carnitine - mitochondria and beyond]:

https://pubmed.ncbi.nlm.nih.gov/28132459/

Role of Carnitine in Non-alcoholic Fatty Liver Disease and Other Related Diseases: An Update:

https://pubmed.ncbi.nlm.nih.gov/34434943/

Effects of L-carnitine supplementation on oxidative stress and antioxidant enzymes activities in patients with coronary artery disease: a randomized, placebo-controlled trial:

https://pubmed.ncbi.nlm.nih.gov/25092108/

Analyzing Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis: Potential Role of L-carnitine:

https://pubmed.ncbi.nlm.nih.gov/30988244/

Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation:

https://pubmed.ncbi.nlm.nih.gov/28531771/

Alpha Lipoic Acid

Antioxidant and Prooxidant Activities of A-Lipoic Acid and Dihydrolipoic Acid: https://www.sciencedirect.com/science/article/abs/pii/S0041008X02994378

A-Lipoic Acid and Cardiovascular Disease:

https://academic.oup.com/jn/article/133/11/3327/4817993?login=true

Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production:

https://pubmed.ncbi.nlm.nih.gov/9037098/

Alpha-lipoic acid as a biological antioxidant:

https://www.sciencedirect.com/science/article/abs/pii/089158499500017R

Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756298/

Molecular aspects of lipoic acid in the prevention of diabetes complications: https://pubmed.ncbi.nlm.nih.gov/11684397/

Antioxidant properties of an endogenous thiol: Alpha-lipoic acid, useful in the prevention of cardiovascular diseases:

https://pubmed.ncbi.nlm.nih.gov/19998523/

Ashwaghanda

An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study:

https://pubmed.ncbi.nlm.nih.gov/31517876/

Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions:

https://pubmed.ncbi.nlm.nih.gov/28471731/

Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study: https://pubmed.ncbi.nlm.nih.gov/32021735/

A randomized, double blind, placebo controlled study to evaluate the effects of ashwagandha (Withania somnifera) extract on sleep quality in healthy adults:

https://pubmed.ncbi.nlm.nih.gov/32540634/

An alternative treatment for anxiety: a systematic review of human trial results reported for the Ayurvedic herb ashwagandha (Withania somnifera): https://pubmed.ncbi.nlm.nih.gov/25405876/

A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults:

https://pubmed.ncbi.nlm.nih.gov/23439798/

Bacopa Monnieri

Efficacy of Standardized Extract of Bacopa monnieri (Bacognize®) on Cognitive Functions of Medical Students: A Six-Week, Randomized Placebo-Controlled Trial:

https://pubmed.ncbi.nlm.nih.gov/27803728/

Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract:

https://pubmed.ncbi.nlm.nih.gov/24252493/

The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials:

https://pubmed.ncbi.nlm.nih.gov/22747190/

Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial: https://pubmed.ncbi.nlm.nih.gov/20590480/

Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial:

https://pubmed.ncbi.nlm.nih.gov/18683852/

The acute effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy normal subjects:

https://pubmed.ncbi.nlm.nih.gov/12404571/

Bacopa monniera, a reputed nootropic plant: an overview:

https://pubmed.ncbi.nlm.nih.gov/15898709/

BCAA Complex

Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise:

https://pubmed.ncbi.nlm.nih.gov/15173434/

Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances: https://pubmed.ncbi.nlm.nih.gov/25566428/

Nutraceutical effects of branched-chain amino acids on skeletal muscle: https://pubmed.ncbi.nlm.nih.gov/16424141/

Branched-chain amino acid catabolism in exercise and liver disease: https://pubmed.ncbi.nlm.nih.gov/16365092/

Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism:

https://pubmed.ncbi.nlm.nih.gov/34354601/

Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness:

https://pubmed.ncbi.nlm.nih.gov/20601741/

Effect of Branched-Chain Amino Acid Supplementation on Recovery Following Acute Eccentric Exercise:

https://pubmed.ncbi.nlm.nih.gov/30275356/

Beta Alanine

The Beta-Alanine Dose for Maintaining Moderately Elevated Muscle Carnosine Levels:

https://www.researchgate.net/publication/259587336_The_Beta-Alanine_Dose_for_Maintaining_Moderately_Elevated_Muscle_Carnosine_ Levels

Effects of B-alanine supplementation on exercise performance: a metaanalysis:

https://link.springer.com/article/10.1007/s00726-011-1200-z

Influence of B-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity:

https://www.researchgate.net/publication/247000066_Influence_of_B-alanine_supplementation_on_skeletal_muscle_carnosine_concentrations_and_high_intensity_cycling_capacity

Role of beta-alanine supplementation on muscle carnosine and exercise performance:

https://pubmed.ncbi.nlm.nih.gov/20479615/

Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance:

https://pubmed.ncbi.nlm.nih.gov/20091069/

Effect of -alanine supplementation on high-intensity exercise performance: https://pubmed.ncbi.nlm.nih.gov/23899755/

Bilberries

Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403651/

Bilberries and their anthocyanins ameliorate experimental colitis: https://pubmed.ncbi.nlm.nih.gov/21957076/

A Brief Review of Blue- and Bilberries' Potential to Curb Cardio-Metabolic Perturbations: Focus on Diabetes:

https://pubmed.ncbi.nlm.nih.gov/27748191/

High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices:

https://pubmed.ncbi.nlm.nih.gov/22394068/

Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.):

https://pubmed.ncbi.nlm.nih.gov/21574578/

Classification of fruits based on anthocyanin types and relevance to their health effects:

https://pubmed.ncbi.nlm.nih.gov/26250485/

Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review:

https://pubmed.ncbi.nlm.nih.gov/32183662/

Caffeine

Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis:

https://www.tandfonline.com/doi/abs/10.1080/15438627.2018.1552146

Caffeine and Exercise:

https://link.springer.com/article/10.2165%2F00007256-200131110-00002

The effects of different doses of caffeine on endurance cycling time trial performance:

https://www.tandfonline.com/doi/

full/10.1080/02640414.2011.632431?src=recsys

Effect of caffeine on sport-specific endurance performance: a systematic review:

https://pubmed.ncbi.nlm.nih.gov/19077738/

Caffeine and anaerobic performance: ergogenic value and mechanisms of action:

https://pubmed.ncbi.nlm.nih.gov/19757860/

Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions:

https://pubmed.ncbi.nlm.nih.gov/11568134/

Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis:

https://pubmed.ncbi.nlm.nih.gov/30518253/

Camu Camu

Antioxidant and Associated Capacities of Camu Camu (Myrciaria dubia): A Systematic Review:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296744/

Bioactive Compounds of Camu-Camu (Myrciaria dubia (Kunth) McVaugh): https://link.springer.com/referenceworkentry/10.1007/978-3-030-30182-8_21

Nutritional compositions and health promoting phytochemicals of camucamu (myrciaria dubia) fruit: A review:

https://www.sciencedirect.com/science/article/abs/pii/S0963996911002043

Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR:

https://pubmed.ncbi.nlm.nih.gov/16302773/

Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages: https://www.sciencedirect.com/science/article/abs/pii/S030881460901351X

Nutritional composition and vitamin C stability in stored camu-camu (Myrciaria dubia) pulp:

https://pubmed.ncbi.nlm.nih.gov/11464674/

Capsicum

List of Natural Appetite-Suppressing Foods:

https://healthyeating.sfgate.com/list-natural-appetitesuppressing-foods-6098.html

Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence:

https://pubmed.ncbi.nlm.nih.gov/22634197/

Capsaicinoids: a spicy solution to the management of obesity?:

https://pubmed.ncbi.nlm.nih.gov/26686003/

The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types:

https://pubmed.ncbi.nlm.nih.gov/26945685/

Could capsaicinoids help to support weight management? A systematic review and meta-analysis of energy intake data:

https://pubmed.ncbi.nlm.nih.gov/24246368/

Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance:

https://pubmed.ncbi.nlm.nih.gov/24630935/

Effects of red pepper on appetite and energy intake:

https://pubmed.ncbi.nlm.nih.gov/10743483/

Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications:

https://pubmed.ncbi.nlm.nih.gov/19056576/

Casein

Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation:

https://link.springer.com/article/10.1186/s12970-018-0228-9

Effect of Dairy Proteins on Appetite, Energy Expenditure, Body Weight, and Composition: a Review of the Evidence from Controlled Clinical Trials: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941822/

Comparison of the effects of a high- and normal-casein breakfast on satiety, 'satiety' hormones, plasma amino acids and subsequent energy intake: https://pubmed.ncbi.nlm.nih.gov/18634717/

Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein: https://pubmed.ncbi.nlm.nih.gov/8599318/

The digestion rate of protein is an independent regulating factor of postprandial protein retention:

https://pubmed.ncbi.nlm.nih.gov/11158939/

Coingestion of whey protein and casein in a mixed meal: demonstration of a more sustained anabolic effect of casein:

https://pubmed.ncbi.nlm.nih.gov/22569072/

CDP-Choline

The Effect of Citicoline Supplementation on Motor Speed and Attention in Adolescent Males:

https://pubmed.ncbi.nlm.nih.gov/26179181/

Improvements in concentration, working memory and sustained attention following consumption of a natural citicoline-caffeine beverage:

https://pubmed.ncbi.nlm.nih.gov/25046515/

Citicoline and Memory Function in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial:

https://pubmed.ncbi.nlm.nih.gov/33978188/

Citicoline: A Superior Form of Choline?:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683073/

Choline - The Underconsumed and Underappreciated Essential Nutrient: https://journals.lww.com/nutritiontodayonline/Fulltext/2018/11000/Choline__The_Underconsumed_and_Underappreciated.4.aspx

Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline:

https://pubmed.ncbi.nlm.nih.gov/7869846/

Citicoline - a neuroprotector with proven effects on glaucomatous disease: https://pubmed.ncbi.nlm.nih.gov/29450391/

Chlorella

Potential of Chlorella as a Dietary Supplement to Promote Human Health: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551956/

Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties:

https://pubmed.ncbi.nlm.nih.gov/26561078/

Effect of Chlorella vulgaris on Liver Function Biomarkers: a Systematic Review and Meta-Analysis:

https://pubmed.ncbi.nlm.nih.gov/33564655/

Nutritional Supplementation with Chlorella pyrenoidosa Lowers Serum Methylmalonic Acid in Vegans and Vegetarians with a Suspected Vitamin B₁₂ Deficiency:

https://pubmed.ncbi.nlm.nih.gov/26485478/

Effect of Chlorella supplementation on cardiovascular risk factors: A metaanalysis of randomized controlled trials:

https://pubmed.ncbi.nlm.nih.gov/29037431/

A Single Dose of Marine Chlorella vulgaris Increases Plasma Concentrations of Lutein, B-Carotene and Zeaxanthin in Healthy Male Volunteers:

https://pubmed.ncbi.nlm.nih.gov/34439412/

Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii:

https://pubmed.ncbi.nlm.nih.gov/27146695/

Chocamine

Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208228/

Flavonoids: nutraceutical potential for counteracting muscle atrophy: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/

Chocolate, "Food of the Gods": History, Science, and Human Health: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950163/

The relevance of the obromine for the beneficial effects of cocoa consumption:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335269/

Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate:

https://pubmed.ncbi.nlm.nih.gov/10917925/

[Dark or white chocolate? Cocoa and cardiovascular health]: https://pubmed.ncbi.nlm.nih.gov/20373696/

Cocoa polyphenols and their potential benefits for human health: https://pubmed.ncbi.nlm.nih.gov/23150750/

Polyphenols from cocoa and vascular health-a critical review: https://pubmed.ncbi.nlm.nih.gov/20057946/

Citrulline Malate

Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness:

https://pubmed.ncbi.nlm.nih.gov/20386132/

The Effect of Citrulline/Malate on Blood Lactate Levels in Intensive Exercise: https://pubmed.ncbi.nlm.nih.gov/28664349/

Acute Effect of Citrulline Malate Supplementation on Upper-Body Resistance Exercise Performance in Recreationally Resistance-Trained Men: https://pubmed.ncbi.nlm.nih.gov/29210953/

Acute citrulline malate supplementation improves upper- and lowerbody submaximal weightlifting exercise performance in resistance-trained females:

https://pubmed.ncbi.nlm.nih.gov/26658899/

Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis: https://pubmed.ncbi.nlm.nih.gov/33308806/

Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males:

https://pubmed.ncbi.nlm.nih.gov/25674699/

Cocoa

Chocolate/cocoa and human health: a review: https://pubmed.ncbi.nlm.nih.gov/23462053/

Cocoa and chocolate flavonoids: implications for cardiovascular health: https://pubmed.ncbi.nlm.nih.gov/12589329/

Mood Components in Cocoa and Chocolate: The Mood Pyramid: https://pubmed.ncbi.nlm.nih.gov/29539647/

The Impact of Cocoa Flavanols on Cardiovascular Health: https://pubmed.ncbi.nlm.nih.gov/27363823/

Impact of Cocoa Flavanols on Cardiovascular Health: Additional Consideration of Dose and Food Matrix: https://pubmed.ncbi.nlm.nih.gov/27723148/

Potential implications of dose and diet for the effects of cocoa flavanols on cardiometabolic function:

https://pubmed.ncbi.nlm.nih.gov/26111215/

Effects of cocoa flavanols on risk factors for cardiovascular disease: https://pubmed.ncbi.nlm.nih.gov/18296357/

Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects:

https://pubmed.ncbi.nlm.nih.gov/18504447/

Cocomineral

Rehydration with sodium-enriched coconut water after exercise-induced dehydration:

https://pubmed.ncbi.nlm.nih.gov/17883020/

An amino acid-electrolyte beverage may increase cellular rehydration relative to carbohydrate-electrolyte and flavored water beverages: https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-13-47

Rehydration after exercise with fresh young coconut water, carbohydrateelectrolyte beverage and plain water:

https://pubmed.ncbi.nlm.nih.gov/12056182/

Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293068/

Electrolytes, sugar, calories, osmolarity and pH of beverages and coconut water:

https://pubmed.ncbi.nlm.nih.gov/7163850/

The chemical composition and biological properties of coconut (Cocos nucifera L.) water:

https://pubmed.ncbi.nlm.nih.gov/20032881/

Coconut water as a rehydration fluid:

https://pubmed.ncbi.nlm.nih.gov/290921/

Creatine Monohydrate

Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females:

https://pubmed.ncbi.nlm.nih.gov/11099372/

International Society of Sports Nutrition position stand: creatine supplementation and exercise:

https://jissn.biomedcentral.com/articles/10.1186/1550-2783-4-6

Creatine supplementation differentially affects maximal isometric strength and time to fatigue in large and small muscle groups:

https://pubmed.ncbi.nlm.nih.gov/10362451/

Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females:

https://pubmed.ncbi.nlm.nih.gov/11099372/

Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults:

https://pubmed.ncbi.nlm.nih.gov/12560406/

Creatine supplementation and exercise performance: recent findings: https://pubmed.ncbi.nlm.nih.gov/15707376/

American College of Sports Medicine roundtable. The physiological and health effects of oral creatine supplementation:

https://pubmed.ncbi.nlm.nih.gov/10731017/

Digezyme

Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study:

https://pubmed.ncbi.nlm.nih.gov/30156254/

Evaluation of the Safety and Efficacy of a Multienzyme Complex in Patients with Functional Dyspepsia: A Randomized, Double-Blind, Placebo-Controlled Study:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249666/

Digestive Enzyme Supplementation in Gastrointestinal Diseases: https://pubmed.ncbi.nlm.nih.gov/26806042/

The role of enzyme supplementation in digestive disorders: https://pubmed.ncbi.nlm.nih.gov/19152478/

Digestive and nutritional considerations in celiac disease: could supplementation help?:

https://pubmed.ncbi.nlm.nih.gov/19803549/

Effects of Prebiotic and Probiotic Supplementation on Lactase Deficiency and Lactose Intolerance: A Systematic Review of Controlled Trials: https://pubmed.ncbi.nlm.nih.gov/32443748/

Experimental support for the effects of a probiotic/digestive enzyme supplement on serum cholesterol concentrations and the intestinal microbiome:

https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-016-0945-2

Ginger Root

Effect of ginger on gastric motility and symptoms of functional dyspepsia: https://pubmed.ncbi.nlm.nih.gov/21218090/

Modulation of gut microbiota and intestinal barrier function during alleviation of antibiotic-associated diarrhea with Rhizoma Zingiber officinale (Ginger) extract:

https://pubmed.ncbi.nlm.nih.gov/33241234/

Ginger Root:

https://pubmed.ncbi.nlm.nih.gov/33351444/

Effects of ginger on gastric emptying and motility in healthy humans: https://pubmed.ncbi.nlm.nih.gov/18403946/

Ginger and its health claims: molecular aspects: https://pubmed.ncbi.nlm.nih.gov/21491265/

Ginger on Human Health: A Comprehensive Systematic Review of 109 Randomized Controlled Trials:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019938/

Anti-Oxidative and Anti-Inflammatory Effects of Ginger in Health and Physical Activity: Review of Current Evidence:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665023/

Influence of dietary ginger (Zingiber officinales Rosc) on antioxidant defense system in rat: comparison with ascorbic acid:

https://pubmed.ncbi.nlm.nih.gov/11116533/

Glutamine

The effects of oral glutamine supplementation on athletes after prolonged, exhaustive exercise:

https://pubmed.ncbi.nlm.nih.gov/9263279/

Dosing and efficacy of glutamine supplementation in human exercise and sport training:

https://pubmed.ncbi.nlm.nih.gov/18806122/

Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation:

https://pubmed.ncbi.nlm.nih.gov/9007457/

Glutamine and the effects of exhaustive exercise upon the immune response: https://pubmed.ncbi.nlm.nih.gov/9839078/

Does glutamine have a role in reducing infections in athletes?:

https://pubmed.ncbi.nlm.nih.gov/8803512/

Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266414/

Molecular mechanisms of glutamine action:

https://pubmed.ncbi.nlm.nih.gov/15795900/

Amino acid supplementation and impact on immune function in the context of exercise:

https://pubmed.ncbi.nlm.nih.gov/25530736/

Guarana

Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men:

https://www.ncbi.nlm.nih.gov/pubmed/16176615

An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial:

https://pubmed.ncbi.nlm.nih.gov/11319627/

Guarana Provides Additional Stimulation over Caffeine Alone in the Planarian Model:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399916/

Mechanisms involved in anti-aging effects of guarana (Paullinia cupana) in Caenorhabditis elegans:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040867/

Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng:

https://pubmed.ncbi.nlm.nih.gov/15582012/

Health and technological aspects of methylxanthines and polyphenols from guarana: A review:

https://www.sciencedirect.com/science/article/pii/S1756464618302652

Guarana and Its Possible Effects on Health:

https://www.researchgate.net/publication/351315370_Guarana_and_Its_ Possible_Effects_on_Health

Inulin

The prebiotic inulin improves substrate metabolism and promotes shortchain fatty acid production in overweight to obese men:

https://pubmed.ncbi.nlm.nih.gov/29953876/

A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes:

https://link.springer.com/article/10.1186/s12986-015-0033-2

Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides:

https://pubmed.ncbi.nlm.nih.gov/34177920/

Inulin: Properties, health benefits and food applications:

https://www.sciencedirect.com/science/article/abs/pii/ S0144861716303812

Health Effects and Sources of Prebiotic Dietary Fiber: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041804/

Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537941/

Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women:

https://pubmed.ncbi.nlm.nih.gov/23135760/

Kelp

The Extrathyronine Actions of Iodine as Antioxidant, Apoptotic, and Differentiation Factor in Various Tissues:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752513/

An innovative approach for iodine supplementation using iodine-rich phytogenic food:

https://link.springer.com/article/10.1007/s10653-014-9597-4

The potential health benefits of seaweed and seaweed extract:

http://shura.shu.ac.uk/4980/1/The_Potential_Health_Benefits_of_ Seaweed_and_Seaweed_Extracts.PDF

Nutritional value of edible seaweeds:

https://pubmed.ncbi.nlm.nih.gov/18236692/

Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases:

https://pubmed.ncbi.nlm.nih.gov/26999166/

Development of a kelp powder (Thallus laminariae) Standard Reference Material:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013078/

Effects of Daily Kelp (Laminaria japonica) Intake on Body Composition, Serum Lipid Levels, and Thyroid Hormone Levels in Healthy Japanese Adults: A Randomized, Double-Blind Study:

https://www.mdpi.com/1660-3397/19/7/352/htm

L-Glycine

Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes:

https://onlinelibrary.wiley.com/doi/10.1111/j.1479-8425.2007.00262.x

Subjective effects of glycine ingestion before bedtime on sleep quality: https://onlinelibrary.wiley.com/doi/10.1111/j.1479-8425.2006.00193.x

Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350494/

Glycine metabolism in animals and humans: implications for nutrition and health:

https://pubmed.ncbi.nlm.nih.gov/23615880/

L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent:

https://pubmed.ncbi.nlm.nih.gov/12589194/

Glycine: a new anti-inflammatory immunonutrient: https://pubmed.ncbi.nlm.nih.gov/11212343/

Dietary requirements of "nutritionally non-essential amino acids" by animals and humans:

https://pubmed.ncbi.nlm.nih.gov/23247926/

L-Theanine

L-Theanine reduces psychological and physiological stress responses: https://pubmed.ncbi.nlm.nih.gov/16930802/

Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial: https://pubmed.ncbi.nlm.nih.gov/31623400/

Effects of chronic l-theanine administration in patients with major depressive disorder: an open-label study:

https://pubmed.ncbi.nlm.nih.gov/27396868/

L-theanine in the adjunctive treatment of generalized anxiety disorder: A double-blind, randomised, placebo-controlled trial: https://pubmed.ncbi.nlm.nih.gov/30580081/

Psychotropic effects of L-theanine and its clinical properties: From the management of anxiety and stress to a potential use in schizophrenia: https://pubmed.ncbi.nlm.nih.gov/31412272/

The beneficial health effects of green tea amino acid l-theanine in animal models: Promises and prospects for human trials: https://pubmed.ncbi.nlm.nih.gov/30632212/

The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent: https://pubmed.ncbi.nlm.nih.gov/17182482/

L-Tyrosine

Behavioral and cognitive effects of tyrosine intake in healthy human adults: https://pubmed.ncbi.nlm.nih.gov/25797188/

Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review:

https://pubmed.ncbi.nlm.nih.gov/26424423/

Tyrosine Ingestion and Its Effects on Cognitive and Physical Performance in the Heat:

https://pubmed.ncbi.nlm.nih.gov/26285023/

Tyrosine for Mitigating Stress and Enhancing Performance in Healthy Adult Humans, a Rapid Evidence Assessment of the Literature:

https://pubmed.ncbi.nlm.nih.gov/26126245/

Tyrosine supplementation mitigates working memory decrements during cold exposure:

https://pubmed.ncbi.nlm.nih.gov/17585971/

Dietary tyrosine benefits cognitive and psychomotor performance during body cooling:

https://pubmed.ncbi.nlm.nih.gov/17078981/

Dietary supplementation of tyrosine prevents the rapid fall in blood pressure during haemorrhage:

https://pubmed.ncbi.nlm.nih.gov/2809583/

Lactospore

Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study:

https://pubmed.ncbi.nlm.nih.gov/29997457/

Bacillus coagulans MTCC 5856 supplementation in the management of diarrhea predominant Irritable Bowel Syndrome: a double blind randomized placebo controlled pilot clinical study:

https://pubmed.ncbi.nlm.nih.gov/26922379/

Efficacy and safety of Bacillus coagulans LBSC in irritable bowel syndrome: A prospective, interventional, randomized, double-blind, placebo-controlled clinical study [CONSORT Compliant]:

https://pubmed.ncbi.nlm.nih.gov/33545934/

The Effect of Probiotics on Quality of Life, Depression and Anxiety in Patients with Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis: https://pubmed.ncbi.nlm.nih.gov/34441793/

A prospective, interventional, randomized, double-blind, placebo-controlled clinical study to evaluate the efficacy and safety of Bacillus coagulans LBSC in the treatment of acute diarrhea with abdominal discomfort:

https://pubmed.ncbi.nlm.nih.gov/30264164/

Effects of a proprietary Bacillus coagulans preparation on symptoms of diarrhea-predominant irritable bowel syndrome:

https://pubmed.ncbi.nlm.nih.gov/20140275/

Lion's Mane Mushroom

Hericium erinaceus: an edible mushroom with medicinal values: https://pubmed.ncbi.nlm.nih.gov/23735479/

Improvement of cognitive functions by oral intake of Hericium erinaceus: https://pubmed.ncbi.nlm.nih.gov/31413233/

Neurotrophic properties of the Lion's mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia: https://pubmed.ncbi.nlm.nih.gov/24266378/

Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds:

https://pubmed.ncbi.nlm.nih.gov/26244378/

Therapeutic Potential of Hericium erinaceus for Depressive Disorder: https://pubmed.ncbi.nlm.nih.gov/31881712/

Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines:

https://pubmed.ncbi.nlm.nih.gov/29951133/

Preclinical Bioavailability, Tissue Distribution, and Protein Binding Studies of Erinacine A, a Bioactive Compound from Hericium erinaceus Mycelia Using Validated LC-MS/MS Method:

https://pubmed.ncbi.nlm.nih.gov/34361662/

Maca

Medicinal effects of Peruvian maca (Lepidium meyenii): a review: https://pubs.rsc.org/en/content/articlelanding/2020/FO/C9FO02732G#!divAbstract

The antioxidant effect of Peruvian maca (Lepidium meyenii): https://www.sciencedirect.com/science/article/pii/B9780128190920000509

Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184420/

Lepidium meyenii (Maca) – multidirectional health effects – review: https://www.researchgate.net/publication/328635831_Lepidium_meyenii_Maca_-_multidirectional_health_effects_-_review

Neuroprotective effects of Lepidium meyenii (Maca): https://pubmed.ncbi.nlm.nih.gov/20633111/

[Maca (Lepidium meyenii Walp), a review of its biological properties]: https://pubmed.ncbi.nlm.nih.gov/24718534/

Medicinal plants from Peru: a review of plants as potential agents against cancer:

https://pubmed.ncbi.nlm.nih.gov/17017852/

Magnesium

Effect of magnesium supplementation on women's health and well-being: https://www.sciencedirect.com/science/article/pii/S2352364621000079

Magnesium and the Athlete:

https://pubmed.ncbi.nlm.nih.gov/26166051/

Magnesium deficiency and increased inflammation: current perspectives: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783146/

Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775240/

Magnesium: Its Proven and Potential Clinical Significance: https://pubmed.ncbi.nlm.nih.gov/11811859/

Magnesium for Treatment-Resistant Depression: A Review and Hypothesis: https://pubmed.ncbi.nlm.nih.gov/19944540/

Magnesium and Cardiovascular Disease:

https://www.ackdjournal.org/article/S1548-5595(18)30040-5/fulltext

Predicting and Testing Bioavailability of Magnesium Supplements: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683096/

Matcha Green Tea

Health Benefits and Chemical Composition of Matcha Green Tea: A Review: https://pubmed.ncbi.nlm.nih.gov/33375458/

Antioxidant Properties and Nutritional Composition of Matcha Green Tea: https://pubmed.ncbi.nlm.nih.gov/32290537/

Matcha Tea: Analysis of Nutritional Composition, Phenolics and Antioxidant Activity:

https://pubmed.ncbi.nlm.nih.gov/31832980/

A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy: https://pubmed.ncbi.nlm.nih.gov/30813433/

Green Tea Suppresses Brain Aging: https://pubmed.ncbi.nlm.nih.gov/34443485/

Effect of Green Tea Phytochemicals on Mood and Cognition: https://pubmed.ncbi.nlm.nih.gov/28056735/

Antioxidant activity of different forms of green tea: Loose leaf, bagged and matcha:

https://www.foodandnutritionjournal.org/volume6number1/antioxidant-activity-of-different-forms-of-green-tea-loose-leaf-bagged-and-matcha/

Montmorency Cherries

The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963917/

A Review of the Health Benefits of Cherries: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872786/

Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise:

https://pubmed.ncbi.nlm.nih.gov/25794236/

Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling: https://pubmed.ncbi.nlm.nih.gov/24566440/

The role of cherries in exercise and health: https://pubmed.ncbi.nlm.nih.gov/23710994/

Tart Cherry Juice in Athletes: A Literature Review and Commentary: https://pubmed.ncbi.nlm.nih.gov/28696985/

Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males: https://pubmed.ncbi.nlm.nih.gov/26578852/

Peppermint

A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.):

https://pubmed.ncbi.nlm.nih.gov/16767798/

Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis:

https://pubmed.ncbi.nlm.nih.gov/16767798/

Anti-inflammatory effect of Chrysanthemum zawadskii, peppermint, Glycyrrhiza glabra herbal mixture in lipopolysaccharide-stimulated RAW264.7 macrophages:

https://pubmed.ncbi.nlm.nih.gov/34036392/

Instant effects of peppermint essential oil on the physiological parameters and exercise performance:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103722/

The effects of peppermint on exercise performance:

https://pubmed.ncbi.nlm.nih.gov/23517650/

Ambulation-promoting effect of peppermint oil and identification of its active constituents:

https://pubmed.ncbi.nlm.nih.gov/11509195/

Antibacterial and antioxidant activities of Mentha piperita L.:

https://www.sciencedirect.com/science/article/pii/S1878535211000232

Pink Himalayan Sea Salt

Comparison Of Salty Taste And Time Intensity Of Sea And Land Salts From Around The World:

https://onlinelibrary.wiley.com/doi/full/10.1111/J.1745-459X.2010.00317.X

Post-exercise rehydration in man: effects of volume consumed and drink sodium content:

https://pubmed.ncbi.nlm.nih.gov/8897383/

Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense:

https://www.cell.com/cell-metabolism/fulltext/S1550-4131(15)00055-8#secsectitle0065

Sodium intake and post-exercise rehydration in man:

https://pubmed.ncbi.nlm.nih.gov/8549573/

Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration:

https://journals.physiology.org/doi/full/10.1152/japplphysiol.00745.2016

Individualized hydration plans improve performance outcomes for collegiate athletes engaging in in-season training:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987390/

Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability:

https://pubmed.ncbi.nlm.nih.gov/28332116/

Pomegranates

Obesity: The preventive role of the pomegranate (Punica granatum): https://www.researchgate.net/publication/221839956_Obesity_The_preventive_role_of_the_pomegranate_Punica_granatum

Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing:

https://pubmed.ncbi.nlm.nih.gov/11052704/

Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS:

https://pubmed.ncbi.nlm.nih.gov/23656584/

Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties:

https://pubmed.ncbi.nlm.nih.gov/29350256/

Pomegranate as a functional food and nutraceutical source:

https://pubmed.ncbi.nlm.nih.gov/22129380/

Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide:

https://pubmed.ncbi.nlm.nih.gov/27979233/

Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds:

https://pubmed.ncbi.nlm.nih.gov/29448088/

Rhodiola Rosea

Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208354/

Rhodiola rosea L. Improves Learning and Memory Function: Preclinical Evidence and Possible Mechanisms:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288277/

Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy:

https://pubmed.ncbi.nlm.nih.gov/20378318/

Golden root: A wholesome treat of immunity: https://pubmed.ncbi.nlm.nih.gov/28073099/

Angiomodulatory properties of Rhodiola spp. and other natural antioxidants: https://pubmed.ncbi.nlm.nih.gov/26557041/

Rhodiola rosea for physical and mental fatigue: a systematic review: https://pubmed.ncbi.nlm.nih.gov/22643043/

Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results: https://pubmed.ncbi.nlm.nih.gov/20308973/

Polyphenols from Rhodiola crenulata: https://pubmed.ncbi.nlm.nih.gov/17230339/

Selenium

Selenium, Selenoproteins, and Immunity:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163284/

Selenium and selenoproteins: it's role in regulation of inflammation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222958/

Selenium: its role as antioxidant in human health:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698273/

The influence of selenium on immune responses:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723386/

The importance of selenium to human health:

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)02490-9/fulltext

Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758946/

Selenium: an element for life:

https://link.springer.com/article/10.1007%2Fs12020-014-0477-6

Vitamin Supplementation Benefits in Master Athletes:

https://link.springer.com/article/10.1007%2Fs40279-013-0126-x

Shiitake, Maitake, Reishi, Cordyceps

Antioxidative Protein in Japanese Mushroom: https://link.springer.com/chapter/10.1007/978-1-4899-1837-6_6

Edible Mushrooms: Improving Human Health and Promoting Quality Life: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320875/

Ganoderma lucidum (Lingzhi or Reishi):

https://www.ncbi.nlm.nih.gov/books/NBK92757/

Edible mushrooms: role in the prevention of cardiovascular diseases: https://pubmed.ncbi.nlm.nih.gov/20550954/

Recent developments in mushrooms as anti-cancer therapeutics: a review: https://pubmed.ncbi.nlm.nih.gov/22582152/

A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds:

https://pubmed.ncbi.nlm.nih.gov/23023950/

Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms:

https://pubmed.ncbi.nlm.nih.gov/11368601/

Antioxidants in wild mushrooms:

https://pubmed.ncbi.nlm.nih.gov/19355906/

Siberian Ginseng

Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322748/

Adaptogenic effects of Panax ginseng on modulation of immune functions: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790873/

Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases:

https://pubmed.ncbi.nlm.nih.gov/29983607/

A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases:

https://pubmed.ncbi.nlm.nih.gov/25378989/

Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects:

https://pubmed.ncbi.nlm.nih.gov/27930975/

The aphrodisiac and adaptogenic properties of ginseng: https://pubmed.ncbi.nlm.nih.gov/10930706/

Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety:

https://pubmed.ncbi.nlm.nih.gov/16860976/

Spirulina

Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina:

https://pubmed.ncbi.nlm.nih.gov/20633020/

Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5274660/

A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations:

https://pubmed.ncbi.nlm.nih.gov/26433766/

The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview:

https://pubmed.ncbi.nlm.nih.gov/27259333/

Effects of spirulina on weight loss and blood lipids: a review:

https://pubmed.ncbi.nlm.nih.gov/32201580/

Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals:

https://pubmed.ncbi.nlm.nih.gov/20858231/

The beneficial effects of Spirulina focusing on its immunomodulatory and antioxidant properties:

https://www.researchgate.net/publication/232703137_The_beneficial_effects_of_Spirulina_focusing_on_its_immunomodulatory_and_antioxidant_properties

Turmeric

Curcumin: A Review of Its' Effects on Human Health: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664031/

Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research: https://pubmed.ncbi.nlm.nih.gov/19594223/

Therapeutic roles of curcumin: lessons learned from clinical trials: https://pubmed.ncbi.nlm.nih.gov/23143785/

Anticancer potential of curcumin: preclinical and clinical studies: https://pubmed.ncbi.nlm.nih.gov/12680238/

Curcumin and liver disease:

https://pubmed.ncbi.nlm.nih.gov/23303639/

Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases:

https://pubmed.ncbi.nlm.nih.gov/18662800/

Renoprotective effect of the antioxidant curcumin: Recent findings: https://pubmed.ncbi.nlm.nih.gov/24191240/

Bioavailability of curcumin: problems and promises: https://pubmed.ncbi.nlm.nih.gov/17999464/

Ubiquinone CoQ10

Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660335/

Coenzyme Q10 Supplementation in Aging and Disease: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807419/

Coenzyme Q 10: From bench to clinic in aging diseases, a translational review:

https://pubmed.ncbi.nlm.nih.gov/29451807/

Human coenzyme Q10 deficiency: https://pubmed.ncbi.nlm.nih.gov/17094036/

Metabolism and function of coenzyme Q: https://pubmed.ncbi.nlm.nih.gov/14757233/

Biochemical, physiological and medical aspects of ubiquinone function: https://pubmed.ncbi.nlm.nih.gov/7599208/

Coenzyme Q, oxidative stress and aging: https://pubmed.ncbi.nlm.nih.gov/17482528/

Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations:

https://pubmed.ncbi.nlm.nih.gov/20367194/

Valerian Root

Valerian for Sleep: A Systematic Review and Meta-Analysis: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394901/

Valerian Root in Treating Sleep Problems and Associated Disorders—A Systematic Review and Meta-Analysis:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585905/

Valerian for insomnia: a systematic review of randomized clinical trials: https://pubmed.ncbi.nlm.nih.gov/10767649/

Effectiveness of Valerian on insomnia: a meta-analysis of randomized placebo-controlled trials:

https://pubmed.ncbi.nlm.nih.gov/20347389/

Valeriana officinalis Root Extract Modulates Cortical Excitatory Circuits in Humans:

https://pubmed.ncbi.nlm.nih.gov/29035887/

Critical evaluation of the effect of valerian extract on sleep structure and sleep quality:

https://pubmed.ncbi.nlm.nih.gov/10761819/

The effect of valerian extract on sleep polygraphy in poor sleepers: a pilot study:

https://pubmed.ncbi.nlm.nih.gov/7972346/

Effect of valerian on human sleep:

https://pubmed.ncbi.nlm.nih.gov/3936097/

Vegan Protein

Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein:

https://link.springer.com/article/10.1186/s12970-014-0064-5

Ingesting a Post-Workout Vegan-Protein Multi-Ingredient Expedites Recovery after Resistance Training in Trained Young Males: https://pubmed.ncbi.nlm.nih.gov/33063541/

Evaluation of nutritional quality of a novel pea protein: https://www.sprim.com/wp-content/uploads/2018/10/Evaluation-of-nutritional-quality-of-a-novel-pea-protein.pdf

The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358922/

Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760812/

Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial:

https://www.mdpi.com/2072-6643/12/8/2382

The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance:

https://pubmed.ncbi.nlm.nih.gov/23782948/

Vitamin B Complex

Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism:

https://pubmed.ncbi.nlm.nih.gov/16765926/

B-vitamins and exercise: does exercise alter requirements?: https://pubmed.ncbi.nlm.nih.gov/17240780/

Nutritional Supplements for the Treatment of Neuropathic Pain: https://pubmed.ncbi.nlm.nih.gov/34199290/

Nutrition Assessment of B-Vitamins in Highly Active and Sedentary Women: https://pubmed.ncbi.nlm.nih.gov/28346362/

Effect of physical activity on thiamine, riboflavin, and vitamin B-6 requirements:

https://www.researchgate.net/publication/298111226_Effect_of_physical_activity_on_thiamine_riboflavin_and_vitamin_B-6_requirements

The Effect of 7 to 8 months of Vitamin/Mineral Supplementation on the Vitamin and Mineral Status of Athletes:

https://www.researchgate.net/publication/21855192_The_Effect_of_7_ to_8_months_of_VitaminMineral_Supplementation_on_the_Vitamin_and_ Mineral_Status_of_Athletes

Riboflavin (vitamin B-2) and health:

https://academic.oup.com/ajcn/article/77/6/1352/4689829

Vitamin C

Vitamin C and Immune Function: https://pubmed.ncbi.nlm.nih.gov/29099763/

Citrus Juice, Vitamin C Give Staying Power To Green Tea Antioxidants: https://www.sciencedaily.com/releases/2007/11/071113163016. htm#:~:text=The%20study%20compared%20the%20effect,for%20the%20 body%20to%20absorb.

Immune-enhancing role of vitamin C and zinc and effect on clinical conditions:

https://pubmed.ncbi.nlm.nih.gov/16373990/

Role of vitamins D, E and C in immunity and inflammation: https://pubmed.ncbi.nlm.nih.gov/23830380/

Role of Vitamin C in the Function of the Vascular Endothelium: https://www.ncbi.nlm.nih.gov/pubmed/23581713

Summary of Vitamin C:

https://examine.com/supplements/vitamin-c/#ref103

Vitamin C in Disease Prevention and Cure: An Overview: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783921/

Ascorbic acid: Chemistry, metabolism, and uses: https://pubs.acs.org/doi/abs/10.1021/ba-1982-0200

Vitamin D

Immunologic Effects of Vitamin D on Human Health and Disease: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400911/

Effects of Vitamin D Supplementation on Muscle Strength in Athletes: A Systematic Review:

https://pubmed.ncbi.nlm.nih.gov/27379960/

Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis: https://pubmed.ncbi.nlm.nih.gov/25156880/

Vitamin D Promotes Skeletal Muscle Regeneration and Mitochondrial Health: https://pubmed.ncbi.nlm.nih.gov/33935807/

Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis: https://pubmed.ncbi.nlm.nih.gov/31039170/

Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis:

https://pubmed.ncbi.nlm.nih.gov/20924748/

The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials:

https://pubmed.ncbi.nlm.nih.gov/25033068/

Wheatgrass

Nutritional Quality and Antioxidant Activity of Wheatgrass (Triticum aestivum) Unwrap by Proteome Profiling and DPPH and FRAP assays:

https://pubmed.ncbi.nlm.nih.gov/30059150/

The Medical Use of Wheatgrass: Review of the Gap Between Basic and Clinical Applications:

https://pubmed.ncbi.nlm.nih.gov/26156538/

Antioxidative and anticarcinogenic activities of methylpheophorbide a, isolated from wheat grass (Triticum aestivum Linn.):

https://pubmed.ncbi.nlm.nih.gov/25782530/

A pilot study on wheat grass juice for its phytochemical, nutritional and therapeutic potential on chronic diseases.:

https://www.chemijournal.com/vol2issue4/dec2014/2-3-9.1.pdf

Immunoprophylactic potential of wheat grass extract on benzene-induced leukemia: An in vivo study on murine model:

https://pubmed.ncbi.nlm.nih.gov/26288471/

Wheatgrass inhibits the lipopolysaccharide-stimulated inflammatory effect in RAW 264.7 macrophages:

https://pubmed.ncbi.nlm.nih.gov/34345856/

A study on wheat grass and its Nutritional value:

https://www.researchgate.net/publication/279370893_A_study_on_wheat_grass_and_its_Nutritional_value

Whey Protein

Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study:

https://pubmed.ncbi.nlm.nih.gov/28696380/

Supplemental protein in support of muscle mass and health: advantage whey:

https://pubmed.ncbi.nlm.nih.gov/25757896/

The effects of whey protein with or without carbohydrates on resistance training adaptations:

https://pubmed.ncbi.nlm.nih.gov/26677350/

The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review:

https://pubmed.ncbi.nlm.nih.gov/25169440/

Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review:

https://pubmed.ncbi.nlm.nih.gov/24435468/

Protein-Based Supplementation to Enhance Recovery in Team Sports: What is the Evidence?:

https://pubmed.ncbi.nlm.nih.gov/31427875/

Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial:

https://pubmed.ncbi.nlm.nih.gov/32784847/

Yerba Mate

Yerba Maté (Ilex paraguariensis) Metabolic, Satiety, and Mood State Effects at Rest and during Prolonged Exercise:

https://pubmed.ncbi.nlm.nih.gov/28809814/

The Positive Effects of Yerba Maté (Ilex paraguariensis) in Obesity: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344557/

Yerba Maté (Illex Paraguariensis) ingestion augments fat oxidation and energy expenditure during exercise at various submaximal intensities: https://pubmed.ncbi.nlm.nih.gov/25342955/

Metabolic and Performance Effects of Yerba Mate on Well-trained Cyclists: https://pubmed.ncbi.nlm.nih.gov/29117073/

Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations: https://pubmed.ncbi.nlm.nih.gov/18034743/

Yerba mate (Ilex paraguariensis) improves microcirculation of volunteers with high blood viscosity: a randomized, double-blind, placebo-controlled trial: https://pubmed.ncbi.nlm.nih.gov/25562195/

Anti-obesity effects of Yerba Mate (Ilex Paraguariensis): a randomized, double-blind, placebo-controlled clinical trial: https://pubmed.ncbi.nlm.nih.gov/26408319/

ZMA

Zinc in human health: effect of zinc on immune cells: https://pubmed.ncbi.nlm.nih.gov/18385818/

Magnesium in man: implications for health and disease: https://pubmed.ncbi.nlm.nih.gov/25540137/

Clinical, immunological, anti-inflammatory and antioxidant roles of zinc: https://pubmed.ncbi.nlm.nih.gov/18054190/

Magnesium: Its Proven and Potential Clinical Significance: https://pubmed.ncbi.nlm.nih.gov/11811859/

Magnesium deficiency and increased inflammation: current perspectives: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783146/

Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417078/

Zinc Homeostasis in Exercise: Implications for Physical Performance: https://www.omicsonline.org/open-access/zinc-homeostasis-in-exercise-implications-for-p hysical-performance-2376-1318.1000e132.php?aid=34430

The immune system and the impact of zinc during aging: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702361/

