

THERMOPOMPES
AIR-EAU AVEC DC
INVERTER ET TECHONOLOGIE
EVI. CONFIGURATION
MONOBLOCK 3IÈME
GÉNÉRATION RÉFRIGÉRANT R32

Thermopompes Multi-Fonctions

Thermopompe air-eau DC Inverter pour le chauffage, la climatisation et le préchauffage de l'eau chaude domestique. Températures de fonctionnement entre -30°C et +45°C. Température d'alimentation en eau chaude pouvant atteindre 140°F (60°C).

HSS 030, 60, 80 V3LM SERIES

+1 (888) 686 7652 🔕

https://hydrosolar.ca/ (19)

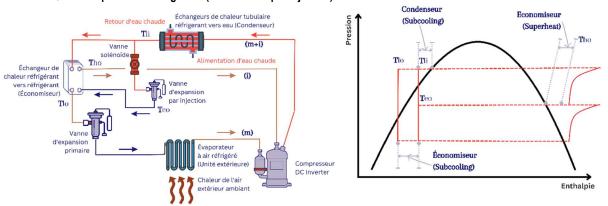
2267 46th Avenue, Lachine (QC) Canada H8T 3C9

1 TABLE DES MATIÈRES

2	Int	roduction	3
	2.1	Qu'est-ce qu'une pompe à chaleur air-eau?	3
	2.1.1	Qu'est-ce qu'un compresseur DC Inverter?	3
	2.1.2	Qu'est-ce que la technologie EVI (Enhanced Vapor Injection) ?	3
	2.1.3	Pourquoi les pompes à chaleur air-eau sont de plus en plus populaires?	
3	Fo	nctionnalités	4
	3.1	Protocole de contrôle	4
	3.2	Interface de contrôle et cartes de contrôle	4
	3.3	Compresseur	4
4	Ca	apacité de refroidissement/chauffage et exigences d'alimentation électrique	5
	4.1	Caractéristiques électriques	5
	4.2	Performances de refroidissement:	5
	4.2.1	HSS030V3LM	5
	4.2.2	HSS060V3LM	5
	4.2.3	HSS080V3LM	6
	4.3	Performances de chauffage	6
	4.3.1	HSS030V3LM	6
	4.3.2.		6
	4.3.3	HSS060V3LM	7
	4.3.4	HSS080V3LM	7
5	DI	MENSIONS & POIDS	8
	5.1	Dimensions de la thermopompe	8
	5.2	Dimensions et poids d'expédition	8
6	Ite	ms livrés avec la thermopompe	9
7	Vι	ie éclatée	9
	7.1	HSS030V3LM	9
	7.2	HSS060V3LM	11
	7.3	HSS080V3LM	12
8	Ca	arte de contrôle et schémas de raccordement	14
	8.1	Description des bornes	15
9	Sc	hémas de tuyauterie	15
	9.1	Deux réservoirs – trois fonctions (année longue)	15
	9.2	Un réservoir – trois fonctions (année longue – sauf l'été)	18
	9.3	Deux réservoirs – chauffage et refroidissement ou préchauffage d'eau chaude domestique (dhw)	21
10	Sé	quence de contrôle pour le dégivrage	23
	10.1	Séquence de contrôle pour le dégivrage:	23
11	Inc	stallation	23

	11.1	Objectifs:	23
	11.2	Aperçu:	
	11.3	Exigences d'installation et de dégagement :	
	11.3.1	Exigences minimales de dégagement	
	11.3.2	Bonnes pratiques	
	11.3.3	Préreguis d'installation:	
12	Opé	ration (Fonctionnement)	28
	12.1	Liste de contrôle avant le démarrage	
	12.2	Exigences de débit:	
	12.2.1	Sections de tuyaux droits:	31
	12.2.2	Chute de pression des raccords et accessoires :	32
	12.3	Mode autonome	33
	12.3.1	Interface principale	33
	12.3.2	Marche/arrêt	
	12.3.3	Modes (Chauffage, Refroidissement, Eau chaude, Eau chaude + refroidissement, Eau chaude + chauffage)	33
	12.3.4	Réajustement de la température de l'eau d'alimentation/de retour en fonction de la température extérieure	36
	12.3.5	Fuseau horaire/CLOCK	37
	12.3.6	Réglages par défaut	38
	12.4	Mode de fonctionnement Hybride: demande de chauffage/climatisation par des sources externes	38
	12.5	L'installation de l'adapteur WIFI	39
	12.5.1	Installation du matériel et des connections:	39
	12.5.2	Téléchargement et configuration de l'application:	40
	12.5.3	Fenêtre de liste des appareils:	42
	12.5.4	Guide d'utilisation de l'application:	43
13	Gar	antie (garantie limitée pour usage résidentiel)	44
14	Ann	exe "A" – Liste des codes d'erreur	45
15	Ann	exe "B" – Guide de dépannage de la thermopompe	45
16	Ann	exe "C" – Menus et sous-menus du contrôleur de la thermonompe	45

2 Introduction


2.1 QU'EST-CE QU'UNE POMPE À CHALEUR AIR-EAU?

Une pompe à chaleur (ou Thermopompe) air-eau est une machine qui extrait la chaleur d'un endroit (appelé source de chaleur) et rejette cette chaleur dans un autre endroit (appelé puit de chaleur). Contrairement aux pompes à chaleur air-air conventionnelles, où l'énergie thermique produite est utilisée pour refroidir/chauffer l'air, les pompes à chaleur air-eau utilisent l'énergie thermique générée pour refroidir/chauffer de l'eau ou un mélange d'eau et de glycol. Nos pompes à chaleur air-eau sont équipées d'un compresseur avec DC Inverter et de la technologie EVI (Enhanced Vapor Injection), ce qui leur permet de fournir un fluide à température plus élevée même dans des conditions extérieures beaucoup plus froides, lorsque comparées aux pompes à chaleur conventionnelles à deux phases ou avec DC Inverter uniquement (sans EVI).

2.1.1 Qu'est-ce qu'un compresseur DC Inverter?

Les compresseurs DC inverter sont des compresseurs à vitesse variable alimentés par des onduleurs à courant continu. La vitesse est modulée via un variateur de fréquence externe pour contrôler la vitesse du compresseur. Le débit de réfrigérant est modulé en fonction de la variation de la vitesse du compresseur. Le rapport de modulation dépend de la configuration du système et du fabricant. Il varie de 15 ou 25 % jusqu'à 100 % à pleine capacité. Cela signifie qu'une pompe à chaleur fonctionnant avec un compresseur DC inverter peut adapter sa capacité à la demande en modulant simplement la vitesse de son compresseur. Contrairement aux compresseurs conventionnels à un ou deux stages, les pompes à chaleur équipées d'un compresseur DC inverter ne cyclent pas entre arret/depart, elles fonctionnent la plupart du temps à des vitesses plus faibles.

2.1.2 Qu'est-ce que la technologie EVI (Enhanced Vapor Injection) ?

Comme le montre le schéma ci-dessus, le réfrigérant liquide sortant du condenseur est séparé en deux parties. Une petite portion du liquide, i, est dilatée à travers une vanne d'expansion supplémentaire, puis dirigée (ou s'écoule) dans un échangeur à plaques à contre-courant, HX. La grande portion du liquide sortant du condenseur, m, est ensuite refroidie dans l'économiseur tout en s'évaporant et en surchauffant le flux massique d'injection. Cet échangeur à plaques supplémentaire, connu sous le nom d'économiseur, agit donc comme un sous-refroidisseur pour le flux massique principal m et comme un évaporateur pour le flux massique d'injection. La vapeur surchauffée est ensuite injectée dans le port d'injection de vapeur intermédiaire du compresseur Scroll.

Le sous-refroidissement supplémentaire (Sub-cooling) augmente la capacité d'évaporation en réduisant la température du liquide de TLI à TLO, ce qui réduit son enthalpie. Le flux massique supplémentaire du condenseur, i, augmente la capacité de chauffage du même montant.

L'efficacité obtenue grâce au cycle du compresseur à injection de vapeur est plus élevée que celle d'un compresseur à simple étage conventionnel de capacité équivalente, car la capacité supplémentaire est obtenue avec une consommation d'énergie proportionnellement plus faible. Le flux massique d'injection créé lors du processus de sous-refroidissement est comprimé à partir de la pression inter-étage supérieure plutôt qu'à partir de la pression d'aspiration faible.

L'effet de sous-refroidissement additionnel du EVI permet à la thermopompe de récupérer de la chaleur à des températures extérieures plus faibles. C'est pourquoi les thermopompes avec DC Inverter (sans EVI) fonctionnent entre -20°C et 45°C (température du thermomètre sec de l'air extérieure) tandis que les pompes à chaleur avec DC Inverter et EVI fonctionnent entre -30°C et 45°C (température du thermomètre sec de l'air extérieure).

2.1.3 Pourquoi les pompes à chaleur air-eau sont de plus en plus populaires?

Les codes du bâtiment Canadiens/Américains deviennent de plus en plus exigeants en termes d'efficacité énergétique pour les bâtiments résidentiels et commerciaux. Le gouvernement fédéral Canadien vise à augmenter progressivement les normes d'efficacité énergétique pour les constructions existantes et nouvelles en exigeant que chaque nouvelle maison au Canada soit prête pour la consommation énergétique nette zéro d'ici 2025 et complètement nette zéro d'ici 2030.

Atteindre progressivement une consommation énergétique nette zéro devra faire du sens, non seulement d'un point de vue environnemental, mais aussi d'un point de vue financier et social. Même si les prix des énergies renouvelables diminuent et que l'efficacité augmente, elles ne sont toujours pas abordables pour un ménage Nord-Américain moyen après avoir ajouté le coût de la main-d'œuvre au coût des matériaux. De plus, le coût de la main-d'œuvre augmente considérablement lorsque l'on intègre une ou plusieurs sources d'énergie renouvelable (comme le solaire, la géothermie, etc.) dans le rétrofit d'un bâtiment existant.

Avant l'émergence des pompes à chaleur air-eau, les propriétaires de maisons et d'entreprises au Canada et aux États-Unis qui souhaitaient chauffer/refroidir leurs propriétés avec des systèmes hydroniques n'avaient que deux choix : soit des chaudières électriques/gaz/propane/bois conventionnelles, abordables mais écologiquement non-responsable, soit des pompes à chaleur géothermiques, extrêmement coûteuses mais écologiquement responsable.

Les thermopompes air-eau sont à la fois abordable et efficace énergétiquement, c'est ce qui les rend très intéressantes lorsqu'on les compare à un système de chaudière conventionnelle ou à un système géothermique.

Une pompe à chaleur géothermique, pour une maison régulière au Canada ou aux États-Unis, a un COP (Coefficient de Performance) annuel d'environ 3. Une pompe à chaleur air-eau de capacité similaire a un COP annuel de 2,2 à 2,4 et cela pour un coût moindre. En général, les pompes à chaleur air-eau sont de 20 à 30 % moins efficaces lorsqu'on les compare à une thermopompe géothermique de même capacité, mais elles sont 60 % moins chères.

3 FONCTIONNALITÉS

3.1 Protocole de contrôle

Nos thermopompes air-eau utilisent le protocole Modbus. Modbus est un protocole de communication développé par les systèmes Modicon. Simplement dit, c'est une méthode utilisée pour transmettre des informations sur des chaines numériques entre des appareils électroniques. Modbus est un protocole ouvert, ce qui signifie que les fabricants peuvent l'intégrer gratuitement dans leurs équipements sans avoir à payer de redevances.

Il est devenu un protocole couramment utilisé par les fabricants de systèmes HVAC. Modbus est généralement utilisé pour transmettre des signaux provenant d'instruments et de dispositifs de contrôle vers un contrôleur principal ou un système de collecte de données.

Modbus s'intègre facilement à un contrôleur BACnet, soit via des passerelles BACnet/Modbus, soit en intégrant simplement le contrôleur Modbus au contrôleur BACnet (la plupart des fabricants de contrôleurs BACnet ont adapté leur micrologiciel pour lire la table des points des contrôleurs Modbus).

3.2 INTERFACE DE CONTRÔLE ET CARTES DE CONTRÔLE

L'interface de contrôle est le CAREL PGD1000 et le régulateur de la thermopompe est un contrôleur CAREL avec protocole Modbus.

Le contrôleur à vitesse variable du compresseur est le CAREL PS2002523D100 (*Entrée: 200-240Vac, 50/60Hz, 40-57A; sortie AC: 0-240V, 25-30A, sortie DC: 385V, 1500W Logiciel: Classe B*).

Le contrôleur à vitesse variable du ventilateur du condenseur est le CAREL PSALB00000 (240-400Vdc, max 1.5Adc).

3.3 COMPRESSEUR

Le compresseur est un compresseur Panasonic EVI DC Inverter Twin Rotary. Panasonic utilise une pompe à haut rendement et un réfrigérant écologique pour concevoir des compresseurs rotatifs fiables et à haute efficacité énergétique.

Panasonic possède le plus petit compresseur rotatif à vitesse variable sur le marché. Les compresseurs rotatifs Panasonic ont une très bonne réputation à travers le monde et sont souvent utilisés pour la climatisation et réfrigération.

4 CAPACITÉ DE REFROIDISSEMENT/CHAUFFAGE ET EXIGENCES D'ALIMENTATION ÉLECTRIQUE

4.1 CARACTÉRISTIQUES ÉLECTRIQUES

No. Modèle	Alimentation électrique		Puissance électrique absorbée (KW)		Courant d'utilisation (A) Charge maximale	Niveau Sonore (dBA)
		Mode refroidissement @ température bulbe sec ambiante: 43°C (109.4°F), entrée d'eau 20°C (68°F)	Mode chauffage @ température bulbe sec ambiante: -20°C (-4°F), entrée d'eau 50°C (122°F)	En mode de refroidissement maximale	En mode de chauffage maximale		(==-9
HSS030V3LM	220-240VAC/1Ph/60Hz	2.74	2.62	3.55	3.25	14.80	52
HSS060V3LM	220-240VAC/1Ph/60Hz	3.96	5.40	5.98	5.26	25.34	55
HSS080V3LM	220-240VAC/1Ph/60Hz	5.54	5.98	7.92	7.27	33.20	58

No. Modèle	Débit d'eau (US GPM) – Nominal – Maximal	Perte de p	ression de l'eau	Raccordement tuyau d'eau	Type de réfrigérant	Taille du tuyau de réfrigérant	Charge du réfrigérant (OZ)	Nomir	Pression de Nominale du réfrigérant (PSI)		Nominale du		Nominale du réfrigérant (PSI)		MCA (A)	Température d'entrée d'eau maximale (°C) / (°F)
		kPa	Ft]		Aspiration/Liquide		Bas	Haut	1						
HSS030V3LM	6.07-7.7	16.8-27	5.62-9.03	Ø1" - FNPT	R32	Ø15.88mm / Ø9.52mm	63.50	305	609	37.2	20.78	55°C / 131°F				
HSS060V3LM	11.35-14.08	20.8-32	6.96-10.7	Ø1" - FNPT	R32	Ø15.88mm / Ø12.7mm	88.20	305	609	60.75	40.46	55°C / 131°F				
HSS080V3LM	15.14-18.48	25.5-38	8.53-12.71	Ø1" - FNPT	R32	Ø19.05mm / Ø12.7mm	116.40	305	609	96.36	53.53	55°C / 131°F				

Remarques:

HSS030V3LM est équipé d'un compresseur Twin Rotary DC Inverter: Panasonic - 9KD240ZAA2J. HSS060V3LM est équipé d'un compresseur Twin Rotary DC Inverter: Panasonic - 9KD420ZAA2J. HSS080V3LM est équipé d'un compresseur Twin Rotary DC Inverter: Panasonic - 9VD550ZCA2J.

4.2 PERFORMANCES DE REFROIDISSEMENT:

4.2.1 HSS030V3LM

	HSS030V3LM										
Température extérieure de l'air	Température	d'alimentation 44.6°F (7°C) / Tempé	tion 44.6°F (7°C) / Température de l'eau de retour 53.6°F (12°C)								
bulbe sec (°C)	extérieure de l'air bulbe sec (°F)	Capacité de refroidissement (KW)	Capacité de refroidissement (BTU/HR)	Consommation d'énergie (KW)	COP						
23	73.4	15.16	51,723	2.98	5.09						
26	78.8	12.64	45,685	3.08	4.35						
29	84.2	11.37	41,352	3.12	3.88						
32	89.6	9.62	34,767	3.22	3.16						
35	95	8.23	29,478	3.28	2.61						

4.2.2 HSS060V3LM

	HSS060V3LM										
Température extérieure de l'air	Température extérieure de l'air	Température de l'eau d'alimentation 44.6°F (7°C) / Température de l'eau de retour 53.6°F (12°C)									
bulbe sec (°C)	bulbe sec (°F)	Capacité de refroidissement (KW)	Capacité de refroidissement (BTU/HR)	Consommation d'énergie (KW)	COP						
23	73.4	28.75	98,090	5.68	5.06						
26	78.8	25.95	88,537	5.87	4.42						
29	84.2	23.27	79,393	5.92	3.93						
32 89.6		19.47	66,428	5.97	3.26						
35	95	15.83	54,009	5.98	2.65						

4.2.3 HSS080V3LM

	HSS080V3LM										
Température	pérature de l'eau de retour 53.6°F (12°C	;)									
extérieure de l'air bulbe sec (°C)	extérieure de l'air bulbe sec (°F)	Capacité de refroidissement (KW)	Capacité de refroidissement (BTU/HR)	Consommation d'énergie (KW)	СОР						
23	73.4	38.95	132,890	7.68	5.07						
26	78.8	33.92	115,729	7.73	4.39						
29	84.2	30.44	103,856	7.92	3.84						
32	89.6	25.88	88,298	8.07	3.21						
35	95	21.45	73,184	8.15	2.63						

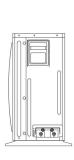
4.3 PERFORMANCES DE CHAUFFAGE

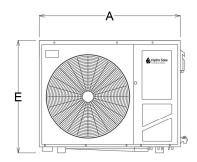
4.3.1 HSS030V3LM

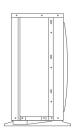
4.3.1	HS	S030V3L	M											
rieure	rieure =)		re de l'eau d'alir ature de l'eau d			Température de l'eau d'alimentation 113°F (45°C) / Température de l'eau de retour 104°F (40°C)				Température de l'eau d'alimentation 131°F (55°C) / Température de l'eau de retour 122°F (50°C)				
Température extérieure bulbe sec (°C)	Température extérieure bulbe sec (°F)	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommati on d'énergie (KW)	СОР	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommati on d'énergie (KW)	СОР	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommati on d'énergie (KW)	СОР	
-30	-22	3.23	11,021	1.94	1.66	3.15	10,748	2.15	1.47	2.99	10,202	2.41	1.24	
-25	-13	4.01	13,682	2.16	1.86	3.94	13,443	2.39	1.65	3.74	12,761	2.68	1.40	
-20	-4	4.45	15,183	1.98	2.25	4.93	16,821	2.52	1.96	4.82	16,445	2.84	1.70	
-15	5	6.36	21,700	2.43	2.62	6.34	21,631	2.86	2.22	6.03	20,574	3.43	1.76	
-7	19.4	7.68	26,203	2.33	3.30	7.57	25,828	2.64	2.87	7.29	24,873	3.07	2.37	
2	35.6	8.48	28,933	2.50	3.39	8.20	27,977	2.69	3.05	7.97	27,193	2.95	2.70	
7	44.6	11.73	40,021	3.39	3.46	11.46	39,100	3.41	3.36	10.46	35,688	3.64	2.87	
8.33	47	11.75	40,103	3.16	3.79	11.49	39,209	3.24	3.57	10.36	35,333	3.47	2.99	
12	53.6	11.82	40,328	2.52	4.69	11.58	39,509	2.79	4.15	10.07	34,357	3.02	3.33	
20	68	11.94	40,737	2.06	5.80	11.64	39,714	2.34	4.97	10.33	35,244	2.66	3.88	
23	73.4	11.83	40,362	2.02	5.86	11.68	39,850	2.27	5.15	10.48	35,756	2.60	4.03	
26	78.8	11.91	40,635	1.98	6.02	11.72	39,987	2.18	5.38	10.52	35,893	2.56	4.11	
29	84.2	11.96	40,806	1.66	7.20	11.71	39,953	2.02	5.80	10.73	36,609	2.53	4.24	
32	89.6	11.99	40,908	1.59	7.54	11.73	40,021	1.91	6.14	10.78	36,780	2.51	4.29	
35	95	12.12	41,352	1.53	7.92	11.76	40,123	1.82	6.46	10.72	36,575	2.48	4.32	

4.3.2 HSS060V3LM

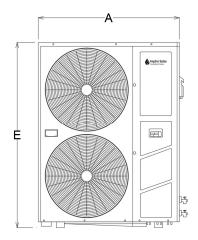
ieure	Température extérieure bulbe sec (°F)		ure de l'eau d'alim rature de l'eau de					nentation 113°F (retour 104°F (40		Température de l'eau d'alimentation 131°F (55°C) / Température de l'eau de retour 122°F (50°C)			
Température extérieure bulbe sec (°C)		Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommation d'énergie (KW)	СОР	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommation d'énergie (KW)	СОР	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommation d'énergie (KW)	СОР
-30	-22	7.44	25,384	4.21	1.77	6.84	23,337	4.63	1.48	6.36	21,700	5.12	1.24
-25	-13	9.63	32,856	5.27	1.83	9.37	31,969	5.76	1.63	8.45	28,830	6.11	1.38
-20	-4	12.18	41,556	5.37	2.27	10.83	36,950	5.88	1.84	10.71	36,541	6.44	1.66
-15	5	13.29	45,343	4.94	2.69	12.64	43,126	5.52	2.29	12.02	41,010	6.36	1.89
-7	19.4	15.35	52,372	4.82	3.18	14.98	51,109	5.27	2.84	14.23	48,550	6.06	2.35
2	35.6	16.31	55,647	4.77	3.42	15.93	54,350	5.44	2.93	15.39	52,508	6.29	2.45
7	44.6	18.75	63,972	4.73	3.96	18.88	64,415	5.54	3.41	18.39	62,744	6.34	2.90
8.33	47	19.28	65,764	4.70	4.10	19.15	65,352	5.52	3.47	18.58	63,399	6.23	2.99
12	53.6	20.72	70,693	4.61	4.49	19.91	67,929	5.48	3.63	19.11	65,200	5.92	3.23
20	68	23.14	78,950	3.94	5.87	21.67	73,934	4.45	4.87	21.07	71,887	5.42	3.89
23	73.4	24.11	82,259	3.75	6.43	22.25	75,913	4.41	5.05	21.97	74,958	5.35	4.11
26	78.8	25.46	86,865	3.73	6.83	23.15	78,984	4.28	5.41	22.76	77,653	5.26	4.33
29	84.2	26.15	89,219	3.64	7.18	24.52	83,658	4.06	6.04	23.81	81,235	5.17	4.61
32	89.6	27.01	92,153	3.61	7.48	25.61	87,377	3.96	6.47	22.79	77,755	4.88	4.67
35	95	24.36	83,112	3.25	7.50	23.35	79,666	3.54	6.60	21.56	73,559	4.36	4.94

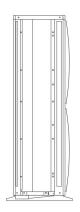

4.3.3 HSS080V3LM

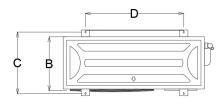

4.3.3	1100	H33000V3LIW												
pulbe	palpe	Température de l'eau d'alimentation 95°F (35°C) / Température de l'eau de retour 86°F (30°C)					Température de l'eau d'alimentation 113°F (45°C) / Température de l'eau de retour 104°F (40°C)				Température de l'eau d'alimentation 131°F (55°C) / Température de l'eau de retour 122°F (50°C)			
Température extérieure bulbe sec (°C)	Température extérieure bulbe sec (°F)	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommation d'énergie (KW)	СОР	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommation d'énergie (KW)	CO P	Capacité de chauffage (KW)	Capacité de chauffage (BTU/HR)	Consommation d'énergie (KW)	СОР	
-30	-22	10.61	36,200	5.83	1.82	9.78	33,368	6.43	1.52	8.86	30,229	7.09	1.25	
-25	-13	12.82	43,740	7.19	1.78	12.51	42,682	7.71	1.62	11.28	38,486	8.12	1.39	
-20	-4	16.23	55,374	7.59	2.14	15.18	51,792	7.85	1.93	14.14	48,243	8.59	1.65	
-15	5	17.17	58,581	7.13	2.41	16.85	57,489	7.36	2.29	16.19	55,238	8.25	1.96	
-7	19.4	20.48	69,874	6.68	3.07	19.98	68,168	7.03	2.84	18.99	64,791	8.08	2.35	
2	35.6	23.22	79,222	6.83	3.40	22.72	77,517	7.26	3.13	21.97	74,958	8.36	2.63	
7	44.6	27.08	92,392	7.64	3.54	26.91	91,812	7.84	3.43	25.98	88,639	8.45	3.07	
8.33	47	27.84	94,994	7.51	3.71	27.59	94,141	7.69	3.59	26.52	90,495	8.29	3.20	
12	53.6	29.94	102,150	7.16	4.18	29.47	100,546	7.29	4.04	28.02	95,599	7.86	3.56	
20	68	31.62	107,882	6.76	4.68	31.83	108,598	6.97	4.57	30.98	105,698	7.29	4.25	
23	73.4	32.92	112,317	6.63	4.97	31.31	106,824	6.94	4.51	30.63	104,504	7.08	4.33	
26	78.8	33.77	115,217	6.61	5.11	32.74	111,703	6.84	4.79	32.09	109,485	6.99	4.59	
29	84.2	35.02	119,482	6.56	5.34	33.77	115,217	6.63	5.09	32.76	111,771	6.78	4.83	
32	89.6	35.35	120,608	6.33	5.58	33.83	115,422	6.62	5.11	32.83	112,010	6.69	4.91	
35	95	35.13	119,857	6.25	5.62	33.96	115,865	6.51	5.22	32.96	112,453	6.62	4.98	



5 DIMENSIONS & POIDS


5.1 DIMENSIONS DE LA THERMOPOMPE

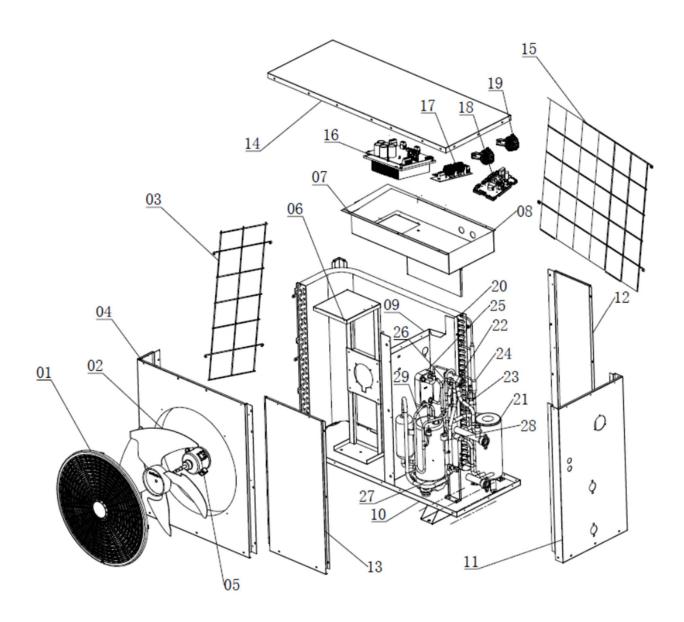




Dimension	HSS030V3LM - mm (in)	HSS060V3LM - mm (in)	HSS080V3LM - mm (in)
Α	1030 (40.55)	1030 (40.55)	1030 (40.55)
В	392 (15.43)	392 (15.43)	392 (15.43)
С	448 (17.63)	448 (17.63)	448 (17.63)
D	718 (28.26)	718 (28.26)	718 (28.26)
E	820 (32.28)	1350 (53.15)	1350 (53.15)

5.2 DIMENSIONS ET POIDS D'EXPÉDITION

No. Modèle	Dimensions	Poids
HSS030V3LM	44.5"x19"x36"	200 Lb
HSS060V3LM	44.5"x19"x58"	300 Lb
HSS080V3LM	44.5"x19"x58"	350 Lb

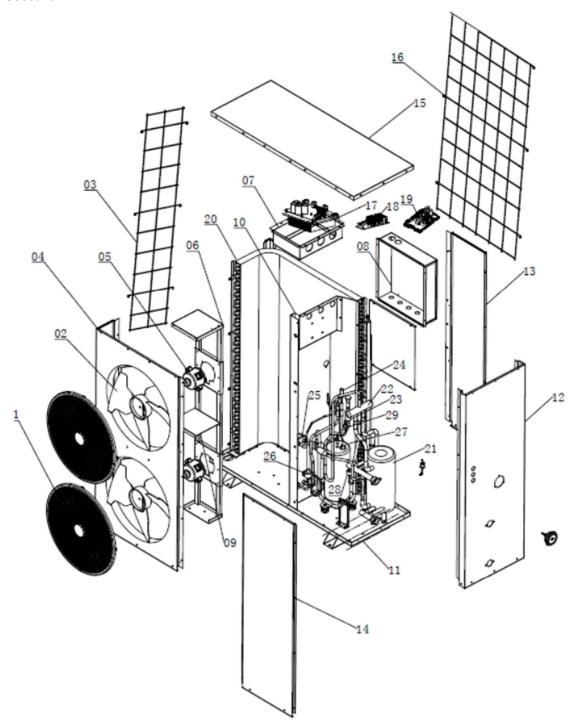

6 ITEMS LIVRÉS AVEC LA THERMOPOMPE

Les items suivants sont livrés avec la pompe à chaleur:

- Pompe à chaleur (incluant tous les senseurs, contrôleur CAREL, etc.)
- Adapteur WIFI (avec application WIFI gratuite à télécharger)

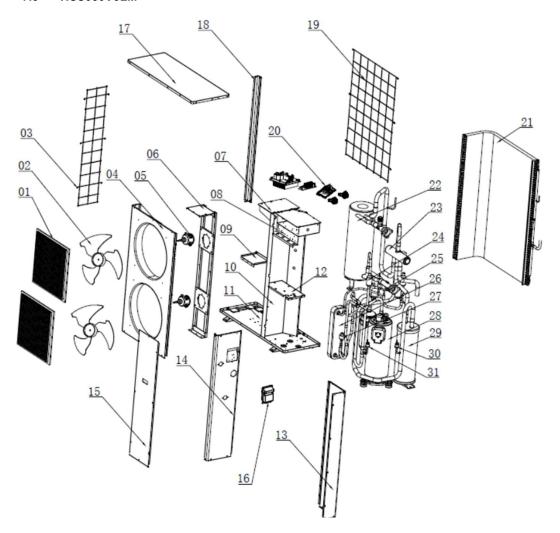
7 **V**UE ÉCLATÉE

7.1 HSS030V3LM


No. ID	Description
01	Panneau avant
02	Ventilateur
03	Grille de protection gauche
04	Assemblage du panneau de sortie d'air avant
05	Moteur DC
06	Support du moteur
07	Boîte électrique du dispositif de commande
08	Boîte électrique du panneau de contrôle principal
09	Assemblage du diaphragme central
10	Assemblage du châssis
11	Panneau latéral droit
12	Panneau latéral arrière
13	Panneau latéral avant
14	Couvercle du haut
15	Grille de protection arrière

No. ID	Description
16	Carte du DC Inverter
17	Plaque de filtre du DC Inverter
18	Carte de commande électrique principale Carel
19	Inducteur
20	Assemblage du condenseur à air
21	Échangeur thermique à calandre réfrigérant-eau
22	Robinet à quatre voies
23	Filtre
24	Robinet d'expansion Carel (EEV)
25	Économiseur
26	Robinet d'expansion auxiliaire
27	Compresseur Panasonic
28	Contacteur pression basse
29	Contacteur pression haute

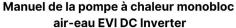
7.2 HSS060V3LM

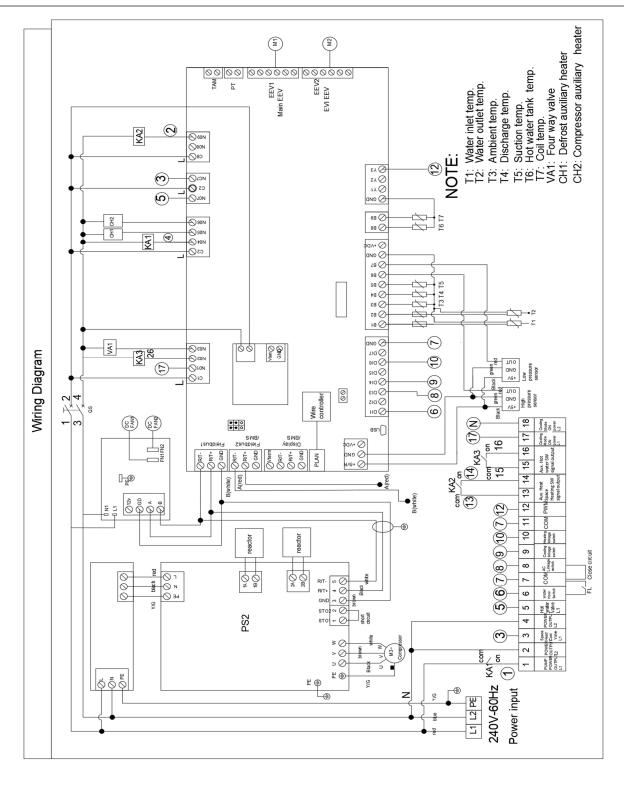


No. ID	Description
01	Panneau avant
02	Ventilateur
03	Grille de protection gauche
04	Assemblage du panneau de sortie d'air avant
05	Moteur DC
06	Support du moteur
07	Boîte électrique du dispositif de commande
08	Boîte électrique du panneau de contrôle principal
09	Assemblage du diaphragme central
10	Assemblage du châssis
11	Panneau latéral droit
12	Panneau latéral arrière
13	Panneau latéral avant
14	Couvercle du haut
15	Grille de protection arrière

No. ID	Description
16	Carte du DC Inverter
17	Plaque de filtre du DC Inverter
18	Carte de commande électrique principale Carel
19	Inducteur
20	Assemblage du condenseur à air
21	Échangeur thermique à calandre réfrigérant-eau
22	Robinet à quatre voies
23	Filtre
24	Robinet d'expansion Carel (EEV)
25	Économiseur
26	Robinet d'expansion auxiliaire
27	Compresseur Panasonic
28	Contacteur pression basse
29	Contacteur pression haute

7.3 HSS080V3LM



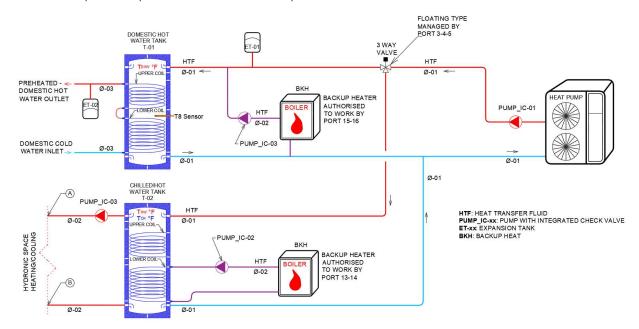

Number ID	Description
01	Panneau avant
02	Ventilateur
03	Grille de protection gauche
04	Assemblage du panneau de sortie d'air avant
05	Moteur DC
06	Support du moteur
07	Boîte électrique du dispositif de commande
08	Boîte électrique du panneau de contrôle principal
09	Plaque de fixation centrale
10	Assemblage du diaphragme central
11	Assemblage du châssis
12	Plaque de support inférieure centrale
13	Panneau latéral arrière
14	Panneau latéral droit avant
15	Panneau d'accès avant
16	Poignée

Number ID	Description
17	Couvercle du haut
18	Colonne arrière
19	Grille de protection arrière
20	Carte de commande électrique principale Carel
21	Assemblage du condenseur à air
22	Échangeur thermique à calandre réfrigérant-eau
23	Robinet à quatre voies
24	Filtre
25	Robinet d'expansion Carel (EEV)
26	Économiseur
27	Robinet d'expansion auxiliaire
28	Compresseur Panasonic
29	Séparateur gaz-liquide
30	Contacteur pression basse
31	Contacteur pression haute

8 CARTE DE CONTRÔLE ET SCHÉMAS DE RACCORDEMENT

8.1 DESCRIPTION DES BORNES

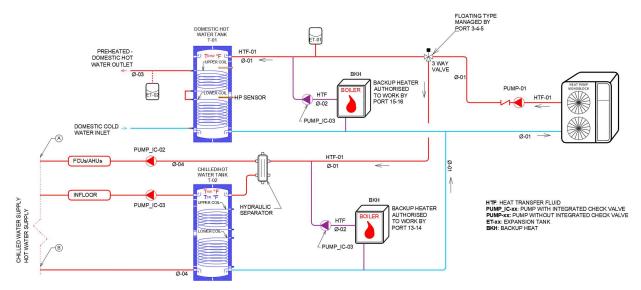
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PUMP POWER OUTPU' (L1)	POWER OUTPUT (L2)	floor heat valve (L1)	(L2)	Hot water valve (L1)		сом	A.C turn on/ off sw	Cool link age sw	Heat link age sw		PWM signal	Aux. heate Spac Heat	er e	Aux. heate DHW	er	Cooli mode signa oupu 220VAC	e il t


Terminal	Function	Туре
1-2: PUMP POWER OUTPUT	Power Supply for Heat Pump Circulation Pump (Pump not included)	220-240V/1Ph/60Hz
3-4-5: THREE WAY VALVE POWER OUTPUT	Floating Type 3 Way Valve, Switches between DHW tank and Space Heating/Cooling Tank	220-240V/1Ph/60Hz
6: WATER FLOW SWITCH	Water flow switch (in the indoor unit) connection port (6-7). Must be wired to outdoor	Dry Contact (can be configured NO or NC from Carel Controller)
7: COM	Common	
8: ON/OFF SWITCH	Switches Heat Pump ON or OFF. Factory Jumper between 7 (COM) and 8	Dry Contact (can be configured NO or NC from Carel Controller)
9: COOLING LINKAGE SWITCH	Changes Heat Pump Operating Mode to Cooling. Heat Pump must be turned off before changing operating mode.	Dry Contact (can be configured NO or NC from Carel Controller)
10: HEATING LINKAGE SWITCH	Changes Heat Pump Operating Mode to Cooling. Heat Pump must be turned off before changing operating mode.	Dry Contact (can be configured NO or NC from Carel Controller)
11: COM	Common	
12: CIRCULATION PUMP SPEED CONTROL	Modulates the speed of circulation Pump (optional)	PWM (Pulse Width Modulation)
13-14: AUXILIARY HEATER CONTROL SWITCH FOR SPACE HEATING	Enables the operation of the backup heater dedicated for space heating	Dry Contact (NO)
15-16: AUXILIARY HEATER CONTROL SWITCH FOR DOMESTIC HOT WATER HEATING (DHW)	Enables the operation of the backup heater dedicated for DHW heating	Dry Contact (NO)
17-18: COOLING MODE VALVE	ON/OFF Type 3 Way Valve, Switches between chilled and hot water tank (2 Tanks configuration) or by-passes tank when HP is in cooling mode (1 Tank configuration)	220-240V/1Ph/60Hz

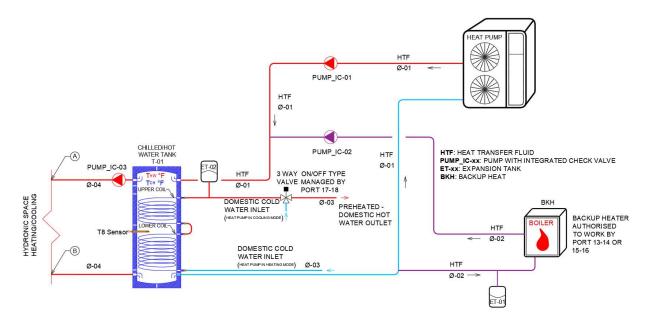
Power and control wiring shall be done by qualified personnel. Please check your Federal, Provincial and any local regulation requirements related to the purchase/installation and operation of this equipment. It is the buyer's responsibility to comply with such regulatory requirements.

9 SCHÉMAS DE TUYAUTERIE

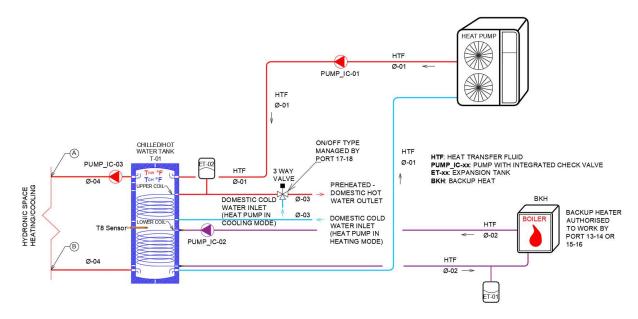
9.1 DEUX RÉSERVOIRS – TROIS FONCTIONS (ANNÉE LONGUE)


Dans cette configuration, un réservoir est dédié au préchauffage de l'eau chaude domestique, tandis qu'un autre réservoir est dédié soit au chauffage ou à la climatisation. Cela permet à chaque réservoir d'être maintenu à une température différente.

Un séparateur hydraulique est utilisé lorsque la climatisation se fait à l'aide de ventilo-convecteurs (FCU) ou d'unités de traitement de l'air (AHU) qui sont équipés de serpentins hydroniques conçus pour déshumidifier avec une température d'alimentation réfrigérée de 7°C (44,6°F). Le séparateur hydraulique permet de fournir directement de l'eau à 7°C (44,6°F) aux FCU et/ou aux AHU évitant ainsi la stratification thermique dans le réservoir ce qui pourrait engendrer une augmentation de la température d'alimentation réfrigérée au-dessus de 7°C (44,6°F).

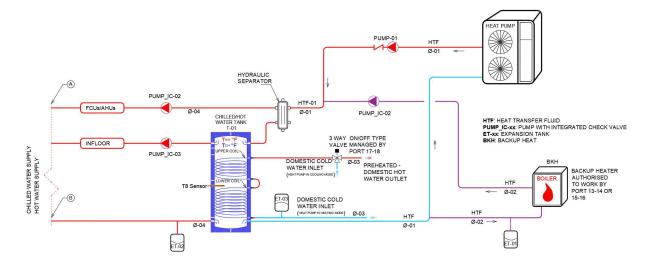


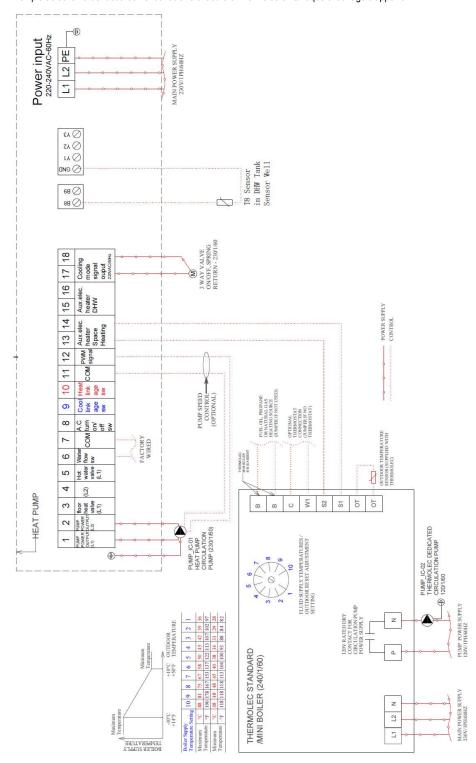
Exemple de schéma de raccordement avec une chaudière Thermolec en tant que chauffage d'appoint.



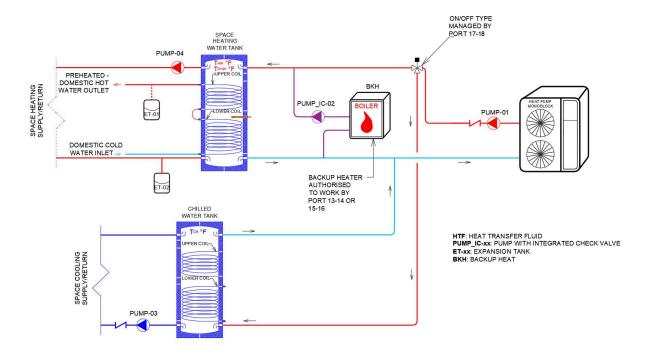
9.2 Un réservoir – trois fonctions (année longue – sauf l'été)

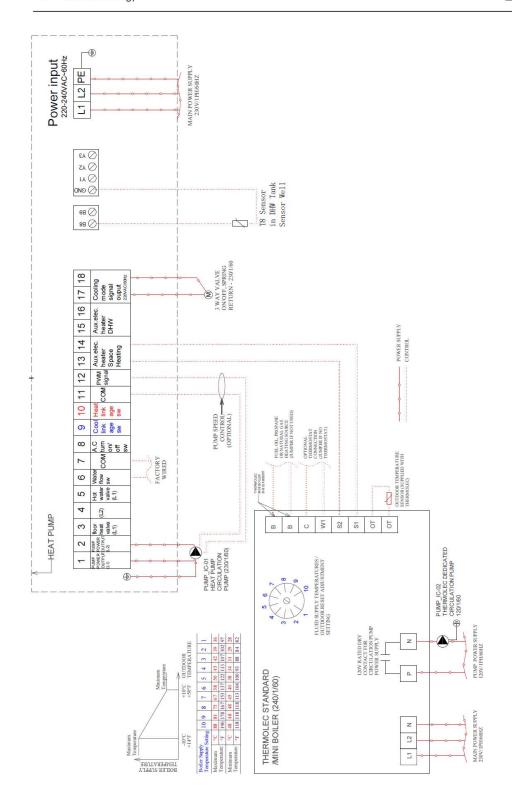
Dans cette configuration, un seul réservoir est utilisé, soit en mode refroidissement, soit en mode chauffage. Lorsque la thermopompe est en mode chauffage, un serpentin indirect peut être utilisé pour préchauffer l'eau chaude domestique. Afin de maximiser l'efficacité énergétique du système et d'éviter que l'eau chaude domestique ne se refroidisse lorsque la pompe à chaleur est en mode refroidissement, un robinet à trois voies doit être installée pour contourner le serpentin indirect en mode refroidissement.


Ou un chauffage d'appoint peut être connecté au serpentin indirect



Un séparateur hydraulique est utilisé lorsque la climatisation se fait à l'aide de ventilo-convecteurs (FCU) ou d'unités de traitement de l'air (AHU) qui sont équipés de serpentins hydroniques conçus pour déshumidifier avec une température d'alimentation réfrigérée de 7°C (44,6°F). Le séparateur hydraulique permet de fournir directement de l'eau à 7°C (44,6°F) aux FCU et/ou aux AHU évitant ainsi la stratification thermique dans le réservoir ce qui pourrait engendrer une augmentation de la température d'alimentation réfrigérée au-dessus de 7°C (44,6°F).


Exemple de schéma de raccordement avec une chaudière Thermolec en tant que chauffage d'appoint.



9.3 DEUX RÉSERVOIRS - CHAUFFAGE ET REFROIDISSEMENT OU PRÉCHAUFFAGE D'EAU CHAUDE DOMESTIQUE (DHW)

Dans cette configuration, la pompe à chaleur est connectée à deux réservoirs séparés: un dédié à l'eau chaude pour le chauffage de l'espace et l'autre dédié à l'eau refroidie pour le refroidissement de l'espace. Dans cette mode de fonctionnement, la priorité pour les réservoirs T-01 et T-02 peut être configurée à travers l'interface de contrôle de la pompe à chaleur.

Exemple de schéma de raccordement avec une chaudière Thermolec en tant que chauffage d'appoint.

10 SÉQUENCE DE CONTRÔLE POUR LE DÉGIVRAGE

Lorsque le condenseur à air est en mode chauffage, le serpentin extérieur agit comme un évaporateur (il extrait la chaleur de l'extérieur vers l'intérieur). Pour les températures extérieures en dessous du point de congélation, l'humidité présente dans l'air ambiant peut geler sur le serpentin extérieur, ce qui réduit l'efficacité thermique de la thermopompe. Pour faire fondre la glace accumulée sur le serpentin, la pompe à chaleur se met en mode refroidissement (Mode de Dégivrage). La chaleur est extraite de l'intérieur (généralement à partir du réservoir de stockage thermique) et utilisée pour le processus de dégivrage.

10.1 SÉQUENCE DE CONTRÔLE POUR LE DÉGIVRAGE:

Le mode de dégivrage est activé lorsque toutes les conditions suivantes sont remplies:

- (1) Temps écoulé entre deux cycles de dégivrage ≥ intervalle de dégivrage, unité : minutes, valeur par défaut : 45 min ;
- (2) Température ambiante ≤ température ambiante de dégivrage, pendant 2 secondes, valeur par défaut : 20°C (cette condition est ignorée en cas d'erreur avec le capteur de température ambiante);
- (3) Température ambiante température d'évaporation ≥ différence de température de dégivrage, pendant 2 minutes, valeur par défaut : 5°C (cette condition est ignorée en cas d'erreur avec le capteur de température ambiante);
- (4) Température d'évaporation ≤ point de consigne de dégivrage, pendant 2 secondes, valeur par défaut : -1°C;

Le mode de dégivrage est désactivé lorsque l'une des conditions suivantes est remplie :

- (1) Temps de dégivrage ≥ temps de dégivrage maximal, valeur par défaut : 8 minutes ;
- (2) Température de condensation/température du serpentin ≥ point de réglage de sortie du dégivrage, valeur par défaut : 15°C;
- (3) Pas d'alimentation électrique

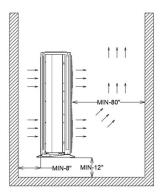
11 INSTALLATION

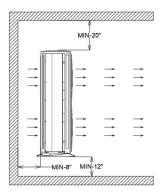
11.1 OBJECTIFS:

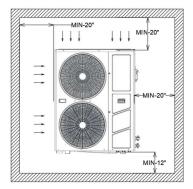
Ce paragraphe d'installation vise à aider les individus dans leurs domaines respectifs (électriciens, plombiers, entrepreneurs HVAC, etc.) à comprendre l'équipement ainsi qu'à leur porter assistance dans l'installation.

Il s'agit d'un guide qui vise à établir les règles de bonnes pratiques et qui peut inclure des informations qui ne s'appliquent pas à un cas spécifique d'utilisation de l'équipement. Ces paramètres sont sujets à modifications sans préavis et la personne responsable de l'installation devrait contacter Hydro Solar inc. ou tout entrepreneur certifié pour le service et l'installation. Dans le cas où l'équipement aurait été installé sans suivre une conception certifiée, ou si l'équipement est utilisé au-delà de ses limites spécifiées; une défaillance de l'équipement et des dommages sont possibles.

11.2 APERCU:


Cette section fournira un aperçu des éléments requis par l'installateur pour l'installation :


- L'équipement et tous les équipements auxiliaires sont soigneusement inspectés afin de détecter les dommages et assurer un bon fonctionnement avant leur mise en service.
- Utilisation d'outils, d'attaches, de supports et toutes autres composantes appropriées pour l'installation.
- Avoir un plan de projet qui garantit que tous les conduits, les tuyaux et les connexions sont dimensionnés correctement et que toutes les distances maximales et minimales sont respectées. Il est essentiel de connaître les limites de l'équipements avant de les installer.
- · Toutes les composantes sont fixés aux structures, aux bâtiments ou aux systèmes de montage de manière sécuritaire.
- · Toutes les lignes hydrauliques, électriques et frigorifiques sont correctement apposées et ne présentent aucune fuite.
- Toutes les composantes sont protégées par des dispositifs de protection contre les surintensités, par des soupapes de surpression et par toutes autres mesures de sécurité.
- Une fois que l'équipement est en fonctionnement, la fiche de garantie est remplie et envoyée à Aqua Solanor Inc. (propriétaire de Hydro Solar Innovative Energy).



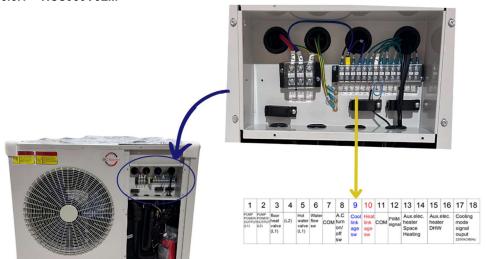
11.3 EXIGENCES D'INSTALLATION ET DE DÉGAGEMENT :

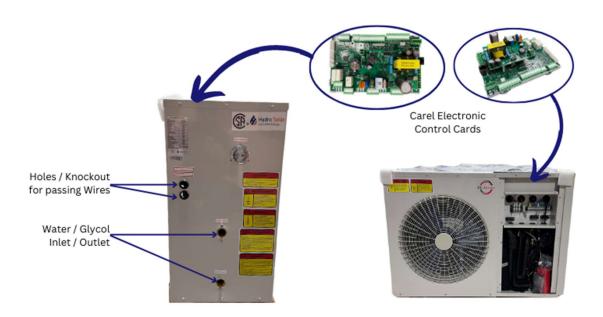
11.3.1 Exigences minimales de dégagement

Les exigences d'installation et de dégagement sont les distances minimales à respecter pour permettre à la thermopompe de fonctionner correctement. Le non-respect de ces exigences entraînera une perte de performance et une défaillance de l'équipement. D'autres limitations comprennent, mais n'y sont pas limiter:

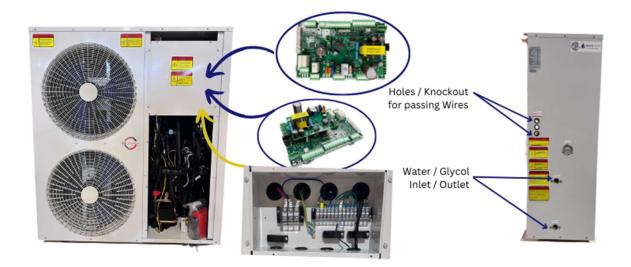
- La thermopompe ne doit pas être installée dans des endroits où du gaz combustible peut fuir.
- La thermopompe ne doit pas être installée dans des endroits où de l'huile ou des matériaux corrosifs sont présents.
- La thermopompe ne doit pas être installée dans un endroit où des objets tels que de la neige ou de la glace provenant des toits pourraient tomber et endommager l'équipement.
- La thermopompe doit être installée conformément à toutes les exigences et réglementations locales, provinciales, et fédérales concernant les bonnes méthodes de fixation de l'équipement, des lignes de réfrigérant, des tuyauteries et des connexions électriques aux structures de fixation.
- La thermopompe doit être installée dans un espace ouvert et ventilé naturellement.
- La thermopompe doit être installée sur une base en béton ou un support en acier, et sur des tampons anti-vibrations.
- Un filtre doit être installé à l'entrée de la thermopompe lorsque la qualité de l'eau n'est pas adéquate.
- Des fixations adéquates doivent être utilisées pour installer l'unité sur la structure, le support, ou le socle. Le non-respect de cette recommandation peut entraîner un basculement accidentel de la machine et endommager l'équipement.
- Lorsque plusieurs thermopompes sont installées, ne jamais les installées en série. Seule l'installation en parallèle est permise.

11.3.2 Bonnes pratiques

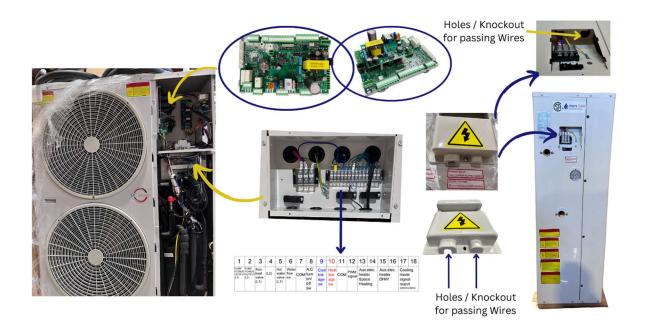

- · Installez un évent d'air automatique au point le plus élevé de chaque réseau de circulation d'eau pour évacuer l'air du système.
- Vérifiez annuellement toutes les fixations, les supports, les attaches et tout autre équipement pour la corrosion, les dommages et les couples de serrage
- Enlevez l'excès de neige et de glace autour de la thermopompe pour éviter d'endommager l'équipement.


11.3.3 Prérequis d'installation:

Les thermopompes sont expédiées dans des caisses fermées. Veuillez ouvrir les caisses ainsi que le panneau avant pour avoir accès aux bornes de câblage (alimentation électrique et contrôle):



11.3.3.1 HSS030V3LM



11.3.3.2 HSS060V3LM

11.3.3.3 HSS080V3LM

12 OPÉRATION (FONCTIONNEMENT)

12.1 LISTE DE CONTRÔLE AVANT LE DÉMARRAGE

Introduction:

L'ingénierie et le contrôle de qualité sont intégrés dans chaque unité de pompe à chaleur. Un bon fonctionnement dépend d'une application correcte et d'une installation appropriée. Cette pompe à chaleur air-eau fournit de l'eau chaude et de l'eau refroidie, ainsi qu'une capacité de chauffage d'eau domestique en option.

Avis. Précautions. Avertissements et Dangers :

- « AVIS » Notification d'informations sur l'installation, le fonctionnement ou l'entretien, qui sont importantes, mais qui ne sont PAS liées à des dangers. « PRÉCAUTION » Indique une situation potentiellement dangereuse ou une pratique non sécuritaire qui, si elle n'est pas évitée, POURRAIT entraîner des blessures mineures ou modérées ou des dommages au produit ou à la
- « AVERTISSEMENT » Indique une situation potentiellement dangereuse qui, si elle n'est pas évitée, POURRAIT entraîner la mort ou des blessures
- « DANGER » Indique une situation dangereuse immédiate qui, si elle n'est pas évitée, ENTRAÎNERA la mort ou des blessures graves.

Inspection:

À la réception de tout équipement, comparez attentivement le cargo par rapport au bon de livraison et au bulletin de transport de la compagnie de fret. Vérifiez que toutes les unités et tous les colis ont été reçus. Inspectez l'emballage de chaque colis et de chaque unité pour détecter des dommages. Assurez-vous que le transporteur fait note de tous les dommages ou manques sur tous les documents de transport. Les dommages dissimulés doivent être signalés à la compagnie de fret dans un délai de 5 jours. Si la réclamation n'est pas déposée dans les 5 jours, la compagnie de fret peut refuser toutes les demandes.

Remarque: Informez le service expédition d'Aqua Solanor Inc. de tous les dommages dans un délai de cinq (5) jours. C'est la responsabilité de l'acheteur d'informer la compagnie de fret toutes les réclamations nécessaires.

Déballage:

Les unités de la série HSS d'Agua Solanor Inc. sont montées sur des palettes en bois pour faciliter la manipulation lors de l'expédition et de l'installation. Les unités sont protégées pendant le transport par des poteaux d'angle en carton durables, ainsi que par des panneaux supérieurs et de bobines d'air. Un film rétractable est appliqué, couvrant l'ensemble de l'unité et la reliant à

À la réception de l'unité, retirez avec precaution le film rétractable. À l'aide d'un cutter, coupez le film rétractable sur le carton supérieur et les poteaux d'angle. Faites attention de ne pas endommager la surface finie de l'unité. Conservez tout carton ou autre matériau d'emballage pour un stockage et un transport sûrs sur le site de travail avant l'installation. Retirez le panneau de service avant pour accéder aux documents techniques: manuels, bulletins ou instructions, ainsi gu'aux articles accessoires: affichage de contrôle, adaptateur WIFI et autres accessoires.

AQUA SOLANOR INC. EXIGE QU'UN FILTRE SOIT INSTALLÉ À L'ENTRÉE DE L'ÉCHANGEUR DE CHALEUR D'EAU LORSQUE LE FLUIDE EN ENTRÉE CONTIENT DES MATÉRIAUX QUI PEUVENT RÉDUIRE L'ÉCHANGE THERMIQUE ENTRE LE RÉFRIGÉRANT ET LE FLUIDE DE TRANSFERT DE CHALEUR.

PRÉCAUTION A CHALEUR AIR-EAU PENDANT LA PHASE DE CONSTRUCTION DU BÂTIMENT.

AVERTISSEMENT A

LE NON-RESPECT DE CETTE PRÉCAUTION PEUT ENTRAÎNER DES BLESSURES PERSONNELLES. FAITES PREUVE DE PRUDENCE ET PORTEZ DES VÊTEMENTS DE PROTECTION APPROPRIÉS, DES LUNETTES DE SÉCURITÉ ET DES GANTS LORS DU SERVICE DE L'UNITÉ OU DE LA MANIPULATION DES PIÈCES.

Protection de l'unité:

Protégez les unités des dommages et de la contamination dus au plâtrage (pulvérisation), à la peinture et à tous les autres matériaux étrangers pouvant être utilisés sur le site de travail. Gardez toutes les unités couvertes sur le site avec l'emballage d'origine ou un revêtement de protection équivalent. Boucher ou reboucher les connexions de l'unité et toutes les tuyauteries jusqu'à ce que l'unité soit installée. Des précautions doivent être prises pour éviter les dommages physiques et la contamination qui pourraient empêcher un démarrage correct et entraîner des réparations coûteuses de l'équipement.

Stockage:

Toutes les unités de pompe à chaleur doivent être stockées dans leur emballage d'origine, dans un endroit propre et sec. Les unités doivent toujours être stockées en position verticale. Les unités ne doivent pas être empilées, sauf si l'emballage l'indique.

Retrait et élimination:

Toutes les unités air-eau retirées du service doivent avoir tous les composants, huiles, antigels et réfrigérants correctement éliminés conformément aux codes de recyclage environnemental locaux et nationaux, aux réglementations, aux règlements internes, aux normes et aux règles.

Vérifications avant installation:

Avant d'installer complètement l'équipement air-eau, il est recommandé de faire ce qui suit:

- a. Inspectez complètement l'unité après déballage.
- b. Comparez les données électriques sur la plaque signalétique de l'unité avec le bon de livraison et les informations de commande pour vérifier que la bonne unité a été expédiée.
- c. Inspectez toutes les connexions électriques et les fils. Les connexions doivent être propres et serrées aux bornes, et les fils ne doivent pas toucher bords tranchants ou des tuyaux en cuivre.
- d. Vérifiez que tous les tuyaux de réfrigérant n'ont pas de bosses et de plis. Les tuyaux de réfrigérant ne doivent pas toucher d'autres composants de
- e. Avant le démarrage de l'unité, lisez tous les manuels et familiarisez-vous avec les composants et le fonctionnement de l'unité. Vérifiez soigneusement l'unité avant de l'utiliser.
- Trouvez le Formulaire de Démarrage de l'Unité dans ce manuel et ayezle à disposition pendant l'installation de l'unité.

Installation des unités intérieures:

Toutes les unités intérieures doivent être installées dans un endroit où la température ambiante restera au-dessus de 45 °F (7 °C) et doivent être placées de manière à ce que les tuyaux et les conduits ou d'autres installations permanentes n'aient pas besoin d'être retirés pour le service de l'unité. L'installation doit laisser suffisamment d'espace pour accéder à tous les composants de la pompe à chaleur.

\triangle PRÉCAUTION \triangle

L'UNITÉ EXTÉRIEURE EST CONÇUE POUR UNE INSTALLATION EN EXTÉRIEUR. NE PAS INSTALLER NI STOCKER L'UNITÉ DANS UN ENVIRONNEMENT CORROSIF OU DANS UN ENDROIT OÙ LE REJET OU L'EXTRACTION DE CHALEUR SONT OBSTRUÉS. UNE INSTALLATION INCORRECTE ANNULE TOUTES LES GARANTIES.

\triangle avertissement \triangle

AVANT DE PERÇER OU DE VISSER QUOI QUE CE SOIT DANS LE CABINET, ASSUREZ-VOUS QUE LA VIS NE TOUCHERA AUCUNE PIÈCE INTERNE OU LIGNE DE RÉFRIGÉRANT.

Positionnement de l'unité:

Lors de l'installation d'une pompe à chaleur air-eau, il y a des éléments que l'installateur doit prendre en compte avant de placer l'équipement.

- Accès pour entretien: Y a-t-il suffisamment d'espace pour l'accès pour entretien? Une règle générale ssest d'au moins 2 pieds à l'avant et 2 pieds au moins un côté.
- Isolation des vibrations: Tout équipement de pompe à chaleur doit être placé sur un matelas en caoutchouc haute densité, un matelas en plastique formé ou un matelas fermé de polystyrène de haute densité. Cela aide éliminer le bruit des vibrations qui pourrait être transmis à travers le sol.
- Rangement des unités: Si les unités sont placées sur des étagères, l'unité doit être placée sur une fondation solide couvrant toute la base de l'unité. De plus, ajoutez un matelas en mousse entre l'unité et l'étagère
- L'installateur doit vérifier que tous les câbles, tuyauteries et accessoires sont corrects et présents sur le site de travail.

Électrique

Tous le câblages, les lignes et la tension basse doivent être conformes aux recommandations du fabricant, au Code national de l'électricité et à tous les codes et règlements locaux.

Thermostat ou contrôleurs externes:

Les thermostats doivent être installés à environ 54 pouces du sol sur un mur intérieur dans le schéma de retour d'air et où ils ne seront pas exposés directement au soleil.

Modules de pompe de boucle / ou pompes individuelles:

Doivent être câblés a la boîte de contrôle électrique de la pompe à chaleur. Lorsque l'ampérage des pompes dépasse 5 ampères, un bloc de connexion de module de pompe (connecté au contacteur principal) et un disjoncteur correctement dimensionné doivent être fournis (par l'installateur) pour connecter le câblage du module de pompe.

Conception des tuyauteries et pompes hydroniques:

Le type et le diamètre des tuyaux de fluide hydronique doivent être correspondant au conditions de fonctionnement de la pompe à chaleur. Les pompes et les diamètres de tuyaux doivent être correctement dimensionnés pour les débits minimaux et maximaux de fonctionnement des pompes à chaleur. Le dimensionnement approprié est de la responsabilité

de l'installateur ou de son client, ou de toute personne engager pour la conception (comme des ingénieurs, des technologues, etc.).

La conception incorrecte des tuyaux hydroniques connectés à cette pompe à chaleur de manière qui pourra endommager la pompe à chaleur annulera la garantie.

Accessoires de tuyauterie hydronique

Des raccords et accessoires appropriés doivent être installés sur le réseau hydronique de boucle fermée. Des accessoires tels que des purges automatiques, des séparateurs d'air, des réservoirs de dilatation, des amortisseurs de coups de bélier et tout autre accessoire requis sont nécessaire pour le fonctionnement optimal de la pompe à chaleur.

Composants:

Contacteur principal: Énergise le compresseur et les pompes hydroniques. Carte de contrôle: La carte logique fait fonctionner le compresseur et protège l'unité en se verrouillant lorsque les interrupteurs de sécurité sont activés. Elle fournit également des indicateurs de défaut.

Contacts secs: Fournissent une connexion à un contrôleur exogène (ou thermostat) ou à d'autres accessoires du circuit de basse tension.

Variateur de fréquences: Convertissent la tension AC entrante en tension DC et modulant la vitesse du compresseur (il y a 2 cartes inverseurs plus petites pour le ventilateur et la pompe de circulation du circuit intérieur).

Robinet à quatre voies: Contrôle le cycle du système de réfrigérant (chauffage ou refroidissement). Énergisée en mode refroidissement.

Interrupteur de haute pression: Protège le système de réfrigérant contre une pression élevée en verrouillant l'unité si la pression dépasse le réglage.

Interrupteur de basse pression: Protège le système de réfrigérant contre une pression de succion basse si la pression de succion tombe en dessous de la configuration.

Interrupteur de débit (Dispositif de Protection Contre le Gel): Protège l'échangeur de chaleur d'eau contre le gel en arrêtant le compresseur si le débit d'eau diminue.

Compresseur: Pompe le réfrigérant à travers les échangeurs de chaleur et pressurise le réfrigérant, ce qui augmente la température du réfrigérant.

Instructions aux consommateurs:

Les revendeurs doivent instruire le consommateur sur le bon fonctionnement, l'entretien, le remplacement des filtres, ainsi que sur le thermostat et les voyants indicateurs. Ils doivent également fournir au consommateur le Manuel de l'Utilisateur du fabricant pour l'équipement installé.

Politique D-I-Y d'Aqua Solanor Inc. (ASI):

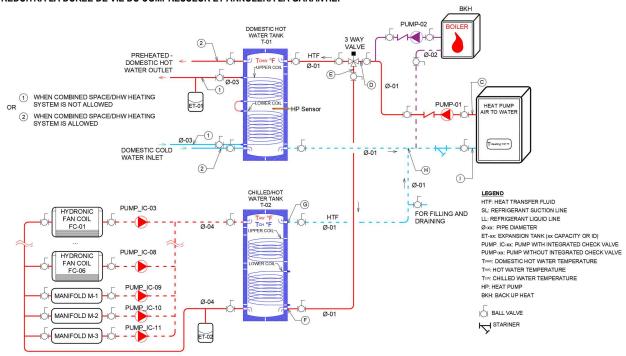
Les pompes à chaleur air-eau et les installations de systèmes d'ASI peuvent inclure des connexions électriques, de réfrigérant et/ou d'eau. Les codes et règlements fédéraux, étatiques et locaux s'appliquent à divers aspects de l'installation. Un équipement mal installé peut entraîner des pannes d'équipement et des problèmes de santé/sécurité. Pour ces raisons, seules des techniciens qualifiés devraient installer un système de pompe à chaleur air-eau construit par Aqua Solanor Inc.

En raison de l'importance d'une installation correcte, Aqua Solanor Inc. vend d'équipement directement aux propriétaires, cependant une garantie n'est accordée que lorsque le propriétaire soumet une preuve que l'installation a été effectuée par un technicien certifié professionnel.

La certification du technicien doit être conforme aux lois commerciales applicables au niveau local, étatique ou provincial.

Les propriétaires sont censés enregistrer la garantie de la pompe à chaleur installée. L'enregistrement nécessite la soumission du certificat de licence de l'installateur ainsi qu'un rapport de mise en service.

Le formulaire d'enregistrement est uniquement disponible en ligne sur le site web www.hydrosolar.ca .

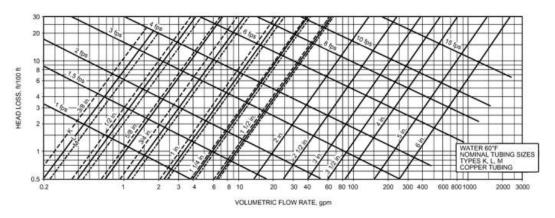


12.2 EXIGENCES DE DÉBIT:

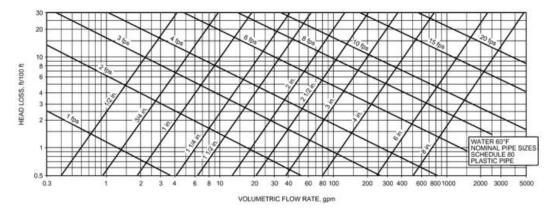
Pour un fonctionnement sain de la pompe à chaleur, la pompe de circulation doit être correctement dimensionnée en fonction des pertes de charge disponibles entre l'échangeur de chaleur réfrigérant-eau de la pompe à chaleur et le réservoir. La pompe de circulation doit être dimensionnée pour le débit de fonctionnement maximal de la pompe à chaleur.

TOUTES LES BOUCLES HYDRONIQUES FERMÉES DOIVENT CONTENIR UNIQUEMENT UN FLUIDE DE TRANSFERT DE CHALEUR ET DOIVENT ÊTRE PURGÉS D'AIR OU DE TOUT AUTRE MATÉRIAU POUVANT OBSTRUER LE DÉBIT DU FLUIDE D'ALLER ET RETOUR. DES PURGES AUTOMATIQUES OU DES SÉPARATEURS D'AIR DOIVENT ÊTRE INSTALLÉS AUX POINTS LES PLUS ÉLEVÉS DU CIRCUIT HYDRAULIQUE. NE PAS LE FAIRE RÉDUITRA LA DURÉE DE VIE DU COMPRESSEUR ET ANNULERA LA GARANTIE.

Les pertes de charge de la pompe de circulation doivent prendre en compte le chemin du fluide à la sortie de la pompe à chaleur (C), jusqu'à la vanne trois voies (D et E), au réservoir (F) et de retour à la pompe à chaleur (G, H et I).


La chute de pression sur le chemin ci-dessus est divisée en quatre catégories : les sections de tuyau droit, les raccords (coudes, tés, etc.), les pertes de charge de l'échangeur de chaleur interne de la pompe à chaleur et les accessoires (tels que les vannes à bille, les filtres, les vannes de retenue, les vannes trois voies, etc.).

12.2.1 Sections de tuyaux droits:


Nous recommandons d'utiliser des tuyaux en cuivre, en acier inoxydable ou en plastique pour les boucles pour des applications souterraines et intérieures. Les tuyaux en acier noir peuvent être utilisés lorsque le fluide de transfert de chaleur contient suffisamment d'inhibiteurs de corrosion pour prévenir la corrosion. Lors de l'utilisation de tuyaux en acier noir, installez des connecteurs diélectriques entre les tuyaux et la pompe à chaleur, car les pièces internes de la pompe à chaleur contiennent du cuivre.

Courbe de Perte de Charge pour Tuyaux en Cuivre Type K, L et M.

Perte de charge linéaire recommandée: 4 pieds / 100 pieds linéaires de sections droites.

Vitesse de fluide recommandée à l'intérieur des tuyaux: 4 pieds/seconde (ne jamais dépasser 6 pieds/seconde).

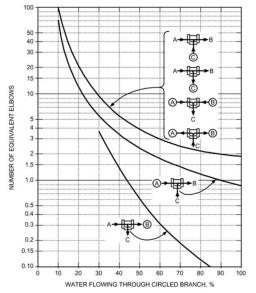
Courbe de Perte de Charge pour Tuyaux en Plastique de Type Schedule 80 (peut être PVC, HDPE, PEX, etc.)

Perte de charge linéaire recommandée: 4 pieds / 100 pieds linéaires de sections droites.

Vitesse de fluide recommandée à l'intérieur des tuyaux: 4 pieds/seconde (ne jamais dépasser 6 pieds/seconde).

12.2.2 Chute de pression des raccords et accessoires :

La perte de charge à travers tout type de raccords est un facteur K multiplié par la pression de vitesse du fluide. La pression de vitesse est $0.5 \times \rho \times V^2$ (ρ est la densité du fluide en Kg/m^3 ou Lb/ft^3 et V est la vitesse du fluide en m/s ou ft/s).


					1	Table 3 K Factors	: Threaded Steel Pipe	Fittings					
Nominal Pipe Dia., in.	90° Standard Elbow	90° Long- Radius Elbow	45° Elbow	Return Bend	Tee- Line	Tee-Branch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valve	Bell Mouth Inlet	Square Inlet	Projected Inlet
3/8	2.5	-	0.38	2.5	0.90	2.7	20	0.40	-	8.0	0.05	0.5	1.0
1/2	2.1	_	0.37	2.1	0.90	2.4	14	0.33	_	5.5	0.05	0.5	1.0
3/4	1.7	0.92	0.35	1.7	0.90	2.1	10	0.28	6.1	3.7	0.05	0.5	1.0
1	1.5	0.78	0.34	1.5	0.90	1.8	9	0.24	4.6	3.0	0.05	0.5	1.0
1 1/4	1.3	0.65	0.33	1.3	0.90	1.7	8.5	0.22	3.6	2.7	0.05	0.5	1.0
1 1/2	1.2	0.54	0.32	1.2	0.90	1.6	8	0.19	2.9	2.5	0.05	0.5	1.0
2	1.0	0.42	0.31	1.0	0.90	1.4	7	0.17	2.1	2.3	0.05	0.5	1.0
2 1/2	0.85	0.35	0.30	0.85	0.90	1.3	6.5	0.16	1.6	2.2	0.05	0.5	1.0
3	0.80	0.31	0.29	0.80	0.90	1.2	6	0.14	1.3	2.1	0.05	0.5	1.0
4	0.70	0.24	0.28	0.70	0.90	1.1	5.7	0.12	1.0	2.0	0.05	0.5	1.0

Source:	Engineering	Data	Book	(Hydraulic	Institute	1990).

				Table 4	K Factors: Flanged Welded	Steel Pipe Fittings					
Nominal Pipe Dia., in.	90° Standard Elbow	90° Long-Radius Elbow	45° Long- Radius Elbow	Return Bend Standard	Return Bend Long- Radius	Tee- Line	Tee- Branch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valv
1	0.43	0.41	0.22	0.43	0.43	0.26	1.0	13	-	4.8	2.0
1 1/4	0.41	0.37	0.22	0.41	0.38	0.25	0.95	12	-	3.7	2.0
1 1/2	0.40	0.35	0.21	0.40	0.35	0.23	0.90	10		3.0	2.0
2	0.38	0.30	0.20	0.38	0.30	0.20	0.84	9	0.34	2.5	2.0
2 1/2	0.35	0.28	0.19	0.35	0.27	0.18	0.79	8	0.27	2.3	2.0
3	0.34	0.25	0.18	0.34	0.25	0.17	0.76	7	0.22	2.2	2.0
4	0.31	0.22	0.18	0.31	0.22	0.15	0.70	6.5	0.16	2.1	2.0
6	0.29	0.18	0.17	0.29	0.18	0.12	0.62	6	0.10	2.1	2.0
8	0.27	0.16	0.17	0.27	0.15	0.10	0.58	5.7	0.08	2.1	2.0
10	0.25	0.14	0.16	0.25	0.14	0.09	0.53	5.7	0.06	2.1	2.0
12	0.24	0.13	0.16	0.24	0.13	0.08	0.50	5.7	0.05	2.1	2.0

Le graphique à droite montre une méthode alternative pour calculer la perte de charge à travers des tés en fonction de l'équivalent des coudes.

Ce graphique ne peut pas être utilisé pour les vannes trois voies, car la perte de charge des vannes trois voies doit être tirée des données de test du fabricant.

Le tableau ci-dessous peut être utilisé pour les coudes. Une fois la vitesse est connue, la chute de pression est calculée et tabulée comme suit:

Table 27 Equivalent Length in Feet of Pipe for 90° Elbows

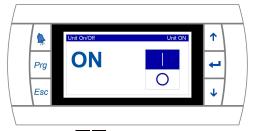
		Pipe Size														
Velocity, fps	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	3 1/2	4	5	6	8	10	12	
1	1.2	1.7	2.2	3.0	3.5	4.5	5.4	6.7	7.7	8.6	10.5	12.2	15.4	18.7	22.2	
2	1.4	1.9	2.5	3.3	3.9	5.1	6.0	7.5	8.6	9.5	11.7	13.7	17.3	20.8	24.8	
3	1.5	2.0	2.7	3.6	4.2	5.4	6.4	8.0	9.2	10.2	12.5	14.6	18.4	22.3	26.5	
4	1.5	2.1	2.8	3.7	4.4	5.6	6.7	8.3	9.6	10.6	13.1	15.2	19.2	23.2	27.6	
5	1.6	2.2	2.9	3.9	4.5	5.9	7.0	8.7	10.0	11.1	13.6	15.8	19.8	24.2	28.8	
6	1.7	2.3	3.0	4.0	4.7	6.0	7.2	8.9	10.3	11.4	14.0	16.3	20.5	24.9	29.6	
7	1.7	2.3	3.0	4.1	4.8	6.2	7.4	9.1	10.5	11.7	14.3	16.7	21.0	25.5	30.3	
8	1.7	2.4	3.1	4.2	4.9	6.3	7.5	9.3	10.8	11.9	14.6	17.1	21.5	26.1	31.0	
9	1.8	2.4	3.2	4.3	5.0	6.4	7.7	9.5	11.0	12.2	14.9	17.4	21.9	26.6	31.6	
10	1.8	2.5	3.2	4.3	5.1	6.5	7.8	9.7	11.2	12.4	15.2	17.7	22.2	27.0	32.0	



12.3 MODE AUTONOME

Annexe "C" montre le menu complet du contrôleur de la thermopompe. Il montre les trois séquences de menus et sous-menus.

12.3.1 Interface principale



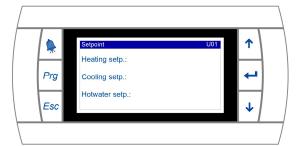
12.3.2 Marche/arrêt

Cette commande permet à l'utilisateur d'accéder au bouton de marche/arrêt de la thermopompe. Appuyez opur accéder au bouton numérique de marche/arrêt.

Utilisez les flèches 1 pour passer en mode marche ou arrêt.

12.3.3 Modes (Chauffage, Refroidissement, Eau chaude, Eau chaude + refroidissement, Eau chaude + chauffage)

Appuyez pour accéder au menu, appuyez sur les boutons \lambda pour sélectionner User Mask, puis appuyez pour confirmer. Appuyez sur les boutons \lambda pour changer de mode, puis appuyez to pour confirmer, cela inclut le changement mode et le réglage de température. (N.B: Éteignez la thermopompe avant de changer de mode.)


Cette commande permet à l'utilisateur d'accéder aux cinq modes de fonctionnement. Appuyez pour accéder au bouton de sélection numérique suivant.

Les cinq modes de fonctionnement sont les suivants : Chauffage (de l'espace), Refroidissement (de l'espace), Eau chaude (domestique), Combinaison eau chaude + refroidissement, Combinaison eau chaude + chauffage.

L'interface pour le point de consigne de température est la suivante :

Cette commande permet de modifier les températures de consigne du fluide caloporteur. Par défaut, les points de consigne sont assignés à la température de retour du fluide. Cela signifie que la pompe à chaleur, par défaut, module sa capacité pour maintenir la température de retour du fluide au niveau de son point de consigne. Dans les paramètres avancés, les points de consigne peuvent être attribués aux températures d'alimentation du fluide.

Cette commande permet de modifier la température de consigne du réservoir d'eau chaude domestique. L'écart de température entre l'alimentation et le retour est de 5°C par défaut et l'écart de température d'arrêt est l'écart auquel la thermopompe cesse de chauffer le réservoir d'eau chaude domestique.

Cette commande permet de modifier la température de consigne de l'eau refroidie. L'écart de température entre l'alimentation et le retour est de 5°C par défaut et l'écart de température d'arrêt est l'écart auquel la thermopompe cesse de produire de l'eau refroidie.

Cette commande permet de modifier les paramètres de la boucle de contrôle PID (proportionnel, intégral et dérivé) utilisé dans le contrôle de température.

Cette commande permet de sélectionner le mode d'opération de la pompe : toujours en marche, sur demande ou ouverture intermittente. Lorsque la sonde de température de l'alimentation ou du retour est inséré dans le puits thermique du réservoir de chauffage/refroidissement, l'option pour la pompe devrait être réglée sur toujours en marche ou ouverture intermittente. Dans ce dernier cas, la pompe fonctionnera à intervalles prédéfinis pour mesurer la température de la demande.

Le contrôle de cette thermopompe dispose d'un signal PWM qui module la vitesse de la pompe de circulation du fluide. La vitesse de la pompe est modulée via le contrôleur Carel, afin de maintenir l'écart de température entre l'alimentation et le retour à son point de consigne.

Le chauffage d'appoint doit être activé dans cette commande. Le chauffage de démarrage doit être active lorsque la pompe à chaleur est équipée d'un chauffage de démarrage et qu'elle se trouve dans une zone enneigée.


Il y a trois modes de ventilation: jour, nuit et basse vitesse. Lorsque le mode jour est sélectionné, le compresseur fonctionne à la vitesse maximale associée à la température ambiante.

La vitesse du ventilateur augmente lorsque la vitesse du compresseur augmente.

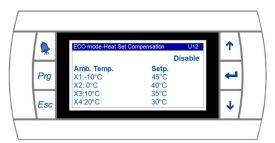

Lorsque le mode nuit est sélectionné ou entre 20:00 et 8:00 (intervalle ajustable dans les paramètres de l'horloge), la vitesse du ventilateur et du compresseur sont limitées à leur limite supérieur (par défaut : 500 rpm pour le ventilateur et 50 Hz pour le compresseur).

Lorsque le mode basse vitesse est sélectionné, la vitesse du ventilateur et du compresseur sont modulées selon la demande de chauffage ou de climatisation.

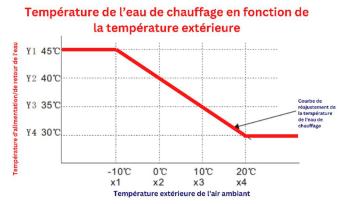
Vitesse du compresseur vs température ambiante extérieure		
Température extérieure à bulbe sec (°C)	Fréquence maximale du compresseur (Hz)	Mode de fonctionnement
9 <ambtemp< td=""><td>50</td><td>_</td></ambtemp<>	50	_
4 <ambtemp<=9< td=""><td>60</td><td>Ì</td></ambtemp<=9<>	60	Ì
-3< AmbTemp <=4	60	Chauffage de l'eau chaude domestique/chauffage
-9 <ambtemp<=-3< td=""><td>65</td></ambtemp<=-3<>	65	
-15 <ambtemp<=-9< td=""><td>65</td></ambtemp<=-9<>	65	
AmbTemp<=-15	70	
38 <ambtemp< td=""><td>65</td><td></td></ambtemp<>	65	
33 <ambtemp<=38< td=""><td>65</td><td>1</td></ambtemp<=38<>	65	1
30 <ambtemp<=33< td=""><td>60</td><td rowspan="3">Climatisation</td></ambtemp<=33<>	60	Climatisation
26 <ambtemp<=30< td=""><td>60</td></ambtemp<=30<>	60	
AmbTemp<=26	55	

Le contrôle Comp.delay définit le délai entre le fonctionnement du chauffage d'appoint et du compresseur (défaut : 50 minutes - cela signifie que le chauffage d'appoint est autorisé à fonctionner après 50 minutes que le compresseur fonctionne). La température Ext.temp.setp. est la limite supérieure de température de fonctionnement du chauffage d'appoint (défaut : -15°C - cela signifie que si la température extérieure est supérieure à -15°C, le chauffage d'appoint n'est pas autorisé à fonctionner).

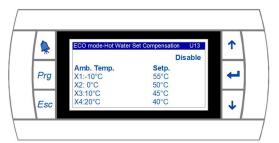
Cette commande permet à l'utilisateur d'activer/désactiver les modes de fonctionnement de la thermopompe (principalement le chauffage de l'espace et la climatisation) en fonction de la température extérieure. Lorsque la température extérieure est supérieure à la valeur assignée à "AmbTem Switch Setp." (par défaut 20°C), la pompe à chaleur passe en mode refroidissement. Lorsque la température extérieure chute en dessous de "AmbTem Switch Setp." (20°C) - "Amb Temp.diff" (4°C), la pompe à chaleur passe en mode de chauffage.


N.B:

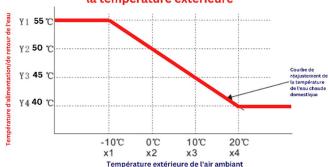
Lorsque la demande de refroidissement/chauffage n'est pas envoyée à thermopompe par une source externe (via un lien de refroidissement/chauffage) et qu'elle est gérée par la sonde de température ambiante de la thermopompe (située à l'extérieur), *AmbTemp Switch (dans U10)* doit être activé. Le point de consigne *Setp: (dans U10)* varie entre 10 et 18°C (45 et 65°F). Le différentiel de température ambiante *Amb Temp.diff (dans U10)* est simplement une bande morte. Lorsque le signal de chauffage/refroidissement est envoyé à la thermopompe à travers les liens de refroidissement/chauffage ou via Modbus, *AmbTemp Switch (dans U10)* doit être désactivé.



12.3.4 Réajustement de la température de l'eau d'alimentation/de retour en fonction de la température extérieure

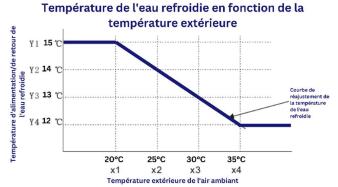

12.3.4.1 Réajustement de la température de l'eau de chauffage en fonction de la température extérieure

Cette commande permet d'augmenter la température de l'eau de chauffage de l'espace lorsque la température extérieure diminue et de diminuer la température de l'eau chaude de chauffage de l'espace lorsque la température extérieure augmente. Désactivé par défaut. Pour l'activer, allez dans *Disable* et activez-le.



12.3.4.2 Réajustement de la température de l'eau chaude domestique en fonction de la température extérieure

Cette commande permet d'augmenter la température de l'eau chaude domestique lorsque la température extérieure diminue et de la diminuer lorsque la température extérieure augmente. Désactivé par défaut. Pour l'activer, allez sur *Disable* et activez-le.


Température de l'eau chaude domestique en fonction de la température extérieure

12.3.4.3 Réajustement de la température de l'eau refroidie en fonction de la température extérieure

Cette commande permet d'augmenter la température de l'eau refroidie lorsque la température extérieure diminue et de la diminuer lorsque la température extérieure augmente. Désactivé par défaut. Pour l'activer, allez sur *Disable* et activez-le.

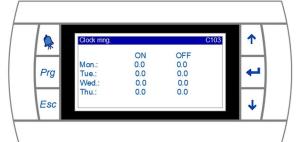
température d'alimentation = température de retour - 5°C

12.3.5 Fuseau horaire/CLOCK

Appuyez pour accéder au menu, appuyez sur les boutons ↑↓ pour sélectionner TimeZone/CLOCK, ensuite appuyez pour confirmer, appuyez sur les boutons↑↓ pour changer le réglage, et appuyez pour confirmer.



Le menu M03 menu permet à l'utilisateur de définir les horaires de mise en marche/arrêt de la thermopompe et de définir les températures de consigne pour chaque horaire.

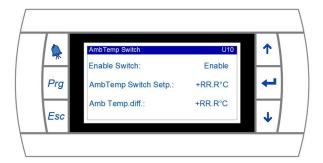


Le sous-menu M03/C101 permet à l'utilisateur de modifier la date, l'heure et le jour.

C103 & 104: Interface de configuration des plages horaires. La thermopompe est autorisée à fonctionner lorsqu'elle atteint l'heure de démarrage "ON" de la journée, et elle s'éteint lorsqu'elle atteint l'heure de fin "OFF" de la journée.

C105, 106, 107 & 108; Timezone1 est l'heure de démarrage de la première periode, Timezone2 est l'heure limite de la première période et l'heure de démarrage de la deuxième période et ainsi de suite (Timezone 3 and 4).

"Cooling temp.", "Heating temp." et "Tank temp." sont les températures définies pour le refroidissement, le chauffage et l'eau chaude domestique pour la période correspondante.



12.3.6 Réglages par défaut

Paramètre de réglages	Valeur
Unit mode	Heating
Space Heating setpoint	45°C
Space Cooling setpoint	12°C
Domestic Hot water setpoint	50°C
Temp. diff.	5°C
Stop temp. diff.	0°C
Cool and heat mode Temp. diff.	5°C
Stop temp. diff.	2°C
Kp (PID Control Loop)	5°C
Integral (PID Control Loop)	200s
Differential (PID Control Loop)	0s
Pump Operation	Demand
Pump Auto	Enable
Fan model	Daytime
Enable heater	Enable
Enable chassis/crack heater	Enable
Heater control-Comp. delay	60min
Heater control-Exterior temp.setp.	5°C
Pump control, Delta temp. set.	5°C
Auto start	Enable

12.4 MODE DE FONCTIONNEMENT HYBRIDE: DEMANDE DE CHAUFFAGE/CLIMATISATION PAR DES SOURCES EXTERNES

Dans ce mode de fonctionnement, la demande de chauffage et/ou de climatisation est envoyée à la pompe à chaleur via des relais de commutation (tels que Taco, Tekmar, Caleffi, etc.) ou via des sorties binaires d'un contrôleur numérique. Dans les deux cas, et étant donné que le changement entre le chauffage et la climatisation n'est pas gérée par l'interrupteur de température ambiante de la thermopompe, celui-ci doit être désactivé.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	(L2)	floor heat valve (L1)	(L2)	Hot water valve (L1)		сом	A.C turn on/ off sw	Cool link age sw	Heat link age sw	СОМ	PWM signal	Aux. heate Spac Heat	er e	Aux. heate DHW	er	Cooli mode signa oupu 220VAC	e al t

Lorsque le signal de chauffage/climatisation est envoyé à la thermopompe à travers les liens de refroidissement/chauffage, l'interrupteur de température ambiante **AmbTemp Switch (in U10)** doit être désactivé.

12.5 L'INSTALLATION DE L'ADAPTEUR WIFI

Bien que l'adaptateur Wi-Fi ne soit pas nécessaire au fonctionnement de l'unité, il permet un diagnostic plus rapide ainsi qu'un diagnostic et une surveillance à distance. L'application est conçue de manière à être considérablement plus conviviale pour le client lorsque comparée au contrôleur Carel. Les techniciens pourront résoudre les problèmes de l'équipement sans se rendre sur place, ce qui permet de gagner du temps.

12.5.1 Installation du matériel et des connections:

Le kit d'adapteur WIFI est livré à l'intérieur de la thermopompe et comprends les éléments suivants :

** Veuillez noter que l'équipement et le câblage illustrés sont susceptibles de changer sans préavis et seront complétés par des fiches de révision si nécessaire

Le câble de signal à deux fils: un rouge et un blanc.

Sur la carte de contrôle de l'unité extérieure:

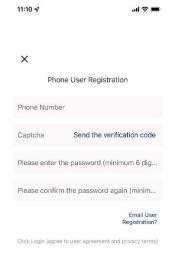
- 1- Vérifiez que le **fil blanc** du câble de signal est connecté au **Moins ()**
- 2- Vérifiez que le **fil rouge** du câble de signal est connecté au **Plus (+)**

Sur la prise verte du câble WIFI:

- 1- Connectez le fil blanc du câble de signal au port B
- 2- Connectez le fil rouge du câble de signal au port A
- 3- Connectez le **fil noir/blanc** de l'adaptateur d'alimentation au port **Plus (+)**
- 4- Connectez le **fil noir** de l'adaptateur d'alimentation au port **Moins ()**
- 5- Connectez l'adaptateur d'alimentation à une prise d'alimentation de 110-240VAC.

Veuillez suivre strictement les instructions de connexion des fils mentionnées ci-dessus, sinon le module Wi-Fi ne fonctionnera pas.

12.5.2 Téléchargement et configuration de l'application:


L'application de la pompe à chaleur s'appelle **Hydro Solar** et est disponible pour les appareils Apple et Android. Rendez-vous sur la boutique d'applications de votre smartphone et téléchargez l'application gratuite **Heat Pump Pro**. Après avoir téléchargé l'application de la pompe à chaleur, recherchez l'icône de l'application sur l'écran de votre smartphone et cliquez dessus. Enregistrez votre appareil comme indiqué ci-dessous:

Lors de votre première connexion, vous devrez créer un compte. Vous pouvez le faire en cliquant sur **User Register.**

Une fois cliqué, l'écran de droite apparaîtra. Vous aurez la possibilité de vous inscrire soit par téléphone ou par courriel.

Nous vous recommandons de vous inscrire par courriel.

Pour vous inscrire par téléphone, veuillez entrer votre numéro de téléphone et cliquer sur "Envoyer le code de vérification". Une fois le code reçu, saisissez-le ci-dessous et passez à l'écran suivant.

Pour vous inscrire par courriel, cliquez sur Email User Registration?

Une fois que vous avez cliqué sur **Email User Registration?** l'écran ci-dessous apparaîtra.

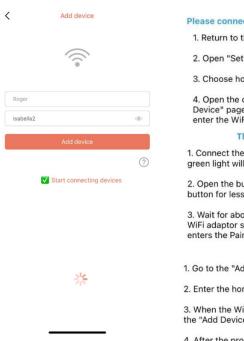
Login

Registered

No Devices, Please Add Device

Pour ajouter la thermopompe, vous pouvez cliquer soit sur Add by WIFI ou sur Add by Scan:

Il suffit de scanner le code-barres de la thermopompe (option **Add by Scan**)



Add By WIFI:

Choisissez votre réseau Wi-Fi dans la liste et rentrer le mot de passe ci-dessous.

How to add device?

Please connect this mobile device to home Wi-Fi first

- 1. Return to the home page on this mobile device
- 2. Open "Settings" and select "Wireless LAN"
- 3. Choose home Wi-Fi
- 4. Open the current application, return to the "Add Device" page, allow app to access your location, and enter the WiFi password

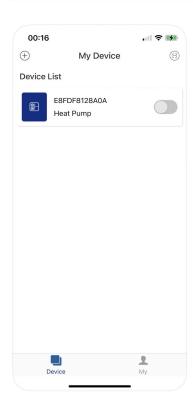
Then, make the device visible

- 1. Connect the Heat Pump WiFi adapter to plug and the green light will flash slowly
- 2. Open the button cap on the Wifi adaptor cable, Press button for less than 2 seconds
- 3. Wait for about 2 ~ 3 seconds, the green light on the WiFi adaptor starts to flash quickly, and Wifi adaptor enters the Pairing mode

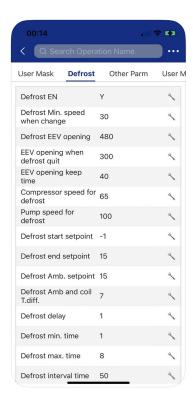
- 1. Go to the "Add Device" page of the current application
- 2. Enter the home Wi-Fi password
- 3. When the WiFi adaptor green light flashes quickly, click the "Add Device" button
- 4. After the prompt "Pairing successful", the device will be automatically added to your device list

Note: The green light of Wifi adpaptor flashes guickly to indicate that it has entered the pairing mode, and the flashing light changes to steady on to indicate that the device is connected to the home Wi-Fi network.

Pour associer l'application avec l'adaptateur Wi-Fi de la pompe à chaleur, ouvrez simplement le capuchon noir du bouton comme indiqué ci-dessous.


Et appuyez doucement sur le bouton pendant 2 à 3 secondes indiqué comme dans instructions de gauche.

Vous pouvez connecter plusieurs pompes à chaleur à l'application. Il suffit de cliquer sur "Ajouter un appareil" et de répéter les étapes ci-dessus.


12.5.3 Fenêtre de liste des appareils:

- La liste des appareils affiche les appareils (pompes à chaleur) associés à cet utilisateur et indique leur statut en ligne ou hors ligne. Lorsque l'appareil est hors ligne, son icône est grise, et lorsqu'il est en ligne, elle est colorée.
- L'interrupteur situé à droite de chaque ligne d'appareil indique si l'appareil est actuellement allumé.
- L'utilisateur peut déconnecter l'appareil ou modifier son nom. Lorsque vous faites glisser vers la gauche, les boutons Supprimer et Modifier apparaissent à droite de la ligne de l'appareil. Cliquez sur Modifier pour modifier le nom de l'appareil et cliquez sur Supprimer pour le déconnecter et le supprimer de l'application, comme indiqué ci-dessous :

12.5.4 Guide d'utilisation de l'application:

- 1. Cliquez sur un appareil dans la liste des appareils pour accéder à cette page.
- 2. La couleur de fond de la bulle indique l'état de fonctionnement actuel de l'appareil :
 - a. Gris indique que l'appareil est arrêté. À ce moment-là, vous pouvez changer le mode de fonctionnement, régler la température du mode, définir la programmation, ou appuyer sur le bouton pour l'allumer et l'éteindre.
 - Multicolore indique que l'appareil est allumé, chaque mode de fonctionnement correspond à une couleur différente. L'orange indique le mode de chauffage, le rouge indique le mode d'eau chaude domestique et le bleu indique le mode de refroidissement.
 - c. Lorsque l'appareil est allumé, vous pouvez régler la température du mode, définir la programmation, appuyer sur le bouton pour allumer et éteindre, mais vous ne pouvez pas définir le mode de fonctionnement (i.e. que le mode de fonctionnement ne peut être défini que lorsque l'appareil est éteint).
- 3. La bulle affiche la température actuelle de l'appareil.
- 4. Sous la bulle se trouve la température de consigne de l'appareil dans le mode de fonctionnement actuel.
- 5. Réglez la température à l'aide des boutons + . Chaque clic ajoute ou soustrait 1 à la valeur de consigne de l'appareil.
- 6. En bas à gauche de la fenêtre de température de consigne se trouvent les erreurs et alertes. Lorsque l'appareil commence à émettre une alarme, l'alerte spécifique s'affiche.
- 7. La raison de la panne ou de l'alerte sera affichée à côté de l'icône d'avertissement jaune. En cas de panne ou d'alerte de l'appareil, le contenu de la panne ou de l'alerte s'affiche en bas à droite de la fenêtre de température de consigne. Cliquez sur cette zone pour accéder aux détails de l'erreur.

13 GARANTIE (GARANTIE LIMITÉE POUR USAGE RÉSIDENTIEL)

Aqua Solanor Inc (propriétaire de *Hydro Solar Innovative Energy*) garantit que les pompes à chaleur fournies sont exemptes de défauts de matériaux et de fabrication pendant une période de **cinq (5) ans** à compter de la date d'installation ou pour une période de **cinq (5) ans** et **trente (30) jours** à compter de la date d'expédition, selon la première éventualité.

Aqua Solanor Inc se réserve le droit, à sa discrétion, de réparer ou de remplacer toute pièce couverte par cette garantie qui lui serait retournée, les frais de transport étant à la charge du client, et qui, après examen, s'avérerait défectueuse en termes de matériaux ou de fabrication.

Les pièces et composants de remplacement ou réparés sont couverts uniquement pour la durée restante de la période de garantie initiale.

Cette garantie est soumise aux conditions suivantes :

- La pompe à chaleur Hydro Solar Innovative Energy doit être installée et entretenue correctement conformément au présent document d'installation et d'entretien, ainsi qu'en conformité avec les codes et réglementations fédéraux, provinciaux, municipaux et locaux.
- 2. L'installateur doit être un installateur de pompes à chaleur certifié qualifié dans la province/état où la pompe à chaleur est installée. Le non-respect de cette exigence entraînera l'annulation de la garantie.
- 3. L'installateur doit remplir un rapport d'installation et de mise en service, le faire approuver par le propriétaire et le retourner à **Hydro Solar Innovative Energy** dans les 21 jours suivant l'installation de l'unité.
- 4. Il incombe à l'entrepreneur général de fournir une source de chaleur temporaire au bâtiment avant son occupation. Ces pompes à chaleur sont conçues pour fournir de la chaleur uniquement à la structure finie et isolée. La mise en service de l'unité ne doit pas être programmée avant la fin des travaux de construction et de l'installation finale des conduits/tuyaux pour valider cette garantie.
- 5. Il incombe au client de fournir la quantité et la qualité d'eau appropriées.

Si la pompe à chaleur fournie par **Aqua Solanor Inc** ne répond pas à cette garantie, la responsabilité exclusive d'**Aqua Solanor Inc** sera, à sa discrétion, de réparer ou de remplacer toute pièce ou composant retourné par le client pendant la période de garantie applicable mentionnée ci-dessus, à condition que (1) **Aqua Solanor Inc** soit informée par écrit dès que le client découvre que ladite pièce ou composante ne répond pas à cette garantie, (2) le client renvoie ladite pièce ou composante à **Aqua Solanor Inc**, les frais de transport étant prépayés, dans les (30) trente jours suivant la défaillance, et (3) l'examen par **Aqua Solanor Inc** de ladite composante révèle, à sa satisfaction, que ladite pièce ou composante ne répond pas à cette garantie et que les prétendus défauts n'ont pas été causés par un accident, une mauvaise utilisation, une négligence, une altération, une installation incorrecte, une réparation ou des tests inappropriés.

- 14 ANNEXE "A" LISTE DES CODES D'ERREUR
- 15 ANNEXE "B" GUIDE DE DÉPANNAGE DE LA THERMOPOMPE
- 16 Annexe "C" Menus et sous-menus du contrôleur de la Thermopompe

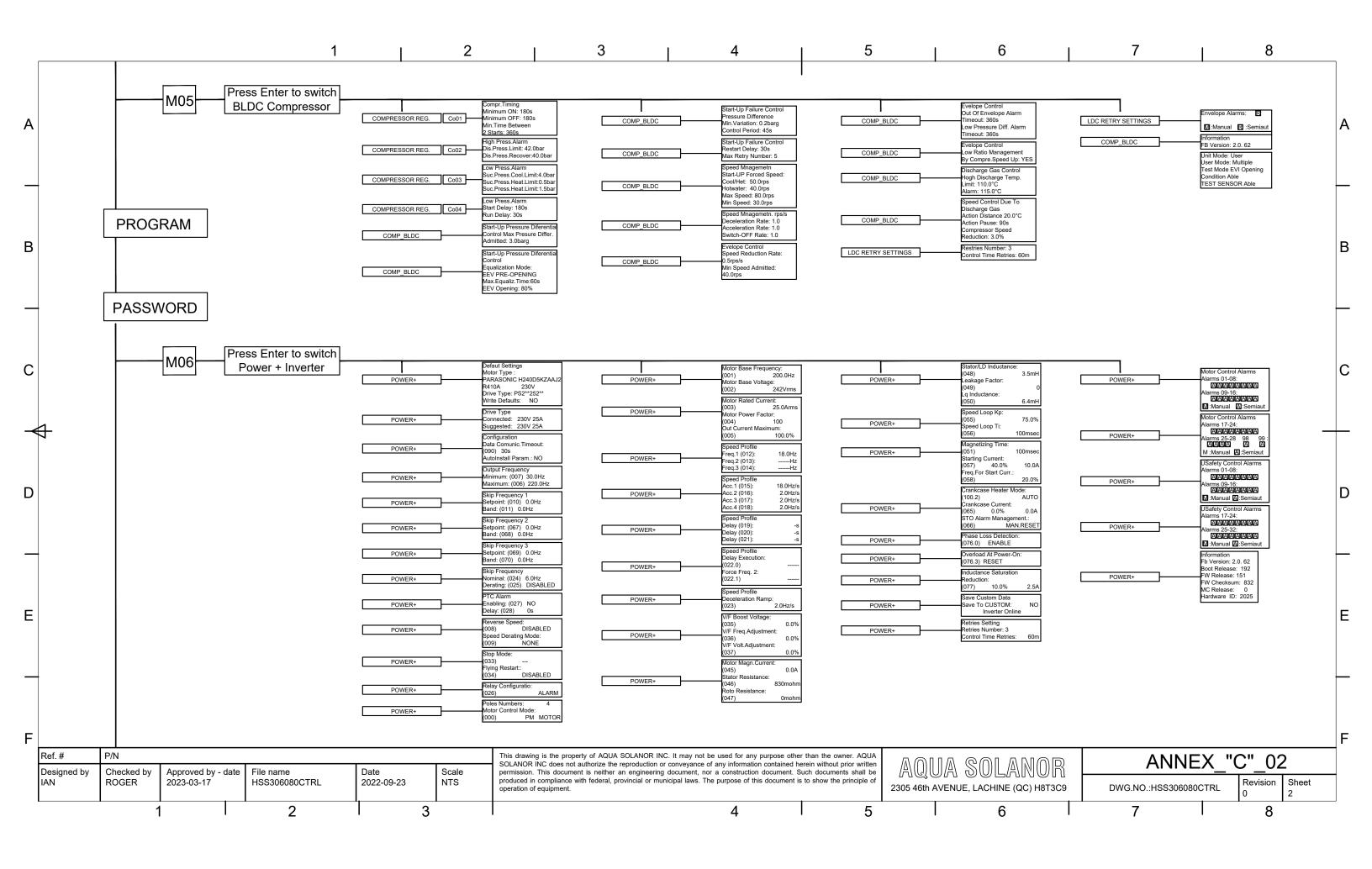
Error Code	Description
AL001	Too many mem writings
AL002	Retain mem write error
AL003	Inlet probe error
AL004	Outlet probe error
AL005	Ambient probe error
AL006	Condenser coil temp
AL007	Water flow switch
AL008	Phase sequ.prot.alarm
AL009	Unit work hour warning
AL010	Pump work hour warning
AL011	Comp.work hour warning
AL012	Cond.fan work hourWarn
AL013	Low superheat - Vlv.A
AL014	Low superheat - Vlv.B
AL015	LOP - VIv.A
AL016	LOP - VIv.B
AL017	MOP - VIv.A
AL018	MOP - Vlv.B
AL019	Motor error - Vlv.A
AL020	Motor error - Vlv.B
AL021	Low suct.temp Vlv.A
AL022	Low suct.temp Vlv.B
AL023	High condens.temp.EVD
AL024	Probe S1 error EVD
AL025	Probe S2 error EVD
AL026	Probe S3 error EVD
AL027	Probe S4 error EVD
AL028	Battery discharge EVD
AL029	EEPROM alarm EVD
AL030	Incomplete closing EVD
AL031	Emergency closing EVD
AL032	FW not compatible EVD
AL033	Config. error EVD
AL034	EVD Driver offline

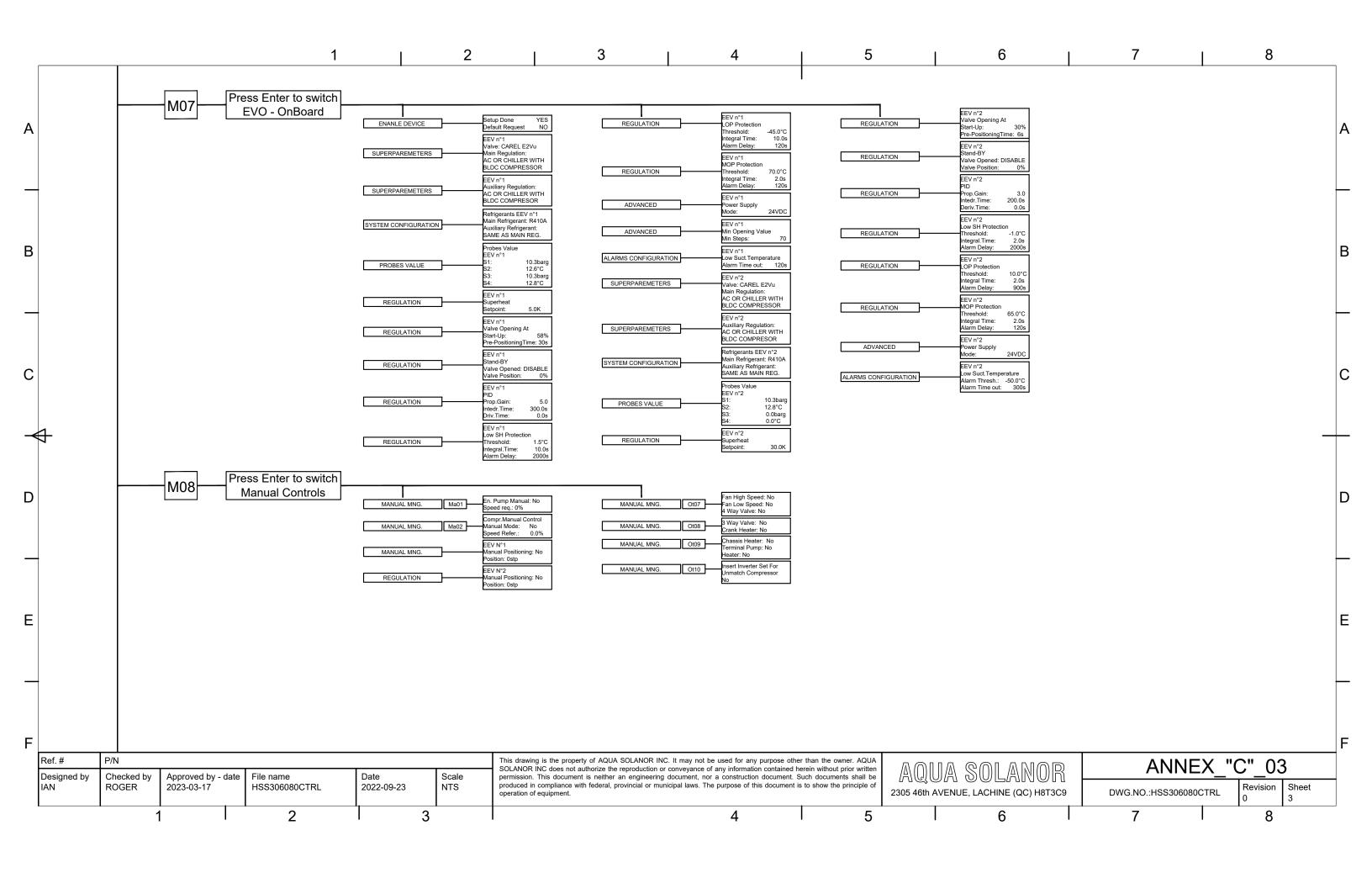
Error Code	Description						
AL035	BLDC-alarm:High startup DeltaP						
AL036	BLDC-alarm:Compressor shut off						
AL037	BLDC-alarm:Out of Envelope						
AL038	BLDC-alarm:Starting fail wait						
AL039	BLDC-alarm:Starting fail exceeded						
AL040	BLDC-alarm:Low delta pressure						
AL041	BLDC-alarm:High discarge gas temp						
AL042	Envelope-alarm:High compressor ratio						
AL043	Envelope-alarm:High discharge press.						
AL044	Envelope-alarm:High current						
AL045	Envelope-alarm:High suction pressure						
AL046	Envelope-alarm:Low compressor ratio						
AL047	Envelope-alarm:Low pressure diff.						
AL048	Envelope-alarm:Low discharge pressure						
AL049	Envelope-alarm:Low suction pressure						
AL050	Envelope-alarm:High discharge temp.						
AL051	Power+ alarm:01-Overcurrent						
AL052	Power+ alarm:02-Motor overload						
AL053	Power+ alarm:03-DCbus overvoltage						
AL054	Power+ alarm:04-DCbus undervoltage						
AL055	Power+ alarm:05-Drive overtemp.						
AL056	Power+ alarm:06-Drive undertemp.						
AL057	Power+ alarm:07-Overcurrent HW						
AL058	Power+ alarm:08-Motor overtemp.						
AL059	Power+ alarm:09-IGBT module error						
AL060	Power+ alarm:10-CPU error						
AL061	Power+ alarm:11-Parameter default						
AL062	Power+ alarm:12-DCbus ripple						
AL063	Power+ alarm:13-Data comm. Fault						
AL064	Power+ alarm:14-Thermistor fault						
AL065	Power+ alarm:15-Autotuning fault						
AL066	Power+ alarm:16-Drive disabled						
AL067	Power+ alarm:17-Motor phase fault						
AL068	Power+ alarm:18-Internal fan fault						

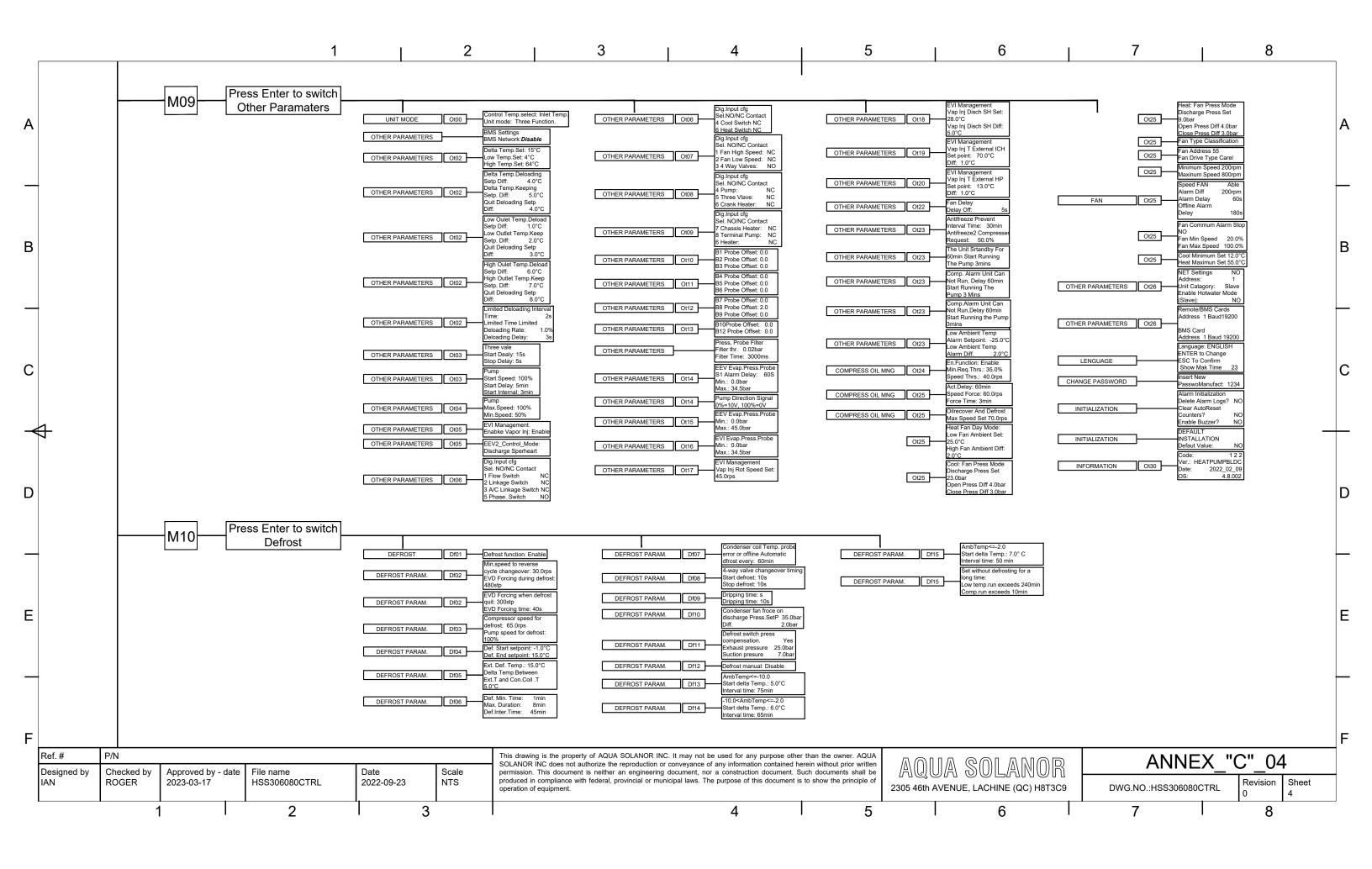
Error Code	Description						
AL069	Power+ alarm:19-Speed fault						
AL070	Power+ alarm:20-PFC module error						
AL071	Power+ alarm:21-PFC overvoltage						
AL072	Power+ alarm:22-PFC undervoltage						
AL073	Power+ alarm:23-STO DetectionError						
AL074	Power+ alarm:24-STO DetectionError						
AL075	Power+ alarm:25-Ground fault						
AL076	Power+ alarm:26-Internal error 1						
AL077	Power+ alarm:27-Internal error 2						
AL078	Power+ alarm:28-Drive overload						
AL079	Power+ alarm:29-uC safety fault						
AL080	Power+ alarm:98-Unexpected restart						
AL081	Power+ alarm:99-Unexpected stop						
AL082	Power+ safety alarm:01-Current meas.fault						
AL083	Power+ safety alarm:02-Current unbalanced						
AL084	Power+ safety alarm:03-Over current						
AL085	Power+ safety alarm:04-STO alarm						
AL086	Power+ safety alarm:05-STO hardware alarm						
AL087	Power+ safety alarm:06-PowerSupply missing						
AL088	Power+ safety alarm:07-HW fault cmd.buffer						
AL089	Power+ safety alarm:08-HW fault heater c.						
AL090	Power+ safety alarm:09-Data comm. Fault						
AL091	Power+ safety alarm:10-Compr. stall detect						
AL092	Power+ safety alarm:11-DCbus over current						
AL093	Power+ safety alarm:12-HWF DCbus current						
AL094	Power+ safety alarm:13-DCbus voltage						
AL095	Power+ safety alarm:14-HWF DCbus voltage						
AL096	Power+ safety alarm:15-Input voltage						
AL097	Power+ safety alarm:16-HWF input voltage						
AL098	Power+ safety alarm:17-DCbus power alarm						
AL099	Power+ safety alarm:18-HWF power mismatch						
AL100	Power+ safety alarm:19-NTC over temp.						
AL101	Power+ safety alarm:20-NTC under temp.						
AL102	Power+ safety alarm:21-NTC fault						

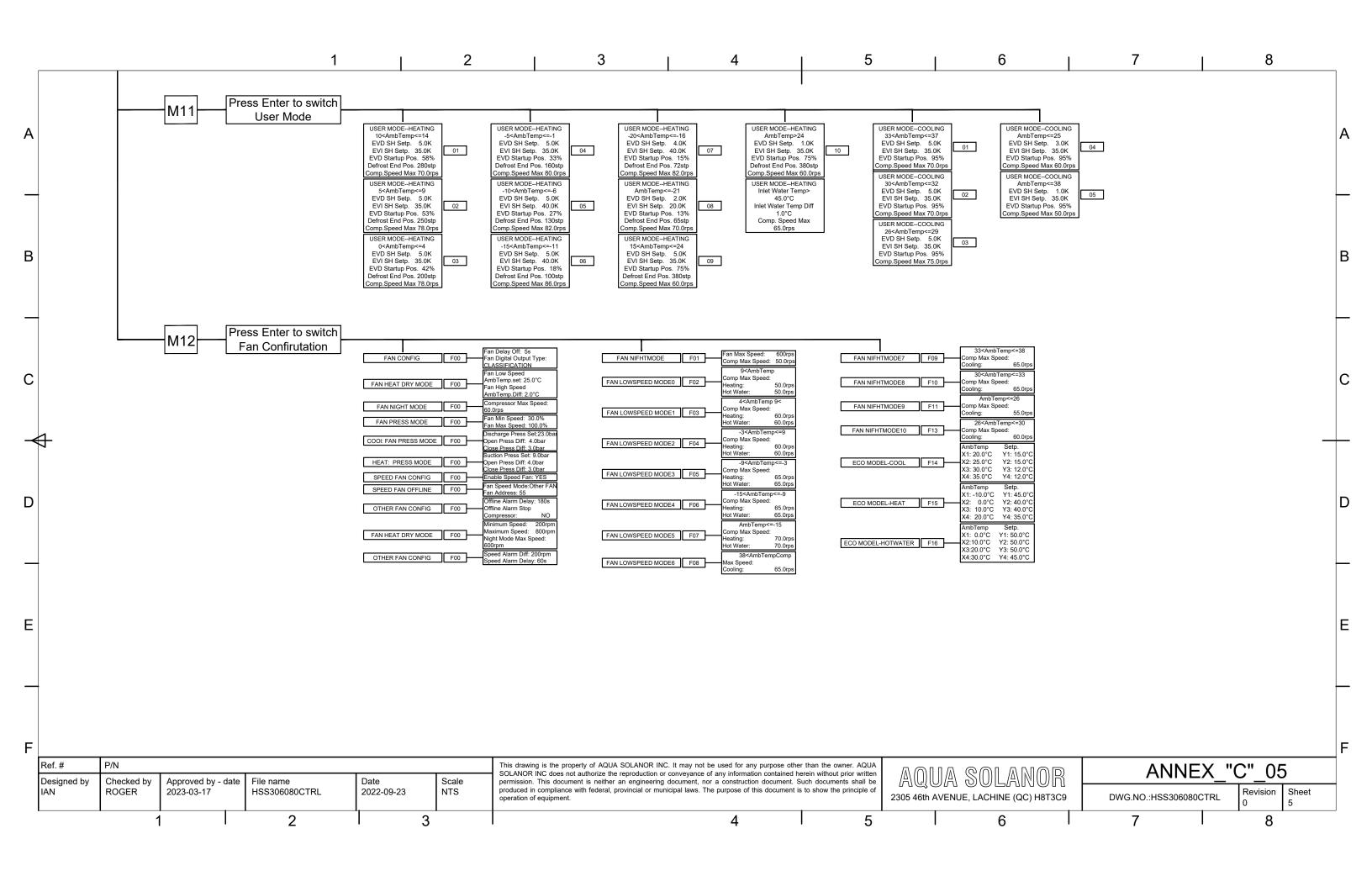
Error Code	Description						
AL103	Power+ safety alarm:22-HWF sync fault						
AL104	Power+ safety alarm:23-Invalid parameter						
AL105	Power+ safety alarm:24-FW fault						
AL106	Power+ safety alarm:25-HW fault						
AL107	Power+ safety alarm:26-reseved						
AL108	Power+ safety alarm:27-reseved						
AL109	Power+ safety alarm:28-reseved						
AL110	Power+ safety alarm:29-reseved						
AL111	Power+ safety alarm:30-reseved						
AL112	Power+ safety alarm:31-reseved						
AL113	Power+ safety alarm:32-reseved						
AL114	Power+ alarm:Power+ offline						
AL115	EEV alarm:Low superheat						
AL116	EEV alarm:LOP						
AL117	EEV alarm:MOP						
AL118	EEV alarm:High condens.temp.						
AL119	EEV alarm:Low suction temp.						
AL120	EEV alarm:Motor error						
AL121	EEV alarm:Self Tuning						
AL122	EEV alarm:Emergency closing						
AL123	EEV alarm:Temperature delta						
AL124	EEV alarm:Pressure delta						
AL125	EEV alarm:Param.range error						
AL126	EEV alarm:ServicePosit% err						
AL127	EEV alarm:ValveID pin error						
AL128	Low press alarm						
AL129	High press alarm						
AL130	Disc.temp.probe error						
AL131	Suct.temp.probe error						
AL132	Disc.press.probe error						
AL133	Suct.press.probe error						
AL134	Tank temp.probe error						
AL135	EVI SuctT.probe error						
AL136	EVI SuctP.probe error						

Error Code	Description
AL137	Flow switch alarm
AL138	High temp. alarm
AL139	Low temp. alarm
AL140	Temp.delta alarm
AL141	EVI alarm:Param.range error
AL142	EVI alarm:Low superheat
AL143	EVI alarm:LOP
AL144	EVI alarm:MOP
AL145	EVI alarm:High condens.temp.
AL146	EVI alarm:Low suction temp.
AL147	EVI alarm:Motor error
AL148	EVI alarm:Self Tuning
AL149	EVI alarm:Emergency closing
AL150	EVI alarm:ServicePosit% err
AL151	EVI alarm:ValveID pin error


Fault code	Panel description	Detail description	Possible cause	Diagnostics method	What to do?
AL001	AL001 Too many mem	Storage type variables are	parameters modified frequently	Frequently modify parameters	Stop operating the controller for 3 minutes or
ALVV I	writings	excessively and frequently written/modifed	parameters modified frequently	requerity mounty parameters	power off for 3 minutes
AL002	AL002 Retain mem write error	Frequent alarms for writing errors in storage variables	parameters modified frequently	Frequently modify parameters	Stop operating the controller for 3 minutes or power off for 3 minutes
AL003	AL003 Inlet probe error	Space heating temperature sensor failure	1. Loose wire / broken wire / faulty probe	Visual inspection	Tighten the wire/reconnect the wire/replace the sensor probe
AL004	AL004 Outlet probe error	Outlet probe failure	1. Loose wire / broken wire / faulty probe	Visual inspection	Tighten the wire/reconnect the wire/replace the probe
AL005	AL005 Ambient probe erro	Ambient temp. probe failure	Loose wire / broken wire / broken probe	Visual inspection	Tighten the wire/reconnect the wire/replace the probe
AL006	AL006 Condenser coil temp.	Coil pipe probe failure	1. Loose wire / broken wire / broken probe	Visual inspection	Tighten the wire/reconnect the wire/replace the probe
			Strainer is blocked, resulting in increased friction loss and a smaller water flow	Smaller water flow	Clean the strainer
			2. Circulation pump is undersized	Smaller water flow	Replace the water pump with a larger water head and water flow one
			3. The water pump has air pockets (either in the impeller or in the piping around it	Smaller water flow	Purge the air.
			The valve of the water system is closed or not fully opened	Smaller water flow	Open the valve
AL007	AL007 Water flow switch	Water flow switch alarm	There is air in either supply or return pipe, which leads to poor water flow	Smaller water flow	Install an automatic air vent valve at the highest point of the piping system
			6. The water flow switch is broken	If all the above are excluded, pls short-circuit the water flow switch and force heat pump to start. If the outlet water temperature is more than 8 degrees above the water tank temperature, then pls continue the above operation. If the temperature difference is within 5 degrees and there are no errors showed, then the water flow switch is broken.	Replace the water flow switch
AL008	AL008 Phase sequ.prot.alarm	Phase sequence protection switch alarm	Abnormal parameter setting	Three phase device reports failure	Set DI5 of Ot6 page in M09 to normally open NO
			The unit has heavy frost	Visually check for frost	Lower the coil temperature difference on the Df05 sub-menu in M10
AL013	AL013 Low superheat - VIv.A	EEV valve A low superheat alarm	The unit has been operating at low frequency for a long time	Check unit's running frequency	Operate within the allowable frequency range
AL028	AL028 Battery discharge	EEV battery failure	The unit has strong electric interference	Report fault	Power off for 3 minutes and restart
AL037	AL037 BLDC-alarm:Out of Envelope	BLDC-Out of operating range	The water temperature is too high or the ambient temperature is too low	The ambient temperature or water temperature exceeds the allowable range	Operate within the allowable range
AL038	AL038 BLDC-	BLDC-compressor failed to	Program error	Check whether the program version is the latest	Update the latest program
AL039	AL039 BLDC-	BLDC-compressor failed to	Program error	Check whether the program version is the latest	Update the latest program
		222 Compressor failed to		' "	Check and fix the leaks, then vacuum and
AL041/AL05 0	AL041 BLDC-alarm:High	Discharge gas temp. too high protection	Low refrigerant charge	Low pressure is very low	charge the refrigerant according to the
	discarge gas temp	2.555.go gao tomp. too mgn protoction	2. Inaccurate sensing of discharge gas temp.	The discharge gas temp. probe still shows	Replace discharge gas temp. probe
				Use a multimeter to measure the voltage during	Increase the voltage stabilizer to keep the
		Compressor 1/2 over current protection	1. The power supply voltage is low	standby, and it is 10% lower than the nominal	voltage stable, or provide a stable voltage, or
AL051/AL05 7/AL082	AL051 Power+ alarm:01- Overcurrent		The wire diameter is too small or the wiring is loose, resulting in low voltage	Measure the voltage with a multimeter at the moment when the compressor contactor is closed, until there is current protection. If the lowest voltage displayed by the multimeter is 10% lower than the rated voltage	Replace the appropriate wire diameter, or tighten loose wiring
			The AC contactor of compressor is broken and not closed	Visually check whether the AC contactor is closed or not	Replace AC contactor
			Short circuit of compressor coil	Excluded above, measure the resistance between the three coils of the compressor. If the resistance is too small or too large, it means that the compressor is burnt	
AL053	AL053 Power+ alarm:03- DCbus overvoltage	Power+03-DCbus overvoltage	Voltage is too high	The actual voltage exceeds 20% of the rated voltage	Provide stable power supply voltage


Fault code	Panel description	Detail description	Possible cause	Diagnostics method	What to do?
AL054	AL054 Power+ alarm:04- DCbus undervoltage	Power+04-DCbus undervoltag	Voltage is too low	The actual voltage is lower than the rated voltage by more than 25%	Provide stable power supply voltage
	AL444 December 2010		The interval between power-off and power- on of the host is too short	Power cycle time is less than 30 seconds	Power off again, and power on after 3 minutes, if it still doesn't work, power off for 10 minutes
AL114	AL114 Power+ alarm:Power+ offline	Inverter offline alarm	2. The inverter cable is loose	Check is screw is tight, if not	Re-tighten
	G.IIIIIC		3. The position of the inverter dial switch is wrong	The directions of the four DIP switches of the inverter are inconsistent	Redial to match
AL115	AL115 EEV alarm:Low superheat	EEV low superheat alarm	The unit has heavy frost		Lower the coil temperature difference on the Df05 page in M10
	Зиротной		The unit has been operating at low	Check unit's running frequency	Operate within the allowable operating range Force defrost, keep the ambient temp. probe as far away as possible from the evaporator to
			Heavy frost on the evaporator		
			2. The fan motor or fan blades are broken or the speed is slow, resulting in insufficient air	The fan rotates very slowly or stops rotating	If the fan motor or fan blade is broken, replace the motor or fan blade, if the speed is slow, replace the fan capacitor
AL128	AL128 Low press alarm	Low pressure alarm	3. System leakage of refrigerant	The low pressure is very low, and traces of oil leakage can be seen in the pipeline	Check and fix the leaks, then vacuum and fill with refrigerant according to the nameplate
			4. The low pressure switch is broken	If the low pressure meter exceeds 1kg, this fault is still reported	Replace low voltage switch
			Reverse connection of high and low voltage switches	Low pressure gauge pressure is higher than 1kg, but high pressure gauge is very high	Change the wiring of the high and low voltage switch and check according to the high voltage protection
			The filter is blocked, resulting in a small water flow	The temperature difference between the inlet and outlet water is more than 8 degrees	Cleaning the filter
			Water head and water flow of the waterpump are too small, resulting in insufficient water flow	The temperature difference between the inlet and outlet water is more than 8 degrees	Replace the water pump with a larger water head and water flow
			The water pump has air pockets, resulting in a small water flow	The temperature difference between the inlet and outlet water is more than 8 degrees	Emptying and water pump
			4. There is air in the pipeline, which leads to	The temperature difference between the inlet	Install an automatic air vent at the
			poor water flow	and outlet water is more than 8 degrees	highest point of the piping system
AL129	AL129 High press alarm	High voltage alarm	Not Properly Vacuumed Refrigerant Lines, which leads to air and humidity mixed with refrigerant.	Abnormal Refrigerant Pressure, and Higher current draw.	Re-Vacuum Refrigerant Lines and Re-charge system with refrigerant
			6. The electronic expansion valve is broken, resulting too high pressure	Low pressure is low and high pressure is high	Replace electronic expansion valve
			7. Fouling of the water side heat exchanger causes high pressure	Small temperature difference between inlet and outlet water, high pressure	Clean the water side heat exchanger and add water for treatment
			8. The high pressure switch is broken	If the pressure of the pressure gauge does	Replace the high pressure switch
			The hot water probe or space heating/cooling probes are not placed in their corresponding thermal wells	The outlet water temperature is very high, above 60 degrees Celcius	Place each probe in its thermal well
AL130	AL130 Disc.temp.probe error	Discharge gas temp. probe failure	1. Loose wire / broken wire / broken probe	Visual inspection	Tighten the wire/reconnect the wire/replace the probe
AL131	AL131 Suct.temp.probe error	Suction gas temp. probe failure	1. Loose wire / broken wire / broken probe	Visual inspection	Tighten the wire/reconnect the wire/replace the probe
AL134	AL134 Tank temp.probe error	Water tank probe failure	Loose wire / broken wire / broken probe Strainer is blocked, regulting in a small water.	Visual inspection	Tighten the wire/reconnect the wire/replace the probe
			Strainer is blocked, resulting in a small water flow	degrees Ceicius	Clean the Strainer
		Too high outlet water temperature protection	2. The water pump is too small, resulting in low water flow	degrees Celcius	Replace the water pump with a larger water head and water flow
AL138	AL138 High temp. alarm		3. The water pump is not empty, resulting in a small water flow	degrees Celcius	Purge Water Pump
			4. There is air in the pipeline, which leads	The outlet water temperature is higher than 62	Install an automatic air vent at the
			to poor water flow 5. The setting temperature is too high and the water flow is too small	The outlet water temperature is higher than 62	highest point of the piping system Decrease temperature setpoint
			Strainer is blocked, resulting in increased	The outlet water temperature is below 5 degrees	Clean the Strainer


Annex "B"


Fault code	Panel description	Detail description	Possible cause	Diagnostics method	What to do?
			2. The water pump is too small, resulting	The outlet water temperature is below 5 degrees	Replace the water pump with a larger water
1			in low water flow	Celcius	head and water flow
AL139	AL139 Low temp. alarm		3. The water pump has air pockets (either in the impeller or in the piping around it	The outlet water temperature is below 5 degrees Celcius	Purge water pump
			4. There is air in the pipeline, which leads to poor water flow	The outlet water temperature is below 5 degrees Ceclius	Install an automatic air vent at the highest point of the piping system
AL153	AL153 Fan1 fault	Speed control fan 1 failure	The fan driver dial switch is abnormal	Visual inspection	Fan dial switch top-left-below-right
AL154	AL154 Fan2 fault	Speed control fan 2 failure	2. The fan inverter board is broken	Visually check that the power light is not on	Replace the fan inverter board
AL155	AL155 Fans Offline	Speed control fan	3. The fan motor is broken	Manual rotation of fan motor, still stuck	Replace the fan motor

