

GEOTHERMAL LIQUID TO WATER DC INVERTER HEAT PUMPS

Multi-Applications Heat Pumps

DC inverter Liquid to Water Heat Pumps for Space Heating, Space Cooling, Domestic Hot Water Pre-Heating, Heat recovery, Hot Tub and Swimming Pools water heating and cooling.

GEO 040, 60, 80 V1LM SERIES

+1 (888) 686 7652 📀

https://hydrosolar.ca/ 🜐

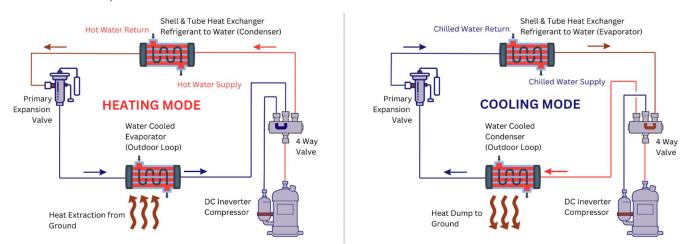
2305 46th Avenue, Lachine (QC) 📀 Canada H8T 3C9

Contents

What Is Geothermal Liquid-to-Water Heat Pump? 3 What Is a DC Inverter Compressor? 3 Why are Liquid-to-Water Heat Pumps becoming so popular? 3 Features 3 General Specifications 3 Optional Items 4 Ratings and Certifications: 4 Ratings and Certifications: 4 Ratings and Certifications: 4 Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEC040V1LM & GEO060V1LM 6 GEC040V1LM & GEO060V1LM 6 GeC040V1LM & GEO060V1LM 6 Gecodov1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating on Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Ineating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T	Introduction	
Why are Liquid-to-Water Heat Pumps becoming so popular? 3 Features 3 General Specifications 3 Optional Items 4 Ratings and Certifications: 4 Testing and Certifications: 4 Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 GEO040V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 <td< td=""><td>What Is Geothermal Liquid-to-Water Heat Pump?</td><td>3</td></td<>	What Is Geothermal Liquid-to-Water Heat Pump?	3
Features 3 General Specifications 3 Optional Items 4 Ratings and Certifications 4 Ratings and Certifications: 4 Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 GEO060V1LM 6 Heating / Cooling Performances: 7 Controls 7 Applications 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Initialneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Flow Requirements: 16 Straight Pipe Runs: 17 Flittings and Accessories Pressure Drop: 18 Machine Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17	What Is a DC Inverter Compressor?	3
General Specifications 3 Optional Items 4 Ratings and Certifications 4 Testing and Certifications: 4 Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 GEO080V1LM 6 GEO080V1LM 6 GEO080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating and Domestic Hot Water Pre-Heating (DHW)-2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW)-2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW)-3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements 16 Straight Pipe Runs: 17 Flittings and Accessories Pressure Drop: <td>Why are Liquid-to-Water Heat Pumps becoming so popular?</td> <td>3</td>	Why are Liquid-to-Water Heat Pumps becoming so popular?	3
Optional Items 4 Ratings and Certifications 4 Testing and Certifications: 4 Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 60 GEO080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16	Features	
Ratings and Certifications 4 Testing and Certifications 4 Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GE0040V1LM & GE0060V1LM 6 GE0080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T	General Specifications	
Testing and Certifications: 4 Ratings List / Design Values 4 Dimensions & Weights. 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures. 6 GEO040V1LM & GEO060V1LM. 6 GEO080V1LM. 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -2T3AP2T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Flow Requirements: 16 Straight Pipe Runs: 17 Flittings and Accessories Pressure Drop: 18	Optional Items	
Ratings List / Design Values 4 Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 GEO080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T3AP1T 14 Operation 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (Ratings and Certifications	
Dimensions & Weights 5 Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 10 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling on Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T3AP1T 14 Operation 15 Check List before Startup 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25	Testing and Certifications:	
Friction Losses through Indoor / Ground Loop heat Exchangers 5 Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 GEO080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Initial Settings 22 Schedule /	Ratings List / Design Values	
Exploded Pictures 6 GEO040V1LM & GEO060V1LM 6 GEO080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Starup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Starup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Dimensions & Weights	5
GE0040V1LM & GE0060V1LM 6 GE0080V1LM 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25	Friction Losses through Indoor / Ground Loop heat Exchangers	5
GEO080V1LM. 6 Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Exploded Pictures	6
Heating / Cooling Performances: 7 Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 </td <td>GEO040V1LM & GEO060V1LM</td> <td>6</td>	GEO040V1LM & GEO060V1LM	6
Controls 10 Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	GEO080V1LM	6
Applications 12 Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Heating / Cooling Performances:	7
Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T 12 Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -2T3AP2T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Controls	10
Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T 12 Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -2T3AP2T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Applications	
Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T. 12 Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T. 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -2T3AP2T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings. 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter. 30	Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW) -2T3AP1T	
Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T 13 Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -2T3AP2T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter. 30	Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T	
Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -2T3AP2T 13 Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW) -2T3AP3T	
Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T 14 Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW) -3T3AP3T	
Operation 15 Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Heating and Cooling or Domestic Hot Water Pre-Heating (DHW) -2T3AP2T	
Check List before Startup 15 Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Space Cooling and Swimming Pool Heating (DHW) -1T2AP1T	
Flow Requirements: 16 Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Operation	
Straight Pipe Runs: 17 Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings. 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Check List before Startup	
Fittings and Accessories Pressure Drop: 18 Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Flow Requirements:	
Machine Startup: 19 Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Straight Pipe Runs:	
Initial Settings 19 Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Fittings and Accessories Pressure Drop:	
Reading Machine Inputs / Outputs (real values) 22 Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Machine Startup:	
Schedule / TimeZone 25 Advanced Settings 26 Installation of WIFI Adapter 30	Initial Settings	
Advanced Settings	Reading Machine Inputs / Outputs (real values)	
Installation of WIFI Adapter	Schedule / TimeZone	
	Advanced Settings	
Hardware Installation & Connection:	Installation of WIFI Adapter	
	Hardware Installation & Connection:	

DC Inverter Liquid to Water Geothermal Heat Pump Technical Manual – Property of Aqua Solanor Inc. – All rights Reserved – 2024/03/27 – REV1

Application downloads and setup:	30
Device List Windows:	32
Application usage guide:	32
Main Components List	34
Warranty (Limited Residential Warranty)	36


Introduction

What Is Geothermal Liquid-to-Water Heat Pump?

Liquid to Water Heat Pump is a device that draws heat from one place (called heat source) and reject the drawn heat to another place (called heat sink). Unlike conventional air to air heat pumps, where generated thermal energy is used to cool/heat air, Liquid to Water Heat Pumps draw energy from the ground (geothermal heat exchanger) and use generated thermal energy to cool/heat water or water/glycol fluid mixture. Our Liquid to water heat pumps are equipped with DC inverter Compressor, which allows them to modulate and match their energy output with heating/cooling demand.

What Is a DC Inverter Compressor?

DC inverter compressors are variable speed compressors powered by direct current inverters. Speed is modulated via an external variable-frequency drive - to control the speed of the compressor. The refrigerant flow rate is changed by the change in the speed of compressor. The turndown ratio depends on the system configuration and manufacturer. It modulates from 15 or 25% up to 100% at full capacity. This means that heat pump operating with a DC inverter compressor can matches its capacity to the demand by simply modulating its compressor speed. Unlike conventional one or two stages compressors, Heat Pumps equipped with a DC inverter compressor do not cycle ON and OFF, they run most of the time at lower speed.

Depending on operating mode, the 4 Way Valve reverses refrigerant flow cycle, and instead of extracting energy from the ground (Heating Mode), it switches to dumping energy to the ground (cooling mode). Heat Sink and Heat Source can be altered. In Cooling mode, heat sink could be a swimming pool or a hot tub (please refer to the applications section for more information).

Why are Liquid-to-Water Heat Pumps becoming so popular?

Canadian/US Building Codes are becoming more demanding in terms of energy efficiency for both residential and commercial buildings. Canadian Federal Government is aiming to gradually increase the energy efficiency standard for both existing and new constructions by requiring that every new home in Canada be Net Zero Ready by 2025 and completely Net Zero by 2030.

Despite the advancement in air source heat pump technology, they still need to be installed with a backup heat source in the northern portion of the US and in most Canadian cities. When properly designed and sized, Liquid to Water Geothermal Heat Pumps can provide the necessary space heating/cooling demand without the need of a backup heating source. Thermal energy is extracted or dumped from the deep ground where the temperature is near the undisturbed ground temperature.

Features

General Specifications

- 1- Ground Loop Heat Exchanger is made from Titanium.
- 2- Ground Loop is a coaxial Heat Exchanger.
- 3- Heat Pump can be used in Open and Closed Loop Geothermal without the need of Cupro-Nickel Coating.
- 4- Indoor Loop heat Exchanger is made from copper.
- 5- Indoor Loop is a shell and tube heat exchanger.
- 6- Heat Pump uses R32 refrigerant.
- 7- Power Supply: 220-240V/1PH/60Hz.
- 8- Heat Pump uses Panasonic DC Inverter Twin Rotary Compressors (One compressor per Heat Pump).
- 9- Control Protocol: Modbus.
- 10- Control Main Board, Inverter Boards, EEV and other by Carel.
- 11- Hot/Chilled Water supply temperatures can be reset with Outdoor Temperature (Outdoor Temperature Sensor is supplied with the Heat Pump, it requires field installation and wiring).
- 12- Controller can display units in both IP and SI format.

DC Inverter Liquid to Water Geothermal Heat Pump Technical Manual – Property of Aqua Solanor Inc. – All rights Reserved – 2024/03/27 – REV1

Hydro Solar

- 13- Satin galvanized steel cabinet with powder coat finish
- 14- Acoustically insulated cabinet.
- 15- All connections located on same side.
- 16- 4-way reversing valve.
- 17- Electronic Expansion Valve (EEV).
- 18- Refrigerant high- and low-pressure sensors.
- 19- Suction line temperature sensor.
- 20- Temperature sensors on all 4 water lines.
- 21- PWM signal for modulating Indoor Loop Circulation Pump Speed and Flow.
- 22- Separate wired temperature sensor (T5) to measure Domestic Hot Water Pre-Heating tank temperature. When separate from space heating tank, HP allows the DHW Tank to be maintained at a separate temperature.

Optional Items

- 1. BMS interface card (Carel PCOS004850).
- 2. Hydronic Circulation pumps for indoor / ground loop.
- 3. Buffer Tanks
- 4. Backup Heaters

Ratings and Certifications

Testing and Certifications:

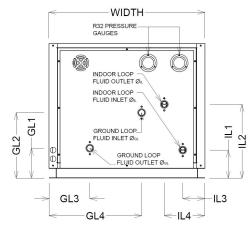
Heat Pumps are tested and certified as per UL 60335-1:2016, UL 60335-2-40: 2022 and CAN/CSA-C22.2 NO. 60335-1:16 (R2021), CSA C22.2 NO. 60335-2-40:22 at TUV Rheinland Laboratories.

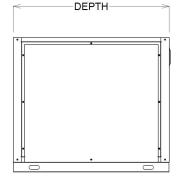
Ratings List / Design Values

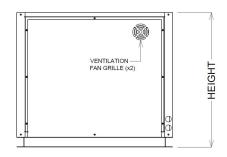
Model No.	Nominal Cooling Load	Power Supply							
	(Btu/hr)		Cooling Mode @ Ambient Dry Bulb: 40°C (104°F), Water inlet 12°C (53.6°F)	Heating Mode @ Ambient Dry Bulb: 21.1°C (70°F), Water inlet 50°C (122°F)	21.1°C (70°F), Water inlet 50°C Max				
GEO040V1LM	40 000	220-240VAC/1Ph/60Hz	4.0	4.9	4.0	5.0	23		
GEO060V1LM	60 000	220-240VAC/1Ph/60Hz	4.9	5.5	5.0	6.0	28		
GEO080V1LM	80 000	220-240VAC/1Ph/60Hz	6.3	8.3	6.5	8.5	39		

Model No.	Water Flow (US GPM) –	Water Pressure Drop @ Max Flow (feet of water) Indoor Loop Ground Loop		Liquid Pipe Connection Indoor/Ground Loop	Refrigerant Type	Sound Level	Refrigerant Charge (KG)	Design Re Pressur		MOP (A)	MCA (A)	Maximum Outlet Water	
	Min-Max					dB(A)		Low	High			Temperature (°C) / (°F)	
GEO040V1LM	9-11	6.59-7.46	7.45-8.72	Ø1"/1" - FNPT	R32	48	1.45	305	609	51.75	28.75	55°C / 131°F	
GEO060V1LM	11-17	5.25-11.75	8.88-13.29	Ø1"/1" - FNPT	R32	48	1.70	305	609	63.00	35.00	55°C / 131°F	
GEO080V1LM	14-22	9.22-13.77	12.90-17.12	Ø1¼"/1½"- FNPT	R32	52	2.40	305	609	109.68	48.75	55°C / 131°F	

Remarks:


- The model GEO040V1LM equipped with Panasonic Compressor: 9VD330XAB21.
- The model GEO060V1LM equipped with Panasonic Compressor: 9KD420ZAA21.
- The model GEO080V1LM equipped with Panasonic Compressor: 9VD550XAA21.
- Maximum flow values correspond for required flow when compressor is running at 100% of its speed.


Note:


- 1. The refrigeration circuit of the above Heat Pumps uses R32 refrigerant which has Global Warming Potential (GWP) index of 675 which is one third of R410a GWP index of 2090. Installation of equipment with R32 refrigerant shall comply to CSA-B52 (Canada) and ASHRAE-34 and ASHRAE-15 (USA).
- 2. Ratings List values were measured when compressor was at 100% of speed and incoming and leaving fluid temperatures (Ground Loop Side) were the highest for cooling mode and lowest for heating mode.

Dimensions & Weights

OPERATING DIMENSIONS AND WEIGHTS

MODEL	WIDTH	DEPTH	HEIGHT	WEIGHT
GEO040V1LM	750mm / 30"	750mm / 30"	650mm / 26"	105 Kg / 231 Lb
GEO060V1LM	750mm / 30"	750mm / 30"	710mm / 28"	113 Kg / 249 Lb
GEO080V1LM	750mm / 30"	750mm / 30"	830mm / 33"	142 Kg / 313 Lb

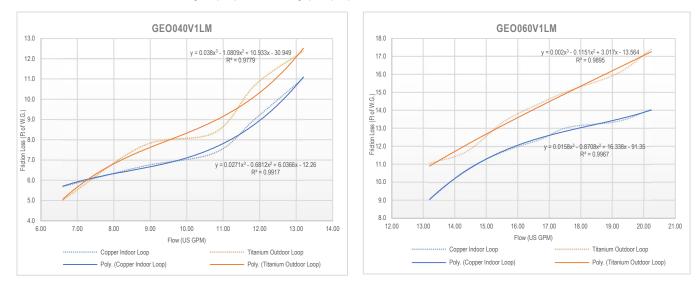
SHIPPING DIMENSIONS AND WEIGHTS

MODEL	WIDTH	DEPTH	HEIGHT	WEIGHT
GEO040V1LM	780mm / 31"	780mm / 31"	780mm / 31"	113 Kg / 249 Lb
GEO060V1LM	780mm / 31"	780mm / 31"	840mm / 33"	122 Kg / 269 Lb
GEO080V1LM	780mm / 31"	780mm / 31"	960mm / 38"	150 Kg / 330 Lb
				0

PIPING CONNECTIONS DIAMETERS

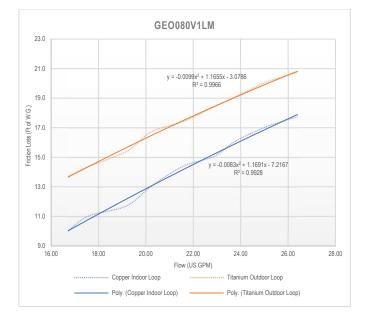
MODEL	IL1 / IL3	IL2 / IL4	GL1 / GL3	GL2 / GL4
GEO040V1LM	Ø1" FNPT	Ø1" FNPT	Ø1" FNPT	Ø1" FNPT
GEO060V1LM	Ø1" FNPT	Ø1" FNPT	Ø1" FNPT	Ø1" FNPT
GEO080V1LM	Ø1 ¹ / ₄ " FNPT	Ø1 ¹ / ₄ " FNPT	Ø1 ¹ / ₂ " FNPT	Ø1 ¹ / ₂ " FNPT

PIPING CONNECTIONS DISTANCES

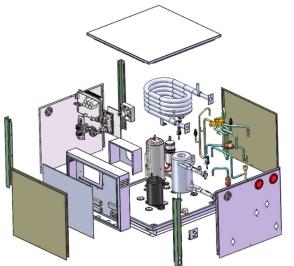

MODEL	IL1	IL2	IL3	IL4
GEO040V1LM	136.3 mm	358.1 mm	104.8 mm	194.5 mm
GEO060V1LM	137.2 mm	445.2 mm	104.8 mm	194.5 mm
GEO080V1LM	138.2 mm	533.2 mm	95 mm	185.0 mm

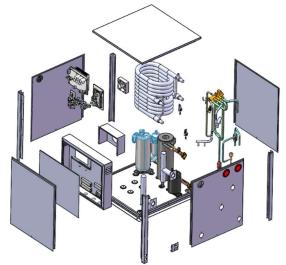
PIPING CONNECTIONS DISTANCES

MODEL	GL1	GL2	GL3	GL4
GEO040V1LM	146.2 mm	317.2 mm	196 mm	446 mm
GEO060V1LM	146.2 mm	356.2 mm	200.8 mm	451 mm
GEO080V1LM	138.2 mm	363.2 mm	175.5 mm	425.5 mm


Friction Losses through Indoor / Ground Loop heat Exchangers

Heat transfer fluid on both sides of heat exchanger is pump with modulating speed pumps and friction loss increases and decreases with the flow.





Exploded Pictures

GEO040V1LM & GEO060V1LM

GEO080V1LM

Heating / Cooling Performances:

										GE	CO40	V1LM																						
					Outdo	or Loop					Elec	trical					Indoo	r Loop																
ANCE	Entering Liquid Temperature		Flow (USGPM)		Flow (USGPM)		Flow (USGPM)		Flow (USGPM)		Flow (USGPM)		Flow (USGPM)		Flow (USGPM)		ing Liquid	Iemperature (@ Max Flow)	-			Heat Absorbed	Power Input	Coefficient of Performance	Enterina Liauid	Temperature	1	Flow (USGPM)	Leaving Liquid	lemperature (@ Max Flow)	5	Delta T	c	Heating Capacity
ERFORM	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW												
L H	23	-5.00	8.8	10.56	17.0	-8.3	6.0	3.3	18,799	5.51	3.79	2.5	104	40	4.84	7.04	113.0	45.0	9.0	5.0	31,730	9.3												
GP	25	-3.89	8.8	10.56	18.4	-7.5	6.6	3.6	21,938	6.43	3.77	2.7	104	40	5.28	7.48	113.3	45.1	9.3	5.1	34,800	10.2												
Ĭ	30	-1.11	8.8	10.56	23.0	-5.0	7.0	3.9	24,804	7.27	3.63	3.0	104	40	5.72	8.37	112.9	44.9	8.9	4.9	37,189	10.9												
HEA	32	0.00	8.8	10.56	24.4	-4.3	7.7	4.3	29,000	8.5	3.4	3.5	104	40	6.16	8.81	113.2	45.1	9.2	5.1	40,600	11.9												
-	35	1.67	8.8	10.56	27.0	-2.8	8.0	4.4	30,877	9.05	3.35	3.7	104	40	6.16	9.25	113.1	45.1	9.1	5.1	42,306	12.4												
	40	4.44	8.8	10.56	31.6	-0.2	8.4	4.7	33,060	9.69	3.33	3.9	104	40	6.60	9.69	113.1	45.1	9.1	5.1	44,422	13.02												
	45	7.22	8.8	10.56	36.2	2.3	8.8	4.9	35,483	10.4	3.25	4.2	104	40	7.04	10.13	113.2	45.1	9.2	5.1	46,571	13.65												
	50	10.00	8.8	10.56	41.0	5.0	9.0	5.0	36,984	10.84	3.18	4.4	104	40	7.48	10.57	113.0	45.0	9.0	5.0	47,833	14.02												
	55	12.78	8.8	10.56	45.8	7.7	9.2	5.1	38,553	11.3	3.05	4.7	104	40	7.93	10.57	113.2	45.1	9.2	5.1	48,959	14.35												
	60	15.56	8.8	10.56	50.5	10.3	9.5	5.3	40,396	11.84	2.94	5.0	104	40	7.93	10.57	113.5	45.3	9.5	5.3	50,426	14.78												

					Outdoo	or Loop					Elec	trical					Indoo	r Loop										
INCE	Liqui	Entering Liquid Temperature		Flow (USGPM)		Flow (USG		. Flow (USG		w (USG		remperature (@ max Flow)	7 - T- T	Leta I		Heat Absorbed	Power Input	Coefficient of Performance	ji.	Temperature				remperature (@ max Flow)	5	Ueta I	Handina Canadity	ricauly capacity
RM/	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW						
L L	23	-5.00	8.8	10.56	18.1	-7.7	4.9	2.7	10,679	3.13	4.47	1.7	122	50	3.52	5.72	131.0	55.0	9.0	5.0	25,930	7.6						
Ē	25	-3.89	8.8	10.56	19.8	-6.8	5.2	2.9	13,101	3.84	4.26	1.9	122	50	3.96	6.16	130.9	55.0	8.9	5.0	27,636	8.1						
SNIL	30	-1.11	8.8	10.56	24.4	-4.2	5.6	3.1	15,490	4.54	4.16	2.1	122	50	4.40	6.60	130.9	55.0	8.9	5.0	29,683	8.7						
N N	32	0.00	8.8	10.56	25.9	-3.4	6.1	3.4	18,321	5.37	4.13	2.3	122	50	4.84	7.04	131.2	55.1	9.2	5.1	32,412	9.5						
Ξ	35	1.67	8.8	10.56	28.7	-1.8	6.3	3.5	19,515	5.72	4.08	2.4	122	50	5.28	7.48	130.9	54.9	8.9	4.9	33,436	9.8						
	40	4.44	8.8	10.56	33.4	0.8	6.6	3.7	22,143	6.49	3.81	2.7	122	50	5.72	7.93	130.8	54.9	8.8	4.9	35,142	10.3						
	45	7.22	8.8	10.56	38.1	3.4	6.9	3.8	23,951	7.02	3.68	2.9	122	50	5.72	7.93	131.2	55.1	9.2	5.1	36,506	10.7						
	50	10.00	8.8	10.56	42.8	6.0	7.2	4.0	26,441	7.75	3.45	3.2	122	50	6.16	8.37	131.1	55.1	9.1	5.1	38,212	11.2						
	55	12.78	8.8	10.56	47.6	8.7	7.4	4.1	27,806	8.15	3.35	3.4	122	50	6.60	8.81	130.9	54.9	8.9	4.9	39,236	11.5						
	60	15.56	8.8	10.56	52.5	11.4	7.5	4.2	28,830	8.45	3.25	3.6	122	50	6.60	8.81	131.0	55.0	9.0	5.0	39,918	11.7						

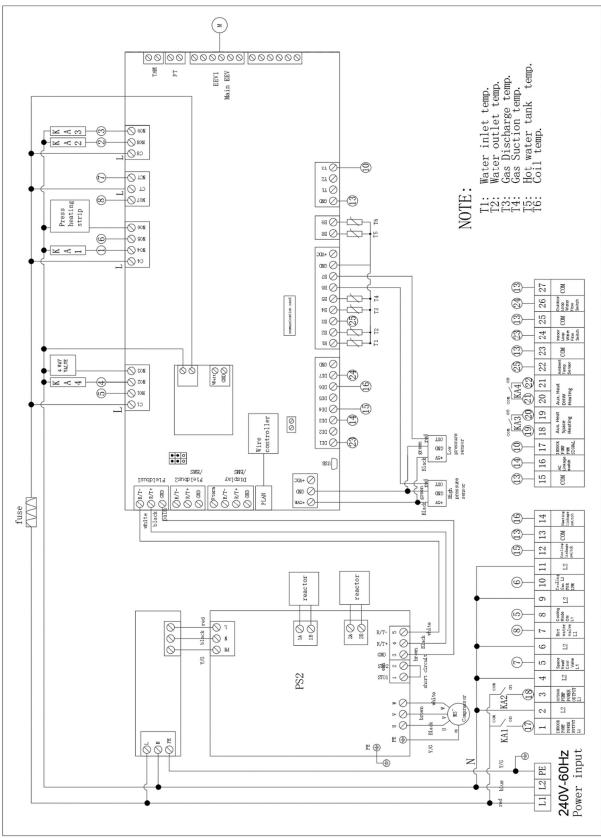
					Outdoo	or Loop					Elec	trical					Indoo	r Loop				
RMANCE	Entering Liquid	Temperature		Flow (USGPM)	2	Flow)	1 2 2	Deta		neat Kejected	Power Input	Coefficient of Performance	Entering Liquid	a			Leaving Liquid	lemperature (@ Max Flow)	1 	Deta		ŏ
RFO	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
E	55	12.78	8.8	10.56	66.1	18.9	11.1	6.15	41,692	12.22	2.58	5.7	53.6	12	8.37	11.01	44.5	6.9	9.1	5.1	50,495	14.8
ING	60	15.56	8.8	10.56	69.2	20.7	9.2	5.1	39,884	11.69	2.61	5.5	53.6	12	8.37	11.01	44.8	7.1	8.8	4.9	48,789	14.3
l l	65	18.33	8.8	10.56	73.9	23.3	8.9	5.0	38,485	11.28	2.62	5.3	53.6	12	7.93	10.57	44.7	7.0	8.9	5.0	47,424	13.9
ö	70	21.11	8.8	10.56	78.5	25.8	8.5	4.7	36,029	10.56	2.64	5.0	53.6	12	7.48	10.13	44.7	7.1	8.9	4.9	45,036	13.2
	75	23.89	8.8	10.56	83.2	28.5	8.2	4.6	34,766	10.19	2.61	4.9	53.6	12	7.04	9.69	44.6	7.0	9.0	5.0	43,671	12.8
	80	26.67	8.8	10.56	88.0	31.1	8.0	4.5	33,402	9.79	2.71	4.6	53.6	12	7.04	9.69	44.8	7.1	8.8	4.9	42,648	12.5
	85	29.44	8.8	10.56	92.8	33.8	7.8	4.4	31,730	9.3	2.9	4.2	53.6	12	6.60	9.25	44.6	7.0	9.0	5.0	41,624	12.2
	90	32.22	8.8	10.56	97.6	36.5	7.6	4.2	30,331	8.89	2.96	4.0	53.6	12	6.16	8.81	44.5	6.9	9.1	5.1	40,430	11.85

GEO060V1LM

					Outdoo	or Loop					Elec	trical					Indoo	r Loop				
ANCE	Entering Liquid	Temperature		LIOW (USGFM)	≥ :	Flow)	F F	Deta		Heat Absorbed	Power Input	Coefficient of Performance	Entering Liquid	Temperature	0	FIOW (USUPM)	Leaving Liquid	remperature (@ max Flow)	-	Detta		Heating Capacity
RMA	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
	23	-5.00	11.44	15.84	17.0	-8.3	6.0	3.3	28,659	8.4	5.6	2.5	104	40	7.5	10.6	113.0	45.0	9.0	5.0	47,765	14
PERF	25	-3.89	11.44	15.84	18.7	-7.4	6.3	3.5	32,003	9.38	5.42	2.7	104	40	7.9	11.4	112.8	44.9	8.8	4.9	50,495	14.8
ATING	30	-1.11	11.44	15.84	23.3	-4.8	6.7	3.7	35,380	10.37	5.23	3.0	104	40	8.4	11.9	112.9	45.0	8.9	5.0	53,224	15.6
HEAT	32	0.00	11.44	15.84	24.4	-4.2	7.6	4.2	43,364	12.71	5.09	3.5	104	40	9.7	13.6	112.9	44.9	8.9	4.9	60,730	17.8
-	35	1.67	11.44	15.84	27.1	-2.7	7.9	4.4	46,128	13.52	4.98	3.7	104	40	10.1	14.1	112.9	45.0	8.9	5.0	63,118	18.5
	40	4.44	11.44	15.84	31.7	-0.2	8.3	4.6	49,062	14.38	4.92	3.9	104	40	10.6	15.0	112.8	44.9	8.8	4.9	65,848	19.3
	45	7.22	11.44	15.84	36.2	2.3	8.8	4.9	53,702	15.74	4.86	4.2	104	40	11.0	15.4	113.1	45.0	9.1	5.0	70,283	20.6
1	50	10.00	11.44	15.84	41.0	5.0	9.0	5.0	55,715	16.33	4.77	4.4	104	40	11.4	15.9	113.0	45.0	9.0	5.0	71,989	21.1
	55	12.78	11.44	15.84	45.8	7.7	9.2	5.1	57,898	16.97	4.53	4.7	104	40	11.4	15.9	113.2	45.1	9.2	5.1	73,354	21.5
1	60	15.56	11.44	15.84	50.7	10.4	9.3	5.2	60,014	17.59	4.21	5.2	104	40	11.4	15.9	113.3	45.2	9.3	5.2	74,377	21.8

					Outdoo	or Loop					Elec	trical					Indoo	r Loop				
ANCE	Entering Liquid	Temperature	Elow, ALCORN	2	Leaving	w) (w	F -11- C	Deta		near Absorbed	Power Input	Coefficient of Performance	Entering Liquid	Temperature	0		Ľ	iemperature (@ max Flow)	T mice	- Ceta -	Hondian Canadity	neauig capacity
RMAN	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
RFOF	23	-5.00	11.44	15.84	18.5	-7.5	4.5	2.5	14,739	4.32	6.18	1.7	122	50	4.8	7.9	131.0	55.0	9.0	5.0	35,824	10.5
E E	25	-3.89	11.44	15.84	20.0	-6.7	5.0	2.8	18,765	5.5	6.1	1.9	122	50	5.7	8.8	130.9	55.0	8.9	5.0	39,577	11.6
<u>S</u>	30	-1.11	11.44	15.84	24.6	-4.1	5.4	3.0	22,723	6.66	6.04	2.1	122	50	6.6	9.7	130.9	54.9	8.9	4.9	43,330	12.7
НЕАТІ	32	0.00	11.44	15.84	26.3	-3.1	5.7	3.1	25,281	7.41	5.79	2.3	122	50	6.6	9.7	131.3	55.1	9.3	5.1	45,036	13.2
-	35	1.67	11.44	15.84	29.2	-1.5	5.8	3.2	26,885	7.88	5.62	2.4	122	50	7.0	10.1	131.1	55.0	9.1	5.0	46,059	13.5
	40	4.44	11.44	15.84	34.0	1.1	6.0	3.4	30,297	8.88	5.22	2.7	122	50	7.5	10.6	131.1	55.0	9.1	5.0	48,106	14.1
	45	7.22	11.44	15.84	38.7	3.7	6.3	3.5	32,344	9.48	5.12	2.9	122	50	7.9	11.0	131.0	55.0	9.0	5.0	49,812	14.6
	50	10.00	11.44	15.84	43.4	6.4	6.6	3.6	35,926	10.53	4.77	3.2	122	50	8.4	11.4	131.1	55.0	9.1	5.0	52,201	15.3
	55	12.78	11.44	15.84	48.3	9.1	6.7	3.7	37,769	11.07	4.53	3.4	122	50	8.8	11.9	130.9	55.0	8.9	5.0	53,224	15.6
1	60	15.56	11.44	15.84	53.2	11.8	6.8	3.8	39,202	11.49	4.41	3.6	122	50	8.8	11.9	131.1	55.0	9.1	5.0	54,248	15.9

					Outdo	or Loop					Elec	trical					Indoo	r Loop				
MANCE	Entering Liquid	Temper		FIOW (U SUPM)	aving 1	lemperature (@ max Flow)	F 54			Heat Kejected	Power Input	Coefficient of Performance	Entering Liquid	Temperature			5	remperature (@ max Flow)	F S			cooling capacity
FORM	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
PERF	55	12.78	11.44	15.84	64.8	18.2	9.8	5.4	91,675	26.87	4.02	5.7	53.6	12	12.3	17.2	44.6	7.0	9.0	5.0	77,960	22.85
NG	60	15.56	11.44	15.84	69.5	20.8	9.5	5.3	89,423	26.21	4.06	5.5	53.6	12	11.9	16.7	44.6	7.0	9.0	5.0	75,571	22.15
OOL	65	18.33	11.44	15.84	74.2	23.4	9.2	5.1	87,240	25.57	4.12	5.2	53.6	12	11.4	16.3	44.7	7.0	8.9	5.0	73,183	21.45
ö	70	21.11	11.44	15.84	78.9	26.1	8.9	4.9	85,022	24.92	4.17	5.0	53.6	12	11.0	15.9	44.7	7.1	8.9	4.9	70,795	20.75
1	75	23.89	11.44	15.84	83.8	28.8	8.8	4.9	84,203	24.68	4.18	4.9	53.6	12	11.0	15.4	44.6	7.0	9.0	5.0	69,942	20.5
	80	26.67	11.44	15.84	88.3	31.3	8.3	4.6	80,416	23.57	4.22	4.6	53.6	12	10.6	14.5	44.6	7.0	9.0	5.0	66,018	19.35
	85	29.44	11.44	15.84	92.8	33.8	7.8	4.3	76,731	22.49	4.29	4.2	53.6	12	9.7	13.6	44.5	7.0	9.1	5.0	62,095	18.2
1	90	32.22	11.44	15.84	99.4	37.5	9.4	5.2	75,162	22.03	4.38	4.0	53.6	12	10.6	13.2	44.5	7.0	9.1	5.0	60,218	17.65



										GEO	080	/1LM										
					Outdoo	or Loop					Elec	trical					Indoo	r Loop				
PERFORMANCE	Entering Liquid	Temperature	WIG JSTI		Leaving Liquid		T Mod	- Ceia	Head Absorbad		Power Input	Coefficient of Performance	Enterina Liauid	Temperature		LIOW (USGPM)		lemperature (@ max Flow)	-	Leia -	Handine Canacity	nearing capacity
RMA	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
2FO	23	-5.00	15.84	21.12	17.0	-8.3	6.0	3.3	38,076	11.16	7.44	2.5	104	40	8.4	14.1	113.0	45.0	9.0	5.0	63,459	18.6
E	25	-3.89	15.84	21.12	18.7	-7.4	6.3	3.5	41,556	12.18	7.32	2.7	104	40	9.2	15.0	112.8	44.9	8.8	4.9	66,530	19.5
HEATING	30	-1.11	15.84	21.12	23.0	-5.0	7.0	3.9	49,881	14.62	7.28	3.0	104	40	11.0	16.7	112.9	44.9	8.9	4.9	74,718	21.9
IEA1	32	0.00	15.84	21.12	24.4	-4.3	7.7	4.3	57,966	16.99	6.81	3.5	104	40	12.3	18.1	113.0	45.0	9.0	5.0	81,201	23.8
1	35	1.67	15.84	21.12	27.1	-2.7	7.9	4.4	61,276	17.96	6.64	3.7	104	40	12.8	18.5	113.0	45.0	9.0	5.0	83,930	24.6
	40	4.44	15.84	21.12	31.9	-0.1	8.1	4.5	64,210	18.82	6.48	3.9	104	40	13.6	19.4	112.9	44.9	8.9	4.9	86,319	25.3
	45	7.22	15.84	21.12	36.4	2.4	8.6	4.8	69,669	20.42	6.38	4.2	104	40	15.0	20.7	112.8	44.9	8.8	4.9	91,436	26.8
	50	10.00	15.84	21.12	41.0	5.0	9.0	5.0	74,173	21.74	6.36	4.4	104	40	15.4	21.1	113.0	45.0	9.0	5.0	95,872	28.1
	55	12.78	15.84	21.12	45.8	7.7	9.2	5.1	76,834	22.52	6.08	4.7	104	40	15.9	21.1	113.2	45.1	9.2	5.1	97,577	28.6
	60	15.56	15.84	21.12	50.7	10.4	9.3	5.2	79,666	23.35	5.55	5.2	104	40	15.9	21.1	113.3	45.2	9.3	5.2	98,601	28.9
					Outdo	or Loop					Floo	trical					Indoa	r Loop				<u> </u>
CE	Entering Liquid	Temperature			Leaving Liquid	Flow)	T eile		Llast Absorbad		Power Input	Coefficient of Performance	Enterina Liauid	Temperature		LIOW (DOGFM)	Leaving Liquid	I emperature (@ Max Flow) Flow)		Delta I	Laatine Panaritu	rearing capacity
MAN	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
HEATING PERFORMANCE	23	-5.00	15.84	21.12	17.6	-8.0	5.4	3.0	27,704	8.12	8.68	1.9	122	50	8.4	12.8	130.9	55.0	8.9	5.0	57,318	16.8
l H	25	-3.89	15.84	21.12	19.3	-7.0	5.7	3.1	31,081	9.11	8.49	2.1	122	50	8.8	13.2	131.1	55.0	9.1	5.0	60,048	17.6
19N	30	-1.11	15.84	21.12	24.1	-4.4	5.9	3.3	34,084	9.99	8.41	2.2	122	50	9.2	13.6	131.2	55.1	9.2	5.1	62,777	18.4
E.	32	0.00	15.84	21.12	25.8	-3.4	6.2	3.4	37,803	11.08	8.12	2.4	122	50	10.1	14.5	131.0	55.0	9.0	5.0	65,507	19.2
Ξ	35	1.67	15.84	21.12	28.5	-1.9	6.5	3.6	41,658	12.21	7.89	2.5	122	50	10.6	15.0	131.1	55.1	9.1	5.1	68,577	20.1
	40	4.44	15.84	21.12	33.3	0.7	6.7	3.7	45,411	13.31	7.39	2.8	122	50	11.0	15.4	131.1	55.1	9.1	5.1	70,624	20.7
	45	7.22	15.84	21.12	38.1	3.4	6.9	3.9	49,130	14.4	7.2	3.0	122	50	11.9	16.3	131.0	55.0	9.0	5.0	73,695	21.6
	50	10.00	15.84	21.12	42.8	6.0	7.2	4.0	52,781	15.47	7.03	3.2	122	50	12.3	16.7	131.1	55.1	9.1	5.1	76,766	22.5
	55	12.78	15.84	21.12	47.7	8.7	7.3	4.1	54,930	16.1	6.7	3.4	122	50	12.8	17.2	131.0	55.0	9.0	5.0	77,789	22.8
	60	15.56	15.84	21.12	52.5	11.4	7.5	4.1	57,318	16.8	6.4	3.6	122	50	13.2	17.6	130.9	55.0	8.9	5.0	79,154	23.2

					Outdo	or Loop					Elec	trical					Indoo	r Loop				
RMANCE	Entering Liquid	Temperature		en) 🕷	Leaving Liquid	Flow)	F 11-2		Host Doiotech	valence	Power Input	Coefficient of Performance	Enterina Liauid	Temperature		LIOW (USGFM)	Leaving Liquid	I emperature (@ max Flow)	F			cooling capacity
RFO	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW	KW	COP	(° F)	(°C)	Min	Max	(° F)	(°C)	(° F)	(°C)	Btu/Hr	KW
G PE	55	12.78	15.84	21.12	64.1	17.8	9.1	5.0	113,442	33.25	5.05	5.6	53.6	12	15.9	21.1	44.5	7.0	9.1	5.0	96,213	28.2
N N	60	15.56	15.84	21.12	68.8	20.4	8.8	4.9	110,815	32.48	5.08	5.4	53.6	12	15.4	20.7	44.6	7.0	9.0	5.0	93,483	27.4
00	65	18.33	15.84	21.12	73.6	23.1	8.6	4.8	108,871	31.91	5.11	5.2	53.6	12	15.0	20.3	44.6	7.0	9.0	5.0	91,436	26.8
Ŭ	70	21.11	15.84	21.12	78.5	25.8	8.5	4.7	107,199	31.42	5.12	5.1	53.6	12	14.5	19.8	44.6	7.0	9.0	5.0	89,730	26.3
	75	23.89	15.84	21.12	83.2	28.4	8.2	4.6	104,606	30.66	5.16	4.9	53.6	12	14.1	19.4	44.7	7.0	8.9	5.0	87,001	25.5
	80	26.67	15.84	21.12	88.0	31.1	8.0	4.4	103,002	30.19	5.39	4.6	53.6	12	13.6	18.9	44.7	7.1	8.9	4.9	84,613	24.8
	85	29.44	15.84	21.12	92.7	33.7	7.7	4.3	101,706	29.81	5.71	4.2	53.6	12	13.2	18.5	44.7	7.1	8.9	4.9	82,224	24.1
	90	32.22	15.84	21.12	97.7	36.5	7.6	4.2	101.501	29.75	5.95	4.0	53.6	12	12.8	18.1	44.6	7.0	9.0	5.0	81.201	23.8

Controls

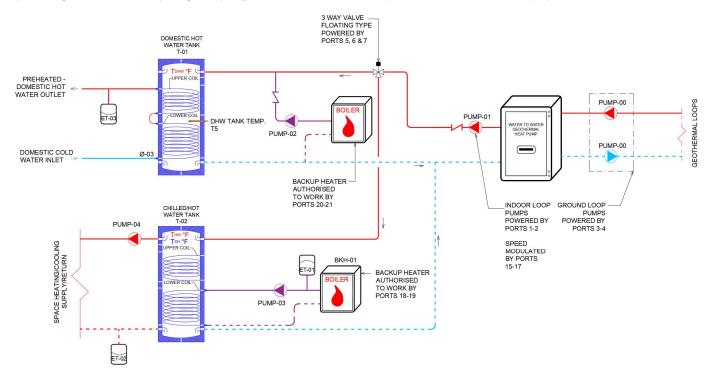
DC Inverter Liquid to Water Geothermal Heat Pump Manual

1	2	3	4	5	6	7	8	9	10	11	12	13	14
INDOOR PUMP POWER OUTPUT	L2	outdoor pump power output L1	L2	space/ heat cool valve	L2	hot water valve L1	cool mode on L1		cooling FAN FOR IPM	L2	Cooling linkage switch	0.011	Heating linkage switch

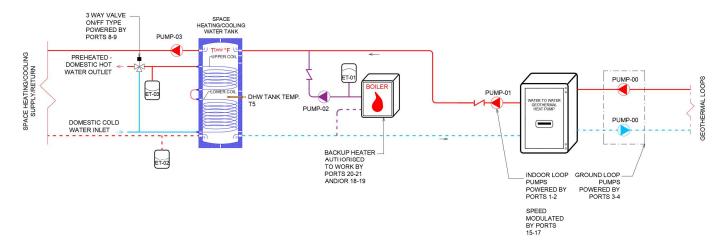
Terminal	Function	Туре
1-2: INDOOR LOOP'S PUMP POWER OUTPUT	Power Supply for Heat Pump Circulation Pump of the indoor loop	220-240V/1Ph/60Hz
	(Pump not included)	
3-4: OUTDOOR LOOP'S PUMP POWER OUTPUT	Power Supply for Heat Pump Circulation Pump of the outdoor loop	220-240V/1Ph/60Hz
	(Pump not included)	
5-6-7: THREE WAY VALVE POWER OUTPUT	Power Supply for Floating Type 3 Way Valve, Switches between	220-240V/1Ph/60Hz
	DHW tank and Space Heating/Cooling Tank	
8-9: TWO WAY VALVE POWER SUPPLY	Power Supply for Cooling Mode Signal – ON when Heat Pump is in	220-240V/1Ph/60Hz
	cooling mode (Used in 2 tanks Hot/Chilled Configuration)	
10-11: INTERNAL FAN	Power Supply for integrated Cooling Fan (not to be wired by installer)	220-240V/1Ph/60Hz
12-13: COOLING LINKAGE	Changes Heat Pump Operating Mode to Cooling. Heat Pump must	Dry Contact (can be configured NO or NC from
	be turned off before changing operating mode.	Carel Controller)
13-14: HEATING LINKAGE	Changes Heat Pump Operating Mode to Heating. Heat Pump must	Dry Contact (can be configured NO or NC from
	be turned off before changing operating mode.	Carel Controller)

15	16	17	18	19	20	21	22	23	24	25	26	27
СОМ	AC Linkage switch	INDOOR PUMP PWM SIGNAL	Aux. Spac Heat		Aux. H DHW Heatin		Ambient Temp. Sensor	СОМ	Indoor Loop Water Flow Switch	СОМ	Outdoor Loop Water Flow Switch	СОМ

Terminal	Function	Туре
15-16: HEAT PUMP ON/OFF LINKAGE	Switches Heat Pump ON or OFF	Dry Contact (can be configured NO or NC from
		Carel Controller)
15-17: INDOOR LOOP PUMP MODULATION	Modulates the speed of indoor loop circulation Pump (optional)	PWM (Pulse Width Modulation)
18-19: AUXILIARY HEAT FOR SPACE HEATING	Enables the operation of the backup heater for space heating	Dry Contact (NO)
20-21: AUXILIARY HEAT FOR DHW HEATING	Enables the operation of the backup heater for Domestic Hot Water	220-240V/1Ph/60Hz
	Heating	
22-23: AMBIENT TEMPERATURE SENSOR	Connection for ambient temperature sensor (Optional for outdoor	1000 Ohms Resistance
	reset of Heat Pump supply temperatures in heating and cooling	
	modes)	
23-24: FLOW SWITCH FOR INDOOR LOOP	Closes when indoor loop pump is turned ON by the controller of the	Dry Contact (can be configured NO or NC from
	Heat Pump	Carel Controller)
25-26: FLOW SWITCH FOR OUTDOOR LOOP	Closes when outdoor loop pump is turned ON by the controller of the	Dry Contact (can be configured NO or NC from
	Heat Pump	Carel Controller)



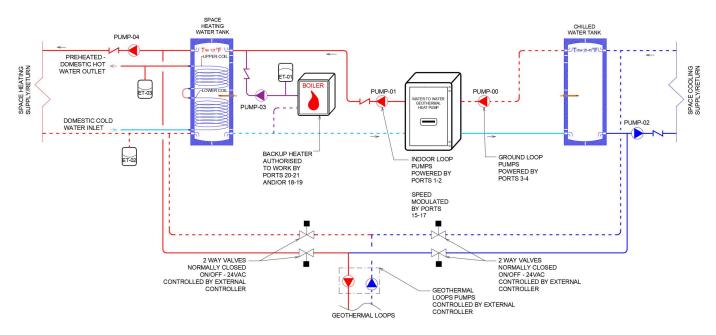
Applications


Space Heating or Cooling and Domestic Hot Water Pre-Heating (DHW)-2T3AP1T

In this configuration, Heat Pump is connected to two separate buffer tanks: one dedicated for DHW Preheating and the other tank dedicated for either space heating in winter or space cooling in the summer. In this operating mode, priority for tank T-01 and T-02 can be set up via the control interface of the heat pump.

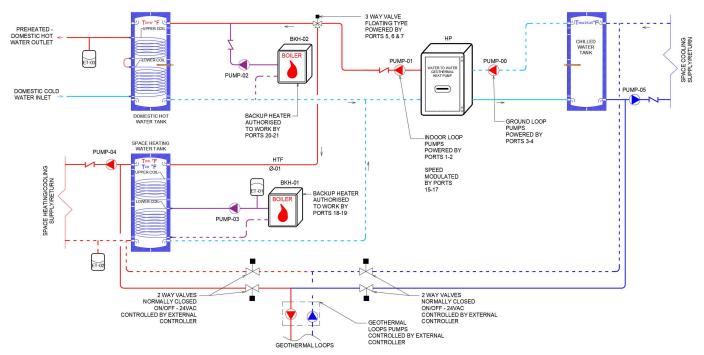
Space Heating and Domestic Hot Water Pre-Heating (DHW) or Space Cooling-1T3AP1T

In this configuration, Heat Pump is connected to only one buffer tank with an indirect coil: the indirect coil will be used to preheat DHW when HP is in heating mode (when in cooling mode, indirect coil will be bypassed via the three-way valve). Tank will be heated in heating mode and cooled in cooling mode.



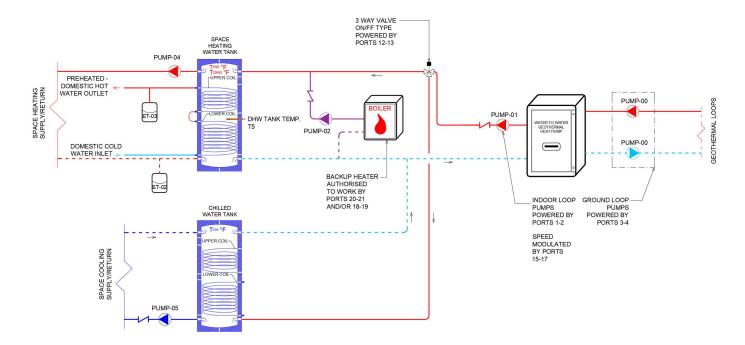
Simultaneous Heating and Cooling and/or Domestic Hot Water Pre-Heating (DHW)-2T3AP3T

In this configuration, Heat Pump works in heating mode only, extracting heat from the chilled water tank and dumping that heat into the hot water tank. Hot Water tank shall have an indirect coil if used to preheat DHW beside space heating.



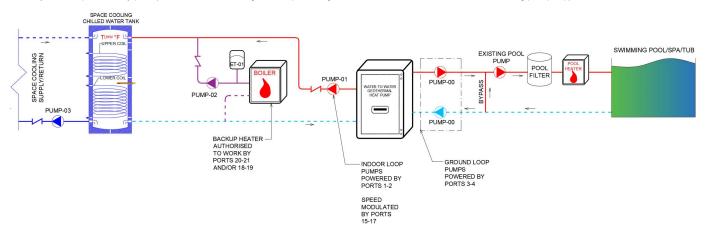
Simultaneous Heating and Cooling and Domestic Hot Water Pre-Heating (DHW)-3T3AP3T

In this configuration, Heat Pump works in heating mode only, extracting heat from the chilled water tank and dumping that heat into either the space heating tank or DHW preheating tank.



Heating and Cooling or Domestic Hot Water Pre-Heating (DHW)-2T3AP2T

In this configuration, Heat Pump is connected to two separate buffer tanks: one dedicated for space heating hot water and the other dedicated for space cooling chilled water. In this operating mode, priority for tank T-01 and T-02 can be set up via the control interface of the heat pump.



Space Cooling and Swimming Pool Heating (DHW)-1T2AP1T

In this configuration, Heat Pump is connected to one buffer tank used for space cooling on the indoor loop side. The outdoor loop side will be hooked up to swimming pool directly with a hydraulic separator or by-pass (the nominal flow on the ground loop side might be lower than the nominal flow of the swimming pool pump).

The maximum entering ground loop temperature is 90°F (32.22°C). This configuration works if the temperature of the water pumped from the pool to the ground loop side of the HP is less or equal than 90°F (32.22°C).

Operation

Check List before Startup

Introduction:

Engineering and quality control is built into every geothermal unit. Good performance depends on proper application and correct installation. This geothermal heat pump provides heated water and chilled water as well as optional domestic water heating capability.

Notices, Cautions, Warnings, & Dangers:

"NOTICE" Notification of installation, operation, or maintenance information, which is important, but which is NOT hazard related.

"CAUTION" Indicates a potentially hazardous situation or an unsafe practice which, if not avoided, COULD result in minor or moderate injury or product or property damage.

"WARNING" Indicates potentially hazardous situation which, if not avoided, COULD result in death or serious injury.

"DANGER" Indicates an immediate hazardous situation which, if not avoided, WILL result in death or serious injury.

Inspection:

Upon receipt of any equipment, carefully check the shipment against the packing slip and the freight company bill of lading. Verify that all units and packages have been received. Inspect the packaging of each package and each unit for damages. Ensure that the carrier makes proper notation of all damages or shortage on all bill of lading papers. Concealed damage should be reported to the freight company within 5 days. If not filed within 5 days the freight company can deny all claims.

Note: Notify Aqua Solanor Inc. shipping department of all damages within five (5) days. It is the responsibility of the purchaser to file all necessary claims with the freight company.

Unpackaging:

Aqua Solanor Inc. GEO Series are mounted to wooden pallets for easy handling during shipment and installation. Units are protected during shipment with durable cardboard corner posts, top and air coil panels. Shrink wrap is applied covering the entire unit and attachment to the pallet.

Upon receipt of the unit, carefully remove the shrink wrap. Using a box cutter, slit the shrink wrap on the cardboard top and corner posts. Use caution to not damage the finished surface of the unit. Keep all cardboard or other packaging material for safe storage and transport to the job site prior to installation.

Remove the front service panel to locate technical documents; manuals, bulletins or instructions and accessory items; Control Display, WIFI Adapter and other accessories.

AQUA SOLANOR INC. REQUIRES THAT A STRAINER BE INSTALLED ON THE INLET OF SOURCE AND LOAD SIDE OF SHELL AND TUBE HEAT EXCHANGERS WHEN INCOMING FLUID CONTAINS MATERIALS THAT CAN REDUCE HEAT EXCHANGE BETWEEN REFRIGERANT AND HEAT TRANSFER FLUID.

DO NOT OPERATE THE GEOTHERMAL HEAT PUMP UNIT DURING BUILDING CONSTRUCTION PHASE.

\triangle warning \triangle

FAILURE TO FOLLOW THIS CAUTION MAY RESULT IN PERSONAL INJURY. USE CARE AND WEAR APPROPRIATE PROTECTIVE CLOTHING, SAFETY GLASSES, AND GLOVES WHEN SERVICING UNIT OR HANDLING PARTS.

Unit Protection:

Protect units from damage and contamination due to plastering (spraying), painting and all other foreign materials that may be used at the job site.

Keep all units covered on the job site with either the original packaging or equivalent protective covering. Cap or recap unit connections and all piping until unit is installed. Precautions must be taken to avoid physical damage and contamination which may prevent proper start-up and may result in costly equipment repair.

Storage:

All geothermal units should be stored inside in the original packaging in a clean, dry location. Units should be always stored in an upright position. Units should not be stacked unless specially noted on the packaging.

Removal and Disposal:

All Geothermal units removed from service should have all components, oils, antifreeze, and refrigerants properly disposed of according to local and national environmental recycling codes, regulations, local by-laws, standards, and rules.

Pre-Installation Checks:

Before you fully install the geothermal equipment, it is recommended you do the following:

- a. Fully inspect the unit after unpacking.
- b. Compare the electrical data on the unit nameplate with packing slip and ordering information to verify that the correct unit has been shipped.
- c. Inspect all electrical connections and wires. Connections must be clean and tight at the terminals, and wires should not touch any sharp edges or copper pipe.
- d. Verify that all refrigerant tubing is free of dents and kinks. Refrigerant tubing should not be touching other unit components.
- e. Before unit start-up, read all manuals and become familiar with unit components and operation. Thoroughly check the unit before operating.
- f. Locate the Unit Start-Up Form from this manual and have it available as the unit installation proceeds.

Equipment Installation:

All units should be installed in an indoor area where the ambient temperature will remain above 45° F and should be placed in a way that piping and ductwork or other permanently installed fixtures do not have to be removed for servicing the unit.

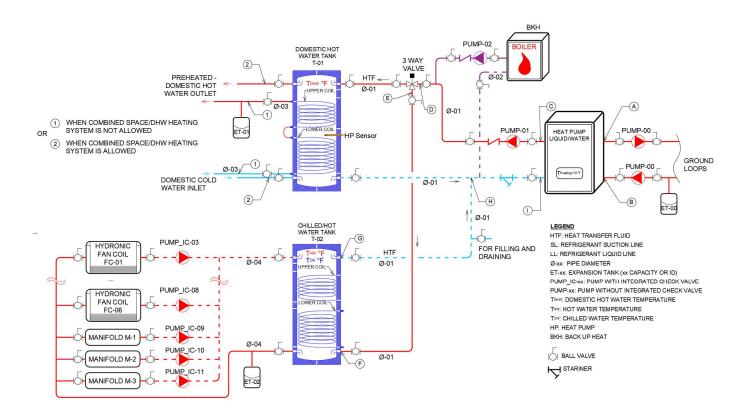
Installation shall leave enough clearances for accessing all components of the heat pump.

TO EXTREMES. EQUIPMENT IS NOT CERTIFIED FOR OUTDOOR

APPLICATIONS. SUCH INSTALLATION WILL VOID ALL WARRANTIES.

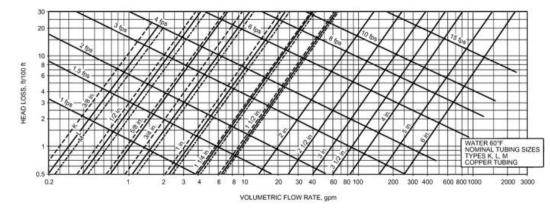
DC Inverter Liquid to Water Geothermal Heat Pump Technical Manual – Property of Aqua Solanor Inc. – All rights Reserved – 2024/03/27 – REV1

	Components:
CAUTION A CAUTION BEFORE DRILLING OR DRIVING ANY SCREWS INTO CABINET, CHECK TO	Master Contactor: Energizes Compressor and Hydronic Pumps.
BE SURE THE SCREW WILL NOT HIT ANY INTERNAL PARTS OR REFRIGERANT LINES.	Logic Board: Logic Board operates the compressor and protects unit by locking out
Unit Placement:	when safety switches are engaged. It also provides fault indicator(s).
When installing a geothermal heating and cooling unit, there are items the installer should consider before placing the equipment.	Dry Contacts: Provides connection to a third-party controller (or thermostat) or other accessories to the low voltage circuit.
 Service Access: Is there enough space for service access? A general rule of thumb is at least 2 feet in the front and 2 feet on at least one side. Unit Air Pad: All geothermal heating and cooling equipment should be placed as a high depth with the general of forget depth are as high depth of the second s	Inverter Boards: Converts incoming AC voltage to DC voltage and modulate compressor speed (there is 2 smaller inverter boards for Fan and Indoor loop circulation Pump)
on a high-density rubber pad, a formed plastic air pad, or a high density, closed cell polystyrene pad. This helps eliminate vibration noise that could be transmitted through the floor.	Reversing Valve: Controls the cycle of the refrigerant system (heating or cooling). Energized in cooling mode.
 Unit Racking: If units are being placed on racking, the unit must be placed on a solid foundation covering the full base of the unit. Also, utilize a foam pad between the unit and the rack. 	High Pressure Switch: Protects the refrigerant system from high refrigerant pressure by locking unit out if pressure exceeds setting.
 The installer must verify that all applicable wiring, piping, and accessories are correct and on the job site. 	Low Pressure Switch: Protects the refrigerant system from low suction pressure if suction pressure falls below setting.
Electrical: All wiring, line, and low voltage should comply with the manufacturer's recommendations, The National Electrical Code, and all local codes and ordinances.	Flow Switch (Freeze Protection Device): Protects the water heat exchanger from freezing by shutting down compressor if water flow decreases.
Thermostat or External Controllers:	Compressor: Pumps refrigerant through the heat exchangers and pressurizes the refrigerant, which increases the temperature of the refrigerant.
Thermostats should be installed approximately 54 inches off the floor on an inside wall in the return air pattern and where they are not in direct sunlight at anytime.	Consumer Instructions
Loop Pumping Modules / or Individual Pumps: Must be wired to the heat pump's electric control box. When pumps amperage draw	Dealer should instruct the consumer in proper operation, maintenance, filter replacements, thermostat and indicator lights. Also provide the consumer with the manufacturer's Owner's Manual for the equipment being installed.
exceeds 5-amp, a pump module connection block (connected to the master contactor) and a properly sized circuit breaker shall be provided (by installer) to connect the Pump Module wiring.	Aqua Solanor Inc. (ASI) D-I-Y Policy
Hydronic Piping and Pumps design:	ASI's geothermal heat pumps and system installations may include electrical, refrigerant and/or water connections. Federal, state and local codes and regulations
The type and diameter of hydronic fluid piping (on both indoor and ground loop sides) shall be appropriate for the operating conditions of the heat pump.	apply to various aspects of the installation. Improperly installed equipment can lead to equipment failure and health/ safety concerns. For these reasons, only qualified technicians should install an Aqua Solanor Inc. built geothermal system.
Pumps and pipe diameters shall be properly sized for the minimum and maximum operating flows of the heat pumps. Proper sizing is the responsibility of the installer or his client or whoever they hire for the design (such as engineers, technologist of other).	Because of the importance of proper installation, Aqua Solanor Inc. does sell equipment direct to homeowners, however warranty is only granted when homeowner submit a proof that installation was done by a professional certified technician.
Improperly designing the hydronic pipes connected to this heat pump in a way that might cause damage to the heat pump, will void the warranty.	Certification of technician shall comply with local state or provincial applicable trade law.
Hydronic Piping Accessories	Homeowners are supposed to register the warranty of the installed heat pump. Registration entitles the submittal of installer license certificate as well as a startup and
Proper fittings and accessories shall be installed on the hydronic closed loop network.	commissioning report.
Accessories such as automatic air vents, air separators, expansion tanks, water hammer arrestors and any other accessories required for a healthy operation of the heat Pump.	Registration form is only available online on <u>www.hydrosolar.ca</u> website


Flow Requirements:

For a healthy operation of the heat pump, circulation pumps (on both indoor and ground loop sides) shall be properly sized for the available friction loss between Indoor Loop of heat Pump and Buffer Tank or between the incoming and outgoing fluid ports of the ground loop heat exchanger. Circulation Pumps shall be sized for the maximum operating flow of the Heat Pump.

ALL HYDRONIC CLOSED LOOPS SHALL CONTAIN HEAT TRANSFER FLUID ONLY AND SHALL BE FREE FROM AIR OR ANY OTHER MATERIALS THAT CAN OBSTRUCT THE FLOW OF FLUID BACK AND FORTH. AUTOMATIC AIR VENTS OR AIR SEPARATORS SHALL BE INSTALLED AT THE HIGHEST POINTS IN THE HYDRAULIC CIRCUIT. FAILURE TO DO SO, WILL SHORTEN THE LIFESPAN OF THE COMPRESSOR AND VOID THE WARRANTY.

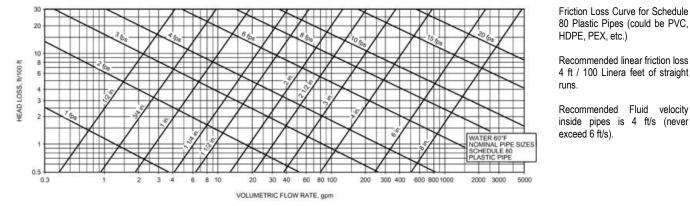


Indoor loop pump friction losses shall consider the fluid path at the outlet of the heat pump (C), to the three-way valve (D and E), to the tank (F) and back to the heat Pump G, H &I). Ground loop friction losses shall consider the fluid path from point A to the ground Loops and back to Point B

Pressure drop on the above two paths, is divided into four categories: Straight pipe runs, Fittings (Elbows, Tees, etc...), Heat Pump internal heat exchanger friction loss and accessories (such as Ball valves, Strainer, check valves, 3-way valves etc...).

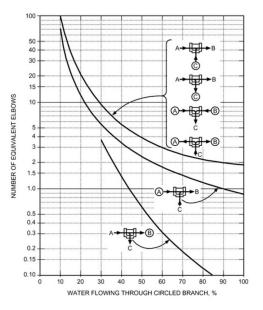
Straight Pipe Runs:

We recommend using either copper, stainless steel or plastic pipes on both ground and indoor loops. Black stee pipe can be used when heat transfer fluid contains enough anticorrosion inhibitor to prevent corrosion. When using black steel pipes, install dielectric connectors between pipes and heat pump since internal parts of the heat pump contain copper.


Friction Loss Curve for Copper Pipes Type K, L and M.

Recommended linear friction loss 4 ft / 100 Linera feet of straight runs.

Recommended Fluid velocity inside pipes is 4 ft/s (never exceed 6 ft/s).


Fittings and Accessories Pressure Drop:

The friction loss through any type of fittings is a K factor multiplier times the velocity pressure of the fluid. Velocity pressure is 0.5 x p x V² (p is the fluid density in Kg/m³ or Lb/ft³ and V is the fluid velocity in m/s or ft/s)

					Tal	ble 3 K Factors:	Threaded Steel P	ipe Fittings					
Nominal Pipe Dia., in.	90° Standard Elbow	90° Long- Radius Elbow	45° Elbow	Return Bend	Tee- Line	Tee-Branch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valve	Bell Mouth Inlet	Square Inlet	Projected Inlet
3/8	2.5	-	0.38	2.5	0.90	2.7	20	0.40	-	8.0	0.05	0.5	1.0
1/2	2.1	-	0.37	2.1	0.90	2.4	14	0.33	-	5.5	0.05	0.5	1.0
3/4	1.7	0.92	0.35	1.7	0.90	2.1	10	0.28	6.1	3.7	0.05	0.5	1.0
1	1.5	0.78	0.34	1.5	0.90	1.8	9	0.24	4.6	3.0	0.05	0.5	1.0
1 1/4	1.3	0.65	0.33	1.3	0.90	1.7	8.5	0.22	3.6	2.7	0.05	0.5	1.0
1 1/2	1.2	0.54	0.32	1.2	0.90	1.6	8	0.19	2.9	2.5	0.05	0.5	1.0
2	1.0	0.42	0.31	1.0	0.90	1.4	7	0.17	2.1	2.3	0.05	0.5	1.0
2 1/2	0.85	0.35	0.30	0.85	0.90	1.3	6.5	0.16	1.6	2.2	0.05	0.5	1.0
3	0.80	0.31	0.29	0.80	0.90	1.2	6	0.14	1.3	2.1	0.05	0.5	1.0
4	0.70	0.24	0.28	0.70	0.90	1.1	5.7	0.12	1.0	2.0	0.05	0.5	1.0
Source: Engineering Data Book	(Hydraulic Institute 1990).												
					Table	4 K Factors: Fla	nged Welded Stee	el Pipe Fittings					
Nominal Pipe Dia., in.	90° Standard Eli			45° Long- Radius Elbow	Return Bend Standard	Return Ber Radiu		Tee- Line	Tee- Branch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valve
1	0.43	0.	41	0.22	0.43	0.4	3	0.26 1	1.0	13	-	4.8	2.0
1 1/4	0.41	0.	37	0.22	0.41	0.3	8	0.25 0	0.95	12	-	3.7	2.0
1 1/2	0.40	0.	35	0.21	0.40	0.3	5		0.90	10		3.0	2.0
2	0.38		30	0.20	0.38	0.3			0.84	9	0.34	2.5	2.0
2 1/2	0.35	0.	28	0.19	0.35	0.2	7	0.18).79	8	0.27	2.3	2.0
3	0.34	0.	25	0.18	0.34	0.2	5	0.17 0	0.76	7	0.22	2.2	2.0
4	0.31	0.	22	0.18	0.31	0.2	2	0.15 0	0.70	6.5	0.16	2.1	2.0
6	0.29	0.	18	0.17	0.29	0.1	8	0.12 0	0.62	6	0.10	2.1	2.0
8	0.27		16	0.17	0.27	0.1	5).58	5.7	0.08	2.1	2.0
10	0.25		14	0.16	0.25	0.1			0.53	5.7	0.06	2.1	2.0
12	0.24	0.	13	0.16	0.24	0.1	3	0.08	0.50	5.7	0.05	2.1	2.0

The graph on the right shows an alternative method for calculating friction loss through tees as a function of elbow equivalent.

This Graph can not be used for 3-way valves since friction loss of 3-way valves has to be taken from manufacturer test data.

The below table can be used for elbows. Once velocity is known, pressure drop is calculated and tabulated as below:

Table 27 Equivalent Length in Feet of Pipe for 90° Elbows							ows								
		Pipe Size													
Velocity, fps	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	3 1/2	4	5	6	8	10	12
1	1.2	1.7	2.2	3.0	3.5	4.5	5.4	6.7	7.7	8.6	10.5	12.2	15.4	18.7	22.2
2	1.4	1.9	2.5	3.3	3.9	5.1	6.0	7.5	8.6	9.5	11.7	13.7	17.3	20.8	24.8
3	1.5	2.0	2.7	3.6	4.2	5.4	6.4	8.0	9.2	10.2	12.5	14.6	18.4	22.3	26.5
4	1.5	2.1	2.8	3.7	4.4	5.6	6.7	8.3	9.6	10.6	13.1	15.2	19.2	23.2	27.6
5	1.6	2.2	2.9	3.9	4.5	5.9	7.0	8.7	10.0	11.1	13.6	15.8	19.8	24.2	28.8
6	1.7	2.3	3.0	4.0	4.7	6.0	7.2	8.9	10.3	11.4	14.0	16.3	20.5	24.9	29.6
7	1.7	2.3	3.0	4.1	4.8	6.2	7.4	9.1	10.5	11.7	14.3	16.7	21.0	25.5	30.3
8	1.7	2.4	3.1	4.2	4.9	6.3	7.5	9.3	10.8	11.9	14.6	17.1	21.5	26.1	31.0
9	1.8	2.4	3.2	4.3	5.0	6.4	7.7	9.5	11.0	12.2	14.9	17.4	21.9	26.6	31.6
10	1.8	2.5	3.2	4.3	5.1	6.5	7.8	9.7	11.2	12.4	15.2	17.7	22.2	27.0	32.0

Machine Startup:

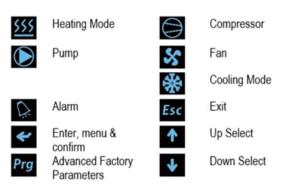
Use arrows 💁 🛂 to switch pages, press 🗹 to change parameters when cursor is next to the setting, then use 💁 🛂 to switch the value. Press 🗹 to confirm selection.

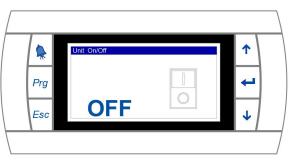
Initial Settings

When no user is interacting with the heat pump, Carel screen shows fluid temperature and temperature set point as well as the logo of the operating components (Fan, Pump, Compressor, etc..) and operating mode (cooling, heating or DHW heating).

This control allows user access to the ON/OFF switch of the heat pump. Press 📽 to access the below digital ON/OFF button.

M03 menu allows user to enter operating set points of the heat pumps.


Please turn off heat Pump before changing important settings.



This control allows user to select which mode the unit is operating in:

Heating, Cooling, hot water, and cool recycle (Heat Recovery Mode). Hybrid modes are also allowed Hot water + Heating and Hot Water + Cooling.

If unit defaults back to another work mode, verify ambient switch settings or cooling/heating linkages.

Use arrows to switch Heat Pump between ON and OFF mode. Please turn OFF HP before changing operating settings.

This control allows the selection of temperature settings for various operating modes.

Heating setpoint: Allows user to input water temperature setting for heating mode.

Cooling setpoint: Allows user to input water temperature setting for cooling mode.

Hot water setpoint: Allows user to input water temperature for hot water mode.

Outdoor cooling setpoint: Allows user to input the chilled water temperature when HP is in heat recovery "Cool Recycle" mode.

DC Inverter Liquid to Water Geothermal Heat Pump Manual

Temperature differential: Allows user to set temperature differential to allow compressor to turn on in DHW mode.

Stop temperature differential: Allows user to set temperature that allows compressor to turn off in DHW mode.

Outdoor cooling temperature differential: Allows user to set the temperature differential for the heat recovery mode.

Defines temperature differential and priorities setpoints and dead band of space heat/cool mode.

If setpoint for heating is set to 40.0°C and the start temperature differential is set to 5.0°C; The unit will only turn on the compressor when the return temperature from the tank is 34.9°C It will heat the tank until the return temperature reaches 40.0°C if the stop temperature is set to 0.0°C.

In the case that the stop temperature is set to 2.0°C; the unit will shut down when return temperature is 2.0°C above setpoint.

Specifications of PID control loop. PI loop is used to modulate compressor, fan and pump speeds.

KP: Allows user to set temperature differential that compressor modulates around. Integral: Allows user to set time required to let

compressor ramp up to full capacity. Differential: Allows user to set delay time.

Differential. Anows user to set delay in

<u>N.B.</u> Please note that these settings can affect the performance, longevity, and warranty on the units. It is not recommended to adjust these settings without confirming prior with your installer.

<u>N.B</u>:

- If Outdoor cooling setp. (U01) was set to 12°C and that Outdoor cooling Temp.diff. was set to 5°C (U02) and that HP is set to work in "Cool Recycle" mode. HP will be turned ON when the temperature in the chilled water tank (installed on the ground loop side) drops below 12°C and will be turned OFF when temperature in the chilled water tank reaches 12-5 = 7°C.
- To change work mode, the unit must be turned off. Work modes include Heating, cooling, domestic hot water*, Heating + hot water*, cooling + hot water*, Cool recycle (*: Unit must be equipped with a 3-way valve).

Pump work: Allows user to select between having the pump run all the time (normal), on interval or on demand. Pump Auto: Allows heat pump to control the pump on/off.

In order to use the pump on demand mode, it must either receive an external demand (by using heating, cooling or A/C linkage or when the unit is in domestic hot water mode; by using the temperature probe in a DHW reservoir).

Fan mode: Allows user to switch between day mode and night, eco mode on the fan speed.

Enable heater: Allows user to select which demand (heating or DHW or both) allows for the backup heater to turn on.

Enable Chassis/Crack Heater: Allows user to select if they want the external unit to be able to enable its own heaters (only available on air to water models).

Delta temperature setting for the pump: Allows pump to modulate flow via PWM (if equipped) to maintain the temperature delta

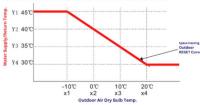
Auto Start: Enables the heat pump to start automatically when it detects a load. External controller is required (modbus, BMS, etc) when this function is disabled

Air Heater Delay: Allows user to set minimum required time before unit can turn on the backup space heater. Hot Water Heater Delay: Allows user to set minimum required time before unit can turn on the backup domestic hot water heater (Option not available on all units).

Exterior temperature Setpoint: Allows user to set maximum exterior temperature to enable the backup heater (meaning backup can only function if it is colder than this setting + time delay requirement is also met).

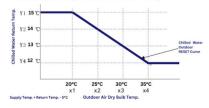


This Control allows user to enable/disable heat pump operating modes (mainly Space Heating and Cooling) based on outdoor temperature. When outdoor temperature is above "AmbTem Switch Setp." assigned value, Heat Pump goes into cooling mode (default 20°C). When outdoor temperature drops below "AmbTem Switch Setp." (20°C) – "Amb Temp.diff"(4°C), Heat Pump goes into heating mode.


DC Inverter Liquid to Water Geothermal Heat Pump Manual

Space Heating mode outdoor temperature reset settings.

Space Heating Temp. RESET Vs Outdoor Temp.


DHW Heating mode outdoor temperature reset settings.

Space Cooling mode outdoor temperature reset settings.

Chilled Water Temp. RESET Vs Outdoor Temp.

Enable Antilegionella: Allows user to enable anti legionella protection/sanitizing cycle.

Temp Setpoint: Allows user to set a setpoint for the temperature required.

Timer: Allows user to set time and date when the anti legionella function is operating.

<u>N.B</u>: The anti-legionella setting uses the backup external boilers/heaters to reach these temperatures.

Reading Machine Inputs / Outputs (real values)

M02:

Allows user access the **input and output** of the equipment. This is a **READ ONLY** Submenu. Press dot access the I/O mask pages.

1	Input / Output	Sn01	1
	B1: Inlet temp.	-RRR.R°C	
Pro	B2: Outlet temp.		←
\vdash	B3: Ext temp.	-RRR.R*C	
Es		-RRR.R°C	1

Sn01:

Use arrows 1 to switch pages.

B1: Inlet temperature: readout of temperature coming into the heat exchanger.

B2: Outlet temperature: readout of temperature coming out of the heat exchanger. B3: Ext temp: readout of outdoor ambient temperature.

Sn02:

Use arrows 🚺 🖤 to switch pages.

B4: Discharge gas temperature: readout of temperature of refrigerant exiting the compressor. B5: Suction gas temperature: readout of temperature of refrigerant entering the compressor.

B6: Discharge gas pressure: readout of refrigerant pressure in BAR exiting the compressor.

N.B: Geothermal HP requires outdoor ambient temperature sensor to be wired outside to properly read B3.

Sn03:

Use arrows 1 to switch pages.

B7: Suction pressure: readout of refrigerant

pressure in **BAR** entering the compressor. **B8: Hotwater temperature**: readout of the temperature that the DHW temperature probe is reading. Acts like inlet water temperature into the heat exchanger when in DHW mode.

B9: Water outlet temp: readout of the water temperature coming out of heat exchanger when in DHW mode.

	Input / Output	Sn05	1
- 16	Digit input status ID1: Flow switch	<	-
Prg	ID2: Linkage switch		+
			-
Esc	ID3: A/C Linkage switch.		4

Sn05:

Use arrows to switch pages. **ID1: Flow switch contact position** (open or closed).

ID2: Linkage switch contact position (open or closed).

ID3: AC linkage switch contact position (open or closed).

Sn06:

Use arrows **Use** to switch pages. **ID4: Cooling linkage contact position** (open or closed).

ID5: Phase switch contact position (open or closed).

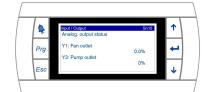
ID6: Heating linkage contact position (open or closed).

ID7: Outdoor pump flow switch (open or closed)

Sn07:

Use arrows to switch pages. D01: FAN HIGH SPEED / COOL STATE Shows contact position (open or closed) D02: FAN LOW SPEED / HOT HEATER Shows contact position (open or closed) D03: 4 WAY VALVE Shows contact position (open or closed)

Sn08: Use arrows to switch pages. D04: PUMP Shows contact position (open or closed) D05: IPM FAN Shows contact position (open or closed) D06: CRANK HEATER Shows contact position (open or closed)



Sn09:

Use arrows to switch pages. D07: THREE WAY VALVE Shows contact position (open or closed) D08: OUTDOOR LOOP PUMP Shows contact position (open or closed) D09: HEATER/ heat HEATER Shows contact position (open or closed)

Sn010:

Use arrows 1 to switch pages

Y1: Fan output: readout of required fan output

Y3: Pump outlet : readout of required pump output

COMP BLDC 1

Use arrows 1 to switch pages

Required Capacity: Shows required compressor capacity in %

Actual Capacity: Shows actual compressor capacity in %

Actual speed: Shows actual compressor speed in RPS

EVD 1 COMPRESSOR

Use arrows 🔨 \star to switch pages

Cooling capacity: Shows provided cooling or heating capacity (calculated)

*Shows temperatures and pressures before and after the compressor.

EVD 2 CIRCUIT

Use arrows 🚺 🛃 to switch pages Discharge Superheat: demonstrates discharge

superheat in Kelvin. Status: readout showing status of the EVD circuit Protection: readout showing if any alarms are triggered

Suction Superheat: readout showing suction superheat in Kelvin

Sn11:

Use arrows 🔷 \star to switch pages DC Fan 1 Output: Readout in RPM of required

fan speed

DC Fan 1 Feedback: readout in RPM of actual fan speed

COMP BLDC 2

Use arrows 🚹 🛃 to switch pages

Condenser pressure: readout of condenser pressure in **BAR**

Evaporator pressure: readout of evaporator pressure in BAR

Envelop Status: readout showing if unit is on/off/error

Alarm countdown: time remaining on alarm before self-reset

EVD 1 CIRCUIT

Use arrows 1 to switch pages Discharge Superheat: readout showing

Status: readout showing status of the EVD circuit Protection: readout showing if any alarms are

Power + 1

Use arrows 🔨 🛃 to switch pages Drive Status: Displays status of the variable

frequency drive Drive Temperature: displays temperature of the

drive

Alarm code: displays if any alarms are present

Sn12:

Use arrows 💁 👽 to switch pages

DC Fan 2 Output: Readout in RPM of required fan speed

DC Fan 2 Feedback: readout in RPM of actual fan speed

COMP BLDC 3

Use arrows 🚺 \star to switch pages

Pressure differential: readout showing pressure difference between sensors

Pressure ratio: readout showing ratio of suction vs discharge pressure.

Low PD countdown: readout showing pressure differential countdown timer.

EVD 2 COMPRESSOR

Use arrows 🚺 🛂 to switch pages Cooling capacity: Shows provided cooling or heating capacity (calculated) *Shows temperatures and pressures before and after the compressor.

Power + 2

Use arrows 🚹 🛃 to switch pages Speed reference: Displays frequency of unit in Hz Rotor Speed: Displays frequency of the rotor (Hz) and its speed in RPM

discharge superheat in Kelvin.

triggered

Suction Superheat: readout showing suction superheat in Kelvin

Power + 3

Use arrows to switch pages Current: readout of current entering the unit Voltage: readout of voltage entering the unit Power: readout of consumption in KW of unit.

Power + 6 Use arrows to switch pages Registers Status: readout of status of the registers Speed: readout of speed of the registers

Power + 4 Use arrows To switch pages DC BUS

Voltage: readout of DC voltage exiting the inverter board

Ripple: readout of voltage ripple exiting the inverter board.

Prg Pre-ramp setpoint: 0.0 kHz

Power + 5 Use arrows to switch pages Operating Switch Frequency: readout of frequency inverter board is operating under Pre-Ramp setpoint: readout of the pre-ramp

frequency of the board.

Information Use arrows to switch pages Code: Current code used in board Version: Current version of code Date: release date of software update OS: OS version used in software

Schedule / TimeZone

Press sto access menu, press



M03 menu allows user to set heat pump ON/OFF schedules and assign different temperature setpoints values to each schedule.

M03/C101 submenu, allows user to change date/time/day.

Enabling the Timezone on/off and the Timezone setpoint unlocks multiple pages that allow the unit to be programmed to run during certain hours of the day and to set specific temperatures for those hours of operation if required.

Timezone On/Off: Enable or disable unit operation using specific times of the day.

Timezone Setpoint: Set specific temperature for cooling, heating and DHW during the on times as set by previous setting.

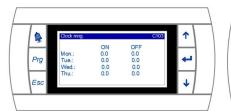


 Image: Cicci mage
 Cicci mage

 Timezone2:
 0.0

 Cooling temp::
 +RR.R'C

 Heating temp::
 +RR.R'C

 Tank temp::
 +RR.R'C

C103 & 104: Schedule setup interface. Heat Pump is authorized to work when time reaches "ON" time of the day, and it's turned off when time reaches "OFF" time of the day.

C105, 106, 107 & 108; Timezone1 is the start time of the first period, Timezone2 is the cut-off time of the first period and the start time of the second period, and so on (Timezone 3 and 4).

"Cooling temp.", "Heating temp." and "Tank temp." Set temperatures for cooling, heating, and domestic hot water for the corresponding period.

	Clock mng.	C107	1
Prg	Timezone3: Cooling temp.: Heating temp.: Tank temp.:	0:0 +RR.R°C +RR.R°C +RR.R°C	•
Esc			J.

Advanced Settings

The following settings require pressing the Program button (PRG) and inputting the password that was supplied by the manufacturer.

Notice: it is not recommended to alter these settings without full knowledge and understanding of them. These settings can void the warranty, cause equipment failure as well as cause serious injuries or death.

Use arrows to switch values. Press to change to the next value, then use to switch the next value. Until the correct password is displayed on the screen. Press to enter the next page.

M05 BLDC COMPRESSOR: Allows to view the settings of the compressor, alarm timeouts and alarm limits. Altering these settings is not recommended without prior approval by the manufacturer.

This page allows the user to input the type of compressor, voltage and refrigerant type of the unit as well as change them. This page also allows to allow the unit to over-write the defaults.

- The remainder of the POWER+ pages should be used only to read and verify details. Changing and altering these settings can cause equipment failure, it is not
 recommended to alter these settings without prior approval by the manufacturer.
- M07 EVO- ON BOARD: Allows to view the type and settings of the EVO board, as well as settings and process logic/ramp curves of the unit. Altering these settings is
 not recommended without prior approval by the manufacturer.
- M08: MANUAL CONTROLS: Allows the technician to manually operate the heat pump and its individual components. Primarily used for diagnostics and unit should not be used in manual mode for prolonged periods of time.

Interview 0001 Prog Unit more function Three function Three function Esc Trepseature display TC

M09

Allows user access the **OTHER PARAMETERS** of the equipment.

Press 📽 to access the OTHER PARAMETERS pages.

OT00 Contr

N.B: It is recommended to switch the unit to two functions when 3-way diverting valve is not installed.

Control Temperature select: Allows to choose between inlet and outlet water temperature control. **Unit mode:** Allows to choose between two function and three function

Temperature Display: Allows to choose between Celsius and Fahrenheit.

** Note: These settings are not available on all units.

ОТ00

N02/N09 Heater output: Allows user to configure backup heater as combined or independent. N01 Output: Allows user to configure between cool state and fan high speed.

** Note: These settings are not available on all units.

 Other Permeters

 BMS Settings

 BMS Network:
 Disable

 Prg
 Flow Sw start delay:
 30s

ОТ00

BMS NETWORK: Allows user to enable BMS network.

Flow switch start delay: Allows user to change delay time that flow switch requires before causing a flow switch alarm.

Flow switch run delay: Allows user to change delay time flow switch remains running

Delta temperature setpoint: Allows user to configure

Low temperature setpoint: Allows user to configure

High Temperature Setpoint: Allows user to configure

OT02

delta temperature

low temp setpoint.

high temperature setpoint.

OT03

Three way diverting valve

Start delay: Allows user to configure time delay to start 3-way valve

Stop delay: Allows user to configure time delay to stop 3-way valve

Pool heater switch delay: Allows user to configure pool heater switch time delay.

OT03

Pump stop delay: Allows user to adjust stop time delay of circulator pump

Pump Start delay: Allows user to adjust start time for circulator pump

Start speed: Allows user to adjust pump flow speed (if equipped with pwm pump)

Start delay: Adjust delay timer

Start internal: Start interval time delay

OT06

4. Cool Switch: Allows configuration between Normally Closed and Normally Open

6. Heat Switch: Allows configuration between Normally Closed and Normally Open

7. Outdoor Pump Flow switch*: Allows configuration between Normally Closed and Normally Open (Only applicable to geothermal units)

OT09

5.IPM fan: Allows configuration between Normally Closed and Normally Open

8.Outdoor Loop Pump*: Allows configuration between Normally Closed and Normally Open

9.Heater: Allows configuration between Normally (Only available on geothermal units) Closed and Normally Open

9.(hot water) Heater: Allows configuration between Normally Closed and Normally Open

OT12

B7 Probe Offset: Offset probe reading in case of accuracy issues

B8 Probe Offset: Offset probe reading in case of accuracy issues.

B9 Probe Offset: Offset probe reading in case of accuracy issues.

OT04

Pump Maximum speed: Allows user to input maximum circulator pump speed (if equipped with PWM pump)

Pump Minimum speed: Allows user to input minimum circulator pump speed

OT07

1.Fan high speed: Allows configuration between Normally Closed and Normally Open

2.Fan low speed: Allows configuration between Normally Closed and Normally Open

3. 4Way valve: Allows configuration between Normally Closed and Normally Open

accuracy issues.

accuracy issues.

B3 Probe Offset: Offset probe reading in case of accuracy issues.

OT06

1.Flow Switch: Allows configuration between Normally Closed and Normally Open

2.Linkage Switch: Allows configuration between Normally Closed and Normally Open

3.A/C Linkage Switch: Allows configuration between Normally Closed and Normally Open

5.Phase Switch: Allows configuration between Normally Closed and Normally Open

OT08

4. Pump: Allows configuration between Normally Closed and Normally Open

7. Three way valve: Allows configuration between Normally Closed and Normally Open

6. Crank heater: Allows configuration between Normally Closed and Normally Open

OT11

B4 Probe Offset: Offset probe reading in case of accuracy issues.

B5 Probe Offset: Offset probe reading in case of accuracy issues.

B6 Probe Offset: Offset probe reading in case of accuracy issues.

OT13

B10 Probe Offset: Offset probe reading in case of accuracy issues.

B12 Probe Offset: Offset probe reading in case of accuracy issues.

OT14

Pump Directional flow: Allows user to adjust PWM pump percentage (if equipped)

OT10 B1 Probe Offset: Offset probe reading in case of

B2 Probe Offset: Offset probe reading in case of

OT14

Filter threshold: Allows user to adjust filter threshold on the pressure probe

Filter time: Allows user to adjust filter time on the pressure probe

OT05

Enable/Disable Enhanced Vapor Injection

OT17

Enhanced Vapor Injection rotor speed setting

OT23

Interval time for antifreeze protection

OT23

Low ambient alarm setpoint

OT25 Oil recovery and defrost settings

OT14

S1 Alarm delay: Adjustable delay time for S1 EEV alarm

Min: Minimum Pressure for evap probe Max: Maximum Pressure for evap probe

 Prg
 EEV2_control_mode:

 Esc
 Discharge Superheat

OT05

EEV2 Control mode: Discharge superheat or suction superheat

OT18

Enhanced Vapor Injection discharge super heat setting & Discharge Superheat differential

OT23

Circulator pump protection with unit on standby

OT24

Compressor oil management settings

Maximum and minimum return temperatures

OT15

Min: Minimum pressure for discharge pressure probe

Max: Maximum pressure for discharge pressure probe

OT16

Evaporator pressure probe Minimum and maximum

OT19

Enhanced Vapor Injection External Channel Setpoint and differential

OT25

Compressor oil management settings 2

Control Settings

DC Inverter Liquid to Water Geothermal Heat Pump Manual

OT26 Remote BMS settings

INITIALIZATION Alarm logging and reset settings

OT02

Ambient temperature freeze protection settings

	Unit configuration Params Import/Export
Prg	Import/Export: IMPORT Memory type: INTERNAL FLASH MEMORY
Esc	File name: EXPORT_00 Confirm: NO

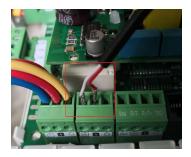
UNIT CONFIGURATION Parameter import and export settings

LANGUAGE Language selection settings

INITIALIZATION Initialization/default settings

Installation of WIFI Adapter

While the Wi-fi adapter is not required to the functioning of the unit; it allows for faster diagnosis as well as remote diagnosis and monitoring. The application is designed in a way to be significantly more user-friendly to the client when compared to the Carel controller and reduces time. Technicians will be able to troubleshoot the equipment without going on site.


Hardware Installation & Connection:

The WIFI adapter kit is shipped inside the Heat Pump and has the following components:

please note that the pictured equipment, wiring is subject to change without prior notice and will be supplemented with revision sheets if required

The signal cable has 2 wires: one red and one white.

Application downloads and setup:

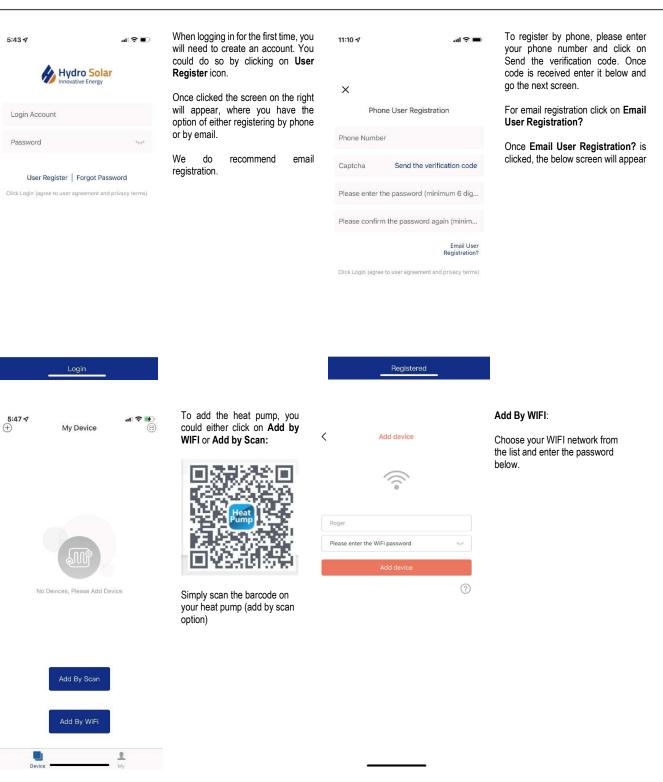
OPEN

Heat Pump application is called **Hydro Solar** and is available for Apple and Android devices. Go to the application stores of your smart phone and download the **free Heat Pump Pro** App. After downloading Heat Pump's application look for the application icon on your smartphone screen and click on it. Register your device as shown below:

On the **control board** of the Heat Pump outdoor unit:

- 1- Check that white wire of the signal line is connected to the Minus () port .
- 2- Check that red wire of the signal line is connected to the Plus (+) port.

On the Green Plug of the WIFI Cable:


- 1- Connect the white wire of the signal line to the B port.
- 2- Connect the red wire of the signal line to the A port.
- 3- Connect the Black/White wire of the Power Supply Adapter to the plus (+
-) port.
 4- Connect the Black wire of the Power Supply Adapter to the minus (-) port.
- Connect the power supply adapter to a 110-240VAC power supply plug.

<u>Please strictly follow the above wires connection instructions or else WIFI</u> <u>module will not work.</u>

DC Inverter Liquid to Water Geothermal Heat Pump Manual

Add device

Start connecting devices

쑸

<

Roger

Isabella2

Please connect this mobile device to home Wi-Fi first

?

Return to the home page on this mobile device
 Open "Settings" and select "Wireless LAN"

How to add device?

3. Choose home Wi-Fi

 Open the current application, return to the "Add Device" page, allow app to access your location, and enter the WiFi password

Then, make the device visible

1. Connect the Heat Pump WiFi adapter to plug and the green light will flash slowly

2. Open the button cap on the Wifi adaptor cable, Press button for less than 2 seconds

3. Wait for about 2 \sim 3 seconds, the green light on the WiFi adaptor starts to flash quickly, and Wifi adaptor enters the Pairing mode

Add device

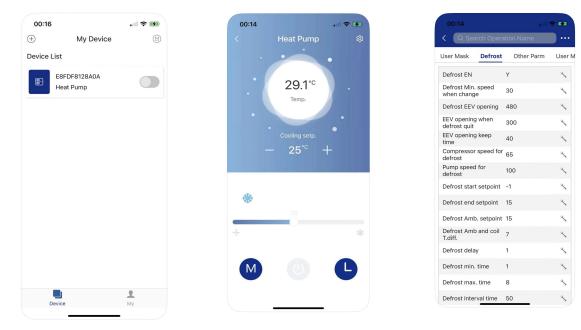
1. Go to the "Add Device" page of the current application

2. Enter the home Wi-Fi password

3. When the WiFi adaptor green light flashes quickly, click the "Add Device" button

4. After the prompt "Pairing successful", the device will be automatically added to your device list

Note: The green light of Wifi adpaptor flashes quickly to indicate that it has entered the pairing mode, and the flashing light changes to steady on to indicate that the device is connected to the home Wi-Fi network. To pair the application with heat pump WIFI adapter, Simply open the button's black cap as shown below



And gently press the button for 2-3 seconds as described on the left instructions.

You could connect more than one heat pump to the app. Simply click on add device and repeat the above steps again.

Device List Windows:

- The device list displays the device (Heat Pumps) associated with this user and shows the device's online and offline status. When the device is offline, the device icon is gray, and the device is online color.
- The switch on the right side of each device row indicates whether the device is currently turned on.
- The user can disconnect the device or modify the device name. When swiping to the left, the delete and edit buttons appear on the right side of the device row. Click Edit to modify the device name, and click Delete to disconnect the device and delete it from the application, as shown below:

Application usage guide:

- 1. Click a device in the device list to enter this page.
- 2. The background color of the bubble indicates the current operating state of the device:

DC Inverter Liquid to Water Geothermal Heat Pump Technical Manual – Property of Aqua Solanor Inc. – All rights Reserved – 2024/03/27 – REV1

- a. Gray indicates that the device is in the shutdown state, at this time, you can change the working mode, set the mode temperature, set the timing, or you can press the key to switch on and off.
- b. Multicolor indicates that the device is turned on, each working mode corresponds to a different color, orange indicates heating mode, red indicates hot water mode, and blue indicates cooling mode.
- c. When the device is in the power-on state, you can set the mode temperature, set the timer, press the key to switch on and off, but you cannot set the working mode (that is, the working mode can only be set when the device is off)
- 3. The bubble shows the current temperature of the device.
- 4. Below the bubble is the set temperature of the device in the current operating mode.
- 5. Set the temperature is about 🕂, 💳 button, each click adds or subtracts 1 to the set point value to the device.
- 6. Below the bottom left, of set point temperature window, is the Fault and Alert. When the device starts to alarm, the specific Alert.
- 7. Fault or alarm's reason will be displayed next to the yellow warning icon. In case of device Fault or Alert, the Fault and Alert content will be displayed in the bottom right of the set point temperature window. Click this area to jump to the details of the Error.

Main Components List

ltem No.	Object/part no.	Manufacturer/ Trademark	Type/Mode I	Technical Data	Standard	Mark(s) of Conformity
1	Fan	SHENZHEN SANJU ELECTRIC MACHINERY CO LTD	SJ1238HA 2	220V-240VAC, 50/60Hz, 0.13A. IMPEDANCE PROTECTED.	UL 507, CSA-C22.2 No. 113	cURus E314698
2	Control PCB- 1 (Compressor control)	CAREL INDUSTRIES SPA	PS200252 3D100	Input: 200-240Vac, 50/60Hz, 40-57A; AC output: 0-240V, 25- 30A, DC output: 385V, 1500W. Software: Class B.	UL 60730-1, CSA- E60730-1	cURus E198839
3	PFC choke	SHANGHAI CII ELECTRONIC CO., LTD	09C747A0 08	4.5uH, 50A. For connecting to Control PCB-1.	-	Tested in appliance
4	Control PCB- 2 (Operating control)	CAREL INDUSTRIES SPA	UP3A0220 0T3S0	Input: 24Vac/dc, 50/60Hz, 28W; 100- 240Vac, 50/60Hz, 28W; 36-72Vdc, 28W.	UL 60730-2- 9, CSA- E60730- 2-9	cURus E198839
5	Fuse	DONGGUAN BETTER ELECTRONICS TECHNOLOGY CO LTD	524 Series	250V, 3.15A. For connecting to Control PCB-2.	UL 248-1, CSA-C22.2 No. 248.1	cURus E300003
6	Fuse holder	Honyone Electrical Co Ltd	FH15	250V, 15A. For connecting to Control PCB-2.	UL 4248-1, CSA-C22.2 No. 4248.1	cURus E343685
7	Relay	XIAMEN HONGFA ELECTROACOUST IC CO LTD	HF105F-4	240VAC, 30A. For connecting to Control PCB-1.	UL 60947-1, UL 60947-4- 1, SA- C22.2 No. 0947-1, CSA- C22.2 No. 60947- 4-1	cURus E134517
8	Terminal block 1	HUANGZHONG ELECTRICAL EQUIPMENT CO LTD OF SHUNDE FOSHAN	ET1001	660V, 32A.	UL 1059, CSA-C22.2 No. 158	cURus E225297
9	Terminal block 2	HUANGZHONG ELECTRICAL EQUIPMENT CO LTD OF SHUNDE FOSHAN	TC1-1	250V, 20A.	UL 1059, CSA-C22.2 No. 158	cURus E225297
10	Internal wire for compressor connection	Various	Various	AWM, min. 10AWG, min. 300V, min. 105°C, VW-1.	UL 758, CSA-C22.2 No. 210	cURus
11	Internal wire for signal connection	Various	Various	AWM, min. 22AWG, min. 300V, min. 105°C, VW-1.	UL 758, CSA-C22.2 No. 210	cURus
12	Internal wire for other electrical connection	Various	Various	AWM, 16-12AWG, min. 300V, min. 105°C, VW-1.	UL 758, CSA-C22.2 No. 210	cURus
13	Four-way valve	ZHEJIANG SANHUA CLIMATE & APPLIANCE CONTROLS GROUP	SHF-11H- 45D1	220-240VAC, 50/60Hz. For model GEO040V1LM.	UL 429, CSA-C22.2 No. 139	cURus MH25894
		COLTD	SHF-20D- 46A- 04	220-240VAC, 50/60Hz. For model GEO060V1LM, GEO080V1LM.	UL 429, CSA-C22.2 No. 139	cURus MH25894
14	Expansion valve	CAREL INDUSTRIES SPA	E2V18FSA C1	12V, 50Hz, 40Ω±10%. For models GEO040V1LM,	UL 429, CSA-C22.2 No. 139	cURus E304579
			E2V24FSA C1	12V, 50Hz, 40Ω±10%. For models GE0060V1LM, GE0080V1LM.	UL 429, CSA-C22.2 No. 139	cURus E304579
15	Pressure sensor- 1	BRIDGEPORT Srl	SPKT0033 P0	4.5-5.5Vdc, -40~120°C, pressure 15~515PSIG, limit 1030 PSIG.	UL 60730-2- 6, CSA- E60730-2-6	cURus E485918
16	Pressure sensor 2	BRIDGEPORT Srl	SPKT00B6 P0	4.5-5.5Vdc, -40~120°C, pressure 15~667PSIG, limit 1335 PSIG.	UL 60730-2- 6, CSA- E60730-2-6	cURus E485918
17	Heating element Cover on Compressor	Changzhou match- well pressure sensor Co Ltd	JRD series	Rated 220Vac, 35+7%W, 1424±7%Ω (20°C).	UL/CSA 60335-1, UL/CSA 60335-2-89	cURus SA44356
18	NTC cover on water tube	CAREL INDUSTRIES - Headquarters	NTC030W H	-50~105°C, 10kΩ at 25°C	-	Tested in appliance
19	Heat exchanger 1	Foshan Shunguan Heat Exchanger Co., Ltd.	WYA-TTG- 4.0P- C8-08	Refrigerant Titanium sleeve, 12.7mm diameter, 0.75mm thickness. For model GEO040V1LM.	-	Tested in appliance
		Foshan Shunguan Heat Exchanger Co., Ltd.	WYA-TTG- 4.0P-C8- 08	Refrigerant Titanium sleeve, 12.7mm diameter, 0.75mm thickness. For model GEO040V1LM.	-	Tested in appliance

DC Inverter Liquid to Water Geothermal Heat Pump Manual

ltem No.	Object/part no.	Manufacturer/ Trademark	Type/Mode I	Technical Data	Standard	Mark(s) of Conformity
		Foshan Shunguan Heat Exchanger Co., Ltd.	WYA-TTG- 6.0P-C8- 08	Refrigerant Titanium sleeve, 15.88mm diameter, 0.8mm thickness. For model GEO060V1LM.	-	Tested in appliance
		Foshan Shunguan Heat Exchanger Co., Ltd	WYA-TTG- 8.0P-C8- 08	Refrigerant Titanium sleeve, 19.05mm diameter, 1.0mm thickness. For model GEO080V1LM.	-	Tested in appliance
20	Heat exchanger-2	Foshan Shunguan Heat Exchanger Co., Ltd.	WYA- BPDWLRS - 4.0P-C10- GS118	Refrigerant brass tube, 15.88mm diameter, 1.0mm thickness. For model GEO040V1LM.	-	Tested in appliance
		Foshan Shunguan Heat Exchanger Co., Ltd.	WYA- BPDWLRS - 6.0P-C10- GS118	Refrigerant brass tube, 15.88mm diameter, 1.0mm thickness. For model GEO060V1LM.	-	Tested in appliance
		Foshan Shunguan Heat Exchanger Co., Ltd.	WYA- BPDWLRS - 8.0P-C10- GS118	Refrigerant brass tube, 15.88mm diameter, 1.0mm thickness. For model GEO080V1LM.		Tested in appliance
21	Compressor- 1	Panasonic Wanbao Appliance Compressor (Guangzhou) Co., Ltd	9VD330XA B21	Rated 280Vdc, 3450RPM. Brushless motor, 4pole, Rated output 1.7KW. Refrigerant type R32. For model GEO040V1LM.	EN 60335-1, EN 60335-2- 34	TUV 50483203 001
22	Compressor- 2	Panasonic Wanbao Appliance Compressor (Guangzhou) Co., Ltd	9KD420ZA A21	Rated 280Vdc, 3450RPM. Brushless motor, 6pole, Rated output 3.0KW. Refrigerant type R32. For model GEO060V1LM.	EN 60335-1, EN 60335-2-34	TUV 50537034 001
23	Compressor- 3	Panasonic Wanbao Appliance Compressor (Guangzhou) Co., Ltd	9VD550XA A21	Rated 520Vdc, 3600RPM. Brushless motor, 6pole, Rated output 3.8KW. Refrigerant type R32. For model GEO080V1LM.	EN 60335-1, EN 60335-2-34	TUV 50483203 001
24	Glass fiber sleeving	Various	Various	600V, 200°C, VW-1.	UL 1441, CSA-C22.2 No. 198.3	cURus

Warranty (Limited Residential Warranty)

Aqua Solanor Inc (Owner of *Hydro Solar Innovative Energy*) warrants that the heat pumps supplied by it shall be free from defects in materials and workmanship for a period of Five (5) Five YEARS after the date of installation or for a period (5) Five YEARS AND (30) THIRTY DAYS after the date of shipment, whichever occurs first.

Aqua Solanor Inc shall, at its option repair or replace any part or parts covered by this warranty which shall be returned to Aqua Solanor Inc, transportation charges prepaid (by customer), which, upon examination proves to be defective in materials or workmanship.

Replacement or repaired parts and components are warranted only for the remaining portion of the original warranty period.

This warranty is subject to the following conditions:

- 1. The **Hydro Solar Innovative Energy** heat pump must be properly installed and maintained in accordance with this installation and maintenance document and in compliance with Federal, Provincial, Municipal, and local codes and regulations.
- 2. The installer must be a certified qualified heat pump installer in the province/state where the heat pump is installed. Failure to comply with this requirement will void this warranty.
- 3. The installer must complete an installation and commissioning report have it endorsed by the owner and return it to Hydro Solar Innovative Energy within 21 days of installation of the unit. The installer must fill up the <u>Heat</u> <u>Pump Warranty Registration Form</u> which will provide them with a Warranty Unique ID. To make a warranty claim, the buyer must present a valid Warranty Unique ID.
- 4. It is the responsibility of the building or general contractor to supply temporary heat to the structure prior to occupancy. These heat pumps are designed to provide heat only to the finished and insulated structure. Start-up of the unit shall not be scheduled prior to completion of construction and final Duct/Pipe installation for validation of this warranty.
- 5. It is the customer's responsibility to supply the proper quantity and quality of water.

If the heat pump, supplied by **Aqua Solanor Inc**, fails to conform to this warranty, **Aqua Solanor Inc** 's sole and exclusive liability shall be, at its option, to repair or replace any part or component which is returned by the customer during the applicable warranty period set forth above, provided that (1) **Aqua Solanor Inc** is promptly notified in writing upon discovery by the customer that such part or component fails to conform to this warranty. (2) The customer returns such part or component to **Aqua Solanor Inc**, transportation charges prepaid, within (30) thirty days of failure, and (3) **Aqua Solanor Inc**'s examination of such component shall disclose to its satisfaction that such part or component fails to meet this warranty and the alleged defects were not caused by accident, misuse, neglect, alteration, improper installation, repair, or improper testing.

Aqua Solanor Inc. is the owner of Hydro Solar Innovative Energy 2305 46th Avenue Lachine (QC), Canada H8T 3C9 Email: design@hydrosolar.ca Web Site: www.hydrosolar.ca