Ecomist BugBullit Personal Insect Repellent (new) Ecomist Systems Limited Version No: 2.5 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 Chemwatch Hazard Alert Code: 4 Issue Date: 13/01/2021 Print Date: 13/01/2021 L.GHS.NZL.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking ### **Product Identifier** | Product name | Ecomist BugBullit Personal Insect Repellent (new) | | | |-------------------------------|---|--|--| | Chemical Name | Not Applicable | | | | Synonyms | CEA0017 | | | | Proper shipping name | AEROSOLS | | | | Other means of identification | CEX0017 | | | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Personal insect repellent # Details of the supplier of the safety data sheet | Registered company name | Ecomist Systems Limited Ecomist Australia Pty Ltd | | | |-------------------------|--|---------------------|--| | Address | 800 Te Ngae Road BOP New Zealand 25 Hargraves Place, Wetherill Park NSW 2164 Australia | | | | Telephone | 0800 75 75 78 | 1800 243 500 | | | Fax | 073456019 | +61 2 9756 0985 | | | Website | www.ecomist.co.nz | www.ecomist.com.au | | | Email | info@ecomist.co.nz | info@ecomist.com.au | | ### Emergency telephone number | Association / Organisation | CHEMCALL (0800 CHEMCALL) | CHEMCALL | |-----------------------------------|--------------------------|---------------| | Emergency telephone numbers | 0800 243 622 | 1800 127 406 | | Other emergency telephone numbers | Not Available | Not Available | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. | Classification [1] | Flammable Aerosols Category 1, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Chronic Aquatic Hazard Category 3 | | | |---|--|--|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | | Determined by Chemwatch using GHS/HSNO criteria | 2.1.2A, 6.3A, 6.4A, 9.1C | | | # Label elements Hazard pictogram(s) Signal word Dang #### Hazard statement(s) | H222 | Extremely flammable aerosol. | |------|--| | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H412 | Harmful to aquatic life with long lasting effects. | #### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|--| | P211 | Do not spray on an open flame or other ignition source. | Version No: 2.5 Page 2 of 19 Issue Date: 13/01/2021 Print Date: 13/01/2021 ### **Ecomist BugBullit Personal Insect Repellent (new)** | P251 | Do not pierce or burn, even after use. | |------|--| | P273 | Avoid release to the environment. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | #### Precautionary statement(s) Response | P321 | Specific treatment (see advice on this label). | |----------------|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | #### Precautionary statement(s) Storage P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. ### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** ### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|---| | 64-17-5 | 30-50 | ethanol | | 134-62-3 | 15-30 | N,N-diethyl-m-toluamide | | 113-48-4 | 1-5 | 2-ethylhexyl bicycloheptene dicarboximide | | Not Available | <1 | perfume | | 74-98-6 | 1-5 | propane | | 106-97-8. | 15-30 | butane | | 110-27-0 | 3-10 | isopropyl myristate | # **SECTION 4 First aid measures** #### Description of first aid measures | Description of first aid measur | 85 | |---------------------------------|--| | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable. | | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. Generally not applicable. | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Generally not applicable. | | Ingestion | Not considered a normal route of entry. Generally not applicable. | #### Indication of any immediate medical attention and special treatment needed For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent - Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - Positive pressure ventilation may be necessary. - Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. - After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such Version No: 2.5 Page 3 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated. - Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. BP America Product Safety & Toxicology Department Treat symptomatically. For acute or short term repeated exposures to ethanol: - Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K) - ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination. - Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine). - Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions. - Fructose administration is contra-indicated due to side effects. As in all cases of suspected
poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination). For poisons (where specific treatment regime is absent): #### BASIC TREATMENT - ▶ Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 L/min. - Monitor and treat, where necessary, for pulmonary oedema. - Monitor and treat, where necessary, for shock. - Anticipate seizures. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. #### ADVANCED TREATMENT - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias, - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications - Treat seizures with diazepam. - Proparacaine hydrochloride should be used to assist eye irrigation. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 ## **SECTION 5 Firefighting measures** # **Extinguishing media** - Alcohol stable foam. - Dry chemical powder - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. # SMALL FIRE: Water spray, dry chemical or CO2 #### LARGE FIRE: Water spray or fog. # Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers. Fire/Explosion Hazard Fire Fighting - Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Moderate explosion hazard when exposed to heat or flame. # Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - Aerosol cans may explode on exposure to naked flame. - Rupturing containers may rocket and scatter burning materials - Hazards may not be restricted to pressure effects. - May emit acrid, poisonous or corrosive fumes. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Version No: 2.5 Page 4 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 Combustion products include carbon monoxide (CO) carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard. #### **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up Minor Spills **Major Spills** - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eves - Wear protective clothing, impervious gloves and safety glasses. - Shut off all possible sources of ignition and increase ventilation. - Wipe up. - If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. - Clear area of all unprotected personnel and move upwind. - Alert Emergency Authority and advise them of the location and nature of hazard. - ▶ May be violently or explosively reactive - Wear full body clothing with breathing apparatus. - ▶ Prevent by any means available, spillage from entering drains and water-courses. - Consider evacuation. - Shut off all possible sources of ignition and increase ventilation. - No smoking or naked lights within area - ▶ Use extreme caution to prevent violent reaction - ▶ Stop leak only if safe to so do. - Water spray or fog may be used to disperse vapour. - ► DO NOT enter confined space where gas may have collected - Keep area clear until gas has dispersed. - ▶ Remove leaking cylinders to a safe place. - Fit vent pipes. Release pressure under safe, controlled conditions - ► Burn issuing gas at vent pipes. - ▶ DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water courses - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse / absorb vapour. - Absorb or cover spill with sand, earth, inert materials or vermiculite - If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. - Collect residues and seal in labelled drums for disposal. - Clean up all spills immediately - ▶ Wear protective clothing, safety glasses, dust mask, gloves. - Secure load if safe to do so. Bundle/collect recoverable product. - Use dry clean up procedures and avoid generating dust. - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Water may be used to prevent dusting. - Collect remaining material in containers with covers for disposal - Flush spill area with water. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** #### Precautions for safe handling #### Safe handling Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that Version No: 2.5 Page 5 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment, the flow of gas should be stopped and a four hour delay enforced to allow gamma-radiation to drop to background levels. Protective equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [TEXACO] - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials - When handling, **DO NOT** eat, drink or smoke. - DO NOT incinerate or puncture aerosol cans. - DO NOT spray directly on humans, exposed food or food utensils. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe
working conditions are maintained. ### Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - Keep containers securely sealed. Contents under pressure. - Store away from incompatible materials. - Store in a cool, dry, well ventilated area. - Avoid storage at temperatures higher than 40 deg C. - Store in an upright position. - Protect containers against physical damage. - Check regularly for spills and leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Store away from incompatible materials #### Conditions for safe storage, including any incompatibilities #### Suitable container Storage incompatibility Other information Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. - Aerosol dispenser. - Check that containers are clearly labelled. #### N,N-diethyl-m-toluamide (Deet) is a plasticiser and can damage certain rubber, plastic, vinyl, or elastic materials such as contact lenses, eyeglass frames and lenses, watch crystals, combs, painted and varnished surfaces, and certain synthetic or treated fabrics. - Deet does not damage natural fibers including cotton and wool - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. #### Butane/ isobutane - reacts violently with strong oxidisers - reacts with acetylene, halogens and nitrous oxides - is incompatible with chlorine dioxide, conc. nitric acid and some plastics - may generate electrostatic charges, due to low conductivity, in flow or when agitated these may ignite the vapour. Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C) - Avoid storage with reducing agents. - ► Avoid strong acids, bases - Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances #### SECTION 8 Exposure controls / personal protection #### Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | | |---|------------|-------------------------|--------------------------|------------------|------------------|---|--| | New Zealand Workplace
Exposure Standards (WES) | ethanol | Ethyl alcohol (Ethanol) | 1000 ppm / 1880
mg/m3 | Not
Available | Not
Available | Not Available | | | New Zealand Workplace
Exposure Standards (WES) | propane | Propane | Not Available | Not
Available | Not
Available | Simple asphyxiant - may present an explosion hazard | | | New Zealand Workplace
Exposure Standards (WES) | butane | Butane | 800 ppm / 1900
mg/m3 | Not
Available | Not
Available | Not Available | | #### **Emergency Limits** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------|--------------------------|---------------|---------------|---------------| | ethanol | Ethanol: (Ethyl alcohol) | Not Available | Not Available | 15000* ppm | | propane | Propane | Not Available | Not Available | Not Available | Version No: 2.5 Issue Date: 13/01/2021 Page 6 of 19 Print Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|--|---------------|---------------|---------------| | butane | Butane | Not Available | Not Available | Not Available | | isopropyl myristate | Myristic acid, isopropyl ester; (Tetradecanoic acid, isopropyl; Isopropyl myristate) | 81 mg/m3 | 900 mg/m3 | 5,400 mg/m3 | | | | | | | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | ethanol | 3,300 ppm | Not Available | | N,N-diethyl-m-toluamide | Not Available | Not Available | | 2-ethylhexyl bicycloheptene dicarboximide | Not Available | Not Available | | propane | 2,100 ppm | Not Available | | butane | Not Available | 1,600 ppm | | isopropyl myristate | Not Available | Not Available | ### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating Occupational Exposure Band Limit | | | | |---|--|-----------|--|--| | N,N-diethyl-m-toluamide | E | ≤ 0.1 ppm | | | | 2-ethylhexyl bicycloheptene dicarboximide | E | ≤ 0.1 ppm | | | | isopropyl myristate | E | ≤ 0.1 ppm | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | | #### MATERIAL DATA Fragrance substance lacking human data, with respect to contact allergenicity in humans and used in high volumes according to industry information. Scientific Committee on Consumer Safety SCCS OPINION on Fragrance allergens in cosmetic products 2012 Odour Threshold Value: 49-716 ppm (detection), 101 ppm (recognition) Eye and respiratory tract irritation do not appear to occur at exposure levels of less than 5000 ppm and the TLV-TWA is thought to provide an adequate margin of safety against such effects. Experiments in man show that inhalation of 1000 ppm caused slight symptoms of poisoning and 5000 ppm caused strong stupor and morbid sleepiness. Subjects exposed to 5000 ppm to 10000 ppm experienced smarting of the eyes and nose and coughing. Symptoms disappeared within minutes. Inhalation also causes local irritating effects to the eyes and upper respiratory tract, headaches, sensation of heat intraocular tension, stupor, fatigue and a need to sleep. At 15000 ppm there was continuous lachrymation and coughing. For butane: Odour Threshold Value: 2591 ppm (recognition) Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects. Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE) For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE) # **Exposure controls** Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Speed: | |---|----------------------------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | | direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4:
Large hood or large air mass in motion | 4: Small hood-local control only | # Appropriate engineering controls Version No: **2.5** Page **7** of **19** Issue Date: **13/01/2021** #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Eye and face protection #### Close fitting gas tight goggles #### DO NOT wear contact lenses Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] No special equipment required due to the physical form of the product. #### Skin protection #### See Hand protection below # Hands/feet protection - No special equipment needed when handling small quantities. - ► OTHERWISE: - ► For potentially moderate exposures: - Wear general protective gloves, eg. light weight rubber gloves. - For potentially heavy exposures: - Wear chemical protective gloves, eg. PVC. and safety footwear. No special equipment required due to the physical form of the product. #### Body protection #### See Other protection below # The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. # BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities. #### Other protection # OTHERWISE: • Overalls. - ► Skin cleansing cream. - ► Eyewash unit. - Do not spray on hot surfaces No special equipment required due to the physical form of the product. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: # "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the **computer-generated** selection: Ecomist BugBullit Personal Insect Repellent (new) | Material | СРІ | |------------------|-----| | BUTYL | Α | | NEOPRENE | Α | | NITRILE | A | | NITRILE+PVC | A | | PE/EVAL/PE | A | | PVC | В | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might #### Respiratory protection Respiratory protection not normally required due to the physical form of the product. ► Generally not applicable. Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. Version No: 2.5 Page 8 of 19 Issue Date: 13/01/2021 ### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | miorination on basic physical (| | | | |--|---|---|----------------| | Appearance | Clear flammable liquid with a perfumed odour; not miscible with | water. | | | Physical state | article | Relative density (Water = 1) | 0.74 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 431 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | -81 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 10 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.5 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** Inhaled #### Information on toxicological effects The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm. No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm). Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe cases The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure. The vapour is discomforting WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may
happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Version No: **2.5** Page **9** of **19** Issue Date: **13/01/2021** #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 Human ingestion of Deet has produced irritability, bizarre movement, depressed muscle stretch reflex, hypotension, seizures, and coma. Toxic doses in rats have produced lachrymation (tears), chromodacryorrhea (shedding of bloody tears), depression, loss of righting syndrome, tremors, coma and terminal convulsions. Ingestion of ethanol may produce nausea, vomiting, gastrointestinal bleeding, abdominal pain and diarrhoea. Systemic effects: | Blood concentration: | Effects: | |----------------------|--| | <1.5 g/l | Mild: Impaired visual acuity, coordination and reaction time, emotional lability | | 1.5-3.0 g/l | Moderate: Slurred speech, confusion, ataxia, emotional lability, perceptual and sensation disturbances possible blackout spells, and incoordination with impaired objective performance in standardised tests. Possible diplopia, flushing, tachycardia, sweating and incontinence. Bradypnoea may occur early and tachypnoea may develop in cases of metabollic acidosis, hypoglycaemia and hypokalaemia. CNS depression may progress to coma. | | 3-5 g/l | Severe: Cold clammy skin, hypothermia and hypotension. Atrial fibrillation and atrioventricular block have been reported. Respiratory depression may occur, respiratory failure may follow serious intoxication, aspiration of vomitus may result in pneumonitis and pulmonary oedema. Convulsions due to severe hypoglycaemia may also occur Acute hepatitis may develop. | Ingestion Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Dermal application of Deet in man produces no primary skin irritation or skin sensitisation whereas in rabbits erythema and desquamation are described along with percutaneous intoxication. Central nervous system disorders (excitation, stiffness of movement and loss of coordination) were observed in rats following administration of the substance. Embryotoxicity has been reported in Russian literature following large dose application to the skin of rabbits. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Skin Contact Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either - produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Eve Direct contact of the eye with ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures.. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of There is sufficient evidence to establish a causal relationship between human exposure to the material and impaired fertility - appropriate animal studies, - other relevant information Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Chronic Principal routes of exposure are usually by inhalation of mists or vapours from heated material and skin contact/absorption. A 5 year old girl sprayed with Deet nightly for 3 months, developed headaches and slurred speech, progressing to athetosis (ceaseless slow, writhing motions especially of the hands), shaking, screaming and convulsion. She died 24 days after hospitalisation; autopsy revealed generalised oederna of the brain with intense congestion of the meninges. The effect was thought to represent sensitisation to the substance Repeated application to human skin resulted in slight irritation and dryness of the face, desquamation around the nose and a slight tingling sensation. Incidences of sporadic allergy (anaphylaxis) and scarring dermatitis have been reported. Some individuals repeatedly exposed to the substance have shown encephalopathy and neurological symptoms (muscle cramp, urinary hesitation, insomnia, abnormal sweating, irritability, depression, paranoia, episodes of confusion, and aggressive behaviour). An increased incidence sperm head abnormalities and period nausea, vomiting and nasal exudate were observed in animals following chronic Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Continued... Version No: 2.5 Page 10 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1). (1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996 Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal
involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties #### Animal studies: No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation. | Ecomist BugBullit Personal | TOXICITY | IRRITATION | |---|--|--| | Insect Repellent (new) | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >15800 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | | Inhalation(Mouse) LC50; =39 mg/l4hrs ^[2] | Eye (rabbit):100mg/24hr-moderate | | ethanol | Oral(Rat) LD50; >7692 mg/kg ^[1] | Eye: adverse effect observed (irritating)[1] | | | | Skin (rabbit):20 mg/24hr-moderate | | | | Skin (rabbit):400 mg (open)-mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: 0.005 mg/kg ^[2] | Eye (rabbit) : 10 mg - moderate | | N,N-diethyl-m-toluamide | Oral(Mouse) LD50; 1170 mg/kg ^[2] | Eye (rabbit): 100 mg | | | | Skin (rabbit): 500 mg - moderate | | | TOXICITY | IRRITATION | | 2-ethylhexyl bicycloheptene dicarboximide | dermal (rat) LD50: >5000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | <u> </u> | Oral(Rat) LD50; 0.005 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | propane | Inhalation(Rat) LC50; >13023 ppm4hrs ^[1] | Not Available | | | TOXICITY | IRRITATION | | butane | Inhalation(Rat) LC50; 658 mg/l4hrs ^[2] | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 0.005 mg/kg ^[2] | Skin (human): 85 mg/3d-I mild | | isopropyl myristate | Inhalation(Rat) LC50; >10.25 mg/l4hrs ^[2] | Skin (rabbit): 100 mg/24h SEVERE | | | Oral(Rat) LD50; >2000 mg/kg ^[1] | Skin (rabbit): 426 mg/24h mild | | Legend: | Value obtained from Europe ECHA Registered Substant
specified data extracted from RTECS - Register of Toxic Ele | ces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise ffect of chemical Substances | N,N-DIETHYL-M-TOLUAMIDE The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Version No: 2.5 Page 11 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 Reproductive effector in rats For 2-ethylhexyl (or N-octyl) bicycloheptene dicarboximide (MGK-264) Dermal Absorption: A study with human volunteers indicated that the dermal absorption factor for MGK-264 is approximately 10% based on the combination of radiolabelled material in the urine (about 1%) and unaccounted for radioactivity (about 9%, assumed to be retained in the body). Subchronic Inhalation Toxicity: A 90-day rat inhalation toxicity study demonstrated that at the lowest dose tested, there were indications of metaplasia/hyperplasia and changes in the larynx. At higher doses, histopathology of the larynx revealed additional changes and more intense changes in the epithelium and throat. Thus, inhalation exposure is capable of causing alterations in the respiratory tract. Immunotoxicity and Neurotoxicity: There were no indications of immunotoxicity or specific neurotoxicity Subchronic and Chronic Oral Toxicity: The liver is the target organ of MGK-264. Liver effects were noted in the adults in the rat chronic/oncogenicity study, the mouse chronic/oncogenicity study, the rat multi-generation reproduction study and subchronic and chronic dog studies. The dog appeared to be the most sensitive species for liver alterations but these alterations were limited to slight to moderate brown pigment and circulating enzyme changes. The dog study did not include histopathology of the liver to verify the presence of degenerative conditions. In the mouse, liver changes include bile duct histological changes including liver tumors, as well as kidney weight effects and brown pigment. 2-ETHYLHEXYL BICYCLOHEPTENE DICARBOXIMIDE DI Developmental Toxicity: The rat and rabbit developmental toxicity studies did not demonstrate developmental toxicity for MGK-264. Maternal toxicity consisted of body weight and food consumption decreases. However, at higher doses, abortions, resorptions, and deaths were noted. Reproductive Toxicity: There were no effects on the reproductive performance of either males or females in the multi-generation reproduction study. Systemic effects were related to body weight decrease as well as histopathological changes in the liver similar to those seen in the rat chronic feeding study. However, offspring for all generations indicated decreased body weight during lactation at a lower dose than parental systemic effects. The effect was reversible after weaning as pups regained weight and their weights were comparable to control animal weights after weaning. Mutagenicity: Mutagenicity and genotoxicity were not evident in the Ames test for bacterial mutations, in the unscheduled DNA synthesis, or in a chromosome aberration studies. Although MGK-264 was considered weakly positive in the mouse lymphoma assay, there was a low concern for mutagenic or genetic toxicity. Metabolism: The metabolism and pharmacokinetics data for MGK-264 in rats demonstrated that MGK-264 is absorbed and excreted with little retention of metabolites **PROPANE** No significant acute toxicological data identified in literature search. Intraperitoneal (Rat) LD50: >79500 mg/kg ** * Good Scents Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. Group A aliphatic monoesters (fatty acid esters) According to a classification scheme described by the American
Chemistry Council' Aliphatic Esters Panel, Group A substances are simple monoesters derived from a monofunctional alcohol, such as 2-ethylhexyl alcohol (C8-alcohol) or tridecyl alcohol (C13 alcohol) and fatty acids such as palmitic, stearic, oleic or linoleic acid. Metabolism of the parent esters is expected to yield the corresponding fatty acids and alcohols. The fatty acids are naturally occurring and have a low order of toxicity. Group A substances are rather lipophilic (log Kow 10-15) in character due to the large number of carbon numbers in the ester molecule (e.g., 24,26, 31 carbons) and have relatively high boiling points. Owing to the non-volatile nature of these esters, their vapour pressures are very low and difficult to determine experimentally. Water solubility is also very low. Mammalian Toxicity. Acute Toxicity. Many higher fatty acid esters, such as the stearates, oleates and palmitates, have been cleared for use in the food industry; thus, their general physiological response and toxicity are very low. Many of the higher fatty acid esters are considered safe for use in cosmetics. Available acute toxicity data indicate that the fatty acid esters in Group A, in general, have a low order of toxicity [e.g., palmitic acid, 2-ethylhexyl ester (LD50 > 5 g/kg) and tall oil fatty acid 2-ethylhexyl ester (LD50 > 64 g/kg)]. Consistent with that, available data spanning the carbon range of C22 to C34 indicate that the alkyl fatty acid esters are not toxic by oral administration [rat LD50 (oral) > 5g/kg, with range from 5 g/kg to 64 kg/kg]. Butyl stearate is tolerated by rats without lethal effects at oral doses of 32 g/kg while octyl oleate has a reported LD50 of >40 ml/kg. In addition, many alkyl fatty acid esters, such as the stearates, oleates and palmitates, have been demonstrated to be not toxic by dermal administration Because of the low volatility of these substances, inhalation exposure at toxicological significant levels is not expected. Repeated Dose Toxicity. 28-Day oral gavage studies in rats with decyl oleate (CAS 3687-46-5) at doses of 100,500 and 1000 mg/kg showed no toxicity as noted with respect to clinical symptoms, biochemistry, hematology, gross lesions or tissue/organ histopathology. The NOAEL was estimated to be 1000 mg/kg. Similarly, octyl or (2-ethylhexyl) stearate showed a NOAEL of 1000 mg/kg in 28-day oral gavage studies in rats. In chronic two-year feeding studies with butyl stearate at concentrations of 1.25% or 6.25% in the diet, exposed rats showed no significant difference from control animals with respect to growth, survival, blood counts or other haematological parameters. Besides the two substances above, various other long-chain fatty acid esters have also been studied for their repeated dose toxicity and the findings support a low order of toxicity. Genotoxicity: Genetic Toxicity (Salmonella). Fatty acid, C 16- 18 saturated and C 18 unsaturated, 2-ethylhexanoate (CAS 85049-37-2); octyl stearate (CAS 109-36-4); and decyl oleate (CAS 3687-46-5)] were shown to be negative in the Ames assay. Since the monoesters are similar in chemical structure and carbon-number range, it is unlikely that esters in Group A will induce point mutation. In addition, the chemistry of the long-chain fatty acids does not suggest the likelihood that these substances or their constituent substructures (i.e., fatty acids, alcohols) are reactive or electrophilic in nature. Genetic Toxicity (Chromosomal Aberrations). The chemistry of the long-chain fatty acid esters does not suggest the likelihood that these substances or their constituent substructures (i.e., fatty acids, alcohols) are reactive or electrophilic in nature. Therefore, the likelihood that the fatty acid monoesters may cause chromosomal mutation is very low. Reproductive toxicity: Assessment of reproductive effects of alkyl fatty acid esters in Group A is based primarily on studies with butyl stearate. Fertility, litter size and survival of offspring were normal in rats fed diets containing 6.25% butyl stearate for 10 weeks. However, growth was reduced in offspring during the pre-weaning and post-weaning periods. No gross lesions were noted among the offspring killed at the end of the 21-day post-weaning periods These results indicate that long-chain fatty acid esters do not cause reproductive toxicity in rats. Given the relative low order of toxicity for long-chain fatty acid esters and their relative non-elepemental Toxicity/ Teratogenicity. Assessment of developmental effects for the long-chain fatty acid esters in this group was based primarily on data reported for fatty acid, C16-18, 2-ethylhexyl ester (CAS 91031-48-0). In oral gavage studies in rats administered doses of 100,300 and 1000 mg/kg during gestation, the maternal NOAEL was > 1000 mg/kg and the NOAEL for teratogenicity was >1000 mg/kg. Based on these findings and the fact Group A substances, are very chemically similar ISOPROPYL MYRISTATE to the structure of the tested material, read-across assessment is thought to be appropriate. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. 55fae Version No: 2.5 Page 12 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 For N.N-diethyl-m-toluamide (Deet) **Acute toxicity:** Different preparations of Deet with different proportions of the m-isomer produced different oral LD50s. Rats killed by dosages in the LD50 range showed lacrimation, chromodacryorrhea, depression, prostration, tremors, and asphyxial convulsions. Respiratory failure usually preceded cardiac failure. In rabbits, an intravenous dosage of 75 mg/kg was rapidly fatal, but 50 mg/kg was not. Five doses at the rate of 25 mg/kg/day produced no cumulative effect, except for injury of the intima of some veins used for injection. Single dermal applications to rabbits at rates of 2 or 4 ml/kg produced no systemic effect, but did produce mild to moderate erythema. Repeated dermal application of 50% solutions for 13 weeks at the rate of 2 ml/kg/day produced no evidence of systemic toxicity but did produce desquamation, coriaceousness, dryness, and fissuring in the same species. Except for some scarring, these lesions cleared within 3 weeks. Instillation of Deet into the eyes of rabbits produced mild to moderate edema of the nictitating membrane, lacrimation, conjunctivitis, and some corneal injury, as revealed by fluorescein staining. After 5 days, all eyes appeared normal. No sensitisation was seen in quinea pigs. Animals topically exposed to Deet have developed dermal and ocular reactions. Dermal effects including erythema, desquamation and scarring in rabbits and profuse sweating, irritation and exfoliation in horses have been reported following repeated applications of Deet at concentrations of 50 percent or greater. Direct ocular application of either diluted (30 or 40 percent Deet) or undiluted Deet in rabbits has produced edema, tearing, conjunctivitis, pus and clouding in the eyes. Repeated dermal application to horses produced hypersteatosis, an overactivity of the selacious glands, when the solution of Deet was 15% or higher. Dermal application in humans of insect repellents containing Deet can produce a variety of skin reactions in humans. Cases of localized skin irritation, large painful blisters and permanent scarring of skin at the crease of the elbow have been reported in soldiers who applied solutions of 50 or 75 percent Deet. Results from questionnaire surveys conducted by the National Institute for Occupational Safety and Health (NIOSH) among Everglades National Park Employees indicated a variety of dermal reactions including rashes, irritation of skin and mucous membranes, and numb or burning sensations of the lips among park workers who were highly exposed to Deet-containing repellents. Urticaria or dermatitis, resulting from topical Deet exposure has been noted in both children and adults. In one instance involving only limited Deet exposure, the urticaria was accompanied by an anaphylactic reaction. Controlled human exposure studies using 50 or 75 percent Deet have reproduced many of the dermal effects noted in field studies. The U.S. Army conducted an investigation in volunteers using 75 percent Deet applied to the upper arm and elbow's crease. Of the 77 volunteers, 37 (48%) had severe dermal reactions at the crease of the elbow. No dermal reactions were observed on the upper arm or in the control group of men tested with ethanol solvent alone. Several cases of toxic encephalopathy associated with the use of Deet in children have been reported in the medical literature. The first reported case involved a 3.5 year old girl whose body, bedclothes and bedding were sprayed each night for two weeks with an insect repellent containing 15 percent Deet. Since then, five additional cases of toxic encephalopathy have been temporally associated with the use of Deet products in children, all of whom were females. The toxic encephalopathy was characterised by agitation, weakness, disorientation, ataxia, seizures, coma and in three cases resulted in death. Autopsies conducted on two fatalities indicated oedema of the brain, with one case presenting necrotic lesions in the cerebellum and spinal cord and an enlarged liver accompanied by microscopic changes. One child was reported to be heterozygous for ornithine carbamoyl transferase deficiency (a sex linked enzyme deficiency which may produce effects similar to those reported above) and it has been hypothesised that children with this
enzyme disorder may be at greater risk of adverse reactions to Deet. This enzyme deficiency which usually causes infant death in males is of variable severity in females. Accidental and deliberate ingestion of Deet-containing products has produced neurotoxic effects similar to those described following dermal exposure. Generalised seizures have also been temporally associated with the use of Deet-containing insect repellent on skin. These cases differ from those described above in that they involved males (four boys aged 3-7 years and one 29-year-old adult), had few associated neurotoxic effects and resolved rapidly. Lower exposure to Deet in these males (four of five males had either one or two dermal applications) may have accounted for the effects being less severe than in females. That the majority of identified neurotoxic cases involved children raises concerns that this subpopulation is at greater risk of adverse reaction following exposure to Deet than are adults. Signs and symptoms of more subtle neurotoxicity have also been associated with extensive dermal application of Deet in adults. Questionnaire results indicate that Everglades National Park employees having extensive Deet exposure were more likely to have insomnia, mood disturbances and impaired cognitive function than were lesser exposed co-workers. A young male who repeatedly applied Deet to his skin prior to spending prolonged periods in a sauna was reported to develop acute manic psychosis characterized by aggressive behavior, delusions and hyperactivity. Either o-DET or p-DET, or both occur as impurities in commercial m-DET (Deet). A thorough study of the o-and p-isomers showed that the o-isomer is slightly more toxic than the others (oral LD50 1,210 mg/kg in rats). However, no alarming difference was found, and it was concluded that the presence of 5% of o-DET or p-DET as impurities in the Chronic toxicity: When rats were fed Deet at a dietary level of 10,000 ppm for about 200 days, their growth rate was decreased without a decrease in food intake. There was a significant increase in the relative weight of the testes and liver in males, of the liver and spleen in females, and the kidneys of both males and females. Some of these changes were seen in lesser degree at a dietary level of 1,000 ppm. No gross or significant histological changes were seen at any dietary level and no changes of any kind were noted at 100 ppm or 500 ppm (about 25 mg/kg/day). Essentially identical results were found in other subacute dermal and feeding studies each carried out on rats, rabbits, and dogs. In these oral studies, 2,000 ppm proved to be a no-effect-level. Oral administration of Deet to dogs at rates of 100 and 300 mg/kg/day caused tremor and hyperactivity and occasional vomiting, but no other effects. Blood studies (hemoglobin, haematocrit, sedimentation rate, platelet counts, total and differential white cell counts) on dogs receiving 300 mg/kg orally or dermally or on rabbits receiving 300 mg/kg dermally revealed no effect on the haematopoietic system. Gross and microscopic examination of the organs of all three species revealed only slight kidney damage in rabbits typical of that associated with burns of the skin. Thirteen other organs, including liver, spleen, and bone marrow, were normal in the three species No systemic toxicity was observed in rats exposed 8 hours/day, 5 days/week for 7 weeks to air saturated with Deet. No toxic effects were observed in rats exposed for 6 hours to an aerosol of Deet. No gross or significant histological changes were seen . Organ Toxicity: Hypertrophy of the kidneys and liver and effects of mild central nervous system stimulation including tremors and hyperactivity were noted in animals following repeated exposure. Significant testicular hypertrophy was observed in male rats repeatedly fed a diet containing from 48 to 531 mg/kg/day of Dee **Reproductive Effects:** When Deet was applied to the skin of rats at the rate of 1,000 mg/kg/day throughout pregnancy, implantation was reduced significantly. Prenatal mortality was 34.1%, compared with 20.9% in the control. Mortality between birth and weaning was 44.0%, compared to 15.7% in the control. Injury was less (but probably significant) at a dosage of 100 mg/kg/day throughout pregnancy. **Teratogenic Effects:** A dermal teratology study was conducted on rabbits. Groups of 20 pregnant rabbits received daily dermal applications of 0, 50, 100, 500, 1000, or 5000 mg Deet/kg/day in ethanol on shaved backs from day 0 through day 29 of gestation. There were no significant differences between control and treated animals with respect to the fertility index, number of implantations per animal, or number of fetuses per animal. In addition, treatment did not change fetal weight, fetal length or placental weights and no increases in the incidence of skeletal or soft tissue anomalies were observed in treated groups when compared with untreated controls. This study demonstrated that Deet has no teratogenic or embryotoxic effects in rabbits exposed dermally to technical Deet. An additional supplementary teratology study was conducted on rats. Groups of 20 pregnant rats were daily administered 10 ml of peanut oil containing 0, 8, 20 or 80 mg/kg/Deet by gavage from day 5 through day 15 of gestation. No significant differences were reported between control and treated mothers with respect to fertility, fetuses per litter, foetal weight or fetal survival. However, the study did show decreases in number of implantation sites per dam and number of fetuses per animal. In addition, a related increase was observed in the number of resorptions per dam Carcinogenicity: Researchers fed Deet to male and female rats in the diet for two years at doses of 10, 30, or 100 mg/kg/day, and 30, 100, or 400 mg/kg/day, Researchers fed mice 250, 500, or 1,000 mg/kg/day for 18 months, and dogs 30, 100, or 400 mg/kg/day. No specific target organ toxicity or oncogenicity was observed in any of the animals. Researchers often use studies designed to test for mutagenicity to screen chemicals for carcinogenicity. Sufficient evidence indicates that DEET does not have significant potential for mutagenicity Fate in Humans and Animals: Deet is absorbed promptly from the skin and distributed to all organs including the brain and the foetus. The compound is excreted in the milk but primarily in the urine Ecomist BugBullit Personal Insect Repellent (new) & N,N-DIETHYL-M-TOLUAMIDE Version No: 2.5 Page 13 of 19 Issue Date: 13/01/2021 ### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: **13/01/2021** ETHANOL & N,N-DIETHYLM-TOLUAMIDE & 2-ETHYLHEXYL BICYCLOHEPTENE DICARBOXIMIDE The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | X | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: ★ - Data either not available or does not fill the criteria for classification Data available to make classification ### **SECTION 12 Ecological information** #### **Toxicity** | Ecomist BugBullit Personal | Endpoint | Test Duration (hr) | | Species | | Value | Source | |----------------------------|------------------|--------------------|------|-------------------------------|----------|------------------|------------------| | Insect Repellent (new) | Not
Available | Not Available | | Not Available | | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Sp | pecies | Value | 1 | Source | | | LC50 | 96 | Fis | sh | 42-m | g/L | 4 | | | EC50 | 48 | Cru | ustacea | 2-mg/ | L | 4 | | ethanol | EC50 | 96 | Alg | gae or other aquatic plants | -8.358 | 3-26.503mg/L | 4 | | | EC10 | 168 | Alg | gae or other aquatic plants | 1.91- | mg/L | 4 | | | NOEC | 2016 | Fis | sh | 0.000 | 375-mg/L | 4 | | | Endpoint | Test Duration (hr) | Spe | ecies | Value | | Source | | | LC50 | 96 | Fish | h | 71.25m | g/L | 4 | | N,N-diethyl-m-toluamide | EC50 | 48 | Cru | stacea | -56-100 | mg/L | 4 | | | EC95 | Not Reported | Not | Available | -0.567- | 0.8002mg/cm | 4 | | | NOEL | 0.25 | Not | Available | 0.0000 | 12mg/cm | 4 | | | Endpoint | Test Duration (hr) | Spe | ecies | Value | | Source | | | LC50 | 96 | Fish | h | -0.1312 | 2-0.2007mg/L | 4 | | ethylhexyl bicycloheptene | EC50 | 48 | Cru | ıstacea | -1.9-4.0 | 6mg/L | 4 | | dicarboximide | EC50 | 72 | Alg | ae or other aquatic plants | >1.63 | <2.7mg/L | 2 | | | EC10 | 120 | Not | t Available | 2.1523 | 20192-mg/L | 4 | | | NOEL | 336 | Not | t Available | 0.01-m | g/L | 4 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | propane | LC50 | 96 | | Fish | | 24.11mg/L | 2 | | | EC50 | 96 | | Algae or other aquatic plants | | 7.71mg/L | 2 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | butane | LC50 | 96 | | Fish | | 24.11mg/L | 2 | | | EC50 | 96 | | Algae or other aquatic plants | | 7.71mg/L | 2 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | isopropyl myristate | LC50 | 96 | | Fish | | >1000mg/L | 2 | | | EC50 | 48 | | Crustacea | | >0.05mg/L | 2 | | isopropyl myristate | | | | | | | 2 | | isopropyl myristate | EC50 | 72 | | Algae or other aquatic plants | | <100mg/L | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when
cleaning equipment or disposing of equipment wash-waters. Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When ethanol is released into the soil it readily and quickly biodegrades but may leach into ground water; most is lost by evaporation. When released into water the material readily evaporates and is biodegradable. Ethanol does not bioaccumulate to an appreciable extent. The material is readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition. Environmental Fate: Version No: 2.5 Page 14 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 TERRESTRIAL FATE: An estimated Koc value of 1 indicates that ethanol is expected to have very high mobility in soil. Volatilisation of ethanol from moist soil surfaces is expected to be an important fate process given a Henry's Law constant of 5X10-6 atm-m3/mole. The potential for volatilisation of ethanol from dry soil surfaces may exist based upon an extrapolated vapor pressure of 59.3 mmHg. Biodegradation is expected to be an important fate process for ethanol based on half-lives on the order of a few days for ethanol in sandy soil/groundwater microcosms. AQUATIC FATE: An estimated Koc value of 1 indicates that ethanol is not expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon a Henry's Law constant of 5X10-6 atm-m3/mole. Using this Henry's Law constant and an estimation method, volatilisation half-lives for a model river and model lake are 3 and 39 days, respectively. An estimated BCF= 3, from a log Kow of -0.31 suggests bioconcentration in aquatic organisms is low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for ethanol since this compound lacks functional groups that hydrolyse or absorb light under environmentally relevant conditions. Ethanol was degraded with half-lives on the order of a few days in aquatic studies conducted using microcosms constructed with a low organic sandy soil and groundwater, indicating it is unlikely to be persistent in aquatic environments(8). ATMOSPHERIC FATE: Ethanol, which has an extrapolated vapor pressure of 59.3 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere. Vapour-phase ethanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5 days, calculated from its rate constant of 3.3X10-12 m3/molecule-sec at 25 deg C. #### **Ecotoxicity:** log Kow: -0.31- -0.32 Half-life (hr) air: 144 Half-life (hr) H2O surface water: 144 Henry's atm m3 /mol: 6.29E-06 BOD 5 if unstated: 0.93-1.67,63% COD: 1.99-2.11,97% ThOD: 2.1 For Group A aliphatic esters (fatty acid esters): #### **Environmental fate:** Group A substances are rather lipophilic (log Kow 10-15) in character due to the large number of carbons in the ester molecule (e.g., 24,26, 31 carbons) and have relatively high boiling points. Owing to the non-volatile nature of these esters, their vapor pressures are very low and difficult to determine experimentally. Water solubility is also very low. Hydrolysis half lives and atmospheric photodegradation rates were calculated by EPIWIN. The monoester hydrolysis rates were determined to be quite low and not a significant environmental fate route. Fugacity modeling indicates that the fatty acid esters have similar distribution patterns in the environmental compartments (e.g., air, water, soil, sediment). Biodegradation of alkyl fatty acid esters are expected to occur extensively based on the reported 28 day test results (80-85% biodegradation, OECD 301D) for decyl oleate and for the 2-ethylhexyl ester of C16-18 saturated and Cl8 unsaturated fatty acids (CAS 85049-37-2). Group A Substances are expected to be extensively biodegraded since the fatty acids in these esters are primarily comprised of palmitic, stearic or oleic acids, which are known to be rapidly biodegraded #### **Ecotoxicity:** Aquatic toxicity results have been reported for decyl oleate and fatty acid, C16- 18 saturated and C18 unsaturated, 2-ethylhexanoate They are not acutely toxic to fish (LC50 3200 mg/L). In daphnids, the acute LC50 was reported to be 17 mg/L and in algae, the LC50 was reported to be 40-42 mg/L based on biomass and growth rate endpoints. Because of their limited water solubility, the alkyl fatty acid esters and Group A esters are not likely to cause acute aquatic toxicity. For petroleum distillates: Environmental fate: When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant. As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons. Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation: Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons. Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: - (1) n-alkanes, especially in the C10-C25 range, which are degraded readily; - (2) isoalkanes: - (3) alkenes; - (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms); - (5) monoaromatics - (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and - (7) higher molecular weight cycloalkanes (which may degrade very slowly. Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues. When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however, one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level
organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish. This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity: Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions Version No: 2.5 Page 15 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality For N,N-diethyl-m-toluamide (Deet): log Kow : 1.3-3.31 Vapor pressure: 5.6 x 10-3 mm Hg at 20 C Octanol-Water Partition Coefficient (log Kow): 2.02 Henry's constant: 2.1 x 10-8 atm-m3/mol Solubility (water): >1.0 g/L at 25 C Soil Sorption Coefficient (Koc): 3.00 x 10+2 #### **Environmental fate;** Fate in soil: Deet is moderately mobile in soil Deet is stable to hydrolysis at soil pH levels typically found in the environment Investigators observed microbial degradation of Deet by the soil bacterium *P. putida*, under conditions where Deet was the sole carbon source. The resulting metabolic products are 3-methyl benzoate and diethylamine. The metabolic pathway used by *P. putida* is different compared to observed pathways used by other eukaryotes. Researchers observed metabolism of Deet in cultures of soil fungi. C. elegans and M. ramannianus effectively metabolised Deet yielding several metabolites by proposed mechanisms of N-oxidation and N-deethylation. Metabolic products of the fungi breakdown demonstrated lower toxicity to Daphnia magna compared to the parent compound. Fate in water: Deet is practically insoluble in water. Deet has been found in water where wastewater is thought to contribute to stream-flow. The median level found was 0.05 ug/L, with the highest levels (1.10 ug/L) found in streams with urban wastewater. Fate in air: Deet will exist as a vapour in ambient air and degrade via hydroxyl radicals with an estimated half-life of 15 hours **Ecotoxicity:** Birds LD50: 1375 mg/l Fish LC50 (96 h): rainbow trout 172 ppm Fish LC50: 75 mg/l Aquatic invertebrates EC50: 75 ppm For butane: log Kow: 2.89 Koc: 450-900 BCF: 1.9 #### **Environmental Fate** Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilisation from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported. Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important. Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-----------------------------|-----------------------------| | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | N,N-diethyl-m-toluamide | HIGH | HIGH | | 2-ethylhexyl bicycloheptene dicarboximide | HIGH | нідн | | propane | LOW | LOW | | butane | LOW | LOW | | isopropyl myristate | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---|----------------------| | ethanol | LOW (LogKOW = -0.31) | | N,N-diethyl-m-toluamide | LOW (BCF = 2.4) | | 2-ethylhexyl bicycloheptene dicarboximide | LOW (LogKOW = 3.7) | | propane | LOW (LogKOW = 2.36) | | butane | LOW (LogKOW = 2.89) | Version No: 2.5 Page **16** of **19** Issue Date: 13/01/2021 Print Date: 13/01/2021 ### **Ecomist BugBullit Personal Insect Repellent (new)** | Ingredient | Bioaccumulation | |---------------------|----------------------| | isopropyl myristate | LOW (LogKOW = 7.175) | #### Mobility in soil | Ingredient | Mobility | |---|-------------------| | ethanol | HIGH (KOC = 1) | | N,N-diethyl-m-toluamide | LOW (KOC = 536.6) | | 2-ethylhexyl bicycloheptene dicarboximide | LOW (KOC = 10410) | | propane | LOW (KOC = 23.74) | | butane | LOW (KOC = 43.79) | | isopropyl myristate | LOW (KOC = 15390) | ### **SECTION 13 Disposal considerations** # Waste treatment methods Product / Packaging disposal - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Consult State Land Waste
Management Authority for disposal. - Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - DO NOT incinerate or puncture aerosol cans. - Bury residues and emptied aerosol cans at an approved site. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. #### **SECTION 14 Transport information** ## **Labels Required** | Marine Pollutant | NO | |------------------|----| | | | HAZCHEM Not Applicable #### Land transport (UN) | . , , | | | |------------------------------|--|--| | UN number | 1950 | | | UN proper shipping name | AEROSOLS | | | Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | Packing group | Not Applicable | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions 63; 190; 277; 327; 344; 381 Limited quantity 1000ml | | #### Air transport (ICAO-IATA / DGR) | All trulisport (long lata) botty | | | | |----------------------------------|-------------------------------------|---|--| | UN number | 1950 | | | | UN proper shipping name | Aerosols, flammable (en | gine starting fluid); Aerosols, flammable | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk | 2.1 Not Applicable | | Version No: 2.5 Page 17 of 19 Issue Date: 13/01/2021 Print Date: 13/01/2021 ### **Ecomist BugBullit Personal Insect Repellent (new)** Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack | | ERG Code 10L | | | |------------------------------|--|-----------------------------------|--| | Packing group | Not Applicable | | | | Environmental hazard | Not Applicable | | | | | Special provisions | A145 A167 A802; A1 A145 A167 A802 | | | | Cargo Only Packing Instructions | 203 | | | | Cargo Only Maximum Qty / Pack | 150 kg | | | Special precautions for user | Passenger and Cargo Packing Instructions | 203; Forbidden | | 75 kg; Forbidden Y203; Forbidden 30 kg G; Forbidden ### Sea transport (IMDG-Code / GGVSee) | UN number | 1950 | | | | |------------------------------|--|--|--|--| | UN proper shipping name | AEROSOLS | AEROSOLS | | | | Transport hazard class(es) | | 2.1 Not Applicable | | | | Packing group | Not Applicable | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-D , S-U 63 190 277 327 344 381 959 1000 ml | | | ### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---|---------------| | ethanol | Not Available | | N,N-diethyl-m-toluamide | Not Available | | 2-ethylhexyl bicycloheptene dicarboximide | Not Available | | perfume | Not Available | | propane | Not Available | | butane | Not Available | | isopropyl myristate | Not Available | ### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |---|---------------| | ethanol | Not Available | | N,N-diethyl-m-toluamide | Not Available | | 2-ethylhexyl bicycloheptene dicarboximide | Not Available | | perfume | Not Available | | propane | Not Available | | butane | Not Available | | isopropyl myristate | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|--| | HSR002515 | Aerosols (Flammable) Group Standard 2017 | #### ethanol is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls ${\bf New\ Zealand\ Hazardous\ Substances\ and\ New\ Organisms\ (HSNO)\ Act\ -\ Classification\ of\ Chemicals}$ New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) Version No: 2.5 Page 18 of 19 Issue Date: 13/01/2021 #### **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) #### 2-ethylhexyl bicycloheptene dicarboximide is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) #### propane is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) ### butane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### isopropyl myristate is found on the following regulatory lists New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Inventory of Chemicals (NZIoC) #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity (Closed Containers) | Quantity (Open Containers) | |--------------|------------------------------------|------------------------------------| | 2.1.2A | 3 000 L (aggregate water capacity) | 3 000 L (aggregate water capacity) | #### Certified Handler Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information # Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |--------------|--------------------------------------|------------|------------|--| | 2.1.2A | | | | 1L (aggregate water capacity) | #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National Inventory Status | | |--|---| | National Inventory | Status | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (ethanol; N,N-diethyl-m-toluamide; 2-ethylhexyl bicycloheptene dicarboximide; perfume; propane; butane; isopropyl myristate) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | No (2-ethylhexyl bicycloheptene dicarboximide) | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | No (2-ethylhexyl bicycloheptene dicarboximide) | | Taiwan - TCSI | Yes | | Mexico - INSQ | No (perfume) | | Vietnam - NCI | Yes | | Russia - ARIPS | No (2-ethylhexyl bicycloheptene dicarboximide; isopropyl myristate) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | Version No: 2.5 Page 19 of 19 Issue Date: 13/01/2021 # **Ecomist BugBullit Personal Insect Repellent (new)** Print Date: 13/01/2021 ### **SECTION 16 Other information** | Revision Date | 13/01/2021 | |---------------|------------| | Initial Date | 15/12/2015 | #### **SDS Version
Summary** | Version | Issue Date | Sections Updated | |-----------|------------|-----------------------| | 1.5.1.1.1 | 13/01/2021 | Ingredients, Synonyms | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.