

Programming Manual

of

Motion Controller

GUC-ECAT Series

V1.0

© 2014 Googol Technology. All rights reserved

www.googoltech.com

2014.10

Copyright Statement

1 © 2014 Googol Technology. All rights reserved

Copyright Statement

Googol Technology Ltd.

All rights reserved.

Googol Technology Ltd. (Googol Technology hereafter) reserves the right to modify the products

and product specifications described in this manual without advance notice.

Googol Technology will not take responsibility for any direct, indirect, consequential or liability

caused damage by improperly using of this manual and the product.

Googol Technology owns the patent, copyright or any other intellectual property rights of this

product and the related software. No one shall duplicate, reproduce, process or use this product

and its parts, unless authorized by Googol Technology.

 Machinery in motion can be dangerous! It is the user’s responsibility to design effective

error handling and safety protection methods as part of the machinery. Googol Technology

shall not be liable or responsible for any incidental or consequential damages.

Contact Us

Googol Technology (Shenzhen) Ltd.

Address: 2nd Floor, West Wing, IER Building

(PKU-HKUST Shenzhen Hong Kong

Institution) High-tech Industrial Park,

Nanshan, Shenzhen, PRC

Postal Code: 518057

Tel.: +(86) 755-26970817, 755-26970824,

755-26737236

Fax: +(86) 755- 26970821

E-mail: support@googoltech.com

URL: http://www.googoltech.com.cn

Googol Technology (HK) Ltd.

Address: Unit 1008-09, 10/F C-Bons

International Center, 108 Wai

Yip Street, Kwun Tong,

Kowloon, Hong Kong

Tel.: +(852) 2358-1033

Fax: +(852)2719-8399

E-mail: info@googoltech.com

URL: http://www.googoltech.com

mailto:support@googoltech.com
http://www.googoltech.com.cn/
mailto:info@googoltech.com
http://www.googoltech.com/

Document Version

2 © 2014 Googol Technology. All rights reserved

Document Version

Version Date

1.0 2014-09-24

Foreword

3 © 2014 Googol Technology. All rights reserved

Foreword

Thank you for selecting Googol Technology motion controller

To repay user, we will help you establish your own control system, by providing our first-class

motion controller, perfect after-sale services, and high-efficiency technical support.

More information about products of Googol Technology

Googol Technology’s web site is http://www.googoltech.com. You can get more information about

the company and products on our website, including company profile, product introduction,

technical support, product recently released.

You can also get more information about the company and products through the phone: +(86)

755-26970817.

Technical support and after-sale services

To get our technical support and after-sale services:

E-mail: support@googoltech.com

Tel.: +(86) 755 2697-0843

Addr: Googol Technology (SZ) Ltd

2nd Floor, West Wing, IER Building (PKU-HKUST Shenzhen Hong Kong Institution) High-tech

Industrial Park, Nanshan, Shenzhen, PRC.

Postal Code: 518057

Usage of this Programming Manual

By reading this manual, you will know the control functions of GUC-ECAT series motion controller,

learn the usage of motion functions, and become familiar with programming of specific control

function. Finally, you can program your application for controlling according to your specific control

system.

User of this Programming Manual

This manual is applicable to those engineering developers who have the base knowledge of

programming in C or other using Dynamic Link Library (DLL) in Windows environment, with certain

work experience in motion control and understanding of the basic architecture of servo or step

control.

Main Contents of this Programming Manual

This manual consists of twelve chapters, which introduced the control functions and programming

of the GUC-ECAT series motion controller in detail.

http://www.googoltech.com/
mailto:support@googoltech.com

Foreword

4 © 2014 Googol Technology. All rights reserved

Relevant Documents

For installing and debugging of GUC-ECAT series motion controller, please refer to User’s Guide

of GUC-ECAT series Motion Controller provided together with our product.

Contents

5 © 2014 Googol Technology. All rights reserved

Contents

Copyright Statement.. 1

Document Version ... 2

Foreword .. 3

Contents ... 5

Chapter 1 Use of Motion Function Library in OtoStudio .. 8

1.1 Use of OtoStudio software library ... 8

1.1.1 Usage of the library in OtoStudio .. 8

Chapter 2 Return Values of Commands and Their Meanings .. 9

2.1 Return values of commands ... 9

Chapter 3 System Configuration ... 10

3.1 Basic concepts of system configuration ... 10

3.1.1 Hardware resource ... 10

3.1.2 Software resource ... 10

3.1.3 Resources combination ... 11

3.2 System configuration tool ... 12

3.2.1 Axis configuration .. 14

3.2.2 Step configuration ... 16

3.2.3 Dac configuration .. 17

3.2.4 Encoder configuration ... 18

3.2.5 Control configuration ... 20

3.2.6 Profile configuration .. 21

3.2.7 Di configuration ... 22

3.2.8 Do configuration .. 23

3.3 Generate and download configuration file .. 24

3.4 Command to modify configuration information ... 25

3.4.1 Commands summary .. 25

3.4.2 Highlights .. 28

Chapter 4 New Instruction Descriptions of EtherCAT .. 30

4.1 EtherCAT library ... 30

4.1.1 Commands summary .. 30

1.1.1 Highlights .. 31

1.1.2 Examples .. 31

4.2 Other commands of EtherCAT ... 32

4.2.1 Commands summary .. 32

Chapter 5 Motion Mode .. 33

5.1 Point to Point motion mode .. 33

5.1.1 Commands summary .. 33

Contents

6 © 2014 Googol Technology. All rights reserved

5.1.2 Highlights .. 34

5.1.3 Example .. 35

5.2 Jog Motion Mode .. 37

5.2.1 Commands summary .. 37

5.2.2 Highlights .. 37

5.2.3 Example .. 38

5.3 PT Motion Mode ... 39

5.3.1 Commands summary .. 39

5.3.2 Highlights .. 40

5.3.3 Example .. 42

5.4 Electronic gear motion mode .. 48

5.4.1 Commands summary .. 48

5.4.2 Highlights .. 49

5.4.3 Example .. 50

5.5 Follow Motion Mode ... 53

5.5.1 Commands summary .. 53

5.5.2 Highlights .. 55

5.5.3 Example .. 57

Chapter 6 Access Hardware Resource ... 64

6.1 Access digital IO ... 64

6.1.1 Commands summary .. 64

6.1.2 Highlights .. 65

6.1.3 Example .. 65

6.2 Access encoder .. 65

6.2.1 Commands summary .. 65

6.2.2 Example .. 66

6.3 Access DAC ... 66

6.3.1 Commands summary .. 66

Chapter 7 Safety Mechanism ... 68

7.1 Limit .. 68

7.1.1 Commands summary .. 68

7.1.1 Highlights .. 69

7.1.2 Example .. 69

7.2 Drive Alarm ... 70

7.3 Smooth stop and emergency stop .. 70

7.4 Error position limit ... 71

Chapter 8 Motion Status Detection ... 72

8.1 Commands summary ... 72

8.2 Highlights .. 74

8.3 Example .. 75

Chapter 9 Motion Program ... 79

Chapter 10 Other Commands .. 80

Contents

7 © 2014 Googol Technology. All rights reserved

10.1 Reset motion controller... 80

10.2 Get the firmware version .. 80

10.3 Get the system clock .. 81

10.4 Enable/Disable servo.. 81

10.5 Position profile modification .. 81

10.6 Arrival detection .. 82

Chapter 11 Command List ... 84

Chapter 12 Encryption Mechanism ... 87

Chapter 1 Use of motion function library in Otostudio

8 © 2014 Googol Technology. All rights reserved

Chapter 1 Use of Motion Function Library in

OtoStudio

1.1 Use of OtoStudio software library

For using the motion controller in CPAC software platform, directly run Setup to save the instruction

function library of the motion controller under the default path. The library file name of

GUC-X00-TPX controller is CPAC GUC_X00_TPX.lib. Since the motion controller needs to use

EtherCAT bus, it is necessary to call EtherCAT private library, wherein the method is consistent with

the method of using CPAC-X00-TPX.lib, and CPAC-X00-TPX.lib could be used at the same time,

and the library file name is CPAC GUC-X00-TPX ECAT.lib.

1.1.1 Usage of the library in OtoStudio

1. Start the OtoStudio.exe, and create a new project;

2. Select the target platform: CPAC GUC-X00-TPX

3. The system adds CPAC GUC-X00-TPX.lib automatically;

4. Manually add CPAC GUC-X00-TPX ECAT.lib to the library file manager;

Now, users can call any commands in DLL and program their application programs in OtoStudio

Chapter 2 Return Values of Commands and their Meanings

9 © 2014 Googol Technology. All rights reserved

Chapter 2 Return Values of Commands and

Their Meanings

2.1 Return values of commands

CPAC controller works according to the motion controller commands sent by the host. These

commands are encapsulated in DLL. User can call GUC-X00-TPX.lib in the library of CPAC

controller to operate the motion controller when the user writes program to the host PC.

When receiving commands from the host, CPAC controller will give a feedback after checking and

verifying the commands. The definitions of return values are listed in Tab 2-1.

Tab 2-1 Definition of Return Values of Motion Controller

Value Meanings Processing Methods

0 Command executed successful

1 Command error 1. Check the execution condition of the current command

7 Command parameters error 1. Check the value of current command parameters

-1 Error in communication.

1. Check drive of motion controller;

2. Check connection between motion controller and host

PC;

3. Change host PC;

4. Change motion controller

-6 Failure in opening the card.

1. Check drive of motion controller

2. Check if GT_Open() was called twice.

3. Check if the card was opened in another program

-7
No response of motion

controller
1. Change another motion controller

It is suggested to check each command return value in user program to confirm if the

execution of the command is successful, and establish necessary error treatment

mechanism to assure the safety and reliability of the program.

Chapter 3 System Configuration

10 © 2014 Googol Technology. All rights reserved

Chapter 3 System Configuration

Before an operation in motion controller, user hs to configurate motion controller to ensure its

statuses and work mode satisfy the application requirements. This process is called system

configuration. With management software - Motion Controller Toolkit 2008(MCT2008 as short),

which has a component for system configuration, user can configurate a motion control system.

When the configuration operation is completed, MCT2008 will generate a configuration file with a

cfg suffix name. When user programming a program, they can call correlative command and send

configuration information to motion controller. In this way, controller can achieve system

configuration. User can also use GT command to accomplish the operation of system configuration

too.

3.1 Basic concepts of system configuration

Motion controller contains various software and hardware resources which can be combined freely

to implement different applications.

3.1.1 Hardware resource

Digital Output resource (do): “do” represents digital output signals including servo enable output,

alarm clear output and general digital output.

Digital Input resource (di): “di” represents digital input signals including limit signal input, home

signal input, driver alarm input and general digital input.

Encoder resource (encoder): “encoder” will count the output pulses of encoder.

Pulse output resource (step): “step” represents pulse output channels which will send

"pulse+direction" or "CW/CWW” controlling pulse.

Voltage output resource (dac): “dac” represents the voltage output channels which will send

controlling voltage. The ranging in of “dac” is -10V to +10V.

3.1.2 Software resource

Profile manager resource (profile): “profile” can calculate the profile position and profile velocity

depending on motion mode and motion parameters in real time, and generate velocity curve and

output profile position.

Control resource (control): “control” can calculate the control output depending on control algorithm,

control parameter and following error.

Axis resource (axis): “axis” combines all software and hardware resources as a unity to operate. It

manages the output signal of drive alarm, limit signal, smooth stop signal and emergency stop

signal. And it also has the functions like transform profile output into profile position, transform

Chapter 3 System Configuration

11 © 2014 Googol Technology. All rights reserved

counting position of encoder etc.

3.1.3 Resources combination

The process of combining software resources with hardware resources, and configurating basic

property of all the resources is system configuration. The following two examples show the basic

concept of resources combination.

Control mode of step motor can be configurated as Fig 3-1.

In this example, profile manager outputs profile position to axis, axis will transform the profile

position and output the data into step, which will generate the control pulses to drive motor. Axis

needs to receive the digital input signals of alarm, limit switch, and smooth stop , emergency stop

and so on to manage the motion. And at the same time, it also needs output digital signal of servo

on to enable the motor.

Control mode of servo motor can be configurated as Fig 3-2.

STEP
 PROFILE axis

di

do

Fig 3-1 Step Control

Chapter 3 System Configuration

12 © 2014 Googol Technology. All rights reserved

In this example, profile outputs profile position into axis, and then axis transforms the profile position

and outputs the data into control. Control will compare the profile position with encoder position to

get the following error. Then control can get real time controlled quantity calculated by specific servo

control algorithm，and pass the control quantity to dac. Dac will control the motor motion by

changing controlled quantity into control voltage. Axis needs to receive the digital input signals like

alarm, limit, smooth stop, emergency stop and so on to manage the motion. And it also needs

output digital signal of servo on to enable the motor.

3.2 System configuration tool

Googol Technology provides a motion controller management software, named Motion Controller

Toolkit 2008(MCT2008), to configurate the system. The starting panel of MCT2008 is illustrated as

Fig 3-3.

 PROFILE axis

di

do

DAC

CONTROL

ENCODER

Fig 3-2 Servo Control

Chapter 3 System Configuration

13 © 2014 Googol Technology. All rights reserved

Fig 3-3 Motion Controller Toolkit 2008

User can start motion controller configuration panel by clicking “Tool”-> “Configuration”, in this panel

user can set system configuration.

Chapter 3 System Configuration

14 © 2014 Googol Technology. All rights reserved

3.2.1 Axis configuration

Fig 3-4 Axis configuration panel

1 Axis: select the index of axis which needs to be configurated.

2 Profile scale: If user needs to transform profile position of profile through axis, the parameters

Alpha and Beta need to be set properly. The following equation represents the transformation

relation:

profile

axis

P Alpha

P Beta






profileP
 represents the variable quantity of profile position in profile.

 axisP
 represents the variable quantity of profile position in axis.

Chapter 3 System Configuration

15 © 2014 Googol Technology. All rights reserved

The default values of Alpha and Beta are 1, in another words, the profile position of profile will

not change through axis. The ranging in of Alpha is (-32767, 0) and (0, 32767); the Beta is

(-32767,0) and (0, 32767).This item can be set by GT_ProfileScale() command.

3 Encoder scale: If user needs to transform encoder position of encoder through axis, the

parameters Alpha and Beta need to be set properly. The following equation represents the

transformation relation:

enc

axis

E Alpha

E Beta






encE
 is the variable quantity of encoder position in encoder;

axisE
 is the variable quantity of encoder position in axis.

The default values of Alpha and Beta are 1, in another words, the encoder position of encoder

will not change through axis. The ranging in of Alpha is (-32767,0) and (0, 32767); the Beta is

(-32767,0) and (0, 32767). This item can be set by GT_EncScale() command.

4 Drive alarm: User can choose different type of digital input as drive alarm signal. This motion

controller support any digital input as alarm signals to increase the connection freedom of

hardware. In the first pull-down menu, user can choose the type of digital input of alarm, by

default, motion controller will choose the drive alarm as the digital input. In the second

pull-down menu, user can choose the index of digital input. If user set the index of digital input

as none, the alarm of corresponding axis is disabled. Drive alarm can be disabled by

GT_AlarmOff() command and be enabled by GT_AlarmOn() command.

5 Positive limit: User can choose different type digital input as positive limit signal. This motion

controller support any digital input as positive limit signals to increase the connection freedom

of hardware. In the first pull-down menu, user can choose the type of digital input of positive

limit. By default, motion controller will choose the positive limit as the digital input. In the second

pull-down menu, user can choose the index of digital input. If user set the index of digital input

as none, the positive limit of corresponding axis is disabled. Limit switch can be disabled by

GT_LmtsOff() command and be enabled by GT_LmtsOn() command.

6 Negative limit: User can choose different type of digital input as negative limit signal. This

motion controller support any digital input as negative limit signals to increase the connection

freedom of hardware. By default, motion controller will choose the negative limit as the digital

input. In the first pull-down menu, user can choose the type of digital input of negative limit. In

the second pull-down menu, user can choose the index of digital input. If user set the index of

digital input as none, the negative limit of corresponding axis is disabled. Negative limit switch

can be disabled by GT_LmtsOff() command and be enabled by GT_LmtsOn() command.

7 Smooth stop: User can choose different type digital input as smooth stop signal. This motion

controller support any digital input set as smooth stop signals to increase the connection

freedom of hardware. In the first pull-down menu, user can choose the type of digital input of

smooth stop. By default, motion controller disables the smooth stop of axes. In the second

Chapter 3 System Configuration

16 © 2014 Googol Technology. All rights reserved

pull-down menu, user can choose the index of smooth stop. If user set the index of digital input

as none, the smooth stop of corresponding axis is disabled. The input type of smooth stop can

be configurated by GT_SetStopIo() command.

8 Emergency stop: User can choose different types digital input of emergency stop signal. This

motion controller support any digital input set as emergency stop signals to increase the

freedom of hardware connection. In the first pull-down menu, user can choose the type of

digital input of emergency stop. By default, motion controller disables the emergency stop of

axes. In the second pull-down menu, user can choose the index of emergency stop. If user

set the index of digital input as none, the emergency stop of corresponding axis is disabled.

The input type of emergency stop can be configurated by GT_SetStopIo() command.

9 Active: If axis is not active, the calculating and management tasks of corresponding axis will be

invalid. By default, all axes are active. If user does not need corresponding function of some

axes, inactivate these axes will save resources of motion controller.

3.2.2 Step configuration

Fig 3-5 Step configuration panel

Chapter 3 System Configuration

17 © 2014 Googol Technology. All rights reserved

1 Step index: select index of the step which will be configurated.

2 Pulse output mode: step can realize two types of pulse output mode: "pulse+direction" and

"CW/CCW". By default case, the pulse output mode is "pulse+direction". User can use

GT_StepDir() command to set step to be "pulse+direction" mode. User can also use

GT_StepPulse() command to set step to be "CW/CCW" mode.

3 Active: If step is not active, the output of step pulse is disabled. By default, all steps are active.

If some steps are not used, inactivate these steps will save resources of motion controller.

3.2.3 Dac configuration

Fig 3-6 Dac configuration panel

1 Dac index: Select index of the Dac which will be configurated.

2 Output voltage reverse: This item is used to reverse Dac output voltage. If user set this option

as “Normal”, dac will output positive voltage when the input voltage is positive, and it will output

negative voltage when it is negative. If user set the item as “Reverse”, dac will output negative

voltage if the input voltage is positive, and positive voltage if it is negative.

Chapter 3 System Configuration

18 © 2014 Googol Technology. All rights reserved

3 Zero compensation: User can set the value of zero compensation if needed. This item can be

configurated by GT_SetMtrBias() command.

4 Dac saturation limit: This item is used to set the absolute value of maximum dac output voltage.

If user set it as 32767, the allowed voltage value is -10V to +10V. If the value is 16384, the

allowed voltage value is -5V to +5V. If the absolute value of control voltage output or the

absolute value of voltage output set by GT_SetDac() is over this saturation limit, motion

controller will output this value. This item can be set by GT_SetMtrLmt() command.

5 Active: If the dac is not active, the voltage output of dac is invalid. By default, all dacs are active.

If some dacs are not used , inactivate these dacs will save resources of motion controller.

3.2.4 Encoder configuration

Fig 3-7 Encoder configuration panel

1 Encoder index: Select index of the encoder which will be configurated.

2 Input pulse reverse: Motion controller can receive orthogonal encoder signals. Tab 3-1

describes the relation of this item option, feedback pulse direction and encoder counting

direction. This item can be set by calling GT_EncSns() command.

Chapter 3 System Configuration

19 © 2014 Googol Technology. All rights reserved

Tab 3-1 The relation of feedback pulse direction and encoder counting direction

 Normal Reverse

A Phase

B Phase

Encoder Counting increasing Counting decreasing Counting decreasing Counting increasing

3 Pulse count source: This item represents encoder count source. By default, the source is

encoder. If there is no encoder, user can set as pulse counter. In this case, encoder will count

the pulse output by step. User can call GT_EncOn() command to set the item as encoder; call

GT_EncOff() command to set the item as pulse counter.

4 Home trigger edge: User can change this item to set the trigger edge of home capture. By

default, it is triggered by falling edge. If user chooses a permanently closed switch, it should be

configurated as rising edge. This item can be modified by calling GT_SetCaptureSense()

command.

5 Index trigger edge: User can change this item to set the trigger edge of index capture. By

default, it is triggered by falling edge. This item can be modified by calling

GT_SetCaptureSense() command.

6 Active: If encoder is not active, the counting of input pulse is invalid. By default, all encoders are

active. If some encoders are unused, inactivate these encoders will save resources of motion

controller.

Chapter 3 System Configuration

20 © 2014 Googol Technology. All rights reserved

3.2.5 Control configuration

Fig 3-8 Control configuration panel

1 Control index：Select index of the control which will be configurated.

2 Following error limit: This parameter represents the limit error between profile position and

encoder position. If actual following error limit exceed set value, motion controller will

automatically close the corresponding axis. The default value is 32767, and its unit is pulse.

This item can be set by calling GT_SetPosErr() command.

3 Related axis: If user uses servo motor in close-loop control, connected axis should be clicked.

By default: the connected axis is unclicked, i.e. open-loop control (pulse control) mode. If

“related axis” be clicked, motion controller will connect corresponding encoder, dac, axis and

control together. As illustrated in Fig.3-2, dac cannot be set independently. And GT_SetDac() is

invalid. GT_CtrlMode() command can switch between close-loop mode and open-loop mode.

Chapter 3 System Configuration

21 © 2014 Googol Technology. All rights reserved

3.2.6 Profile configuration

Fig 3-9 Profile configuration panel

1 Profile index: Select index of the profile which will be configurated.

2 Smooth stop dec: This parameter represents the deceleration when GT_Stop is called in

smooth stop mode. The default value is 0.0625 pulse/ms2.This value can be modified by calling

GT_SetStopDec() command.

3 Emergency stop dec: This parameter represents the deceleration when GT_Stop is called in

emergency stop mode. The default value is 1 pulse/ms2. This value can be modified by calling

GT_SetStopDec() command.

4 Active: If profile is not active, motion profile of motion controller is invalid. By default, all profiles

are active. If some profile are unused, inactivate these profiles will save resources of motion

controller.

Chapter 3 System Configuration

22 © 2014 Googol Technology. All rights reserved

3.2.7 Di configuration

Fig 3-10 Di configuration panel

1 Di type: Select the type of di (digital input) which includes drive alarm, positive limit, negative

limit, home and general inputs.

2 Di index: Select the index of di which will be configurated.

3 Input reverse: Used to reverse the input logic of di. By default, “0” represents input low level,

and “1” represents input high level. If the item is “reverse”, the logic of di will been reversed: “1”

represents input low level, and “0” represents input high level. It can be set by calling

GT_GpiSns() command.

4 Filter time (ms): the di signal is valid when it lasts more than Filter time. The default filter time is

3, and its unit is 250 ms.

5 Active: If the di is inactive, the digital inputs of motion controller are invalid. By default, all “di”

are active. If user does not need some “di”, inactivate these dis will save the resources of

motion controller.

Chapter 3 System Configuration

23 © 2014 Googol Technology. All rights reserved

3.2.8 Do configuration

Fig 3-11 Do configuration panel

1 Do type: Select the type of do (digital output), including servo on, clear alarm output and

general outputs.

2 Do index: Select the index of do which will be configurated.

3 Output reverse: Used to reverse the output logic of do. By default, “0” represents output low

level, and “1” represents output high level. If the item is “reverse”, the logic of do will be

reversed: “1” represents output low level, and “0” represents output high level.

4 Related axis: This item represents that the “do” be attached to servo on of specified axis. By

default, each axis has its individual servo on output. If GT_AxisOn() is called, the value of do

will been set as “1”. If the drive servo on is low level active, “output reverse” has to be set as

reverse. Once do is attached to one axis, user can not call GT_SetDo() or GT_SetDoBit() to

specify drive servo on output level directly. If user does not need drive servo on, the relation

between do and axis should be cancelled. After the relation cancelled, the digital output of drive

servo on can be a general digital output, and user can call GT_SetDo() or GT_SetDoBit() to

Chapter 3 System Configuration

24 © 2014 Googol Technology. All rights reserved

specify its output level directly.

5 Active: If the do is inactive, the digital outputs of motion controller are invalid. By default, all dos

are active. If user does not need some dos, inactivate these dos will save the resources of

motion controller.

3.3 Generate and download configuration file

Tab 3-2 Summary of download configuration file commands

Command Description

GT_LoadConfig Download the configuration files into motion controller

Tab 3-3 Definition of download configuration file commands

GT_LoadConfig(char *pFile)

pFile The name of configuration file.

After configuration process of motion control system has been done in the light of 3.2, as illustrated

in Fig 3-12, user can save the configuration information. Click “file”->“Write to file”, then MCT2008

will generate a configuration file(*.cfg).

Chapter 3 System Configuration

25 © 2014 Googol Technology. All rights reserved

Fig 3-12 Generate configuration file panel

User can download the configuration files to motion controller by calling GT_LoadConfig(). Attention:

if configuration files and executable files are not in the same catalogue, the parameter of this

command should include the absolute path of configuration files when call GT_LoadConfig().

3.4 Command to modify configuration information

Except configuration file, User can use GT commands to initialization of control system.

3.4.1 Commands summary

Tab 3-4 Summary of configuration commands

Commands Description

GT_AlarmOff Disable the drive alarm

GT_AlarmOn Enable the drive alarm

GT_LmtsOn Enable the limit

GT_LmtsOff Disable the limit

Chapter 3 System Configuration

26 © 2014 Googol Technology. All rights reserved

GT_ProfileScale Set the profile scale of axis

GT_EncScale Set the encoder scale of axis

GT_StepDir Set step to be "pulse+direction" mode

GT_StepPulse Set step to be "CW/CCW" mode

GT_SetMtrBias Set the zero compensation value of dac

GT_GetMtrBias Get the zero compensation value of dac

GT_SetMtrLmt Set dac saturation limit

GT_GetMtrLmt Get dac saturation limit

GT_EncSns Set encoder count direction

GT_EncOn Switch to "outside encoder" count mode

GT_EncOff Switch to "pulse output of step" count mode

GT_SetPosErr Set following error limit

GT_GetPosErr Get following error limit

GT_SetStopDec Set smooth stop decelerability and emergency stop decelerability

GT_GetStopDec Get smooth stop decelerability and emergency stop decelerability

GT_LmtSns Specify the effective electrical lever for limit switch

GT_CtrlMode Set the output mode of specified axis as analog voltage output of pulse output

GT_SetStopIo Set the input type of smooth stop and emergency stop

GT_GpiSns Specify the effective electrical lever for digital input

GT_SetAdcFilter Set the filter time parameter of adc input(for GTS-400-PX only)

Tab 3-5 Definition of configuration commands

GT_AlarmOff(short axis)

axis Axis NO.

GT_AlarmOn(short axis)

axis Axis NO.

GT_LmtsOn(short axis,short limitType=-1)

axis Axis NO.

limitType

Enable limit type

MC_LIMIT_POSITIVE(this macro is defined 0): Enable the positive limit of axis

MC_LIMIT_NEGATIVE(this macro is defined 1): Enable the negative limit of

axis

-1: Enable both of positive and negative limit of axis, default value

GT_LmtsOff(short axis,short limitType=-1)

Axis Axis NO.

limitType

Disable limit type

MC_LIMIT_POSITIVE(this macro is defined 0): Disable the positive limit of axis

MC_LIMIT_NEGATIVE(this macro is defined 1): Disable the negative limit of

axis

-1:Disable both of positive and negative limit of axis, default value

GT_ProfileScale(short axis,short alpha,short beta)

axis Axis NO.

alpha Alpha value of profile scale,range:[-32768,32767], please refer to 3.2.1

beta Beta value of profile scale,range:[-32768,32767], please refer to 3.2.1

Chapter 3 System Configuration

27 © 2014 Googol Technology. All rights reserved

GT_EncScale(short axis,short alpha,short beta)

axis Axis NO.

alpha Alpha value of encoder scale,ranging in [-32768,32767], please refer to 3.2.1

beta Beta value of encoder scale,ranging in[-32768,32767], please refer to 3.2.1

GT_StepDir(short step)

step Step No

GT_StepPulse(short step)

step Step No.

GT_SetMtrBias(short dac,short bias)

dac Dac No.

bias Zero compensation value, its value ranging in[-32768,32767]

GT_GetMtrBias(short dac,short *pBias)

dac Dac No.

pBias Zero compensation value

GT_SetMtrLmt(short dac,short limit)

dac Dac No.

limit Set dac saturation limit. Its value ranges in (0,32767].

GT_GetMtrLmt(short dac,short *pLimit)

dac Dac No.

pLimit Get dac saturation limit.

GT_EncSns(unsigned short sense)

sense

Set encoder count direction by bit, bit0-bit7 corresponding to enconder 1-8, bit8

corresponding to auxiliary encoder.

0: not reverse this encoder count’s direction

1: reverse this encoder count’s direction

please refer to 3.2.4

GT_EncOn(short encoder)

encoder Encoder No.

GT_EncOff(short encoder)

encoder Encoder No.

GT_SetPosErr(short control,long error)

control Control No.

error Tracking error limit,range: (0,2147483648].

GT_GetPosErr(short control,long *pError)

control Control No.

pError Returned following error limit.

GT_SetStopDec(short profile,double decSmoothStop,double decAbruptStop)

profile Profile No.

decSmoothStop Smooth stop decelerability,range: (0,32767]

decAbruptStop Emergency stop decelerability,range: (0,32767]

GT_GetStopDec(short profile,double *pDecSmoothStop,double *pDecAbruptStop)

profile Profile No.

pDecSmoothStop Smooth stop decelerability.

pDecAbruptStop Emergency stop decelerability.

Chapter 3 System Configuration

28 © 2014 Googol Technology. All rights reserved

GT_LmtSns(unsigned short sense)

sense
Set effective electrical level ofr limit switch by bits, please refer to highlights for

details.

GT_CtrlMode(short axis,short mode)

axis Axis NO.

mode

Output mode

0: analog voltage output mode

1: pulse output mode

GT_SetStopIo(short axis,short stopType,short inputType,short inputIndex)

axis Axis No, range of value: [1, 8].

stopType

Stop mode

0：emergency stop

1：smooth stop

inputType

Digital input

MC_LIMIT_POSITIVE(this macro is defined 0) positive limit

MC_LIMIT_NEGATIVE(this macro is defined 1) negative limit

MC_ALARM(this macro is defined 2) drive alarm

MC_HOME(this macro is defined 3) home

MC_GPI(this macro is defined 4) general input

MC_ARRIVE(this macro is defined 5) motor arrive(GTS-400-PX only)

inputIndex

Index of digital input, its range depends on inputType.

If inputType= MC_LIMIT_POSITIVE its value ranging in [1, 8];

If inputType= MC_LIMIT_NEGATIVE its value ranging in [1, 8];

If inputType= MC_ALARM its value ranging in [1, 8];

If inputType= MC_HOME its value ranging in [1, 8];

If inputType= MC_GPI its value ranging in [1, 16]

If inputType= MC_ARRIVE its value ranging in [1,8]

GT_GpiSns(unsigned short sense)

sense

Set the digital input level by bit, bit0 to bit15 represents general input 1 to

general input 16.

0: original input level, the return of GT_GetDi() is same as the input level, 0

means the input is low level, 1 means the input is high level.

1: reverse input level, the return of GT_GetDi() is same as the reversed value of

input level, 0 means the input is high level, 1 means the input is low level.

GT_SetAdcFilter(short adc,short filterTime)

adc Adc No. its value ranging in [1,8]

filterTime Time parameter of the digital input filter,its ranging in[1,50]

3.4.2 Highlights

(1) Set the direction of encoder

GT_EncSns command can modify the counting direction of encoder, if corresponding bit of

parameter is set as 1, counting direction of the encoder of corresponding axis is reversed. The

definition of status bit of the parameter as show in Tab 3-6.

Chapter 3 System Configuration

29 © 2014 Googol Technology. All rights reserved

Tab 3-6 Set direction of encoder

Status bit 8 7 6 5 4 3 2 1 0

encoder
AUX

encoder
Enc8 Enc7 Enc6 Enc5 Enc4 Enc3 Enc2 Enc1

(2) Set effective electrical level for limit switch

The default limit switch is normally closed switch. In normal status, the signal of limit switch is at low

level, and when a high level input, the switch will be triggered. If normally opened switch is used,

user need to call GT_LmtSns() command to change effective electrical level for limit switch.

The parameter of GT_LmtSns() indicates the effective level of the positive/negative limit switch of

each axis. When one status bit of the parameter is set as 0, it means that the trigger level of

corresponding limit switch is high level active. Whereas, if it is set to 1, it means that the input signal

of limit switch is low level active. The corresponding relationship between the status bit of parameter

and limit switch is as show in Tab 3-7.

 Tab 3-7 Set effective electrical level for limit switch

Status bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Limit
Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1

— ＋ — ＋ — ＋ — ＋ — ＋ — ＋ — ＋ — ＋

Chapter 4 New Instruction descriptions of EtherCAT

30 © 2014 Googol Technology. All rights reserved

Chapter 4 New Instruction Descriptions of

EtherCAT

This chapter focuses on the new libraries added for GUC-ECAT8/64-M23-L2-F4G controller using

EtherCAT bus.The library name is CPAC GUC-X00-TPX ECAT.lib. Other library instruction please

refer to previous descriptions. Additionally, EtherCAT instructions is also applicable without using

libraries of other software platforms.

4.1 EtherCAT library

4.1.1 Commands summary

Tab 4-1 Summary of EtherCAT commands

Commands Description

ecat_configure_done Initialize communications return commands of EtherCAT.

GT_SetEcatGpioConfig Set GPIO direction and effective level of EtherCAT GUC.

GT_StartEcatHoming Start axes homing of EtherCAT.

GT_SetHomingMode Switch axes homing mode of EtherCAT.

GT_GetEcatHomingStatus Get axes homing status of EtherCAT.

GT_GetEcatProbeStatus Get EtherCAT axes homing status of probe.

Tab 4-2 Description of EtherCAT commands

ecat_configure_done

No operand,

Return 1: Communication between EtherCAT and motion controller is normally.

Others: Communication between EtherCAT and motion controller is not normally.

GT_SetEcatGpioConfig (effectiveLevel,direction)

effectiveLevel:INT Set active level by bit.

0: active low;

1: active high.

direction:INT Set GPIO to DI or DO by bit.

0: DO, 1: DI.

GT_StartEcatHoming(axis,method,speed1,speed2,acc,offset,probeFunction)

axis:INT Axis NO.

method:INT Set homing mode.

speed1:LREAL Search the switching speed. Unit: pulse/ms

speed2:LREAL Search index speed.Unit: pulse/ms

acc:LREAL Search acceleration。Unit: pulse/ms2

offset:LREAL Origin offset.

probefunction:UINT Probe

Chapter 4 New Instruction descriptions of EtherCAT

31 © 2014 Googol Technology. All rights reserved

GT_SetHomingMode(short axis,short mode)

axis:INT Axis NO.

mode:INT Mode.

GT_GetEcatHomingStatus(axis, phomingStatus)

axis:INT Axis NO.

phomeStatus: POINTER TO INT Return status of homing.

GT_GetEcatProbeStatus (axis, probeStatus,probe1PosValue, probe1NegValue, probe2PosValue,

probe2NegValue)

axis:INT Axis NO.

probeStatus:POINTER TO INT Probe status.

probe1PosValue:POINTER TO INT Positive value of probe1.

probe1NegValue:POINTER TO INT Negative value of probe1.

probe2PosValue:POINTER TO INT Positive value of probe2.

probe2NegValue:POINTER TO INT Negative value of probe2.

4.1.2 Highlights

After initialization of motion controller, the program must call ecat_configure_done firstly.While the

return value is 1, the communication between EtherCAT and motion controller is normally, While the

return value is 0, the communication between EtherCAT and motion controller is not normally.

The probefunction in GT_StartEcatHoming() is only used in homing mode 35 or 36.Similarly,

GT_GetEcatProbeStatus() is also used in in homing mode 35 or 36.

4.1.3 Examples

Example of calling ecat_configure_done is as follows:

PROGRAM PLC_PRG

VAR

iConfRtn:INT;

END_VAR

iConfRtn := ecat_configure_done();

 IF iConfRtn <> 1 THEN

 RETURN;

 END_IF

Example of homing mode 3:

PROGRAM PLC_PRG

VAR

 bAxisOff: BOOL;

 iHomeSts: INT;

 iCase: INT;

 iAxisNum: INT;

END_VAR

--

Chapter 4 New Instruction descriptions of EtherCAT

32 © 2014 Googol Technology. All rights reserved

CASE iCase THEN

1: (*Start homing*)

IF bAxisOff THEN (*Must be in the under servo status*)

GT_SetHomingMode(iAxisNum, 6); (*Switch to homing mode*)

GT_StartEcatHoming(iAxisNum, 3, 5000, 3000, 100000, 0, 0); (*Start homing *)

iCase := 2;

END_IF

2: (*Check homing status*)

GT_GetEcatHomingStatus(iAxisNum, ADR(iHomeSts));

IF iHomeSts = 3 THEN (*Complete homing *)

GT_SetHomingMode(iAxisNum, 8); (*Switch back to position control mode, and can perform

other control *)

END_IF

END_CASE

4.2 Other commands of EtherCAT

When using EtherCAT controller in the platform except CPAC, users can call the following

commands and the commands in 0 except ecat_configure_done().

4.2.1 Commands summary

Tab 4-3 Summary of EtherCAT other commands

Commands Description

GT_InitEcatComm Initialize EtherCAT.

GT_TerminateEcatComm Finish EtherCATcommunication.

GT_GetEcatEncPos Get encoder position value。

Tab 4-4 Description of EtherCAT other commands

GT_InitEcatComm()

No operand. EtherCAT initialization, scan slaves, and other operations.

GT_TerminateEcatComm()

No operand. Finish EtherCATcommunication.

GT_GetEcatEncPos (axis, *pEncPos)

axis:short Axis NO.

phomeStatus: long Encoder position.

Chapter 5 Motion Mode

33 © 2014 Googol Technology. All rights reserved

Chapter 5 Motion Mode

Each axis of GUC-ECAT8/64-M23-L2-F4G controller can works independently in Point to Point

motion mode, Jog motion mode, PT motion mode, electronic gear motion mode, or follow motion

mode. About hardware configuration, please refer to documents about EtherCAT congfiguration file

description and instructions for use of EtherCATconfiguration tools.

Tab 5-1 Summary of motion mode commands

Commands Description

GT_PrfTrap Set specified axis as Point to Point mode

GT_PrfJog Set specified axis as Jog mode

GT_PrfPt Set specified axis as PT mode

GT_PrfGear Set specified axis as Electronic gear mode

GT_PrfFollow Set specified axis as Following mode

GT_GetPrfMode Get motion mode of specified axis

Make sure current axis in static when configurate or change the motion mode. If the axis is in

motion , call GT_Stop() to stop one or more axes.

5.1 Point to Point motion mode

5.1.1 Commands summary

Tab 5-2 Summary of Point to Point mode commands

Commands Description

GT_PrfTrap Set specified axis as Point to Point mode

GT_SetTrapPrm Set parameters of Point to Point mode

GT_GetTrapPrm Get parameters of Point to Point mode

GT_SetPos Set target position

GT_GetPos Get target position

GT_SetVel Set target velocity

GT_GetVel Get target velocity

GT_Update Start motion of Point to Point mode

Tab 5-3 Description of Point to Point mode commands

GT_PrfTrap(profile)

Profile:INT Profile No.

GT_SetTrapPrm(profile,pPrm)

Profile:INT Profile No.

PPrm:POINTER TO TTrapPrm Parameters of Point to Point mode

typedef struct TrapPrm

STRUCT TTrapPrm

Chapter 5 Motion Mode

34 © 2014 Googol Technology. All rights reserved

Acc:LREAL; // acceleration, unit: pulse/ms2”

 Dec:LREAL; // deceleration, unit: pulse/ms2

 VelStart:LREAL; // start velocity, unit “pulse/ms”

 SmoothTime:INT; // smooth time, unit: ms

GT_GetTrapPrm(profile,pPrm)

Profile:INT Profile No.

PPrm: POINTER TO TTrapPrm Get parameters of Point to Point mode.

GT_SetPos(profile,pos)

Profile:INT Profile No.

Pos:DINT Target postion, unit: pulse

GT_GetPos(profile, pPos)

Profile:INT Profile No.

PPos: POINTER TO DINT Get target postion, unit: pulse

GT_SetVel(profile, vel)

Profile:INT Profile No.

Vel:LREAL Target velocity, unit: pulse/ms

GT_GetVel(profile,pVel)

Profile:INT Profile No.

PVel: POINTER TO LREAL Get target velocity, unit: pulse/ms

GT_Update(mask)

Mask:DINT “Mask” represents specified axis No., which will be started by bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When the bit X =1, the corresponding axis will be started.

5.1.2 Highlights

In Point to Point mode, user can set parameters of each axis independently, such as the target

position, target velocity, acceleration, deceleration, start velocity and smooth time etc., and each

axis can be started and stopped independently by user.

After calling GT_Update() to start up Point to Point motion, motion controller automatically

generates relevant trapezoidal velocity profile according to motion parameters set by user. In Point

to Point mode, the target velocity and position can be modified whenever the user needed.

Setting smooth time, motion controller can get a smooth velocity curve, so the acceleration and

deceleration process will become smoothly, as illustrated in Fig 5-1.

Chapter 5 Motion Mode

35 © 2014 Googol Technology. All rights reserved

Fig 5-1 Velocity curve of Point to Point motion mode

“Smooth time” is adjustive time of acceleration and deceleration (unit: ms), its range is [0, 50].

5.1.3 Example

This example generates a trapezoidal velocity profile, illustrated in Fig 5-2.

Fig 5-2 Profile velocity of Point to Point motion mode

Chapter 5 Motion Mode

36 © 2014 Googol Technology. All rights reserved

Fig 5-3 Example of point to point motion mode

Chapter 5 Motion Mode

37 © 2014 Googol Technology. All rights reserved

5.2 Jog Motion Mode

5.2.1 Commands summary

Tab 5-4 Summary of Jog motion mode commands

Commands Description

GT_PrfJog Set specified axis as Jog mode

GT_SetJogPrm Set parameters of Jog mode

GT_GetJogPrm Get parameters of Jog mode

GT_SetVel Set target velocity, unit: pulse/ms

GT_GetVel Get target velocity, unit: pulse/ms

GT_Update Start motion of Jog mode

Tab 5-5 Description of Jog mode commands

GT_PrfJog(profile)

Profile:INT Profile No.

GT_SetJogPrm(profile,TJogPrm *pPrm)

Profile:INT Profile No.

PPrm: POINTER TO TJogPrm

Parameters of Jog mode.

STRUCT TJogPrm

 Acc:LREAL; // acceleration, unit: pulse/ms2

 Dec:LREAL; // deceleration, unit: pulse/ms2

 Smooth:LREAL; // smooth coefficient, Ranging in [0,1).

GT_GetJogPrm(profile, pPrm)

Profile:INT Profile No.

pPrm: POINTER TO TJogPrm Get parameters of Jog mode.

5.2.2 Highlights

In Jog motion mode, user can set several parameters of each axis independently, such as the target

velocity, acceleration, deceleration and smooth coefficient etc. At the same time, each axis can be

started and stopped independently by calling related commands.

After calling GT_Update() to start Jog motion, the velocity increases to the target velocity according

to the acceleration. Then the velocity will be kept until a new target velocity command received. The

target velocity can be modified in motion as illustrated in Fig 5-4.

Chapter 5 Motion Mode

38 © 2014 Googol Technology. All rights reserved

Fig 5-4 Velocity curve of Jog mode

User can set the smooth coefficient to get a smooth velocity curve. Consequently, the acceleration

and deceleration process of specified axis will become smoother. The ranging in of smooth

coefficient is [0，1). The larger the smooth coefficient is, the smoother the change of acceleration is.

5.2.3 Example

This example changes target velocity in motion. As illustrated in Fig 5-5.

Fig 5-5 Example of Jog motion mode

Chapter 5 Motion Mode

39 © 2014 Googol Technology. All rights reserved

5.3 PT Motion Mode

5.3.1 Commands summary

Tab 5-6 Summary of PT Motion Mode commands

Commands Description

GT_PrfPt Set specified axis as PT mode

GT_PtSpace Get the free space of FIFO

GT_PtData Add data to FIFO

GT_PtClear

Clear FIFO data

This command is invalid when the axis is motion or the FIFO memory is in

dynamic mode.

GT_SetPtLoop
Set the cycle numbers.

This command is invalid, when the FIFO memory is in dynamic mode.

GT_GetPtLoop
Get the cycle numbers

This command is invalid, when the FIFO memory is in dynamic mode.

GT_PtStart Start PT mode motion

Tab 5-7 Description of PT Motion Mode commands

GT_PrfPt(profile,mode)

Profile:INT Profile No.

Mode:INT

Set the FIFO mode of PT mode.

“PT_MODE_STATIC” is the static mode(default mode) of FIFO;

“PT_MODE_DYNAMIC” is the dynamic mode of FIFO

GT_PtSpace(profile,pSpace,fifo)

Profile:INT Profile No.

PSpace:POINTER TO INT Free space of FIFO memory.

Fifo:INT
The FIFO which will be accessed. The default value is 0.

In dynamic mode, this parameter is invalid.

GT_PtData(profile,pos,time,type,fifo)

Profile:INT Profile No.

Pos:LREAL Ending position of segment, unit: pulse

Ttime:DINT Ending time of segment, unti:pulse/ms

Type:INT

Segments type

“PT_SEGMENT_NORMAL” represents the normal segment (default

type);

“PT_SEGMENT_EVEN” represents constant speed segments;

“PT_SEGMENT_STOP” represents the segment with ending velocity

as zero.

Fifo:INT
FIFO will store motion data. The default value is 0.

In dynamic mode, this parameter is invalid.

GT_PtClear(profile,fifo)

Profile:INT Profile No.

Chapter 5 Motion Mode

40 © 2014 Googol Technology. All rights reserved

Fifo:INT
The FIFO which will be cleared off. The default value is 0.

In dynamic mode, this parameter is invalid.

GT_SetPtLoop(profile,loop)

Profile:INT Profile No.

Loop:DINT
Repeat times of PT mode.

In dynamic mode, this parameter is invalid.

GT_GetPtLoop(profile,pLoop)

Profile:INT Profile No.

PLoop:POINTER TO DINT
Cycle numbers of PT mode.

In dynamic mode, this parameter is invalid.

GT_PtStart(mask,option)

Mask:DINT

“Mask” represents specified axis No., which will be started by bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

Start the specified axis when the bit X is 1.

Option:DINT

“Option” represents FIFO No. which will be used by axis in bit. The

default value is 0.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When bit X=0, it means the corresponding axis will use the FIFO1.

When bit X=1, it means the corresponding axis will use the FIFO2.

In dynamic mode, this parameter is invalid.

5.3.2 Highlights

The PT mode is very flexible in achieving any velocity profile. The motion controller will describe the

movement as long as user provides the parameters of position and time.

PT mode uses a series of position and time to describe velocity profile. User need to divide the

velocity curve into lots of segments, refer to Fig 5-6.

Fig 5-6 Velocity curve of PT mode

In Fig 5-6, the velocity curve has been divided into 5 segments. The starting-point velocity of first

segment is 0, after time T1 the axis moved distance P1, so the ending-point velocity of first segment

is 1

12
1

T

P
v 

. The starting-point velocity of second segment is 1v , after time T2 the axis moved with

Chapter 5 Motion Mode

41 © 2014 Googol Technology. All rights reserved

distance P2, so the ending-point velocity of second segment is
1

2

22
2 v

T

P
v 

. Similarly, the third

segment and the forth segment and all subsequent segments can be calculated.

The motion controller will calculate the velocity and position of each point in each segment and

generate a sequential velocity curve, as long as user provides the motion time and motion distance

of each segment. In order to get a smooth velocity curve, user can increase the number of

segments.

During a whole PT motion, we assume position and time of starting-point in the first segment is 0,

the position and time of ending-point of each segment are absolute value compared to starting-point

of first segment. The unit of position is pulse and the unit of time is ms.

(1) Segmented data types

There are three types of segmented data of PT mode.

PT_SEGMENT_NORMAL represents normal segments. In FIFO memory, the velocity of

starting-point of first segment is 0. And from second segment of FIFO memory, the starting-velocity

of subsequent segments is equal to ending-velocity of last segment.

PT_SEGMENT_EVEN represents constant speed segments. In FIFO memory, the velocity of each

segment keeps invariant. The velocity of segment is result of motion displacement of segment

divide motion time of segment, refer to Fig 5-7.

Fig 5-7 Constant speed segments of PT mode

PT_SEGMENT_STOP represents stop segments. The velocity of ending-point is 0. The

starting-velocity can be calculated by motion displacement and time of segment and it is

independent to last ending-velocity, refer to Fig 5-8.

Fig 5-8 Stop segment of PT mode

Chapter 5 Motion Mode

42 © 2014 Googol Technology. All rights reserved

(2) PT motion mode

PT mode can use FIFO in two types of mode: Static mode and dynamic mode.

There are two FIFO to store the data in PT mode: FIFO1, FIFO2.

In static mode, controller starts one of FIFO and stop it after motion profile is stop. Controller will not

clear the data of FIFO, so user can use the data of this FIFO repeatedly. In static mode, user can

clear the data of specified FIFO by calling GT_PtClear(). When the axis is moving, user can not

clear the data of FIFO in use, but user can clear the data of FIFO which is not in use.

In dynamic mode, when the data in one of the FIFO has been finished, controller will automatically

clear off all the data in this FIFO and switch to another FIFO. At the same time, user can send new

data to the controller. When all the data of two FIFO have been finished, the motion will stop. In

order to avoid abnormal stop, user need to send new data to FIFO before all the data in FIFO have

been executed. User can call GT_PtSpace() to check how many empty space the FIFO memory

have.

User can set the FIFO in static mode or dynamic mode when the controller switches to PT mode. In

PT motion mode, user can not modify the using mode of FIFO.

5.3.3 Example

(1) Static FIFO in PT mode

This example generate a velocity profile of T-curve, refer to Fig 5-9.

Fig 5-9 Trapezoidal velocity profile of PT mode

PROGRAM PLC_PRG

VAR

 Start: BOOL := FALSE;

 Enable: BOOL := TRUE;

 rtn: INT;

Chapter 5 Motion Mode

43 © 2014 Googol Technology. All rights reserved

 AXIS_X: INT := 1;

 space: DINT;

 pos: LREAL;

 gtime: DINT;

 Sts: DWORD;

 PrfVel: LREAL;

 PrfPos: LREAL;

 Stop: BOOL := FALSE;

 Done: BOOL := TRUE;

END_VAR

IF Start AND Enable THEN

 (*Servo on*)

 rtn:= GT_ClrSts(AXIS_X, 1);

 rtn:= GT_AxisOn(AXIS_X);

 (*Specify the motion mode of axis as PT mode*)

 rtn:= GT_PrfPt(AXIS_X, PT_MODE_STATIC);

 rtn:= GT_PtClear(AXIS_X, 0);

 (*Push data to buffer*)

 rtn:= GT_PtSpace(AXIS_X, ADR(space), 0);

 pos:=1024;

 gtime:= 1024;

 IF space>0 THEN

 rtn:= GT_PtData(AXIS_X, pos, gtime, PT_SEGMENT_NORMAL, 0);

 END_IF

 rtn:= GT_PtSpace(AXIS_X, ADR(space), 0);

 pos:=pos+2048;

 gtime:= gtime+1024;

 IF space>0 THEN

 rtn:= GT_PtData(AXIS_X, pos, gtime, PT_SEGMENT_NORMAL, 0);

Chapter 5 Motion Mode

44 © 2014 Googol Technology. All rights reserved

 END_IF

 rtn:= GT_PtSpace(AXIS_X, ADR(space), 0);

 pos:=pos+1024;

 gtime:= gtime+1024;

 IF space>0 THEN

 rtn:= GT_PtData(AXIS_X, pos, gtime, PT_SEGMENT_NORMAL, 0);

 END_IF

 (*Start up PT mode*)

 rtn:= GT_PtStart(SHL(INT#1, AXIS_X-1), 16#00);

 Enable:= FALSE;

END_IF

(*Get the status, profile velocity and profile position*)

rtn:= GT_GetSts(AXIS_X, ADR(Sts), 1, 0);

rtn:= GT_GetPrfVel(AXIS_X, ADR(PrfVel), 1, 0);

rtn:= GT_GetPrfPos(AXIS_X, ADR(PrfPos), 1, 0);

IF Stop AND Done THEN

 (*servo off *)

 rtn:= GT_ClrSts(AXIS_X, 1);

 rtn:= GT_AxisOff(AXIS_X);

 Done:= FALSE;

END_IF

(2) Dynamic type FIFO in PT mode

This example generate a velocity profile of sin-curve, as illustrated in Fig 5-10.

Chapter 5 Motion Mode

45 © 2014 Googol Technology. All rights reserved

Fig 5-10 Sinusoidal velocity profile of PT mode

PROGRAM PLC_PRG

VAR CONSTANT

 T: DINT := 2000;

 DeltaT: DINT:= 2;

 PI: LREAL:= 3.1415926;

END_VAR

VAR

 InitDone: BOOL := FALSE;

 Start: BOOL := FALSE;

 rtn: INT;

 AXIS_X: INT := 4;

 PrfPos: LREAL;

 PrfVel: LREAL;

 Sts: DWORD;

 Pos: LREAL := 0;

 gtime: DINT := 0;

 Vel: LREAL;

 PreVel: LREAL;

 Space: DINT;

 i: INT;

 PTStart: BOOL := FALSE;

Chapter 5 Motion Mode

46 © 2014 Googol Technology. All rights reserved

 Stop: BOOL := FALSE;

 StopDone: BOOL := FALSE;

 EncPos: LREAL;

END_VAR

IF NOT InitDone AND Start THEN

 (*Servo on *)

 rtn:= GT_ClrSts(AXIS_X, 1);

 rtn:= GT_AxisOn(AXIS_X);

 (*Specify the motion mode of axis as dynamic PT mode *)

 rtn:= GT_PrfPt(AXIS_X, PT_MODE_DYNAMIC);

 rtn:= GT_PtClear(AXIS_X, 0);

 Pos:= 0;

 Vel:= 0;

 gtime:= 0;

 PreVel:= 0;

 InitDone:= TRUE;

END_IF

(*Get the status, profile velocity and profile position *)

rtn:= GT_GetSts(AXIS_X, ADR(Sts), 1, 0);

rtn:= GT_GetPrfVel(AXIS_X, ADR(PrfVel), 1, 0);

rtn:= GT_GetPrfPos(AXIS_X, ADR(PrfPos), 1, 0);

(*Push data to buffer *)

FOR i:=1 TO 5 BY 1 DO

 rtn:= GT_PtSpace(AXIS_X, ADR(Space), 0);

 IF Space>0 THEN

 gtime:= gtime+DeltaT;

 Vel:= 30*SIN(2*PI*gtime/T);

Chapter 5 Motion Mode

47 © 2014 Googol Technology. All rights reserved

 Pos:= Pos+ (Vel+PreVel)*DeltaT/2;

 PreVel:= Vel;

 rtn:= GT_PtData(AXIS_X, Pos, gtime, PT_SEGMENT_NORMAL, 0);

 END_IF

END_FOR

IF NOT PTStart AND InitDone THEN

 rtn:= GT_PtStart(SHL(INT#1, AXIS_X-1), 0);

 PTStart:= TRUE;

END_IF

IF Stop AND NOT StopDone THEN

 rtn:= GT_Stop(SHL(DINT#1, AXIS_X-1), 0);

 rtn:= GT_ClrSts(AXIS_X, 1);

 rtn:= GT_AxisOff(AXIS_X);

 StopDone:= TRUE;

END_IF

Chapter 5 Motion Mode

48 © 2014 Googol Technology. All rights reserved

5.4 Electronic gear motion mode

5.4.1 Commands summary

Tab 5-8 Summary of Electronic gear mode commands

Commands Description

GT_PrfGear Set specified axis as Electronic gear mode

GT_SetGearMaster Set master axis

GT_GetGearMaster Get the information about the master axis

GT_SetGearRatio Set the electronic gear ratio

GT_GetGearRatio Get the electronic gear ratio

GT_GearStart Start Electronic gear mode motion

Tab 5-9 Description of Electronic gear mode commands

GT_PrfGear (profile ,dir)

Profile:INT Profile No.

Dir:INT

Following type of slave axis

0 represents the following type is bidirectional follow; 1

represents the following type is positive follow; -1

represents the following type is negative follow.

GT_SetGearMaster(profile , masterIndex, masterType,masterItem)

Profile:INT Profile No.

MasterIndex:INT The index of master axis

MasterType:INT

Master axis type

GEAR_MASTER_ENCODER means follow encoder.

GEAR_MASTER_PROFILE means follow profile axis.

GEAR_MASTER_AXIS means follow synthetic axis.

MasterItem:INT

Synthetic axis type

0: the profile position of synthetic axis.

1: the encoder position of synthetic axis.

GT_GetGearMaster(profile, pMasterIndex, pMasterType,pMasterItem)

Profile:INT Profile No.

PMasterIndex:POINTER TO INT The index of master axis

PMasterType: POINTER TO INT Master axis type

PMasterItem: POINTER TO INT Synthetic axis type

GT_SetGearRatio(profile,masterEven,slaveEven,masterSlope)

Profile:INT Profile No.

MasterEven:DINT Electronic gear ratio, the displacement of master axis

SlaveEven:DINT Electronic gear ratio, the displacement of slave axis.

MasterSlope:DINT The displacement of clutch zone of master.

GT_GetGearRatio(profile,pMasterEven,pSlaveEven,pMasterSlope)

Profile:INT Profile No.

Chapter 5 Motion Mode

49 © 2014 Googol Technology. All rights reserved

PMasterEven: POINTER TO DINT The displacement of master axis.

PSlaveEven: POINTER TO DINT The displacement of slave axis.

PMasterSlope: POINTER TO DINT The displacement of clutch zone of master.

GT_GearStart(mask)

Mask:DINT

“Mask” represents specified axis No., which will be started

by bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When the bit X =1, the corresponding axis will be started.

5.4.2 Highlights

Electronic gear mode can associate two or more axes together to implement the synchronous

motion precisely, so this mode can replace the traditional mechanical gear. In electronic gear mode

user can set electronic gear ratio flexible, thus saving installation time of mechanical system.

In Electronic gear mode, one master axis can drive more than one slave axes, and slave axis can

follow the profile position or encoder position of master axis.

In order to reduce the following delay of slave axis, the NO. of slave axis should be larger than the

NO. of master axis.

In Electronic gear mode, controller can modify the electronic gear ratio in motion. User can set

clutch zone to change velocity smoothly when the electronic gear ratio is changed.As illustrated in

Fig 5-11.

When master axis motion at a constant speed, slave axis is in Electronic gear mode. In clutch zone 1,

the velocity of slave axis will increase from 0 , until the set electronic gear ratio. When the given

electronic gear ratio be modified, the velocity of slave axis will gradually change to achieve the new ratio

in clutch zone 2. The lager the clutch zone is, the more smooth changing process of slave axis is.

When the distance of master axis is alpha , the distance of slave axis is beta. Slave axis reach the given

ratio after master axis move slope. User should call GT_SetGearRatio(slave, alpha, beta, slope)

Time

Velocity

Clutch

zone 2

Clutch

zone 1

Velocity of

Master axis

Velocity of

Slave axis

Change

ratio

Fig 5-11 Velocity curve of electronic gear mode

Chapter 5 Motion Mode

50 © 2014 Googol Technology. All rights reserved

5.4.3 Example

This example specify master axis as Jog mode and slave axis as electronic gear mode, and the

ratio is 2:1. When the master axis completes clutch zone distance, slave axis reach the ratio . Refer

to Fig 5-12, Fig 5-13.

Fig 5-12 Velocity profile of master axis

Fig 5-13 Velocity profile of slave axis

PROGRAM PLC_PRG

VAR

 Start: BOOL := FALSE;

 Enable: BOOL := TRUE;

 rtn: INT;

 MASTER: INT := 3;

 SLAVE: INT := 4;

 JogPrm:TJogPrm;

Chapter 5 Motion Mode

51 © 2014 Googol Technology. All rights reserved

 MasterPrfVel: LREAL;

 SlavePrfVel: LREAL;

 MasterPrfPos: LREAL;

 SlavePrfPos: LREAL;

 Stop: BOOL := FALSE;

 StopDone: BOOL := FALSE;

 ModifyGearRation: BOOL := FALSE;

 ModifyGearRationDone: BOOL := FALSE;

END_VAR

--

IF Start AND Enable THEN

 rtn:= GT_ClrSts(MASTER, 1);

 rtn:= GT_ClrSts(SLAVE, 1);

 rtn:= GT_AxisOn(MASTER);

 rtn:= GT_AxisOn(SLAVE);

 (*Set the master axis as Jog mode *)

 rtn:= GT_PrfJog(MASTER);

 JogPrm.acc:= 0.5;

 JogPrm.dec:= 0.5;

 JogPrm.smooth:= 0.8;

 rtn:= GT_SetJogPrm(MASTER, ADR(JogPrm));

 rtn:= GT_SetVel(MASTER, 40);

 rtn:= GT_Update(SHL(DINT#1, MASTER-1));

 (*Set the slave axis as Gear mode *)

 rtn:= GT_PrfGear(SLAVE, 0);

 rtn:= GT_SetGearMaster(SLAVE, MASTER, GEAR_MASTER_PROFILE, 0);

 rtn:= GT_SetGearRatio(SLAVE, 2, 1, 8000);

 rtn:= GT_GearStart(SHL(DINT#1, SLAVE-1));

 Enable:= FALSE;

END_IF

Chapter 5 Motion Mode

52 © 2014 Googol Technology. All rights reserved

rtn:= GT_GetPrfVel(MASTER, ADR(MasterPrfVel), 1, 0);

rtn:= GT_GetPrfVel(SLAVE, ADR(SlavePrfVel), 1, 0);

rtn:= GT_GetPrfPos(MASTER, ADR(MasterPrfPos), 1, 0);

rtn:= GT_GetPrfPos(SLAVE, ADR(SlavePrfPos), 1, 0);

IF ModifyGearRation AND (NOT ModifyGearRationDone) THEN

 rtn:= GT_SetGearRatio(SLAVE, 4, 1, 10000);

 ModifyGearRationDone:= TRUE;

END_IF

IF Stop AND (NOT StopDone) THEN

 rtn:= GT_Stop(SHL(DINT#1, SLAVE-1), 0);

 rtn:= GT_Stop(SHL(DINT#1, MASTER-1), 0);

 rtn:= GT_ClrSts(MASTER, 1);

 rtn:= GT_ClrSts(SLAVE, 1);

 rtn:= GT_AxisOff(MASTER);

 rtn:= GT_AxisOff(SLAVE);

 StopDone:= TRUE;

END_IF

Chapter 5 Motion Mode

53 © 2014 Googol Technology. All rights reserved

5.5 Follow Motion Mode

5.5.1 Commands summary

Tab 5-10 Summary of Following mode commands

Commands Description

GT_PrfFollow Set specified axis as following mode

GT_SetFollowMaster Set master axis

GT_GetFollowMaster Get the information of master axis

GT_SetFollowLoop Set cycle numbers

GT_GetFollowLoop Get the cycle numbers

GT_SetFollowEvent Set start condition

GT_GetFollowEvent Get the start condition

GT_FollowSpace Get the free space of FIFO

GT_FollowData Add data to FIFO

GT_FollowClear
Clear up FIFO data

When the axis is in motion, this command is invalid

GT_FollowStart Start following mode motion

GT_FollowSwitch Switch FIFO from one to another

Tab 5-11 Description of Following mode commands

GT_PrfFollow (profile ,dir)

Profile:INT Profile No.

Dir:INT

Following type of slave axis.

0 represents the following type is bidirectional follow;

1 represents the following type is positive follow;

-1 represents the following type is negative follow

GT_SetFollowMaster(profile, masterIndex, masterType,masterItem)

Profile:INT Profile No.

MasterIndex:INT The index of master axis.

MasterType:INT

The type of master axis.

FOLLOW_MASTER_ENCODER means follow encoder;

FOLLOW_MASTER_PROFILE means follow profile axis;

FOLLOW_MASTER_AXIS means follow synthetic axis.

MasterItem:INT

The type of synthetic axis

0: the profile position of synthetic axis.

1: the encoder position of synthetic axis.

GT_GetFollowMaster(profile, pMasterIndex, pMasterType, pMasterItem)

Profile:INT Profile No.

PMasterIndex: POINTER TO INT The index of master axis.

PMasterType: POINTER TO INT The index of master axis.

PMasterItem: POINTER TO INT The type of synthetic axis.

Chapter 5 Motion Mode

54 © 2014 Googol Technology. All rights reserved

GT_SetFollowLoop(profile,loop)

Profile:INT Profile No.

Loop:INT Set cycle numbers of axis executed the Following mode.

GT_GetFollowLoop(profile,pLoop)

Profile:INT Profile No.

PLoop: POINTER TO DINT Get cycle numbers of axis executed the Following mode.

GT_SetFollowEvent(profile,event,masterDir,pos)

Profile:INT Profile No.

Event:INT

Start condition of following action.

FOLLOW_EVENT_STAR: start immediately after calling

GT_FollowStart.

FOLLOW_EVENT_PAS: start when master axis pass “pPos”

MasterDir:INT
Motion action of master axis.

1: master axis motion forward; -1: slave axis motion backward.

Pos:DINT
Pass position. Only when the “pEvent” is

“FOLLOW_EVENT_PASS”, the “pPos” is effective.

GT_GetFollowEvent(profile,pEvent,pMasterDir,pPos)

Profile:INT Profile No.

PEvent: POINTER TO INT Start condition of following action.

PMasterDir: POINTER TO INT Motion action of master axis.

PPos: POINTER TO DINT
Pass position. Only when the “pEvent” is

“FOLLOW_EVENT_PASS”, the “pPos” is effective.

GT_FollowSpace(profile,pSpace,fifo)

Profile:INT Profile No.

PSpace: POINTER TO INT The returned free space of FIFO memory.

Fifo:INT
Specify which FIFO memory will inquire.

The default value of “fifo” is 0.

GT_FollowData(profile,masterSegment,slaveSegment,type,fifo)

Profile:INT Profile No.

MasterSegment:DINT Displacement of master axis.

SlaveSegment:DINT Displacement of slave axis.

Type:INT

Type of segments.

FOLLOW_SEGMENT_NORMAL: “normal” type segment, default

value

FOLLOW_SEGMENT_EVEN: “even” type segment.

FOLLOW_SEGMENT_STOP: “stop” type segment.

FOLLOW_SEGMENT_CONTINUE: the velocity between segments

will be continuous.

Fifo:INT Specify the FIFO which will store data. The default value is 0.

GT_FollowClear(profile, fifo)

Profile:INT Profile No.

Fifo:INT FIFO which will be cleared. The default value is 0.

GT_FollowStart(mask, option)

Mask:DINT “Mask” represents specified axis No., which will be started by bit.

Chapter 5 Motion Mode

55 © 2014 Googol Technology. All rights reserved

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When the bit X =1, the corresponding axis will be started.

Option:DINT

The FIFO memory which will be used by bit, default value is 0.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When bit X=0, it means that the corresponding axis use FIFO1.

When bit X=1, it means that the corresponding axis use FIFO2.

GT_FollowSwitch(mask)

Mask:DINT

The FIFO memory which will be switched into Following mode by

bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When bitX=1, it means that controller will switch corresponding

FIFO.

5.5.2 Highlights

In many applications, two or more axes need to keep synchronization of position and velocity. As

illustrated in Fig 5-14.

Position synchronous point means the position of master axis and slave axis reach at the same

time.

Velocity synchronous area means the velocity ratio of master axis and slave axis reach at the same

time are constant.

The first is acceleration area. In this area, the slave axis accelerates to synchronous velocity.

The second is velocity synchronous area.In this area, the slave axis and master axis always keep a

set ratio until to the synchronous point of position. The velocity synchronous area is finished.

The third is acceleration area. In this area, after passing through the synchronous point of position,

the slave axis accelerates rapidly and detaches from velocity synchronous area.

The fourth is deceleration area.In this area, the slave axis decelerates to 0 gradualy.

Time

Velocity

Velocity of

 Slave axis

Synchronous point

of position

Velocity of

 Master

axis

Synchronous

zone of velocity

Fig 5-14 Velocity curve of Following mode

Chapter 5 Motion Mode

56 © 2014 Googol Technology. All rights reserved

For less the following lag, it is recommended that the number of slave axis is greater than that of

master axis.

(1) Types of segments

Following mode have 4 types of segments.

FOLLOW_SEGMENT_NORMAL represents normal segment, the starting-velocity ratio of

subsequent segments is equal to 0. From the second segment, the velocity ratio of subsequent

segments is equal to ending-velocity of last segment.

FOLLOW_SEGMENT_EVEN represents constant speed segments. In FIFO memory, the velocity

ratio of each segment keeps invariant.

FOLLOW_SEGMENT_STOP represents stop segment, the velocity of ending-point is 0. The

starting-velocity can be calculated by motion displacement and time of segment and it is

independent with the last ending-velocity.

FOLLOW_SEGMENT_CONTINUE represents continuous segments; in the FIFO memory, the

starting-velocity of subsequent segments is equal to ending-velocity of last segment. From the

second segment on, the velocity of subsequent segments is equal to ending-velocity of last

segment.

(2) Exchange FIFO

In following mode, there are 2 independent FIFO to save the data. These two FIFO can be

exchanged with each other in motion.

As Fig 5-15 illustrated, motion rules of slave axis need to exchange from velocity curve 1 to velocity

curve 3. To realize smooth velocity conversion of slave axis, velocity curve 2 is added. The

starting-up velocity of velocity curve 2 is equal to velocity curve 1. The ending-up velocity of velocity

curve 2 is equal to velocity curve 3.

To realize the continue velocity between two FIFO, user should set data type as

FOLLOW_SEGMENT_CONTINUE when calling GT_FollowData.

Firstly, add “velocity curve 2 data” to FIFO2, then call GT_FollowSwitch() to exchange FIFO.

When all the data in FIFO1 have been executed, controller would exchange to FIFO2, and clear up

all the data in FIFO1 automatically.

The controller will send data of velocity curve 3 to FIFO1 immediately after exchange to FIFO2, and

then call GT_FollowSwitch() to exchange FIFO.

When all the data in FIFO2 have been executed, controller would exchange to FIFO1, and clear up

all the data in FIFO2 automatically.

So far, the movement of slave axis is from “velocity curve 1” through “velocity curve 2” to “velocity

curve 3”.

Chapter 5 Motion Mode

57 © 2014 Googol Technology. All rights reserved

5.5.3 Example

(1) Follow single FIFO

In this program, master axis is in Jog motion mode and slave axis is in following motion mode. Slave

axis motion principle includes 3 segments: acceleration segment, constant velocity segment, and

deceleration segment, which is illustrated as below.

Fig 5-16 Velocity curve of master axis in Following single FIFO mode

Time

Velocity Velocity

Time

FIFO1 FIFO2

Time

Velocity FIFO1

Velocity curve 1 Velocity curve 2

Velocity curve 3

Fig 5-15 Exchange FIFO in Following mode

Chapter 5 Motion Mode

58 © 2014 Googol Technology. All rights reserved

Fig 5-17 Velocity curve of slave axis in Following single FIFO mode

PROGRAM PLC_PRG

VAR

 Start: BOOL := FALSE;

 Enable: BOOL := TRUE;

 rtn: INT;

 MASTER: INT := 1;

 SLAVE: INT := 2;

 JogPrm: TJogPrm;

 MasterPos: DINT;

 SlavePos: DINT;

 MasterPrfVel: LREAL;

 SlavePrfPos: LREAL;

 SlavePrfVel: LREAL;

 MasterPrfPos: LREAL;

 Stop: BOOL := FALSE;

 StopDone: BOOL := FALSE;

END_VAR

--

IF Start AND Enable THEN

 (*Servo on*)

 rtn:= GT_ClrSts(MASTER, 1);

Chapter 5 Motion Mode

59 © 2014 Googol Technology. All rights reserved

 rtn:= GT_ClrSts(SLAVE, 1);

 rtn:= GT_AxisOn(MASTER);

 rtn:= GT_AxisOn(SLAVE);

 (*Set the motion mode of master axis as Jog mode *)

 rtn:= GT_PrfJog(MASTER);

 JogPrm.acc:= 0.2;

 JogPrm.dec:= 0.2;

 JogPrm.smooth:= 0.8;

 rtn:= GT_SetJogPrm(MASTER, ADR(JogPrm));

 rtn:= GT_SetVel(MASTER, 40);

 rtn:= GT_Update(SHL(DINT#1, MASTER-1));

 (*Set the motion mode of slave axis as Following mode *)

 rtn:= GT_PrfFollow(SLAVE, 0);

 rtn:= GT_SetFollowMaster(SLAVE, MASTER, FOLLOW_MASTER_PROFILE, 0);

 rtn:= GT_FollowClear(SLAVE, 0);

 (*Push data to buffer*)

 MasterPos:= 40000; (*acceleration segment *)

 SlavePos:=10000;

 rtn:= GT_FollowData(SLAVE, MasterPos, SlavePos, FOLLOW_SEGMENT_NORMAL, 0);

 MasterPos:= MasterPos+80000; (*constant velocity segment *)

 SlavePos:= SlavePos+40000;

 rtn:= GT_FollowData(SLAVE, MasterPos, SlavePos, FOLLOW_SEGMENT_NORMAL, 0);

 MasterPos:= MasterPos+40000; (*deceleration segment *)

 SlavePos:= SlavePos+10000;

 rtn:= GT_FollowData(SLAVE, MasterPos, SlavePos, FOLLOW_SEGMENT_NORMAL, 0);

 (*Set the cylcle mode as infinite, set the start condition of following motion is 40000pulse*)

 rtn:= GT_SetFollowLoop(SLAVE, 0);

 rtn:= GT_SetFollowEvent(SLAVE, FOLLOW_EVENT_PASS, 1, 40000);

Chapter 5 Motion Mode

60 © 2014 Googol Technology. All rights reserved

 rtn:= GT_FollowStart(SHL(DINT#1, SLAVE-1), 0);

 Enable:= FALSE;

END_IF

(*Check the profile velocity and position*)

rtn:= GT_GetPrfVel(MASTER, ADR(MasterPrfVel), 1, 0);

rtn:= GT_GetPrfVel(SLAVE, ADR(SlavePrfVel), 1, 0);

rtn:= GT_GetPrfPos(MASTER, ADR(MasterPrfPos), 1, 0);

rtn:= GT_GetPrfPos(SLAVE, ADR(SlavePrfPos), 1, 0);

IF Stop AND (NOT StopDone) THEN

 (*Servo off*)

 rtn:= GT_Stop(SHL(DINT#1, SLAVE-1), 0);

 rtn:= GT_Stop(SHL(DINT#1, MASTER-1), 0);

 rtn:= GT_ClrSts(MASTER, 1);

 rtn:= GT_ClrSts(SLAVE, 1);

 rtn:= GT_AxisOff(MASTER);

 rtn:= GT_AxisOff(SLAVE);

 StopDone:= TRUE;

END_IF

(2) Exchange of two FIFO in following mode

The example set the master axis as Jog mode and set the slave axis as following mode. Slave axis

can change following mode in motion, which is illustrated in Fig 5-18, Fig 5-19, Fig 5-20 and Fig

5-21

Chapter 5 Motion Mode

61 © 2014 Googol Technology. All rights reserved

Fig 5-18 Example of two FIFO exchange (a)

Fig 5-19 Example of two FIFO exchange (b)

Chapter 5 Motion Mode

62 © 2014 Googol Technology. All rights reserved

Fig 5-20 Example of two FIFO exchange (c)

Fig 5-21 Example of two FIFO exchange (d)

Chapter 5 Motion Mode

63 © 2014 Googol Technology. All rights reserved

Attention: Some commands of the of the several motion mode is time-consuming. Please do not

invoke repeatedly when program. These commands are GT_Update(), GT_PTStart(),

GT_GearStart(), GT_FollowStart().

Chapter 6 Access hardware resource

64 © 2014 Googol Technology. All rights reserved

Chapter 6 Access Hardware Resource

6.1 Access digital IO

6.1.1 Commands summary

Tab 6-1 Summary of access digital IO commands

Commands Description

GT_GetDi Get digital input status

GT_SetDo Get digital input status

GT_SetDoBit Set digital output status by bit

GT_GetDo Get digital output status

Tab 6-2 Description of access digital IO commands

GT_GetDi(diType,pValue)

DiType:INT

Type of digital IO input.

MC_LIMIT_POSITIVE positive limit

MC_LIMIT_NEGATIVE negative limit

MC_ALARM drive alarm

MC_HOME home

MC_GPI general input

PValue:POINTER TO DINT
Status of digital input. Represent input level by bit.

By default, “1” represents high level and “0” represents low level.

GT_SetDo(doType,value)

DoType:INT

Type of digital output.

MC_ENABLE servo on

MC_CLEAR clear alarm output

MC_GPO general output

Value:DINT
Represent input level by bit.

By default, “1” represents high level and “0” represents low level.

GT_SetDoBit(doType,doIndex,value)

DoType:INT

Type of digital output.

MC_ENABLE servo on

MC_CLEAR clear alarm output

MC_GPO general output

DoIndex:INT Index of digital output.

Value:INT
Set input level by bit.

By default, “1” represents high level and “0” represents low level.

GT_GetDo(doType,pValue)

DoType:INT
Type of digital output.

MC_ENABLE servo on

Chapter 6 Access hardware resource

65 © 2014 Googol Technology. All rights reserved

MC_CLEAR clear alarm output

MC_GPO general output

PValue:POINTER TO DINT
Status of digital output. Represent input level by bit.

By default, “1” represents high level and “0” represents low level.

6.1.2 Highlights

GT_GetDi() can get the input level status of limit switch, drive alarm, home, and general input.

GT_SetDo can set the output level status of drive enable, clear alarm output, and general output. By

default, user can not specify output level of Servo on derectly because of the connection with

axis.About how to set or cancel the connection of “do “with the “axis”, please refer to ”System

Configuration”.

6.1.3 Example

 Alarm，LimitPositive,limitNegative,home,gpi:WORD;

--

 (*Get the level of drive alarm*)

 GT_GetDi(MC_ALARM,ADR(alarm));

 (*Get the level of positive limit *)

 GT_GetDi(MC_LIMIT_POSITIVE,ADR(limitPositive));

 (*Get the level of negative limit *)

 GT_GetDi(MC_LIMIT_NEGATIVE,ADR(limitNegative));

 (*Get the level of home*)

 GT_GetDi(MC_HOME,ADR(home));

 (*Get the level of general input *)

 GT_GetDi(MC_GPI,ADR(gpi));

6.2 Access encoder

6.2.1 Commands summary

Tab 6-3 Summary of access encoder commands

Commands Description

GT_GetEncPos Get encoder position.

GT_GetEncVel Get encoder velocity.

GT_SetEncPos Set the position of encoder.

Chapter 6 Access hardware resource

66 © 2014 Googol Technology. All rights reserved

Tab 6-4 Description of access encoder commands

GT_GetEncPos(encoder,pValue,count, pClock)

Encoder:INT Encoder No.

PValue:POINTER TO LREAL Position of encoder.

Count:INT
“Count” represents the number of encoders to be read.

The default value is 1, and maximum value is 8.

PClock:POINTER TO DWORD Get the clock of motion controller.

GT_GetEncVel(encoder, pValue, count, pClock)

Encoder:INT Encoder No.

PValue:POINTER TO LREAL Velocity of encoder.

Count:INT
“Count” represents the number of encoders to be read.

The default value is 1, and maximum value is 8.

PClock: POINTER TO DWORD Get the clock of motion controller.

GT_SetEncPos(encoder, encPos)

Encoder:INT Encoder No.

EncPos:DINT Position of encoder.

6.2.2 Example

 (*Get the position of 8 encoders *)

 Enc,vel:array[0..7] of LREAL;

--

 GT_GetEncPos(1,ADR(enc[0]),8,0);

 GT_GetEncVel(1,ADR(vel[0]),8,0);

 GT_SetEncPos(1, enc[0]);

6.3 Access DAC

6.3.1 Commands summary

Tab 6-5 Summary of Access dac commands

Commands Description

GT_SetDac Set output voltage of dac.

GT_GetDac Get output voltage of dac.

Tab 6-6 Description of Access dac commands

GT_SetDac(dac,pValue, count)

Dac:INT Start number of dac.

PValue: POINTER TO INT Output voltage of dac

Chapter 6 Access hardware resource

67 © 2014 Googol Technology. All rights reserved

The value of “-32768” represents -10V, and “32767” represents

+10V.

Count:INT
“Count” represents how many dacs will be read.

The default value is 1, and maximum value is 8.

GT_GetDac(dac, pValue, count, pClock)

dac:INT Start number of dac.

PValue: POINTER TO INT Output voltage of dac

Count:INT
The number of dacs to be read.

The default value is 1, and maximum value is 8.

PClock: POINTER TO DOWRD Get the clock of motion controller.

Chapter 7 Safety Mechanism

68 © 2014 Googol Technology. All rights reserved

Chapter 7 Safety Mechanism

7.1 Limit

Motion controller can specify the motion bound of axes by installing limit switch or setting soft limit.

Refer to Fig 7-1.

Fig 7-1 Motion bound of axes

When the worktable triggered the limit switch or the profile position was over the soft limit, the

controller would stop the motion of worktable abruptly. When the limit has been trigger, the motion

controller would not allow the axis to move towards the corresponding direction and limit trigger

status of corresponding axis would be set as 1. After the controlled axis returns back to the safe

motion bound, the user must call the command GT_ClrSts() to clear the relevant status bit, so as to

restore the status of controlled axis from the status of over bound to normal status.

7.1.1 Commands summary

Tab 7-1 Summary of soft limit commands

Commands Description

GT_SetSoftLimit Set soft limit

GT_GetSoftLimit Get soft limit

Tab 7-2 Description of soft limit commands

GT_SetSoftLimit(axis,positive,negative)

Axis:INT Axis No.

Positive:DINT

Positive soft limit.

When profile position is greater than this value, the positive limit

will be triggered.

The default value: 0x7fffffff. Which means the positive soft limit

is invalid.

Negative:DINT

Negaitive soft limit.

When profile position is less than this value, the negative limit

will be triggered.

Chapter 7 Safety Mechanism

69 © 2014 Googol Technology. All rights reserved

The default value: 0x80000000. Which means the negative soft

limit is invalid.

GT_GetSoftLimit(axis,pPositive,pNegative)

Axis:INT Axis No.

PPositive: POINTER TO DINT Get position of positive soft limit.

PNegative: POINTER TO DINT Get position of negative soft limit.

7.1.1 Highlights

User should set the soft limit after the axis back to origin. The position value of soft limit must be

greater than negative soft limit. The soft limit and limit switch can be used at the same time, and the

limit status will also be set as 1 when the soft limit was triggered.

Motion controller will stop an axis abruptly once its limit was triggered. The default value of abrupt

deceleration: 1 pulse/mm2. Please refer to “Profile configuration” which shows how to set the

abrupt deceleration value.

7.1.2 Example

PROGRAM PLC_PRG

VAR

 Start : BOOL;

 AXIS:INT;

 Trap: TTrapPrm;

 Sts : WORD;

 prfPos : LREAL;

END_VAR

IF Start THEN

rtn = GT_ClrSts(1,8);

 rtn = GT_SetSoftLimit(AXIS,20000,-20000);

 rtn = GT_PrfTrap(AXIS);

 rtn = GT_GetTrapPrm(AXIS,ADR(trap));

 trap.acc = 0.125;

 trap.dec = 0.125;

 rtn = GT_SetTrapPrm(AXIS,ADR(trap));

 rtn = GT_SetVel(AXIS,50);

Chapter 7 Safety Mechanism

70 © 2014 Googol Technology. All rights reserved

 rtn = GT_SetPos(AXIS,1000000);

 rtn = GT_Update(SHL(1,(AXIS-1)));

 Start:=0;

END_IF

rtn = GT_GetSts(AXIS,ADR(sts),1,0);

rtn = GT_GetPrfPos(AXIS,ADR(prfPos),1,0);

7.2 Drive Alarm

Motion controller provides this specific drive alarm signal input interface. When drive alarm signal

was detected, motion controller will servo off corresponding axis and stop motion profile abruptly,

and set the alarm bit as 1.

When alarm signal was detected, the following operation should be executed,

1 Confirm the reason for drive alarm and correct it.

2 Reset the drive.

3 Call GT_ClrSts to clear the alarm bit, and redo the home capture to make worktable back to

origin.

7.3 Smooth stop and emergency stop

For each axis in motion controller, user can define the smooth stop IO and emergency stop IO.

When the input value of smooth stop IO equals trigger sense value (the trigger sense can be set by

user), the motion controller will automatically smooth stop the corresponding axes and set the bit7 of

axis status as 1.

When the input value of emergency stop IO equals trigger sense value (the trigger sense can be set

by user), the motion controller will automatically abruptly stop the corresponding axes and set the

bit8 of axis status as 1.

After the smooth stop and emergency stop motion completed, user must call GT_ClrSts to clear the

stop status bit (bit7 and bit8), otherwise the axis cannot move.

Chapter 7 Safety Mechanism

71 © 2014 Googol Technology. All rights reserved

7.4 Error position limit

For servo control system, In some exceptional circumstances, the encoder position of motor may be

far away from the profile position when some abnormal dangerous motion happens, such as motor

error, encoder wire mistake, greater mechanic friction, and so on. In order to detect this situation

quickly and improve the security of system, motion controller provides the security protection

mechanism which uses error position limit to stop motion automatically.

The motion controller will check the error between encoder position and profile position per-sample

period. If the error grows greater than the value of tracking error limit which was set by user, the

motion controller will stop the axis abrupt automatically, and the error position limit status bit of this

axis will be set as 1.

Chapter 8 Motion Status Detection

72 © 2014 Googol Technology. All rights reserved

Chapter 8 Motion Status Detection

8.1 Commands summary

Tab 8-1 Summary of motion status detection commands

Commands Description

GT_GetSts Get the status of specified axis

GT_ClrSts

Clear the bit of drive alarm, following error limit, and position limit alarm

 Clear the bit of drive alarm, only when the alarm of drive is not been triggered.

 Clear the bit of following error limit only when following limit is in normal status.

 Clear the bit of position limit alarm in axis status register only when the axis has

left the limit switch or profile position of the axis is in soft limit bound

GT_GetPrfMode Get motion mode of specified profile

GT_GetPrfPos Get profile position of specified profile

GT_GetPrfVel Get profile velocity of specified profile

GT_GetPrfAcc Get profile acceleration of specified profile

GT_SetAxisBand

Set arrival error band

When the error between profile position and encoder position less than allowed

scope, and the profile will be stopped, the arrival bit of motor will be set as 1.

GT_GetAxisBand Get arrival error band.

GT_Stop Stop one or more axe’s profile motion.

Tab 8-2 Description of motion status detection commands

GT_GetSts(axis, pSts,count,pClock)

Axis:INT Axis No.

PSts:POINTER TO DINT
32 bits axis status characters. Please refer to highlights for detail

info about of these status characters

Count:INT
The number of profiles to be read. The default value is 1.

The maximum value is 8.

PClock: POINTER TO DWORD Get the clock of motion controller.

GT_ClrSts(axis,count)

Axis:INT Axis No.

Count:INT
Number of axes need to be clear. The default value is 1.

The maximum value is 8.

GT_GetPrfMode(profile,pValue,count, pClock)

Profile:INT Profile No.

PValue: POINTER TO DINT

The motion mode of profile

0: T-curve, default value

1: Jog mode

2: PT mode

3: Electronic gear mode

Chapter 8 Motion Status Detection

73 © 2014 Googol Technology. All rights reserved

4: Following mode

Count:INT
The number of profiles to be read. The default value is 1.

The maximum value is 8.

PClock: POINTER TO DWORD Get the clock of motion controller.

GT_GetPrfPos(profile, pValue, count, pClock)

Profile:INT Profile No.

PValue: POINTER TO LREAL Profile position.

Count:INT
The number of profiles to be read. The default value is 1.

The maximum value is 8.

PClock: POINTER TO DWORD Get the clock of motion controller.

GT_GetPrfVel(profile, pValue, count, pClock)

Profile:INT Profile No.

PValue: POINTER TO LREAL Profile velocity.

Count:INT
The number of profiles to be read. The default value is 1.

The maximum value is 8.

PClock: POINTER TO DWORD Get the clock of motion controller.

GT_GetPrfAcc(profile, pValue, count, pClock)

Profile:INT Profile No.

PValue: POINTER TO LREAL Profile acceleration.

Count:INT
The number of profiles to be read. The default value is 1.

The maximum value is 8.

PClock: POINTER TO DWORD Get the clock of motion controller.

GT_SetAxisBand(axis, band, time)

Axis:INT Axis No.

Band:DINT Allowed scope, unit: pulse.

Time:DINT Error band holding time, unit: ms.

GT_GetAxisBand(axis, pBand, pTime)

Axis:INT Axis No.

PBand: POINTER TO DINT Get the allowed scope.

PTime: POINTER TO DINT Get the error band holding time.

GT_Stop(mask, option)

Mask:DINT

“Mask” represents specified axis No. or coordinate No., which will

be stopped by bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When the bit X =1, the corresponding axis will be stopped.

Option:DINT

“Option” represents specified axis No. or coordinate No., which will

be stopped in smooth or sudden mode by bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

When the bit X =0, the corresponding axis will be stopped in

smooth mode.

When the bit X =1, the corresponding axis will be stopped in

sudden mode.

Chapter 8 Motion Status Detection

74 © 2014 Googol Technology. All rights reserved

8.2 Highlights

Tab 8-3 Definition of axis status word

Bit Definition

0 Reserved

1 Alarm bit of motor servo drive. If the drive of control axis alarms, this bit = 1

2 Reserved

3 Reserved

4 Motion error bit. If the position error exceeds the allowed scope, the controller will set this bit as

1. If only when the controller is not in motion error status, this bit can be cleared

5 Triggering bit of positive limit switch

If the switch is triggered, this bit = 1

If the profile position exceeds positive soft limit, this bit=1

6 Triggering bit of negative limit switch

If the switch is triggered, this bit=1

If the profile position exceeds negative soft limit, this bit=1

7 Triggering bit of smooth stop IO

If the axis set the smooth stop IO, when the input of this IO has been triggered, this bit =1 and

the axis will be smooth stopped

8 Triggering bit of emergency stop IO

If the axis set the emergency stop IO, when the input of this IO has been triggered, this bit=1

and the axis will be emergency stopped

9 Motor activation status (1 means activated.)

10 Status bit of profile motion. When the profile manager is motion, this bit=1

11 Arrival bit of motor motion

If profile manager is in static status, the error between profile position and encoder position is

less the allowed scope (the allowed scope refer to GT_SetAxisBand), and the axis has stayed

in allowed scope more than a setting period, this bit will be set as 1

12~31 Reserved

When these status bits of axis have been triggered, such as alarm bit of motor drive, triggering bit of limit

switch and so on, the corresponding bit will not be automatically clear as 0. When the abnormal events

of axis are eliminated, then user can call GT_ClrSts to clear the corresponding bit.

Status bit of profile motion (bit10) just represents the motion status in theory. Bit 10 is 1 means profile

manager is in motion status, while bit is 0 means profile manager is in static status. Usually, because of

motion following delay or mechanical system concussion, the mechanical system may not stop when the

profile manager has stopped.

The arrival bit of motor motion (bit11) represents the actual arrival status of motor. Bit 10 is 1 means the

profile manager is in static status, and the error between profile position and encoder position is less

than the allowed scope, and the axis has stayed in allowed scope more than a setting period. When the

error between profile position and encoder position is more than the allowed scope, this bit will be set as

0. Checking the arrival bit of motor motion can ensure system’s positioning accuracy. User should set an

appropriate allowed scope and the holding time. If the allowed scope is too narrow or the holding time is

too long, the arrival time of motor motion will increase and the machining efficiency will decrease.

Chapter 8 Motion Status Detection

75 © 2014 Googol Technology. All rights reserved

Tips of using arrival bit(bit11):

1. The axis should connect with the encoder correctly, and the direction of encoder is the same with

the direction of profile.

2. Set the error band correctly. The error band is invalid by default.

3. After calling GT_SetPrfPos () or GT_SetEncPos(), should call GT_SynchAxisPos().

8.3 Example

This example illustrates the usage of the arrival bit (bit11). After the arrival of one axis, application starts

the motion of another axis.

PROGRAM Main

VAR CONSTANT

AXIS_X:INT:=1;

AXIS_Y:INT:=2;

END_VAR

VAR

 Enable:BOOL:=TRUE;

 Rtn:INT;

 Trap: TTrapPrm;

 Sts:DINT;

 posX,posY:DINT;

 prfPos,prfVel:LREAL;

 Current_axis:INT:=1;

 X_DONE,Y_DONE:BOOL;

END_VAR

IF Enable THEN

 (*Activate the axis X and Enables the drive*)

 Rtn:= GT_AxisOn(AXIS_X);

 (*Activate the axis Y and Enables the drive *)

 Rtn:= GT_AxisOn(AXIS_Y);

Chapter 8 Motion Status Detection

76 © 2014 Googol Technology. All rights reserved

 (*Clear the profile postion of axis X *)

 Rtn:= GT_SetPrfPos(AXIS_X,0);

 (*Clear encoder position of axis X *)

 Rtn:= GT_SetEncPos(AXIS_X,0);

 (*Recalculate the axis position according to profile position*)

 (*Recalculate the actual position according to the encoder position*)

 Rtn:= GT_SynchAxisPos(SHL(DINT#1, AXIS_X-1));

 (*Set the allowed band of axis X *)

 Rtn:= GT_SetAxisBand(AXIS_X,20,5);

 (*Clear profile position of axis Y*)

 Rtn:= GT_SetPrfPos(AXIS_Y,0);

 (*Clear encoder position of axis Y*)

 Rtn:= GT_SetEncPos(AXIS_Y,0);

 (*Recalculate the axis position according to profile position*)

 (*Recalculate the actual position according to the encoder position*)

 Rtn:= GT_SynchAxisPos(SHL(1,AXIS_Y-1));

 (*Set the allowed band of axis Y *)

 Rtn:= GT_SetAxisBand(AXIS_Y,20,5);

 (*Set the motion mode of axis X as Point to Point *)

 Rtn:= GT_PrfTrap(AXIS_X);

 (*Get the motion parameter of axis X in Point to Point mode *)

Chapter 8 Motion Status Detection

77 © 2014 Googol Technology. All rights reserved

 Rtn:= GT_GetTrapPrm(AXIS_X,ADR(trap));

 trap.acc:= 1;

 trap.dec:= 0.5;

 (*Set the motion parameter of axis X in Point to Point mode *)

 Rtn:= GT_SetTrapPrm(AXIS_X,ADR(trap));

 (*Set target velocity of X axis *)

 Rtn:= GT_SetVel(AXIS_X,10);

 (*Y Set the motion mode of axis Y as Point to Point *)

 Rtn:= GT_PrfTrap(AXIS_Y);

 (*Get the motion parameter of axis Y in Point to Point mode *)

 Rtn:= GT_GetTrapPrm(AXIS_Y,ADR(trap));

 trap.acc:= 1;

 trap.dec:= 0.5;

 (*Set the motion parameter of axis Y in Point to Point mode *)

 Rtn:= GT_SetTrapPrm(AXIS_Y,ADR(trap));

 (*Set target velocity of Y axis *)

 Rtn:= GT_SetVel(AXIS_Y,10);

 posX:= 10000;

 posY:= 20000;

 (*Set target position of X axis *)

 Rtn:= GT_SetPos(AXIS_X,posX);

(*Start up the motion of axis X*)

 Rtn:= GT_Update(SHL(DINT#1, AXIS_X-1));

 Enable:=FALSE;

END_IF

(*Wait axis X enter into allowed band *)

GT_GetSts(Current_axis,ADR(sts),1,0);

GT_GetPrfPos(Current_axis,ADR(prfPos)1,0);

GT_GetPrfVel(Current_axis,ADR(prfVel)1,0);

Chapter 8 Motion Status Detection

78 © 2014 Googol Technology. All rights reserved

IF 16#800 = (sts AND 16#800)) THEN

 IF NOT(X_DONE) THEN

 (*Set target position of Y axis *)

Rtn:= GT_SetPos(AXIS_Y,posY);

Rtn:= GT_Update(2);

Current_axis:=AXIS_Y;

 X_Done:=TRUE;

 ELSE

 Y_Done:=TRUE;

 END_IF

END_IF

Chapter 9 Motion Program

79 © 2014 Googol Technology. All rights reserved

Chapter 9 Motion Program

Reserved.

Chapter 10 Other Commands

80 © 2014 Googol Technology. All rights reserved

Chapter 10 Other Commands

10.1 Reset motion controller

Tab 10-1 Summary of open/close motion controller commands

Command Description

GT_Reset Reset motion controller

Before using motion controller, user must call GT_Open() to establish communication with motion

controller. When user exit the application program, using GT_Close() to close motion controller.

User can call GT_Reset() to reset all registers of motion controller. Googoltech strongly recommended

user call this command after open motion controller.

GT_SetCardNo() is used to switch one card as specified using motion controller. When more than one

motion controllers have been set up into a PC, user can call this command to specify the specified using

motion controller. After GT_SetCardNo() has been called successfully, the following GT commands

called by user will only operates on this motion controller. In a multi-motion controller system, each

motion controller will be assigned a card number (0 to 15) in order to distinguish from different motion

controllers. The principle of assigning card number follows the PNP rule, in another words, motion

controller which is firstly identified by the system will be set as number 0. So the system will assign the

same card number to motion controllers if hardware does not change.

10.2 Get the firmware version

Tab 10-2 Description of get firmware version command

GT_GetVersion(pVersion)

pVersion:POINTER TO STRING Get the firmware version of motion controller.

In order to help user check the firmware version of motion controller, motion controller provides

GT_GetVersion() to read version information. The firmware version contains 18 characters: aaa bbbbbb

ccc dddddd as character string. The definition of this character string, please refer to Tab 10-3.

Tab 10-3 Definiton of firmware version

aaa
“aaa” represents the version number of firmware 1. For example, “100” represent

version 1.00.

bbbbbb
“bbbbbb” represents the finish time of firmware 1. For example, “090908” reprsents the

firmware 1 was finished in 2009-09-08.

ccc “aaa” represents the version number of firmware 2.

dddddd “bbbbbb” represents the finish time of firmware 2.

Example is as follows：

PROGRAM PLC_PRG

VAR

Chapter 10 Other Commands

81 © 2014 Googol Technology. All rights reserved

 version:LREAL;

 firmwareVersion:STRING(18);

 pVersion:POINTER TO STRING(18);

 rtn:INT;

 i:INT;

END_VAR

rtn:=GetVersion(ADR(version));

rtn:=GT_GetVersion(ADR(pVersion));

firmwareVersion:=pVersion^;

10.3 Get the system clock

Tab 10-4 Description of get clock commands

GT_GetClock(pClock, pLoop)

pClock:POINTER TO DWORD Clock of motion controller, unit: ms.

Ploop:POINTER TO DWORD
an interior parameter which is not valid to user.

The default value is 0.

After initialization of motion controller, the internal clock counting from 0 and adding 1 in 1 ms. User can

get the value of this clock by using GT_GetClock(),and clear this clock by calling GT_Reset().

10.4 Enable/Disable servo

Tab 10-5 Description of enable/disable servo command

GT_AxisOn(axis)

Axis:INT Axis NO. of enabled servo motor.

GT_AxisOff(axis)

Axis:INT Axis NO. of disabled servo motor.

User can call GT_AxisOn() to enable the servo motor which is connected with related control axis, and

make this control axis ready to be controlled. If user do not configurate do/di which connect to this axis in

system configuration stage, GT_AxisOn() will invalid when user call this command(refer to 3.2.8

configurate do).

10.5 Position profile modification

Tab 10-6 Summary of position profile modification commands

Command Description

GT_SetPrfPos Position profile modification

Chapter 10 Other Commands

82 © 2014 Googol Technology. All rights reserved

GT_SynchAxisPos
Synchronize synthetic profile position with related profile manager

Synchronize synthetic encoder position with related encoder manager

GT_ZeroPos Set profile position and encoder position as zero, and zero drift compensation.

Tab 10-7 Description of position profile modification commands

GT_SetPrfPos(profile, prfPos)

Profile:INT Profile NO.

PrfPos:DINT Set profile position.

GT_SynchAxisPos(mask)

Mask:DINT

Axis No.which will be synchronized by bit.

Bit 0 represents axis1, bit 1 represents axis 2, and so on.

If the value of bit X is 1, the corresponding axis needs synchronize its position

If the value of bit X is 0, the corresponding axis needs not synchronize its position

GT_ZeroPos(axis, count)

Axis:INT Axis No.

Count:INT “Count” represents how many axes’ position will be cleared.

Axis can transform the unit of position output of profile and encoder, which discussed in chapter three. If

user needs to synchronize the output of axis with profile or encoder, GT_SynchAxisPos() should be

called, when the output of profile and encoder has been changed after user called GT_SetPrfPos() or

GT_SetEncPos() .

10.6 Arrival detection

Tab 10-8 Summary of arrival detection commands

Commands Description

GT_SetAxisBand

Set arrival error band

When the error between profile position and encoder position less than allowed

scope, and the profile will be stopped, the arrival bit of motor will be set as 1.

GT_GetAxisBand Get arrival error band

Tab 10-9 Description of arrival detection commands

GT_SetAxisBand(axis, band, time)

Axis:INT Axis No.

Band:DINT Allowed scope, unit: pulse.

Time:DINT Error band holding time, unit: 250us.

GT_GetAxisBand(axis, pBand, pTime)

Axis:INT Axis No.

PBand:POINTER TO DINT Get the allowed scope.

PTime:POINTER TO DINT Get the error band holding time.

Servo motor may have motion delay when it is moving, which means the motor may not arrive the profile

position after profile has stopped. User can use motor arrival detection function to check whether the

motion has arrived the target position. By default, this function is invalid. This function becomes validly

when user set the corresponding allowed band and it’s holding time by calling GT_SetAxisBand().

Chapter 10 Other Commands

83 © 2014 Googol Technology. All rights reserved

When this function is valid, if profile is in static status, i.e. the value of axis status bit (bit11) is 0(refer to

5.2.1), and the error between profile position and encoder position is less than the allowed band and the

axis has stayed in allowed band more than the holding time, the value of axis status bit (bit11) will be set

as 1(refer to 5.2.1). When the error between profile position and encoder position is larger than the

allowed band, this bit will be set as 0. Checking the arrival bit of motor motion can ensure system’s

positioning accuracy. User should set an appropriate allowed band and holding time. If the allowed band

is too narrow or the holding time is too long, the arrival time of motor motion will increase and the

machining efficiency will decrease.

Tips of using arrival bit:

1. The axis should connect with the encoder correctly, and the direction of encoder is the same with

the direction of profile.

2. Set the error band correctly. The error band is invalid by default.

3. After calling GT_SetPrfPos () or GT_SetEncPos(), should call GT_SynchAxisPos().

Chapter 11 Command List

84 © 2014 Googol Technology. All rights reserved

Chapter 11 Command List

Tab 11-1 Command summary GUC-ECATXX-M23-L2-F4G

System initialization

GT_Reset Reset motion controller。

GT_GetVersion Get the firmware version of motion controller.

EtherCAT libray

ecat_configure_done Initialize communications return commands of EtherCAT.

GT_SetEcatGpioConfig Set GPIO direction and effective level of EtherCAT GUC.

GT_StartEcatHoming Start axes homing of EtherCAT.

GT_SetHomingMode Switch axes homing mode of EtherCAT.

GT_GetEcatHomingStatus Get axes homing status of EtherCAT.

GT_GetEcatProbeStatus Get EtherCAT axes homing status of probe.

Access hardware resource

GT_SetDo Set digital output status.

GT_SetDoBit Set digital output status by bit.

GT_GetDo Get digital output status.

GT_GetDi Get digital input status.

GT_SetDac Set output voltage of dac.

GT_GetDac Get output voltage of dac.

GT_SetEncPos Set the position of encoder.

GT_GetEncPos Get encoder position.

GT_GetEncVel Get encoder velocity.

Logical management

GT_ClrSts Clear the bit of drive alarm, following limit alarm, and position limit alarm

GT_AxisOn Enable the servo motor.

GT_AxisOff Disable the servo motor.

GT_Stop Stop type of specified axis is smooth stop or emergency stop.

GT_SetPrfPos Modify the profile position

GT_SynchAxisPos
Synchronize synthetic profile position with related profile manager.

Synchronize synthetic encoder position with related encoder manager.

GT_SetSoftLimit Set soft limit

GT_GetSoftLimit Get soft limit

GT_SetAxisBand Set arrival error band.

GT_GetAxisBand Get arrival error band.

Motion status of detection

GT_GetSts Get the status of specified axis

GT_GetPrfPos Get profile position of specified profile.

GT_GetPrfVel Get profile velocity of specified profile.

GT_GetPrfAcc Get profile acceleration of specified profile.

GT_GetPrfMode Get motion mode of specified profile.

GT_GetAxisPrfPos Get transformed profile position of specified axis.

Chapter 11 Command List

85 © 2014 Googol Technology. All rights reserved

GT_GetAxisPrfVel Get transformed profile velocity of specified axis.

GT_GetAxisPrfAcc Get transformed profile acceleration of specified axis.

GT_GetAxisEncPos Get transformed encoder position of specified axis.

GT_GetAxisEncVel Get transformed encoder velocity of specified axis.

GT_GetAxisEncAcc Get transformed encoder acceleration of specified axis.

GT_GetAxisError
Get the difference between transformed profile position and transformed

encoder position.

GT_GetClock Get the internal clock of motion controller.

Point to Point mode

GT_PrfTrap Set specified axis as Point to Point motion mode.

GT_SetTrapPrm Set parameters of Point to Point motion mode.

GT_GetTrapPrm Get parameters of Point to Point motion mode.

GT_SetPos Set target position.

GT_GetPos Get target position.

GT_SetVel Set target velocity.

GT_GetVel Get target velocity.

GT_Update Start motion of Point to Point mode.

Jog mode

GT_PrfJog Set specified axis as Jog mode.

GT_SetJogPrm Set parameters of Jog mode.

GT_GetJogPrm Get parameters of Jog mode.

GT_SetVel Set target velocity, unit: pulse/ms.

GT_GetVel Get target velocity, unit: pulse/ms.

GT_Update Start motion of Jog mode.

PT mode

GT_PrfPt Set specified axis as PT mode.

GT_SetPtLoop Set the cycle numbers.

GT_GetPtLoop Get the cycle numbers.

GT_PtSpace Get the free space of FIFO.

GT_PtData Add data to FIFO.

GT_PtClear Empty FIFO data.

GT_PtStart Start PT mode motion.

Electronic gear mode

GT_PrfGear Set specified axis as Electronic gear mode.

GT_SetGearMaster Set master axis.

GT_GetGearMaster Get the information about the master axis.

GT_SetGearRatio Set the electronic gear ratio.

GT_GetGearRatio Get the electronic gear ratio.

GT_GearStart Start Electronic gear mode motion.

Following mode

GT_PrfFollow Set specified axis as following mode.

GT_SetFollowMaster Set master axis.

GT_GetFollowMaster Get the information of master axis.

Chapter 11 Command List

86 © 2014 Googol Technology. All rights reserved

GT_SetFollowLoop Set cycle numbers.

GT_GetFollowLoop Get the cycle numbers.

GT_SetFollowEvent Set start condition.

GT_GetFollowEvent Get the start condition.

GT_FollowSpace Get the free space of FIFO.

GT_FollowData Add data to FIFO.

GT_FollowClear
Empty FIFO data.

When the axis is in motion, this command is invalid.

GT_FollowStart Start Following mode motion.

GT_FollowSwitch Switch FIFO from one to another.

Motion program

GT_Download Download motion program to controller core.

GT_GetFunId Read function ID of motion program.

GT_Bind Binding thread, function and data page

GT_RunThread Start a thread

GT_StopThread Stop the running thread

GT_PauseThread Pause the running thread

GT_GetThreadSts Read thread status

GT_GetVarId Read variable ID of motion program.

GT_SetVarValue Set the variable value of motion program

GT_GetVarValue Get the variable value of motion program

Chapter 12 Encryption Mechanism

87 © 2014 Googol Technology. All rights reserved

Chapter 12 Encryption Mechanism

1. At present, two types of encryption modes are supported:

(1) Software encryption: the application development developers set password protection program

during the application development process under OtoStudio environment. Such protection is

divided into two types:

1) Protect program code: under the catalog of OtoStudio->option->password: set password and

protection password.

2) Protect program run: for example, in OtoStudio program development, a password comparison

sentence is given out in the program as the condition of running or not running this program.

(2) Hardware encryption: Googoltech could provide two types of hardware encryption modes:

1) When running GRT.exe, automatically check the hardware version No.; in case of incorrect

version number, this program could not be normally started. (The version number is provided

by Googoltech, and the same series of our controllers have the same version number.)

2) The function used for binding the adapter address is provided, so the application program

developer could encrypt the application program through reading the adapter address. (Each

set of hardware platform has unique adapter address and could not be modified.)

2. For payment encryption: Googoltech could provide the following reference scheme:

Set timer in the application program and read CPU clock. For example, client is wished to pay the money

within three months, or else the application program could not normally run. Through such mode, firstly

wait for three months’ system clock and then verify the software encryption [2].

Tab 12-1 Specification of Encryption Function

GetMacAddress (ulAdapterNumber, pMacAddress , ulAddressSize)

ulAdapterNumber: UINT Adapter number of present controller, default value is 0

pMacAddress: POINTER TO BYTE Output adapter address, namely the first array address

ulAddressSize: UINT Array length of adapter; unit: Byte

	Copyright Statement
	Document Version
	Foreword
	Contents
	Chapter 1 Use of Motion Function Library in OtoStudio
	1.1 Use of OtoStudio software library
	1.1.1 Usage of the library in OtoStudio

	Chapter 2 Return Values of Commands and Their Meanings
	2.1 Return values of commands

	Chapter 3 System Configuration
	3.1 Basic concepts of system configuration
	3.1.1 Hardware resource
	3.1.2 Software resource
	3.1.3 Resources combination

	3.2 System configuration tool
	3.2.1 Axis configuration
	3.2.2 Step configuration
	3.2.3 Dac configuration
	3.2.4 Encoder configuration
	3.2.5 Control configuration
	3.2.6 Profile configuration
	3.2.7 Di configuration
	3.2.8 Do configuration

	3.3 Generate and download configuration file
	3.4 Command to modify configuration information
	3.4.1 Commands summary
	3.4.2 Highlights
	(1) Set the direction of encoder
	(2) Set effective electrical level for limit switch

	Chapter 4 New Instruction Descriptions of EtherCAT
	4.1 EtherCAT library
	4.1.1 Commands summary
	4.1.2 Highlights
	4.1.3 Examples

	4.2 Other commands of EtherCAT
	4.2.1 Commands summary

	Chapter 5 Motion Mode
	5.1 Point to Point motion mode
	5.1.1 Commands summary
	5.1.2 Highlights
	5.1.3 Example

	5.2 Jog Motion Mode
	5.2.1 Commands summary
	5.2.2 Highlights
	5.2.3 Example

	5.3 PT Motion Mode
	5.3.1 Commands summary
	5.3.2 Highlights
	(1) Segmented data types
	(2) PT motion mode

	5.3.3 Example
	(1) Static FIFO in PT mode
	(2) Dynamic type FIFO in PT mode

	5.4 Electronic gear motion mode
	5.4.1 Commands summary
	5.4.2 Highlights
	5.4.3 Example

	5.5 Follow Motion Mode
	5.5.1 Commands summary
	5.5.2 Highlights
	(1) Types of segments
	(2) Exchange FIFO

	5.5.3 Example
	(1) Follow single FIFO
	(2) Exchange of two FIFO in following mode

	Chapter 6 Access Hardware Resource
	6.1 Access digital IO
	6.1.1 Commands summary
	6.1.2 Highlights
	6.1.3 Example

	6.2 Access encoder
	6.2.1 Commands summary
	6.2.2 Example

	6.3 Access DAC
	6.3.1 Commands summary

	Chapter 7 Safety Mechanism
	7.1 Limit
	7.1.1 Commands summary
	7.1.1 Highlights
	7.1.2 Example

	7.2 Drive Alarm
	7.3 Smooth stop and emergency stop
	7.4 Error position limit

	Chapter 8 Motion Status Detection
	8.1 Commands summary
	8.2 Highlights
	8.3 Example

	Chapter 9 Motion Program
	Chapter 10 Other Commands
	10.1 Reset motion controller
	10.2 Get the firmware version
	10.3 Get the system clock
	10.4 Enable/Disable servo
	10.5 Position profile modification
	10.6 Arrival detection

	Chapter 11 Command List
	Chapter 12 Encryption Mechanism

