() GOOGOL TECHNOLOGY (HK) LTD

Programming Manual
For

GT Series Motion Controller

Revision 1.10 June, 2003

Copyright Statement

Part#: GT400-M-E-R1100603-002

Copyright Statement

Googol Technology Ltd.
All rightsreserved.

Googol Technology Ltd. (Googol Technology hereafter) reserves the right of
modifying the products and product specifications described in this manua without

notification in advance.

Googol Technology is not submitted to any direct, indirect, special, incidental or

consequent loss or liability caused by using this manual or product incorrectly.

Googol Technology owns the patent, copyright or any other intellectual property
right of this product and its software. No one shall directly or indirectly duplicate,

produce, process or use this product and its relevant parts.

Thereis danger in a controller in motion! User has the duty to design an
& effective error treatment and safety protection system for the machine.
Googol Technology has no such obligation or liability to be responsible
Notice | for any incidental or conseguent loss caused accordingly.

EE

Foreword

Foreword

Thank you for using Googol Technology motion controller

To repay customers, we will help you establish your own control system with our
first-class motion controller, perfect after-sale service, and high-efficiency
technical support.

Technical Support and After-sale Service

You may get our technical support and after-sale service through the following
approaches:
¢ E-mail: support@googoltech.com
¢ Td.: (0755) 2697-0823, 2697-0835, 2697-0839
¢ Post: Googol Technology (Shenzhen) Co., Ltd.
W211, 2/F, West Building, SZHK Industry, Education and
Research Base, South Area, High-tech Industry Park, Shenzhen,
518057

Use of this Programming Manual

By reading this manual, you will know the control functions of GT series motion
controller, learn the usage of motion functions, and become familiar with the
programming of specific control function. Finally, you can program your own user
application for control according to your specific control system.

User of this Programming Manual

This manual is applicable to those engineering developers having the base
knowledge of programming in C or using Dynamic Link Library (DLL) in
Windows environment, and certain work experience in motion control and
understanding of the basic architecture of servo or step control.

Main Contents of this Programming Manual

This manual is divided into two parts. The first part is programming specification,
mainly introducing various control functions and corresponding programming
approaches of GT series motion controller. The second part is interface library
function specification, mainly introducing the function prototype, description and
evoking of interface functions of GT series motion controller.

Foreword

Usage Description of this Programming Manual

Except stated specially, among al the samples listed in this manual, all DOS
samples are written in Borland C3.1 and all Windows samplesin VC++.

Relevant Documents

For the installation and debugging of GT series motion controller, please refer to
User’s Guide of GT Series Motion Controller provided together with product.

Contents

Contents

Copyright Statement ------=============mmmm oo 1
FOreword ---------mm oo oo 1
Thank you for using Googol Technology motion controller -----------=-=-=-=--------- 1
Technical Support and After-sale Service ---------=-=-==m-mmmmmmmm oo 1
Use of this Programming Manual -----=-=-=-==========mm e 1
User of this Programming Manual ------=-=-========nmmmmmm oo 1
Main Contents of this Programming Manual ---------=-=-=-========ememememmmm oo 1
Usage Description of this Programming Manual ----------=-=-==-=-=-=-mmmmmmmmeeeee 2
Relevant DOCUMENES---=-=-====mmmmm e e e e e 2
CONLENLS =-======m == e e e I
Chapter One Use of Function Library of Motion Controller ----- 1
1.1 Function Library in DOS------=-=-=mnmmmmm oo oo 1
1.2 DLL in WIiNQOWS----======nmmm e e oo o e oo e 1
1.2.1 USAQE N V Crmmmmmmmm e e e e oo e oo e 2

1.2.2 USa0E iN V B--mmmmmm e e oo e 2

1.2.3 Usage in Delphi=---=-=-mommmmmmem e oo e 2
Chapter Two Command Return Values and their Meaning ----------- 3
2.1 Command (Function Library) Return Values ---------=-=-=-=-=-m-mmmmememomm e 3
2.2 Command Status RegiSter -------=-==mmmmmmmmm oo 4
Chapter Three Initialization of Control System ------------- 7
3.1 Initialization of Motion Controller ------=-=======mmmmmmmm oo 7
3.1.1 Command SUMIMAIY -=-=-=======mmmmmmmm oo oo 7

3.1.2 EXaMPI € =----m-mmm e e e e e 7

3.1.3 Notes of Main POiNt----=-=====mnmmmm oo 8

3.2 Specify Parameters for Dedicated Input Signal---------=-=-=-======-=ememememmmmmee 9
3.2.1 Command SUMIMAIY -=-=========mmmmmmmm oo oo oo 9

3.2.2 EXaMPI € === mmm e e e e e 9

3.2.3 Notes of Main POiNt----=-====m=mmmmm oo 10

3.3 Initiaization of Motion Control AXiS---=-=-========nmmmmmmmm oo 11
3.3.1 FUNCLiON LSt ~-=-mmmmm e e e e o oo oo 11

3.3.2 EXaMPI € =----m-mmm e e oo 11

3.2.3 Notes of Main POiNt----=-=-===mmmmmmmm oo 13

Contents

Chapter Four Independent Axis Motion-----=--=-==========-nuvec--- 17
4.1 Modes and Parameters of MOtion ----=-=======mm oo 17
4.1.1 Independent Positioning: S-CUrVe------=-====mmmmmmmmm oo 17
4.1.2 Independent Positioning: T-CUrVE------=-=====mmmmmmmm oo 19
4.1.3 independent jOgQiNg------===========mmmmm e 21
4.1.4 ElectroniC Gearing ------=========nmmmm oo o oo oo 22

4.2 StOP MOt ON === === e oo o e 23
4.2.1 Command SUMMAIY =---=========mmm e oo oo o e 23
4.2.2 EXAMPI© === mm e m e e e e e e e 24
4.2.3 Notesof Main POiNt ------=--mmmmmmm oo oo oo oo 24

4.3 Specify and Update Parameters of Specified AXiS---------=-==m=nmnmmmmmmmmamaeae 25
4.3.1 Normal Updating--------=-=======mmm oo oo 26
4.3.2 Sdf-Updating at Breakpoint ------======mmmmmmmmm oo 27

4.4 Specifying Target Position and Actual Position for Specified Axis------------- 31
4.4.1 Command SUMMAIY =---=======mm oo oo oo o oo 31
4.4.2 Notesof Main POiNt ------=--mmmmmm oo oo 31

4.5 AXIS SEALUS- === === === oo 32
4.5.1 AXis Status Regi Ster------=====mm oo 32
4.5.2 AXiS MOdE REQI SLE -=-=====mm o m oo oo 34

Chapter Five Coordinated Motion(The series of GT_PX do not

CONEBIN) ====== === === = e e oo 36
5.1 Coordinate MappiNg ------=--======mmmmmmm oo oo oo 36
5.2 Set Vector Velocity and Acceleration of Coordinated Motion------------------- 40

521 Command SUMMErY ------=-===mnmmmm oo oo 40

5.2.2 EXampl @ ----mm-m oo 40

5.2.3 Notesof Main POINt ------=--=-mmmmmm oo oo 41

5.3 Set Motion Path in Coordinate System ---------=--==-mmmmmmm oo 42
5.3.1 Command SUMMErY ------=-==n==nmmmm oo oo 42

5.3.2 Exampl @ -------mm e oo 42

5.3.3 Notesof Main POINt ------=--=-mmmmmmm oo 43

5.4 Readlization of Multi-segment Path Continuous Motion -------------------------- 43
5.4.1 Push Motion Path and Parameters Commands into Buffer ------------ 44

5.4.2 commands of Starting and stopping coordinated motion in the buffer - 46

5.4.3 Planning Strategy of Vector Velocity in Multi-segment path ------------ 48

5.4.4 Breakpoint information in Multi-segment path Continuous Motion---- 49

5.4.5 Coordinate System Status Register -----------======-=-=mmmmmmmmmomeeeeeee 50
Chapter Six High velocity Home/Index Capture----------------- 52
Chapter Seven Safety Mechanism ------------==-====-mnmmemmmeem- 55
7.1 Monitor Axis Motion Error and Restore Status ------------------==--=-==--omoom- 55

7.2 Treat AXIS DIiver Alarm---mnmnmmm e 56

Contents

7.3 Treat Limit StatuS------------=-mmmm e m oo oo 56
Chapter Eight Interrupt ------------========-mmmmm oo 58
8.1 Interrupt Treatment in DOS-----------m-mmmmm oo 58
8.2 Interrupt Treatment in WINDOWS98/2000/NT -------=-=========mmmmmmmmmmmememe 61
8.2.1 Event Synchronization Mechani Sm -----------==-==-=-emsmmmmmme oo 61
8.2.2 Interrupt Preprocessing Mechanism ----------=-=--==mmemmmmmmmm oo 63
Chapter Nine General Purposed /O ------=---====mmmmmmmmmmmmee o 66
Chapter Ten List of Functions -----------========mmmmmmmmm e 68
Chapter Eleven Description of Functions------------------------- 72
GT_ADPLSEY === mmmm oo 72

Gl _AUSIPOFf =mmmm e e 72
GT_AUSHPON ~== == e o 73
GT_AUUPAtOff-mmmmmmemmmmmm e e e e e e e 73
GT_AUUPALON === == m e e e e 74

G AXI S m oo 74

Gl AXI Sl -mmm e e 74
GT_AXISOff =mmmmmmm e 75

Gl AXI SO - 76
GT_BrKOff -mmmme o m oo 76
GT_CaptHOME === 76
GT_CaptlNdEX ==-=======m = m e oo 77
GT_CaptProb -------=-= oo 77

€ I O [0 S 78

€ 0o = = I o R 79
GT_ClearInt ------mmmm oo oo 79
GT_CIrENCPOS --=-=======nmmmmeem e e oo e e e e 80

€ I O] 1S L 80
GT_CtrIMode----=========nmmmmeem e e oo e e e 81

Gl _DIVRS - oo oo 81
GT_ENCPOS -=====mm e e 82
GT_ENCONS === mm e 82

€ I = 4o B 83

R I =1 | g TR 84

GT BN N mmmm o m e oo 84

Gl EX NP —ommm e m oo e 85

€ I (@ o B 85

Gl _EXtBIrK=-mmm o mmm i m oo 86
GT_GELACC === mmm e e e 86

€ I € = Y 87

€ I € = 7Y o e 87
GT_GEetA BT —---m e oo 88

Contents

GT_GEALIPOS---=-==mmrmmmemmrmmmemms e e 88
GT_GetBgCommandReSUlt -----==-=========mmmmmmoo oo 89
GT _GEtBIKCN === === mm oo 89
B (0 o B 89
GT_GEtCMASES ----====mmmmmmmm e 90
GT_GetCurrentCardNQ --=---============mmmm oo 92
GT_GEtENCCaDt-----=======mmmmmmmm oo 92
GT _GEENCSES----=m=mmmmm e 92
G _ G LMt === 92
B 1 93
Gl _GEtINr === mm oo oo 93
B 1 1 93
O B = {1 I 93
G _GEAJErK -m=wmmemmem e 94
B 94
GT_GetKd -mmmmmmmm oo 94
G _GEHK| ==mmmwmmem e %4
Gl _GEtK ===mmmm o m oo 95
GT_GetKVff ommmmm oo 95
GT_GEL MESIWE ==mmmwmmmmm e %5
GT_GEMACC ---==mmmmmm e 96
GT_GEtMOU@-=--======== = mm oo 96
GT_GEtMIrBias ---=-=============mm oo 96
GT_GetMrCmd---=-===========m= = oo 97
GT _GEMAr LML == m e e 97
GT_GEtPOS === === 97
GT_GEtPOSENT =====mm == 97
GT_GEtRaI 0 ~==========m=mmm oo 98
GT_GetSMPI TM --mmm e oo 98
B B o 98
B 98
GT_HardRSt -----mmmm e 99
B T T 99
B S 100
GT _INGEX ======mmmmmmm oo 100
B 4 101
G _LMESOF = 102
GT_LMESON -=mmmmmm e m oo 102
GT_MIiUPGE ~-=rmmrmmemmemmemmemmemee e 102
Gl _MUNBIK -==mmmm oo oo 103
G _NEGBIK == m e 103
GT_OPENL ===m=m==mmmmm oo 104
G O === e 104
G O === e 104
GT_POSBIK =-=nmmmemmem e 104

Contents

GT _PrflGrmmmm e e 105
GT _PrflS e 105
GT Pl T e 106
GT _PrfIV e 106
Gl RESE e 107
GT_RSUNLr ==m=mmmmem e m e e e e e e e e e e e e ee 107
O B S S o 108
GT _SBtACC- === = m oo oo oo 108
GT_SetAdCChN =mmmmmm e e 108
GT_SetAAdr --=-===mmmmm e oo 108
GT_SEtALIPOS -----======= === 109
GT_SetBgCommandSet ----=-=-=======mmmmmmm oo 109
O S = 1= (O L 111
GT_SetENCcCapt -----=======mmmmmm oo 111
GT_SetlLMt =-emmmmmmememe e oo e e e 111
GT_SetlNtrM sK ========mmmmmmm e e e e e e e e e e 111
L IS = gl R 112
GT_SetintSynCEVEeNt -=-=-=-==-momommeme oo oo 112
I = I < G 113
GT_SetKaff ~--mmmm e 114
GT _SetK - e 114
I = | 114
GT _SetK P e 114
I = | 115
GT_SEtMACC ~====== === oo oo 115
GT_SetMUrBigs----=-=-=====n=nememem e 115
GT_SetMtrCmd -=-=-======smem e e oo 115
L IS = 1 1 I 116
GT _SEtPOS --=== === 116
GT _SetPOSEIT =-=-mmm e e 116
GT _SetRati 0 === m e 116
GT_SetSMPI TM -=-===mmemme e em e e e oo e e 117
GT_SetTIME =-====m=mmemmm oo e e e e e e e oo e 117
O I 111 L 117
GT_SetVEl —-mmmm e 117
GT_SMEhStP === m e e 118
L IS (= o 118
GT_StEPPUISE =--=mmmmmmm e 118
GT_SwitchtoCardNQ --=-===========mmmmmm e 118
GT_SyNChPOS ---=-=mm e 119
GT_UNNOOKI S =====m = e 119
GT_Updat@--=-=====mmmmmm e 120
GT _ZErOPOS =-=-======== == oo oo 120

Contents

VI

Part One

Programming Specification

Chapter One Use of Library Functions of Motion Controller
Chapter Two Command Return Values and their Purposes
Chapter Three Initialization of Control System

Chapter Four Single-spindle Motion

Chapter Five Mlultiple-spindle Coordination Motion

Chapter Six Home and Index Capture

Chapter Seven Safety Mechanism and Corresponding Treatment
Chapter Eight Interrupt

Chapter Nine Universal Digital Values and I/'O Operations

Chapter One Use of Function Library of Motion Controller

Chapter One Use of Function Library of Motion Controller

The motion controller provides motion function library in DOS and DLL in Windows.
Just by calling the command in library, the user can realize various functions of motion
controller. The use of library function in DOS and Windows will be described
respectively as follow.

1.1 Function Library in DOS

The motion function library in DOS exists in the directory of DOS\UserLib in the CD
provided with product, including seven files:

userlib.h Head file

userlibt.lib Function library of micro mode
userlibs.lib Function library of small mode
userlibm.lib | Function library of middle-sized mode
userlibc.lib Function library of compact mode
userlibl.lib Function library of large mode
userlibh.lib Function library of huge mode

This library is compiled in Borland C3.1. Developers can link it in Borland C3.1 or
higher versions of devel oping environment.

Methods of using the library:

1

Select Project — Open Object to create a project file, in Borland C3.1
developing environment.

Add<# include “userlib.h”> into the program devel oped.

Select Project — Add Item in Borland C environment and add the ¢ or cpp files
developed into the project file.

Copy the userlib.h and library files needed into the directory of the project file.
Select Project — Add Item in Borland C environment and add the library files
into the project file.

Select Option — Compiler — Code Generation in Borland C environment and
select the compiling mode corresponding to the compiling mode of library.
Then the user can call any command in the library. For the detailed usage and
definition of the functions, please refer to part two of this manual.

1.2DLL in Windows

Chapter One Use of Function Library of Motion Controller

The DLL in Windows exists in the directory of Windows\DII in the CD provided with
product, including severa files, GTDLL.h, GTDLL.lib and GTDLL.dII for ISA card,
and GT400.h, GT400.lib and GT400.dll for PCI card, which are written in VC++.
Regarding the advanced programming languages VC, VB and Delphi frequently used
by programmers today, the use of DLL in such languages will be described one by one
asfollows.

1.2.1Usagein VC

ISA Card:
1. Add thefollowing statement into the user program:
#include “GTDLL.h"
2. From the menu of VC environment, select project-setting setting — link. Input
GTDLL.lib into Object/library modules. Then user can cal any command in the
DLL.

PCI Card:
1. Add thefollowing statement into the user program:
#include “GT400.h"
2. From the menu of VC environment, select project — setting — link. Input GT400.lib
into Object/library modules. Then user can call any command in DLL.

1.2.2Usagein VB

According to the type of the bus on board, you can use GTDeclarlSA.bas or
GTDeclarPCl .bas directly by copying them from the directory of Windows\VB in the
CD into your project.

1.2.3 Usagein Delphi

You can use GTFunc.pas directly by copying it from the directory of Windows\Delphi
in the CD into your project.

Chapter Two Command Return Values and their Meaning

Chapter Two Command Return Values and their Meaning

2.1 Command (Function Library) Return Values

Command and Library Function: The motion controller works according to the motion
controller commands sent by the host. It has C function library (in DOS) and DLL (in
Windows). The user can cal corresponding function in the library, when he is
programming in the host, that is, send motion controller command (command for short)
to the controller.

After receiving a command from the host, the motion controller will give a feedback
after checking and verifying it. This feedback is the command (library function) return
value. The definitions of return values arelisted in Table 2-1.

-1

Table 2-1 Definition of Return Values

Value M eaning Processing M ethod

Error in communication.

Check whether the controller works normally,
according to the “Fault Processing” in User's
Manual of GT series Motion Controller.

Command execution

succeeded.

Operation can go on.

Error in command.

Cal GT_GetCmdSts(). Find causes and correct
them.

Wrong circular
interpolation radius.

This value can only be returned after GT_ArcXY,
GT_ArcYZ or GT_ArcZX command is called.
Check the command parameters and send the
command again after correction.

Linear interpolation
length is zero, negative or
exceeds the motion

bound of the controller.

This value can only be returned after GT_LnXY,
GT_LnXYZ or GT_LnXYZA command is called.
Check the command parameters and send the
command again after correction.

In coordinated motion
mode, the vector velocity
(acceleration) is zero,
negative or exceeds the
motion bound of the
controller.

This vaue can only be returned after
GT_SetSynVel or GT_SetSynAcc command is
called. Check the command parameters and send
the command again after correction.

Chapter Two Command Return Values and their Meaning

Value M eaning Processing M ethod

Wrong position of end | This value can only be returned after
point or radius | GT_ArcXYP, GT_ArcYZPor or GT_ArcZXP

5 description in circular | command is caled. Check the command
interpolation. parameters and send the command again after
correction.

Coordinate mapping | This value can only be returned after
failed. GT_MapAxis command is called. Check whether
6 the mapping is correct, or conflicts with the
mapping command executed before. Send the
command again after correction.

Generd parameter error. | Check whether the command parameters are
7 reasonable or exceed the limits. Send the
command again after correction.

It is suggested to check each command return value in the main user
& program to confirm if the execution of the command is right, and establish
i necessary error treatment mechanism to assure the safety and reliability of
Notice | the program.

If the return value is -1 and it returns several times when being called repeatedly, it
means that the communication of the motion controller has fault and the controller
doesn't receive the command from the host correctly, or the function library doesn’t
work normally, unable to process the command from the host correctly. At this time,
user should stop executing the program and take relevant processing method according
to Appendix D — Fault Processin User’s Guide of GT Series Maotion Controller.

If the return value is 1, it means the commands called by user are illegal and the
motion controller neglects these illegal commands. If the illegadl command is a
coordinated motion command, it will cause bit3 in the coordinated motion status to be
set. If the illegal command is an independent axis motion command, it will cause bit7
in the current axis status to be set. Meanwhile, The command status register of the
motion controller provides the detailed reason for command error. The host can call the
command GT_GetCmdSts() to get the causes of command error.

2.2 Command Status Register

The command status register of the motion controller provides the detailed causes of
command errors, the user can call the command GT_GetCmdSts() to get the status. The
register is a 16-bit register (among which, bit0-bit 11 are mainly for the commands of
independent axis, and bitl2-bitl5 shows the causes for commands of coordinate
system.). The definition for each bit islisted in Table 2-2.

The following example is areturn value processing function. The user can program own

4

Chapter Two Command Return Values and their Meaning
___|

function to process return value refer to the example.

Sample 2-1: Return Value Processing Function

void error (short rtn) //Return value processing function, rtn is the return

{

value of the command.

switch (rtn)

{

Bit

BitO

case -1:

printf("error: communication error\n'); Dbreak;
case 0:

/*no error, continue */ break;
case 1:

printf("error: command error\n); break;
case 2:
case 3:
case 4:
case 5:
case 7:

printf("error: parameter error\n"); break;
case 6:

printf("error: map is error\n"); break;
default:

break;

Table 2-2 Definition of Command Status Register

Definition
1: The motion parameter is overflow. Commands causing this error are
GT_SetPos, GT_SetVel, GT_SetAcc and GT_SetAtlPos, etc.

Bitl

1. The control parameter is illegal. Commands causing this error are
GT_SetVel, GT_SetAcc, GT_Setderk, GT_SetMAcc, GT_SetMtrLmt,
GT_SetKp, GT_SetKi, GT_SetKd, GT_SetKvff, GT_SetKaff, GT_SetlLmt
and GT_SetPosErr, etc.

Bit2

1: The host call GT_MItiUpdt (value), but the value=0.

Bit3

1: The illegal use of GT_DrvRst. When the current axis is in activating
status, the host calls this command.

Bit4

1. The controller doesn't generate event interrupt, but the host calls a
command of interrupt.

Bit5

Reserved

Bit6

1: When the specified axisisin motion, the host calls a command to change
the motion mode of specified axis (except that specified axisisin electronic
gearing mode).

Bit7

1: The sign of the position captured of the current axis status register is 1, or
the command GT_Captindex (GT_CaptHome) has been called to specify

Chapter Two Command Return Values and their Meaning
___|

Bit Definition

the capture mode and before the position is captured, the host calls the
command GT_Captindex again.

Bit8 1: The sign of the position captured of the current axis status register is 1, or
the command GT_Captindex (GT_CaptHome) has been called to specify
the capture mode and before the position is captured, the host calls the
command GT_CaptHome again.

Bit9 1: When the driver darm signal of the current axis status register is 1, and
the host calls the command GT_AxisOn.

Bit10 Reserved

Bitll 1: When the current axis is in motion, the host calls the command
GT_ZeroPos() , or call the command GT_Update() (GT_MItiUpdt()) to
modify some parameter which can not be changed during the current
axisisin motion; When the current axis motion mode is the independent
jogging mode, the host calls the command GT_SynchPos and makes it
valid by GT_Update(); (For example, in the S-curve motion mode, when
the motor is in motion, the host cals the command GT_SetVel and
GT_Update or GT_MItiUpdt.)

Bit12 1: The command of coordinate systemisillegal, including:

When setting up the coordinate system, the mapped axisisin motion.

When coordinated motion command in the buffer isin execution, call
GT_StrtMtn(), GT_StrtList().

When input status of the buffer command is not end, call
GT_AddList.
When it is in single-segment path coordinated motion, and the motion is
not finished yet, specify a new motion path command.

Bit13 1: Errorsin calling GT_MvXY, GT_MvXYZ and GT_MvXYZA.

Bit14 Reserved

Bit15 1: The buffer isfull. Since the buffer is full, the motion path and parameters
command called last time cannot be received by the motion control. The
host needs to repeat calling this command till it is received.

Chapter ThreelInitialization of Control System

Chapter Three Initialization of Control System

3.1 Initialization of Motion Controller

3.1.1 Command Summary

Table 3-1 Initialization Command Summary of Motion

Function Description

GT_Open() Open the motion controller (in other application
conditions except for that I1SA card is used in DOS).

GT_SetAddr() Set communication base address (only for ISA card being
used in DOS).

GT_SwitchtoCardNo() Specify the current control card (only for PCI multi-card
control system).

GT_Reset() Reset the motion controller.

GT_SetSmplTm() Set control period.

3.1.2 Example

Example 3-1 Initialization Function of Motion Control Card (I SA Card, for DOS)

void GTInitial() Initialization function of motion controller

{

short rtn;
unsigned long PortBase=0x300; //Evaluate base address.

rtn=GT_SetAddr(PortBase); error(rtn); //Set base address.

rtn=GT_Reset(); error(rtn); //Reset motion controller.
rtn=GT_SetSmplTm(200); error(rtn); //Set control period as 200us.

Example 3-2 Initialization Function of Motion Control Card (I SA Card, for Windows)

void GTInitial() lInitialization function of motion controller
{
short rtn;
unsigned long PortBase=0x300; //Evaluate base address.
unsigned long irg=0; /[Evaluate interrupt number.

rtn=GT_Open(PortBase;irqg); error(rtn); //Openthemaotion controller.
rtn=GT_Reset(); error(rtn); //Reset motion controller.
rtn=GT_SetSmpITm(200); error(rtn); //Setcontrol period as200us.

Example 3-3 Initialization Function of Motion Control Card (PCI Card)

void GTInitial() Initialization function of motion controller

{

7

Chapter ThreelInitialization of Control System

short rtn;
rtn=GT_Open(); error(rtn); //Open the motion controller.
rtn=GT_Reset(); error(rtn); //Reset motion controller.
/* Set No. 1 card as the current card (only for multi-card system, and this line can
be cancelled for single-card system.).*/
rtn=GT_SwitchtoCardNo(1); error(rtn);
rtn=GT_SetSmpITm(200); error(rtn); //Set control period as 200us.
for(int i=1; i<5; i++;) //Screen each axisinterrupt.
{
rtn=GT_Axis(i);
rtn=GT_SetIntrMsk(0);

3.1.3 Notes of Main Point

Specify the communication base address of the motion controller (only for
|SA card in DOYS)

The motion controller communicates with the host through ISA bus of PC. In fact, the
base address is to tell the host about the site of the motion controller and enables the
communication between both.

The command of specifying communication base address is short
GT_SetAddr(unsigned short BaseAddr). The parameter of BaseAddr should correspond
to the “Base Address jumper” on the motion control board (See Set jumper on Motion
Control Card in User's Guide of GT Series Motion Controller.). The default base
address of motion controller is 0x300.

If the return value of the command is O, it means a successful communication between
the host and motion controller. If the return value is -1, it means a failed
communication.

When initializing the controller, if the base address of the controller is not the default
one, user should call this command at first to establish successful communication
between the host and controller.

Open motion controller (only for I SA card in Windows)

short GT_Open(unsigned long PortBase, unsigned long irg) must be called to open the
controller when the user program in Windows. PortBase is the base address of controller,
and irq is the interrupt number of controller. When selecting the base address and
interrupt number, the user must pay attention to avoid collision with other equipment.
Otherwise, the command execution will be failed. The return value = 0 means success,
otherwise means failure.

Chapter ThreelInitialization of Control System

d,’_?,!y I'f interrupt numbers 10-15 of the host are occupied, or user doesn t

® need interrupt, the value of Irq should be set as 0 to indicate no
interrupt.

Prompt -

The command relativeto GT_Open is short GT_Close(void). It must be called when the
user’'s program is end and exit, and motion controller is closed. The return value = 0
means success, otherwise means failure.

Specify Sample Time

The motion controller controls output at a specific sample time. User can change the
sample time according to system requirements. Command to specify the sample time is
short GT_SetSmpl Tm(double Timer) and the unit of parameter Timer is microsecond.

Since the motion controller has to finish necessary control calculation within one
sample time and the period cannot be too shorter, the scope should be set between
48-1966.08 microseconds. The default sample time is 200 microseconds, which can
make the controller work safely and reliably for common users.

We suggest that user do not modify the sample time shorter than the default value above,
otherwise, it may cause the controller to work abnormally. If an actual system requires
to reduce the sample time, the command GT_GetCrdSts() should be called frequently
during program running to get the information about whether the new sample time is
appropriate or not (For detailed description of this command, see 1.7 Status Monitoring).
If bit2 is 1, it means the sample time is too short and motion controller works
abnormally. At this time, please reset the controller immediately and restore to the
default sample time value or prolong the sample time.

& Soecifying sample time can only be done during initialization. It is
Ta suggested that the user do not modify the sample time during program
running. Otherwise, it will cause unpredictable result.

Notice

3.2 Specify Parametersfor Dedicated | nput Signal

3.2.1 Command Summary
Table 3-2 Command Summary of Specifying Parametersfor Dedicated I nput Signal

Function Description

GT_LmtSns() Specify the effective electrical level for limit switch.
GT_EncSns() Specify the direction of encoder (only for SV card).
3.2.2 Example

Example 3-4 Specify Parameters for Dedicated | nput Signal
void InputCfg() //Specify parameters for dedicated input

Chapter ThreelInitialization of Control System

signals.

short rtn;

unsigned short LmtSense = 0; //set the parameter of limit switch as high-level
triggering.

unsigned int EncSense = OxF; /* Opposite the direction of 1-4 axes encoders

to origina direction, 1 and 2 auxiliary
encoder keep the original direction. */

rtn=GT_LmtSns(LmtSense); error(rtn); /* Specify 1-4 axes positive and
negative limit switches as high-level triggering. */
rtn=GT_EncSns(EncSense) ; error(rtn); //Specify the direction of encoder.

}
3.2.3 Notes of Main Point
Set effective electrical level for limit switch.

The motion controller uses two (positive and negative) limit switches to set the motion
scope of the control axis automatically. Once the limit switch is triggered, the controller
will prohibit automatically the motion of control axis towards the limit.

The default limit switch is the permanently closed switch. In normal work, the signal
of limit switch is at low level, and when switch is triggered, it is at high level. If the
commonly used switch is used, or the level of the switch is opposite to the above default
status caused by connection, user needs to use a command to change the effective level,
whichis short GT_LmtSns(unsigned short Sense).

The parameter Sense indicates the effective level status of the positive (or negative)
limit switch of each axis. The default values of motion controller are al “0”. For
detailed explanation, please see the definition of this function.

Set the direction of coder (only for SV card).

The default set of controller considers the positive direction of controlling the rotating
of motor (i.e. the motor control voltage is the rotating direction of motor at positive
direction) is the same as the positive direction of coder calculation (i.e. the increasing
direction of pulse calculation). But in actual application, it may be due to the unmatched
set of motor and coder or wrong connection that the positive rotating of motor is
opposite to that of coder, forming positive feedback and causing controller abnormal in
work. Now, user can set the positive direction of the coder calculation with a command
short GT_EncSns(unsigned int Sense).

The corresponding bit of the parameter Sense means whether to change the calculation
direction of the corresponding axis coder. The default values of motion control are all
“0". For detailed explanation, please see the definition of this function.

10

Chapter ThreelInitialization of Control System

3.3 Initialization of Motion Control Axis

3.3.1 Function List

Table 3-3 Initialization Function List of Motion Controller

Function Description
GT_Axis() Set the current axis.
GT_CIrsts() Clear the current axis status.
i Set the output mode of the current axis in the pulse
GT_StepDir() o
output mode as “Pulse/Direction”.
Set the output mode of the current axis in the pulse
GT_StepPulse() . .
output mode as “ Positive Pulse/Negative Pulse’.
GT_AxisOn() Activate drive.
GT_CtrIMode() Set output analog amount/pul se amount.
GT_CloseLp() Set as close loop control.
GT_OpenLp() Set as open loop control.
GT_SetKp() Set the servo filter percentage gain of the current axis.
GT_SetKi() Set the servo filter integral gain of the current axis.
GT_SetKd() Set the servo filter differential gain of the current axis.
Only Set the servo filter velocity feedback gain of the
GT_Setkvif() : y g
for current axis.
sV Set the servo filter acceleration feedback gain of the
d GT_SetKaff() .
car current axis.
Set the servo filter error integral saturation of the
GT_SetILmt() .
current axis.
Set the servo filter output saturation of the current
GT_SetMtrLmt() .
axis.
i Set the servo filter output zero point excursion of the
GT_SetMtrBias() .
current axis.
3.3.2 Example

Example 3-5 Initialization Function of Axes (For SD, SE, SG and SP Cards)

void AxislInitial()

{

short rtn;

for(int i=0;i<4;i++)

{

rtn=GT_Axis(i);
rtn=GT_CIrSts();

rtn=GT_StepPulse();

pulse singal.
rtn=GT_AxisOn();

/Nnitialization function of axes.

//Set the i axis as current axis.
/[Clear the wrong status of current axis.
//Set to output positive and negative

error(rtn);
error(rtn);
error(rtn);

error(rtn); /[Activate this axis.

}

11

Chapter ThreelInitialization of Control System

¥

void main()

{
GTInitial();
InputCfg();
Axislnitial();
}

Example 3-6 Initialization Function of Axes (For SV Card)

void Axislnitial() /Initiaization function of control axis.
{
short rtn;
rtn=GT_Axis(1); error(rtn); //Set the first axis as current axis.
rtn=GT_CIrSts(); error(rtn); //Clear the wrong status of current axis.
rtn=GT_CtrIMode(0); error(rtn); //Setto output analogamount.
rtn=GT_CloseLp(); error(rtn); //Set as close loop control.
rtn=GT_SetKp(20); error(rtn); //Set percentage gain as20.
rtn=GT_SetKi(0); error(rtn); //Set integral gain as 0.
rtn=GT_SetKd(10); error(rtn); //Set differential gain as 10.

rtn=GT_SetKvff(0); error(rtn); //Set velocity feedback as 0.
rtn=GT_SetKaff(0); error(rtn); //Set acceleration feedback as 0.
rtn=GT_SetMtrBias(10); error(rtn); //Set output zero point excursion as 10.

rtn=GT_Update(); error(rtn); /[Update parameter (Validate
parameter).
rtn=GT_AxisOn(); error(rtn); /[Activate drive.
rtn=GT_Axis(2); error(rtn); //Set the second axis as current axis.
rtn=GT_CIrSts(); error(rtn); /[Clear the wrong status of current axis.
rtn=GT_CtrIMode(0); error(rtn); //Set to output analog amount.
rtn=GT_OpenLp(); error(rtn); //Set as close loop control.
rtn=GT_AxisOn(); error(rtn); /[Activate drive.
rtn=GT_Axis(3); error(rtn); /[Set the third axis as current axis.
rtn=GT_CIrSts(); error(rtn); /[Clear the wrong status of current axis.
rtn=GT_CtriMode(1); error(rtn); //Set to output analog amount.
rtn=GT_StepDir(); error(rtn); //Set to output pulse + direction
signal.
rtn=GT_AxisOn(); error(rtn); /IActivate drive.
rtn=GT_Axis(4); error(rtn); [//Set the fourth axis as current axis.
rtn=GT_CIrSts(); error(rtn); /[Clear the wrong status of current axis.
rtn=GT_CtriMode(1); error(rtn); //Set to output analog amount.

rtn=GT_StepPulse(); error(rtn); /[Set to output positive and negative
pulse signal.
rtn=GT_AxisOn(); error(rtn); /[Activate drive.

}

12

Chapter ThreelInitialization of Control System

void main()

{
GTInitial();

InputCfg();
Axislnitial();

}
3.2.3 Notes of Main Point

Set current axis

The motion controller can control four control axes at the same time, each of them able
to set parameters independently. To improve the communication efficiency between the
host and controller, the controller applies the strategy of address searching for control
axis.

The single-axis commands evoked by user program al act on the current axis. The
default current axisisthe first axis. To send command to another axis, first evoke the set
current axis command short GT_Axis(unsigned short num).

GT_Axig() sets the axis specified by parameters as the current axis. The following
single-axis commands evoked are all for the current axis until this function is evoked
again to set the current axis as another axis. The parameter num indicates the axis
number specified, from 1, 2, 3 to 4, representing the first, second, third and fourth axis
respectively.

Specify pulse output mode of “ PulsetDirection” or “ Positive and Negative
Pulse”

For SG, SE, SD cards and the SV card working in pulse output mode, by default the
controller outputs “Pulse+Direction” signal. User can evoke the function GT_StepPulse
to set the controller to output “Positive and Negative Pulse” signal. Evoking the
function GT_StepDir to set the controller to output “Pulse+Direction” signal.

Specify output mode of analog voltage output or pulse output (The
following explanation isonly for SV card. Other users may skip it.)

The SV controller can output analog amount and also the pulse amount (but not at the
same time). The default output is analog amount. User can evoke the function short
GT_CtrIMode(int mode) to set the output mode. The parameter Mode = 0 means the
analog amount output mode, Mode = 1 means the pulse amount output mode.

When the output is set as pulse amount output, evoke GT_StepDir and GT_StepPulse to
set the output mode. The default output is pulse/direction mode.

Set as close cycle/open loop control (only for SV card).
The SV controller has two control modes of close loop and open loop.

Evoke the command GT_Closelp() to set the current axis to work in close loop mode.

13

Chapter ThreelInitialization of Control System

The controller will send the motion position, velocity and acceleration planned currently
into the digital servo filter and compare them with the actual position fed back to get the
control output signal. This mode enables to realize accurate position control. The default
control mode of the SV controller is close loop control mode.

Evoke the command GT_OpenLp() to set the current axis to work in open loop mode,
allowing the host to directly set the control axis output signal of the controller with the
command GT_SetMtrCmd(). This mode is mainly used in the motion or calibration
driver only requiring torque control. The motion controller cannot realize the accurate
position control.

Set digital servo filtering parameters (only for SV cards).

The digital servo filter is used for PC to output signal. The SV controller applies PID
filter, together with the velocity and acceleration feedback, i.e. PID+K+K 4 filter. By
adjusting each parameter, the filter can perform accurate and stable control on most
systems. The parameters of the servo filter can be set in the host. Table 3-4 is the
parameter definition of digital servo filter. The principle of PID+K4+Kg filter is
illustrated in Fig. 3-1.

Table 3-4 Parameter Definition of Digital Servo Filter

Parameter Setting Parameter Value Default

Command

Kp Percentage gain GT_SetKp() 0to 32,767 0

Ki Integral gain GT_SetKi() 0to 32,767 0

Ky Differential gain GT_SetKd() 0to 32,767 0

Lim Error integral gain GT_SetlLmt() 0to 32,767 32,767
Velocity feedback|GT_SetK vff() 0

Kt . 0to 32,767
gan
Acceleration feedback| GT_SetKaff() 0

K gt) 0to 32,767
gain
Net output difference] GT_SetMtrBias() 0

B) -32768 to 32,767
compensation

Targe P Ky
Targe . Net difference compensation
Target acceleration ————— P KT NGS5 RRRER R on control
Farget aceeleration o Output Fatfltion tonfgrly - conrrol output
P=Kk7E5 L4 Efeteonirol cuiput
I e W) > >
Target position RS -
Target pesition

< Adur,Ro3tin frem.goger

Fig. 3-1 Princiele Diagram of Digital Servo Filter
14

Chapter ThreelInitialization of Control System

Output calculation formula of digital servo filter:

E,= (Ptarget)n - (Pactual)n

U,=EK,+(E, - E,,)K, {Z En]Ki 1256+ V, g Kyt + ACCgge Koy + B
The meanings of variables are listed i:1 Table 3-5.

Table 3-5 Meanings of Variables

7 Variable ' Meaning 7

U, The output value of digital servo filter
E, The position error of the n sampling time
F’target The target position of the n sampling time
Pt The actua position of the n sampling time
(Z EnJ The accumulated error value of the n sampling time
n
V. The current target velocity with a unit of Count
taoet value/Sampling period
The current target acceleration with a unit of Count
ACCaget .)
value/Sampling period
B Net difference compensation of motor

Be careful when setting Ki gain at first time. If the system is running and the
accumulated value is unknown, setting Ki as a value that is not O will cause abrupt
“jump”. To avoid this situation, it needs to set LIM (Accumulated limit) as 0 and Ki as
the expected value. Then set LIM as the expected accumulated limit. Thus, all previous
accumulated values will be cleared, and the accumulation will start from the previous
point smoothly.

The net output compensation of digital servo filter is mainly used to compensate the
influence of outside force at a single direction against the control axis, such as the
gravity of the vertical axis of a lathe. The compensation of filter can be set by host

15

Chapter ThreelInitialization of Control System

command, with a scope of —32768 to +32767. The default compensation is 0.

The maximum output values of the digital servo filter are +-2" . The corresponding

analog amount output is +/-10V. But the actual output value scope is limited by the
control saturation value, which (0-32767) decides the valid output scope of the filter.
The host can send the command GT_SetMtrLmt() to modify the control saturation value,
so as to control the valid output scope of filter. The default control saturation value is
32767.

16

Chapter Four Independent Axis Motion

Chapter Four Independent Axis Motion

4.1 Modes and Parameters of Motion

For Independent Axis motion, The GT provides several modes of motion: independent
positioning (including S-curve and T-curve), independent jogging and electronic
gearing.

The specified axes will keep their origina modes until another mode is valid. Except
electronic gearing, the user can specify another mode of the axis correctly just after
current motion of this axisis end. The motion between the specified axes is independent,
and each axis follows its own profile. The description in details below will guide you to
the appropriate mode and parameters of motion.

4.1.1 Independent Positioning: S-curve

4.1.1.1 Command Summary

Table 4-1 Command Summaryv of S-curve

‘ Description

GT_PrflS() Specifies motion profile of current axis as S-curve
GT_SetJerk() Specifies the jerk of current axis

GT_SetMAcc() Specifies the maximum acceleration of current axis.
GT_SetVel() Specifies the velocity of current axis.

GT_SetPos() Specifies the absolute position of current axis.

Table 4-2 Span of the Parameters (ST: Sample Time)

Par ameter ‘ Unit
. -1,073,741,824
Target Position Pulse
~+1,073,741,823
Jerk 0~0.5 (without 0.5) Pulse/ST?
Max. Acceleration 0~0.5 (without 0.5) Pulse/ST?
Max. Velocity 0~16384 Pulse/ST

4.1.1.2 Example

Example 4-1 S-curve Profile Motion
void SMotion() //Motion function of S-curve profile

{

short rtn;

17

Chapter Four Independent Axis Motion

rtn=GT_PrfIS(); error(rtn); // Specifies motion profile of S-curve for
current axis
rtn=GT_SetJerk(0.00000002); error(rtn); /* Specifiesjerk of 0.00000002.
*/
rtn=GT_SetMAcc(0.004); error(rtn); /I Specifies max. acceleration of
0.004.
rtn=GT_SetVel (4); error(rtn); Il Specifies velocity of 4.
rtn=GT_SetPos(80000); error(rtn); Il Specifies position of 80000.
rtn=GT_Update(); error(rtn); I/ Update parameters.
}
void main()
{
GTInitial();
InputCfg();
Axislnitial();
SMotion();

}

4.1.1.3 Notes of Main Point

Figd-1

Fig. 4-1 shows the velocity, acceleration and jerk profile of a typical S-curve. The
process of motion is described as below.

In the first stage, Specified axes increase the acceleration from 0 to the max.
acceleration by the Jerk ratio.

In the second stage, the jerk is zero. Specified axes Accelerate by the max.
acceleration.

In the third stage, Specified axes decrease the acceleration to zero by jerk, so
that the specified velocity is reached..

In the fourth stage, Specified axes move at this constant Specified velocity
both of the acceleration and jerk are zero.

The fifth, sixth and seventh stages are similar with the first, second and third

18

Chapter Four Independent Axis Motion

stages. In these stages, Specified axes decelerate to zero.

In S-curve, the user can modify the target position at any time, other parameters cannot
be modified during motion. All the valued of the target velocity, maximum acceleration
and jerk are positive. The motion direction of the specified axis is decided by the
commanded position. Normally S-curve is symmetrical, but it is allowed to be lack of
some stage. For example, the S-curve in Fig. 4-2 islack of the fourth stage.

\Y
3 5

Y-

Fig. 4-2 Deformed S-curve

4.1.2 Independent Positioning: T-curve

4.1.2.1 Command Summary

Table 4-3 Command Summary of T-curve Mede

Function Description
| GT_PrfIT() Specifies motion profile of current axis as T-curve
GT_SetAcc() Specifies the acceleration of current axis.
GT_SetVel() Specifies the velocity of current axis.
GT_SetPos() Specifies the absolute position of current axis.

Table 4-4 Span of the Parameters (ST: Sample Time)

Parameter Span Unit
Acceleration 0~16384 Pulse/ST 2
Velocity 0~16384 Pulse/ST

” -1,073,741,824
Absolute Position Pulse
~1,073,741,823

4.1.2.2 Example

Example 4-2 T-curve Profile Motion

void TMotion() //Motion function of T-curve profile
{
short rtn;
rtn=GT_PrfIT(); error(rtn); // Specifies motion profile of T-curve for
current axis

rtn=GT_SetAcc(0.01); error(rtn); //Specifiesthe max. acceleration of 0.01.

19

Chapter Four Independent Axis Motion

rtn=GT_SetVel(1); error(rtn); //Specifiestarget velocity of 1.
rtn=GT_SetPos(80000);error(rtn); // Specifies absolute position of 80000.
rtn=GT_Update(); error(rtn); //Update parameter.

}

void main()

{
GTInitial();
InputCfg();
Axislnitial();
TMotion();

}

4.1.2.3 Notes of Main Point

\%

Fig. 4-3 Velocity Profile of T-curve

Fig. 4-3 describes the velocity profile of T-curve. A typical velocity profile of T-curve
is described as below.

® The first stage: The specified axes accelerate from zero to the commanded
velocity by the acceleration.
® The second stage: The specified axes move at this constant velocity.

The third stage: The specified axes decelerate such that the final position
agree with the command position..

In some situations, The specified axes may decelerate without the second stage. In
T-curve, the commanded velocity and position can be changed at any time. The velocity
profileisasillustrated in Fig. 4-4.

Change target péqtlon. /

Table 4-4 Velocitv Profilein T-curve after Chanaina Velocitv and Position Chanoed

20

Chapter Four Independent Axis Motion

4.1.3 independent jogging

4.1.3.1 Command Summary

Table 4-5 Command Summary of independent jogging

GT_PrflV() Set the motion mode of current axis as velocity control mode.
Specifies motion mode of current axis as independent jogging

GT_SetAcc() Specifies the acceleration of current axis.

GT_SetVel() Specifies the maximum velocity of current axis.

Table 4-6 Span of the Parameters (ST: Sample Time)

Velocity -16384~16384 Pulse/ST
Acceleration 0~16383 Pulse/ST 2

4.1.3.2 Example
Example 4-3 Jog Mode of Motion

void VMotion() //Motion function of independent jogging mode
{
short rtn;
rtn=GT_PrfIvV(); error(rtn); // Specifies the jog mode of motion for
current axis

rtn=GT_SetAcc(0.01); error(rtn); //Specifiesthe acceleration of 0.01.
rtn=GT_SetVel(1); error(rtn); // Specifiesthetarget velocity of 1.
rtn=GT_Update(); error(rtn); //Update parameter.

}

void main()

{
GTInitial();

InputCfg();
Axislnitial();
VMotion();

}

4.1.3.3 Notes of Main Point

The jog mode of motion is flexible because velocity, acceleration and direction can be
changed during motion. The user specifies the target velocity and acceleration for
current axis, the direction of motion is specified by the sign of the command velocity. In
this mode, when motion begins, the specified axis will accelerate up to the commanded
velocity and continue to move at this velocity until a new velocity or stop command is
issued. Table 4-5 lists the command summary for independent jogging mode of motion.

L]
21

Chapter Four Independent Axis Motion
___|

Table 4-6 lists the span of the parameters in the command.

4.1.4 Electronic Gearing

4.1.4.1 Command Summary

Table 4-7 Command Summary of Gearing

GT_PrflG() Set the motion mode of current axis as the electronic gear control
mode.

Specifies motion mode of current axis as electronic gearing, and
specifies which axisis the master axis.

GT_SetRatio() Specifies the gear ratio of current axis.

Table 4-8 Span of the Parametersin Electronic Gearing (ST: Sample Time)

The axes 1 to 4 are controlled axes. The axes
5 and 6 are auxiliary encoders.

Positive value means the same direction with
Electronic Gear the master axis.

) -16384~16384 i , _—
Ratio Negative value means the opposite direction

against the master axis.

Drive AxisNumber | 16

4.1.4.2 Example

Example 4-4 Electronic Gearing Mode of Motion

void GMotion() /IMotion function of electronic gearing mode of
motion.
{
short rtn;
rtn=GT_Axis(1); error(rtn); // Specifies axis#1 of current axis

rtn=GT_PrflIG(2); error(rtn); /* Specifies electronic gearing mode of
motion for current axis, and specifies the master axis of axis#2 */
rtn=GT_SetRatio(-1); error(rtn); //Specifiesthe gear ratio of —1.
rtn=GT_Update(); error(rtn); //Update parameter.
}

void main()

{
GTInitial();
InputCfg();
AxisInitial();
GMotion();

}

4.1.4.3 Notes of Main Point

When Calling GT_PrflG(), the controller specifies the current axis of electronic gearing

L]
22

Chapter Four Independent Axis Motion

mode (i.e. the current axisis aslave axis.), and specifies another axis or auxiliary encoder
of the master axis.

The slave axis will follow the motion of the master axis at the specified gear ratio. The
mode of motion for the master axis can be any sort of mode. (If the master axisisin the
mode of interpolation motion, the slave axis will follow the motion of the master axis, not
the vector motion of the interpolation). The incremental position of current axis is in
proportionto theincremental position of the master axis by gear ratio.

In fact, the electronic gearing mode is coordinate motion of several axes. The effect of
the motion is similar with the joggle motion of two mechanical gears.

The command GT_SetRatio() is to specifies the gear ratio. The controller alows one
master axis with several slave axes, or an axis as a drive axis to drive secondary axis. If
there were any abnormal status happened in the slave axis (such as limit switch action,
drive alarming, etc.), the master axis would stop motion. But if the master axisisin open
loop mode or an auxiliary encoder, the motion of the master axis will not be stopped
under the abnormal situation of the slave axis.

When the current axis is in the electronic gearing mode, no matter the
& master axis is in motion or not, the status of the current axis will always
i show that the current axis is in motion (i.e. the BIT10 of the current axis
Notice | status is always set.) until the user changes the current axis to another
mode of motion, or there are some abnormal situation happened in the
current axis.

4.2 Stop Motion

Sometimes for the purpose of safety or having some specific motion profile, it is
required to stop the motion of current axis at special position or time. For the
independent axis motion, the controller provides two ways for stopping: Abrupt Stop
and Smooth Stop.

4.2.1 Command Summary

Table 4-9 Stopping Command Summary of Indepent Axis Motion

Command ‘ Description
GT_SmthStp() Stop the motion of current axis smoothly.
GT_AbptStp() Stop the motion of current axis abruptly.

23

Chapter Four Independent Axis Motion

4.2.2 Example

4.2.3

Example 4-5 Stop the motion of the first axis abruptly when the
EXI15 input port of external 10 isat high level.

void main()
{
short rtn,ex_data;
rtn=GT_ExInpt(&ex_data); error(rtn); //Read the status of input port.

. rtn=GT_Axis(1); error(rtn); //Specify the first axis as the current
> if (ex_data& 0x8000) /ICheck if EXI15isat high level.
{ rtn=GT_AbptStp(); error(rtn); //Stop motion abruptly.
}

Notes of Main Point

Command of Abrupt Stop

The command GT_AbptStp() stop the motion of current axis abruptly, and specifies
the target velocity and real running velocity of O without deceleration..

The command GT_AbptStp() can be called in al modes of independent axis motion.

& Be careful in using the command GT_AbptSp(). Because this command
A will stop the motor abruptly, generate large impact to the motor, and
reduce the service life of the motor and system.

Notice

Command of Smooth Stop

The command GT_SmthStp() stop the motion of current axis smoothly, i.e. decelerates
the velocity to zero by commanded acceleration. The deceleration and acceleration
stages are symmetrical. Diagram 4-5 shows the velocity profile of smooth stop in
S-curve and T-curve.

The command GT_SmthStp() will not be valid until the user calls the command
GT _Update() or GT_MItiUpdt(). GT_SmthStp() can be used in severa modes of
motion but electronic gearing.

[Y,

Smooth stop starts.

24

Chapter Four Independent Axis Motion

Diagram 4-5 Vel ocity Profile of Smooth Stop in S-curve and T-curve Modes

4.3 Specify and Update Parameters of Specified Axis

Parameter Updating is used in 3.3 Initialization of Motion Control Axis, 4.1 Mode and
Parameter of motion and 4.2 Sop Mation. Parameter specifying and updating will be
described in details below. Parameter updating includes norma updating and
self-updating at breakpoint.

To update several parameters of current axis or parameters of several axes in
synchronism, the motion controller uses double-buffered mechanism to realize the
specifying and updating of specified axes.

The double-buffered mechanism means, when the host sends the command to specify
the motion and control parameters of independent axis, the command will be
downloaded into the motion controller. Before parameter updating, parameters and
motion commands are al waiting for validation. After parameter updating, the
controller will copy these parameters and commands into the valid registers in the next
sample time, and making them valid at the same time. The commands in command
summary Table 4-10 is all suitable for double-buffered mechanism.

Table4-10 Command Summary of Double-buffered Commands

Function \ Description
GT_SetPos() Set the target position of current axis.
Set the comparison value of breakpoint position of current
GT_SetBrken() i
axis.
GT_SetVel() Set the target velocity of current axis.
GT_SetAcc() Set the acceleration of current axis.
GT_SetMAcc() Set the maximum acceleration of current axis.
GT_SetJerk() Set the jerk of current axis.
GT_SetRatio() Set the electronic gear transmission ratio of current axis.
GT_SetMtrLmt() Set the servo filter output limit of current axis.
) Set the servo filter output zero point bias value of current
GT_SetMtrBias() _
axis.
GT_SetKp() Set the servo filter percentage gain of current axis.
GT_SetKi() Set the servo filter integral gain of current axis.
GT_Setkd() Set the servo filter differential gain of current axis.
GT_SetKvff() Set the servo filter velocity feedback gain of current axis.

25

Chapter Four Independent Axis Motion

Function Description
GT_SetKaff() Set the servo filter acceleration feedback gain of current axis.
GT_SetlLmt() Set the servo filter error differential limit of current axis.
GT_SetPosErr() Set the servo filter position error limit of current axis.
GT_SmthStp() Stop the motion of current axis smoothly.
GT_SynchPos() Synchror?ize the actual position and target position of
current axis.

4.3.1 Normal Updating

4.3.1.1 Command Summary

Table 4-11 Command Summary of Normal Parameter Updating

Function Description
GT_Update() Update parameter.
GT_MItiUpdt() Update multiple-axis parameter.

4.3.1.2 Example

Example 4-6 Normal Parameters Updating

void main()

{

short rtn;

GTInitial();

InputCfg();

Axislnitial();

rtn=GT_Axis(1); error(rtn); //Specify the axis #1 of current axis.

VMotion(); //Specify the mode of motion as
independent jogging.

delay(1000); //Delay by one second.

rtn=GT_SmthStp(); error(rtn); //Smooth stop.

rtn=GT_Update(); error(rtn); //Update parameter (valid command of
smooth stop.).

rtn=GT_Axis(2); error(rtn); /I Specify the axis #2 of current axis.

2rtn:GT_SetAcc(O.Ol); error(rtn); //Acceleration = 0.01 pulse/Control
period

rtn=GT_SetVel(1); error(rtn); //Velocity = 1 pulse/Control period
rtn=GT_SetPos(20000); error(rtn); //20000 pulsein target position.

rtn=GT_Axis(3); error(rtn); /I Specify the axis #3 of current axis.

rtn=GT_SetAcc(0.01); error(rtn); //Acceleration = 0.01 pulse/Control
period?

rtn=GT_SetVel(1); error(rtn); //Velocity = 1 pulse/Control period

rtn=GT_SetPos(20000); error(rtn); //20000 pulsein target position.

rtn=GT_MItiUpdt(0x6); error(rtn); /* Updating the parameters of

26

Chapter Four Independent Axis Motion

several axes (The second and third
axes parameters become valid at
the sametime.) */

}

4.3.1.3 Notesof Main Point

4.3.2

The command GT_Update() updates the parameters of current axisimmediately.

The command GT_MItiUpdt() updates the parameters of multi-axes immediately.
Self-Updating at Breakpoint

Except norma updating, the motion controller also provides self-updating at
breakpoint to update parameters automatically. The host can specify a condition (called
breakpoint) that, when the motion of specified axis satisfies this condition, the
controller will automatically update parameters (commands) of this axis. The command
related to the self-updating at breakpoint islisted in Table 4-12.

Table4-12 Command Summary of Self-updating at Breakpoint

Command ‘ Description

GT_AuUpdtOn() Validate the self-updating parameters of current axis.

GT_AuUpdtOff() Invalidate the self-updating parameters of current axis.

GT_GetBrkCn() Get the breakpoint position of current axis.

GT_PosBrk() Specify the breakpoint triggering condition of current axis as
positive position breakpoint.

GT_NegBrk() Specify the breakpoint triggering condition of current axis as
negative position breakpoint.

GT_ExtBrk() Specify the breakpoint triggering condition of current axis as
the home signa triggering breakpoint.

GT_MtnBrk() Specify the breakpoint triggering condition of current axis as
the motion completion event breakpoint.

GT_BrkOff() Clear the breakpoint of current axis, and invalidate breakpoint
condition.

The default status of self-updating at breakpoint is invalid. The host can use the
commands GT_AuUpdtOn() and GT_AuUpdtOff() to validate and invalidate this
function. The user can tell if this function is valid or invalid by calling GT_GetMode()
and read relative bit (For details, see 4.5.2).

27

Chapter Four Independent Axis Motion

After the breakpoint of specified axis is triggered, the controller will clear it. The user
must reset the breakpoint condition again if he needs to trigger breakpoint again.
Meanwhile, after specifying breakpoint condition, the host can cancel it by calling the
command GT_BrkOff() before it istriggered.

The motion controller provides four kinds of breakpoints, the positive position
breakpoint, negative position breakpoint, axis motion completed breakpoint, and home
switch triggered breakpoint. The following will describe in details the usage of
self-updating at four kinds of breakpoint parameters.

4.3.2.1 Positive Position Breakpoint

At first, the user calls the command GT_SetBrkCn() to specify the breakpoint position
of current axis, and uses the command GT_Update() or GT_MItiUpdt() to validate it.
Then, the user calls the command GT_PosBrk() to specify the breakpoint triggering
condition of current axis of the positive position breakpoint. When the actual position of
the current axis is larger than or equal to the breakpoint position, the breakpoint will be
triggered and the sign indicating the mode of breakpoint triggering of current axis will
be cleared, then the controller will search the sign of self-updating parameters in this
axis's mode register. If the sign bit = 1, the new parameter for this axis will be updated
automatically. no matter the self-updating parameters is alowed or not, the sign of
breakpoint triggered will be set by the controller,

Example 4-7 Specifying and Triggering the Positive Position Breakpoint

In this example, in the process of moving the axis #1 to the position 50000, the
controller will trigger the breakpoint at the position 20000, and change the valid
velocity from 1 (Pulse/ST) to 4 (Pulse/ST).

void main()

{
GTInitial();
InputCfg();
AxisInitial();

rtn=GT_Axis(1); error(rtn); //Specify the axis #1 of the current axis.
rtn=GT_CIrSts(); error(rtn); //Clear status.

rtn=GT_SetVel(1); error(rtn); //Specify velocity of 1 (Pulse/ST).
rtn=GT_SetAcc(0.1); error(rtn); /ISpecify acceleration of 0.1

(Pulse/ST?)
rtn=GT_SetPos(50000); error(rtn); //Specify target position of 50000.
rtn=GT_AuUpdtOn(); error(rtn); /IValidate the function of

self-updating parameters at breakpoint position.
rtn=GT_SetBrkCn(20000); error(rtn); //Specify breakpoint position.

rtn=GT_Update(); error(rtn); //Update parameter (Breakpoint
position becomes effective.).

rtn=GT_PosBrk(); error(rtn); //Specify the breakpoint triggering
condition of positive position breakpoint.

rtn=GT_SetVel (4); error(rtn); //Specify velocity of 4 (Wait for

28

Chapter Four Independent Axis Motion

self-updating.).
}

4.3.2.2 Negative Position Breakpoint

The user calls the command GT_SetBrkCn() to specify the breakpoint position of
current axis at first, and uses the command GT_Update() or GT_MItiUpdt() to vaidate
it. Then, the user calls the command GT_NegBrk() to specify the breakpoint triggering
condition of current axis of the negative position breakpoint. When the actual position
of the current axisis smaller than or equal to the breakpoint position, the breakpoint will
be triggered and the sign indicating the mode of breakpoint triggering of current axis
will be cleared, then the controller will search the sign of self-updating parameters in
this axis's mode register. If the sign bit = 1, the new parameter of this axis will be
updated automatically. no matter the self-updating of parameters is alowed or not, the
sign of breakpoint triggered will be set by the controller.

Example 4-7 Specifying and Triggering the Negative Position Breakpoint

In this example, in the process of moving the axis #1 from 0 to the position -50000, the
controller will trigger the breakpoint at the position -20000, and change the valid
velocity from 1 (Pulse/ST) to 4 (Pulse/ST).

void main()

{
GTInitial();
InputCfg();
AxisInitial();

rtn=GT_Axis(1); error(rtn); // Specify the axis #1 of the current
axis.

rtn=GT_CIrSts(); error(rtn); //Clear status.

rtn=GT_SetVel(1); error(rtn); //Specify velocity of 1 (Pulse/ST).

rtn=6T_SetAcc (0.1); error(rtn); //Specify acceleration of 0.1 (Pulse/ST?)

rtn=GT_SetPos(-50000); error(rtn); //Specify target position of -50000.

rtn=GT_AuUpdtOn(); error(rtn); /I Vdidate the function of

self-updating parameters at breakpoint position.
rtn=GT_SetBrkCn(-20000); error(rtn); //Specify breakpoint position.

rtn=GT_Update(); error(rtn); //Update parameter (Breakpoint
position becomes effective.).

rtn=GT_NegBrk(); error(rtn); Il Specify the breakpoint triggering
condition of positive position breakpoint.

rtn=GT_SetVel(4): error(rtn); /I Specify velocity of 4 (Wait for
self-updating.).

¥

4.3.2.3 Axis M otion Completion Event Breakpoint

The user calls the command GT_MtnBrk() to specify the current axis breakpoint
triggering condition of motion completion event breakpoint. When the motion of the
current axis is completed and the sign of motion completion in the status register of
current axis is 1, the breakpoint will be triggered and the sign indicating the mode of

29

Chapter Four Independent Axis Motion

breakpoint triggering of current axis will be cleared, then the controller will search the
sign of self-updating parameters in the current axis's mode register. If the sign bit = 1,
the new parameter of this axis will be updated automatically. no matter the self-updating
parameters is alowed or not, the sign of breakpoint triggered will be set by the
controller.

Example 4-9 Specifying and Triggering the Motion Completion Event
Breakpoint

In this example, after the motion of axis #1 reaching the position 20000 at a velocity of
1 (Pulse/ST), the controller will self-updating the velocity as 4 (Pulse/ST) and the
position as 0.

void main()

{
GTInitial();
InputCfg();
AxisInitial();

rtn=GT_Axis(1); error(rtn); /I Specify the axis #1 of current axis
asthefirst axis.
rtn=GT_CIrSts(); error(rtn); //Clear status.

rtn=GT_SetVel(1); error(rtn); //Specify velocity of 1 (Pulse/ST).
rtn=6T_SetAcc(0.1); error (rtn) ; //Specify acceleration of 0.1 (Pulse/ST?)
rtn=GT_SetPos(20000); error(rtn); //Specify target position of 20000.
rtn=GT_AuUpdtOn(); error(rtn); /IValidate the function of
self-updating parameters at breakpoint position.
rtn=GT_MtnBrk(); error(rtn); //Specify the breakpoint triggering
condition of motion completion event breakpoint.

rtn=GT_SetVel(4); error(rtn); //Specify velocity of 4 (Wait for
self-updating.).

rtn=GT_SetPos(0); error(rtn); //Specify target position of O (Wait for
self-updating.).

}
4.3.2.4 Home Signal Triggering Event Breakpoint

The user calls the command GT_MtnBrk() to specify the current axis breakpoint
triggering condition of home signal triggering event breakpoint. After the host calls the
home signal capture command and when the sign of Index/Home captured in the axis
motion status register is 1, the breakpoint will be triggered and the sign indicating the
mode of breakpoint triggering of current axis will be cleared, then the controller will
search the sign of allowing self-updating parameters in the current axis mode register. If
the sign bit = 1, the new parameter of this axis will be updated automatically. no matter
the self-updating of parameters is allowed or not, the sign of breakpoint triggered will
be set by the controller.

Example 4-9 Specifying and Triggering the Home Signal Triggering Event
Breakpoint

This program will enable axis #1 to capture the home signal in the motion. After the

30

Chapter Four Independent Axis Motion

home signal of current axis is captured, the breakpoint will be triggered and the smooth
stop command of this axis will be validated automatically, and make the current axis
stop smoothly. Meanwhile, the home position captured will be saved in the position
captured register.
void main()
{
GTInitial();
InputCfg();
AxisInitial();
rtn=GT_Axis(1); error(rtn); // Specify the axis #1 of the current
axis.
rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_AuUpdtOn(); error(rtn); //Validate the function of self-updating
parameters at breakpoint position.
rtn=GT_CaptHome(); error(rtn); //Specify the capture mode of home
signal capture.
rtn=GT_ExtBrk(); error(rtn); //Specify the home signa triggering
event breakpoint.

rtn=GT_PrfIvV(); error(rtn); //Specify the motion mode of
independent jogging.

rtn=GT_SetVel(1); error(rtn); //Specify velocity of 1 (Pulse/ST).

rtn=GT_Update(); error(rtn); //Update parameter.

rtn=GT_SmthStp(); error(rtn); //Smooth stop (Wait for self-updating.).

}

4.4 Specifying Target Position and Actual Position for Specified Axis

4.4.1 Command Summary
Table4-13 Command Summary of Setting Target Position and Actual Position for Specified Axis

Function ‘ Description
GT_SetPos() Set the target position of current axis.
GT_ZeroPos() Reset the actual and target position of current axisto zero.
GT_SynchPos() Set the target position of current axis same as the actual
position.
GT_SetAtlPos() Set the actual position of current axis.

4.4.2 Notesof Main Point

Specify the target position of current axis

The user can call the command GT_SetPos (long Pos) to specify the target position of
current axisin S-curve and T-curve.

The value of parameter Pos is between —1073741824 and 1073741823. The unit is pulse.
The parameters value specified by this command can be valid only by calling the
commands GT_Update() or GT_MItiUpdt().

31

Chapter Four Independent Axis Motion

Specify actual and target position of zero.

The command GT_ZeroPos() can be called to specify the actual position, target position
and the profiled position of current axis of zero. This command is invalid when current
axis is in motion. So this command is invalid when current axis is in the electronic
gearing mode.

Specify the target position of current axis is equal to the actual position of

current axis.

The command GT_SynchPos(void) can be called to specify the target position and the
profiled position of current axis is equal to the actual position. This command is
applicable when current axis is in S-curve and T-curve. When the motion encounters
error and needs to be restarted, the user can use this command to correct the error.
Meanwhile, the user can use this command to smooth the changing of the motor when
current axis is being activated (inactivated or) or in closed loop (in open loop). This
command needs to be valid by the command GT_Update() or GT_MItiUpdt().This
function isinvalid when current axisisin electronic gearing.

Specify the actual position of current axis.

The command GT_SetAtlPos (long actl_pos) can be used to modify the actual position,
target position and the profiled position of current axisto a specified value (actl_pos).
This command isinvalid when current axis isin motion. This command is invalid when
current axisisin electronic gearing mode.

4.5 Axis Status

4.5.1 Axis Status Register

The motion controller provides a 16-bit status register for each axis. The user can use
command GT_GetSts() to get the status of current axis.

4.5.1.1 Definition of Bit in Register

Table 4-14 Definition of Bit in Axis Status Register

Bit Definition

0 Sign of Mation completion. If the motion of current axis is completed, this
bit will be 1. Thissignisinvalid in electronic gearing mode.

1 Alarm signal of Motor driver. If the driver of current axis gives aarm

signal, this bit will be 1.

2 Sign of Breakpoint arrival. If the specified breakpoint condition is satisfied,
this bit will be 1.

3 Sign of Index/Home capture. After specifying the position capture function,
when the controller detects the specified Index/Home capture happened,
this bit will be 1.

4 Sign of Mation error. If position error overreaches the error band (Refer to

32

Chapter Four Independent Axis Motion

Bit Definition
4.4.7.3 Description), this bit will be 1. Only when current axis is not in
motion error status, this sign can be reset.
5 Sign of Positive limit switch triggering. If the positive limit switch is
triggered, this bit will be 1.
6 Sign of Negative limit switch triggering. If the negative limit switch is
triggered, this bit will be 1.
7 Sign of Command error. If last operating command (not reading command)
isinvalid, thisbit will be 1.
8 Motor is in open loop/close loop (1 means close loop and 0 means open
loop.).
9 Motor is activated/ inactivated (1 means activated and O means
inactivated).
10 Current axisisin motion or not. If current axis is in motion, the bit will be
1. Otherwise, it will beO.
11 Limit switch status detecting is permitted /prohibited (1 means permitted
and 0 means prohibited).
12 Current axis number (13 bit = high bit, 12 bit = low bit). The encode
13 table of current axis number is asfollows.
Bit 13 Bit 12 AXis
0 0 1
0 1 2
1 0 3
1 1 4
14 Sign of Specifying Home switch signal capture.
15 Sign of Specifying Index signal capture.

4.5.1.2 Description

The definition of each bit of status register islisted in Table 4-14. The bit 8-15 indicates
the motion status and current axis number, which cannot be reset by the user. The bit
0-7 indicates different event status of current axis. Once these events happen, the
corresponding bit will be set as 1 and kept until the user call the command GT_CIrSts()
and GT_RstSts() to clear al bits or the corresponding bit. In addition, the bit 0-6 can
trigger the interrupt request to the host.

To simplify the programming of motion, there are two bits to indicate the motion status
in the status register. One represents whether current axis motion completion event
happens or not (bit 0). The other represents the current motion status of current axis (bit
10.).

Both of the host and motion controller can modify the sign of motion completion. After
the motion of specified axis is completed, the controller sets the sign of motion
completion. Then the host can check this bit to tell the motion is completed or not. If
needed, the user can aso program in the host to let the motion controller trigger the
interrupt request to the host when the motion of specified axis is completed. In any one
of the methods above, once the host tell the motion of specified axis is end by the sign,
it should clear this sign immediately, such that the motion completion sign of next
motion can be set correctly. The controller may set the completion sign in the following
situations.

33

Chapter Four Independent Axis Motion

® Motion arrives.

® In independent jogging mode, both of the actual velocity and commanded
velocity of specified axisare 0.

® After the command GT_SmthStp() becomes valid and the actual velocity of
specified axes reaches 0.
After sending the command GT_AbptStp().
When the limit switch statusis being detected, and the limit switch trigger.

® |nthe mode of allowing auto stop when position error overreach error band,
and this situation has happened.

The driver of specified axis alarms.

® Cadl thecommand GT_AxisOn() to activate the driver of current axis.

The sign of axisin motion is similar with the sign of motion completion. The difference
isthat the former indicates the motion status of specified axis and can be checked by the
host at any time, but cannot trigger interrupt request and modified by the host.

The sign of axisin motion and the sign of motion completion only represent the status
of profiled motion in the controller, not the status of actual motion. That is, they only
represent whether the motion planning completes. Whether the actual position of
specified axes agree with the target position depends on the lag of control, the stability
and other conditions of the whole system.

The sign of motion completion isinvalid in the electronic gearing mode. And the sign
of axisin motion is always set after specified axis enters the electronic gearing mode, no
matter whether the specified axisisin motion or not.

4.5.2 Axis M ode Register

The motion controller provides a mode register to represent the working modes. The
command GT_GetMode() can be used to get the value of the register. The definition of
bitsislisted in Table 4-15.

Table 4-15 Definition of AxisMode Register
Bit Definition
0-6 Reserved.

Sign of alowing auto stop when position error overreach error band. The
commands GT_AuStpOn() and GT_AuStpOff() can modify this sign. The

7 bit = 1 means that, when position error of specified axis overreach error
band, the controller will auto stop this axis and inactivate the driver of this
axis

8-9 Reserved.

Sign of sdf-updating. The commands GT_AuUpdtOn() and
GT_AuUpdtOff() can modify this sign. The bit = 1 means that, the motion

10 controller will auto update the specified axis parameters when the
breakpoint condition is satisfied.
The coding of specified axis motion mode:

11-13 Bit13 Bit12 Bitll Mode of Motion

0 0 0 T-curve of independent positioning

34

Chapter Four Independent Axis Motion
___|

Bit Definition
0 0 1 I ndependent jogging
0 1 0 S-curve of independent positioning
0 1 1 Electronic gearing
1 0 1 Coordinated motion
14-15 Reserved

35

Chapter Six High velocity Home/lndex Capture

Chapter Five Coordinated Motion(The series of GT_PX do not

contain)

The motion controller can implement the coordinated motion with two kinds of path,
linear interpolation and circular interpolation. The simplest way to describe complicated
coordinated motion path is to use the coordinate system, where it is easy to describe the
motion path of motion object. .

The motion controller changes the motion mode of specified axes from independent
axis motion to the coordinated motion by coordinate mapping. In the coordinated
motion mode, the controller can implement single-segment path motion and
multi-segment continuous path motion. As to multi-segment continuous path motion,
the motion controller supplies a data buffer to realize high speed and sability
continuous motion.

5.1 Coordinate Mapping

The motion controller uses a4D coordinate system (X-Y-Z-A) to describe the linear and
circular interpolation path. When the circular interpolation command is applied, the
three axes X-Y-Z will form a right-hand coordinate system as illustrated in Fig. 5-1.
User can aso use 2D (X-Y) and 3D (X-Y-Z) coordinate system to describe the motion
path.

Az

-
Y
X

Fig. 5-1 Right-hand Coordinate System

User can use the command GT_MapAxis() to map the motion described in a
coordinate system to the corresponding axes through mapping relationship, so as to
establish a kinematics transferring relationship between the motion of each axis and the
required motion path in the coordinate system. Through mapping relationship, the
motion between the axes is coordinate to maintain the specified vector speed,

36

Chapter Six High velocity Home/lndex Capture

acceleration and deceleration along with the specified path. The command
GT_MapAxis() can be called to specified axis unless this axisis not in motion.

The prototype of coordinate mapping command:
short GT_MapAxis(short Axis Num, double * map_count)

Axis_Num describes the number of specified axis (1, 2, 3 or 4). After the coordinate
mapping command is called, this axis will work in coordinated motion mode. The actual
position of this axis is marked as Axis_N, with a unit of pulse. The array map_count

includes five elements, marked in order s C,, C,, C,, C, and C. The

coordinates corresponding to the coordinate axes of X, Y, Z and A are marked as X,
Yy, Z and a. The mapping relationship described by the command above can be

simply described with the following formula:
Axis_N=C, xx+C xy+C,xz+C,xa+C

From this formula, we can see that the motion of specified axis mapped is a linear
combination of coordinate X, Y, Z and A.

Example 5-1 The Simplest Coordinate Mapping

This example can realize the simplest coordinate mapping:
Axisl=X
Axis2=Y
Axis3=2Z
Axis4=A

void MapAxis() //Coordinate mapping function
{

short rtn;

double cnt1[5]={1,0,0,0,0}; /* Set the coordinate mapping array
according to the system. */

double cnt2[5]={0,1,0,0,0}; /* Set the coordinate mapping array
according to the system. */

double cnt3[5]={0,0,1,0,0}; /* Set the coordinate mapping array
according to the system. */

double cnt4[5]={0,0,0,1,0}; /* Set the coordinate mapping array
according to the system. */

rtn=GT_MapAxis(l,cntl); error(rtn); /* MapaxisltoaxisX.*/

rtn=GT_MapAxis(2,cnt2); error(rtn); /* Mapaxis2toaxisY. */

rtn=GT_MapAxis(3,cnt3); error(rtn); /* Mapaxis3toaxiszZ. */

rtn=GT_MapAxis(4,cnt4); error(rtn); /* Mapaxis4toaxisA. */

void main()

37

Chapter Six High velocity Home/lndex Capture
___|

{
GTInitial();

InputCfgQ);
AxisInitial();
MapAxis();

}

Example 5-2 Coordinate Mapping of Unit Conversion

This example describes the coordinate mapping of a unit conversion. Suppose thepulse
count per rotation of the motor is 8000, and the pitch of the lead screw is 4mm. the
several motor axes form an orthogonal coordinate system. Then the coordinate mapping
relationship can be described as below:

Axis 1 = 2000 X
Axis 2 = 2000 Y
Axis 3 = 2000 Z
Axis 4 = 2000 A

In this case, the unit of each coordinate axis is Imm. The motion controller realizes
automatically the unit conversion.

void main()

{
short rtn;
GTinitial();
InputCfg(Q);
Axislnitial();
double cnt1[5]={2000,0,0,0,0}; /* Set the coordinate mapping array
according to the system. */
double cnt2[5]={0,2000,0,0,0}; /* Set the coordinate mapping array
according to the system. */
double cnt3[5]={0,0,2000,0,0}; /* Set the coordinate mapping array
according to the system. */
double cnt4[5]={0,0,0,2000,0}; /* Set the coordinate mapping array
according to the system. */
rtn=GT_MapAxis(l,cntl); error(rtn);/* MapaxisltoaxisX.*/
rtn=GT_MapAxis(2,cnt2); error(rtn);/* Mapaxis2toaxisY.*/
rtn=GT_MapAxis(3,cnt3); error(rtn);/* Mapaxis3toaxisZ.*/
rtn=GT_MapAxis(4,cntd); error(rtn);/* Mapaxis4toaxisA.*/

}
Example 5-3 Coordinate Mapping of non-orthogonal axes

AXis2 AY

Axis1 (X)
>

Fig. 5-2 Coordinate M apping Example

L]
38

Chapter Six High velocity Home/lndex Capture

This example describes another application of the coordinate mapping.

As illusgtrated in Fig. 5-2, if the motion direction of axis 1 is non-orthogonal with the
motion direction of axis 2, in order to use an orthogonal coordinate system X-O-Y to
describe the motion path, user can establish the following coordinate mapping
relationship:

AXisl=X+Y tana
AXxis2=Y/cosa

With the mapping relationship above, user can describe the motion path in the
orthogonal coordinate system easily and directly. This example can be used to
compensate the installation error between two vertical guiderails.

void MapAxis() /ICoordinate mapping function
{
short rtn;
double cntl[5]={1,0,0,0,0};
double cnt2[5]={0,0,0,0,0};
cnt1[1]=tan(3),cnt2[1]=1/cos(3); /* Theleanangleis3".*/
rtn=GT_MapAxis(l,cntl); error(rtn);
rtn=GT_MapAxis(2,cnt2); error(rtn);

void main()

{
GTInitial();
InputCfg();
AxisInitial();
MapAxis();
}

The user may understand the basic principle of coordinate mapping from the three
example above. So, such calculation, such as coordinate translation, coordinate rotation
and transformation of coordinate scale (which can easily convert the length unit) etc.,
can be realized through coordinate mapping.

Relationship between the coordinated motion mode and independent axis
motion modes:

® The coordinated motion has its own motion commands. Most of the
commands of independent axis motion are invalid.

® The modes of motion can be switched with each other. The precondition is
that the axis in mode changing is not in motion.

® The coordinate mapping command doesn’'t modify the specified axis to

39

Chapter Six High velocity Home/lndex Capture

current axis; the current axis can be changed only by command GT_Axis()
or GT_Axisl().

If user want to establish a contradictory mapping relationship, such as

mapping two motor axes to Axis X in the coordinate system, the motion
& controller will calculate the coordinate position according to the
mapping relationship with the prior axis, then change the actual position
of the other axis according to the coordinate mapping relationship. This
Attention | may result in the abrupt motion of the other axis. (Axis 1 is prior to
axis2, axis 2 is prior to axis 3, and so on)

HEE

To avoid this contradictory coordinate mapping causing abrupt motion of
*x the motor, it is suggested that the coordinate mapping relationship agree

i with independent and unrelated condition.
Notice

As to complicated coordinate mapping relationship, please contact Googol
o Technology. We can customize special interface function as user’'s
requirement, to meet specific application.

Notice

5.2 Set Vector Velocity and Acceleration of Coordinated M otion

521 Command Summary

Table 5-1 Command Summary of Setting Vector Velocity and Acceleration of
Coordinate System Motion

Function Description
GT_SetSynVel() Set vector velocity of coordinate motion.
GT_SetSynAcc() Set vector acceleration of coordinate motion.
5.2.2 Example

Example5-4 Setting Vector Velocity and Acceleration of Coordinated
Motion

This example describes the specifying and unit description of the vector velocity and
acceleration of a coordinated motion.

This example uses the coordinate mapping of unit conversion in Sample 5-2 to map the
unit of coordinate system as 1mm. Suppose the vector velocity is 3m/min, vector
acceleration is 0.9m/min® and the default sample time is 200us.

3m/min=23000/300000(mm/ST)=0.01mnVST

40

Chapter Six High velocity Home/lndex Capture

5.2.3

0.9m/min?=900/(9x10")(mnVST?)=1x10"¥mm/ST?)

void main()

{

short rtn;

GTInitial();

InputCfg();

AxisInitial();

double cnt1[5]={2000,0,0,0,0}; /*
according to the system. */

double cnt2[5]={0,2000,0,0,0}; /*
according to the system. */

double cnt3[5]={0,0,2000,0,0}; /*
according to the system. */

double cnt4[5]={0,0,0,2000,0}; /*
according to the system. */

rtn=GT_MapAxis(l,cntl); error(rtn);/* Mapp Axis1lto AxisX. */

rtn=GT_MapAxis(2,cnt2); error(rtn);/* Mapp Axis2to AxisY. */

rtn=GT_MapAxis(3,cnt3); error(rtn);/* Mapp Axis3to AxisZ. */

rtn=GT_MapAxis(4,cnt4); error(rtn);/* Mapp Axis4to AxisA. */

rtn=GT_SetSynAcc(0.00000001); error(rtn); /* Set vector acceleration as

0.9 (m/min®) */
rtn=GT_SetSynVel (0.01); error(rtn); /* Set vector velocity as 3 (m/min) */
}

coordinate mapping array

coordinate mapping array

coordinate mapping array

g £ £ £

coordinate mapping array

Notes of Main Point

The command short GT_SetSynVel (double Vel) specifies the target vector velocity in
coordinated motion. The parameter Vel is the target vector velocity value. Itsunit isthe
length unit of coordinate system per sampletime. It will act on the velocity of all the
linear interpolation and circular interpolation commands called later, until it is called

again.

Vector velocity: V = \/sz + V) + V] +V,

The command short GT_SetSynAcc(double Accel) specifies the vector acceleration in
coordinated motion. The parameter Accel is the vector acceleration value. Its unit isthe
length unit of coordinate system/ sample time®. It will act on the acceleration of all
the linear interpolation and circular interpolation commands called later, until it is called

again.

Vector acceleration: ACC = \/ Acc; + Acc) + Acc; + Acc

The unit of vector velocity and acceleration (i.e. Length Unit of
% Coordinate System) is related to the coordinate mapping parameter set by

e coordinate mapping, i.e. the setting of vector velocity and acceleration

41

Chapter Six High velocity Home/lndex Capture

Notice | correspondsto coordinate axis X, Y, Z and A, not motor axis 1, 2, 3 and 4.

5.3 Set Motion Path in Coordinate System

5.3.1 Command Summary
Table 5-2 Command Summary of Motion Path in Coordinate System

Command ‘ Description

GT_LnXY() 2D linear interpolation

GT_LnXYZ() 3D linear interpolation

GT_LnXYZA() 4D linear interpolation

GT_ArcXY() circular interpolation in XY plane (The parameters are the
circle center position and angle.)

GT_ArcXYP() circular interpolation in XY plane (The parameters are the
position of end point and radius.)

GT_ArcYZ() Circular interpolation in YZ plane (The parameters are the
circle center position and angle.)

GT_ArcYZP() Circular interpolation in YZ plane (The parameters are the
position of end point and radius.)

GT_ArczZX() Circular interpolation in ZX plane (The parameters are the
circle center position and angle.)

GT_ArcZXP() Circular interpolation in ZX plane (The parameters are the

position of end point and radius.)

5.3.2 Example

Example 5-5 Realization of Coordinated motion

In this example, based on Sample 5-4, the command of setting motion path is called
to redlize the single-segment path motion immediately in coordinate system.

void main()

{

short rtn;

GTInitial();

InputCfg(Q);

AxisInitial();

double cntl1[5]={2000,0,0,0,0};
double cnt2[5]={0,2000,0,0,0};
double cnt3[5]={0,0,2000,0,0};
double cnt4[5]={0,0,0,2000,0};
rtn=GT_MapAxis(l,cntl); error(rtn);
rtn=GT_MapAxis(2,cnt2); error(rtn);

42

Chapter Six High velocity Home/lndex Capture

5.3.3

rtn=GT_MapAxis(3,cnt3); error(rtn);
rtn=GT_MapAxis(4,cnt4); error(rtn);
rtn=GT_SetSynAcc(0.00000001); error(rtn);
rtn=GT_SetSynVel (0.01); error(rtn);

/[The above refers to Sample 5-4.
rtn=GT_LnXY(10,10); /IThelinear interpolation in plane (10mm, 10mm).
}

Notes of Main Point

According to the right-hand rotation rule, the rotating direction of circular interpolation
is defined as that, from the “top” of 2-D coordinate plane (i.e. the positive direction of
the third axis which is vertical to the 2-D coordinate plane), the counter-clockwise is
positive (Fig. 1-9). In short to remember: Extend the thumb of right hand, and make a
fist with the other four fingers; the thumb points to the positive direction of the third
axis and the direction of the other four fingers is the positive rotating direction. When
the mapping coordinate system is a 2D system (X-Y), the positive direction of circular
interpolation in XQOY coordinate plane is defined as the same way.

Z X
C Y C Z
X Y
XOY Plane YOZ Plane Z0OX Plane

Fig. 5-3 Positive Direction of Arc Interpolation

5.4 Realization of Multi-segment Path Continuous Motion

In example 5-5, if user wants to realize a multi-segment path continuous motion,
following the last line rtn=GT_LnXY(10,10), add one more command, such as
“rtn=GT_LnXYZ(20,20,20)". After running the program, the user will find that the line
motion added is not realized, and the return value of the command added is 1 (wrong
command). Thisis due to that, when the coordinated motion is uncompleted, and it isin
the single-segment path motion status, the motion controller doesn’'t receive new motion
path command. Only after the previous path motion is completed, the new command
can be received.

To realize multi-segment path continuous motion in coordinate system, the motion
controller provides a buffer with a size of 4k. It allows user to push several motion path
and parameter commands into the buffer, and then start motion. During the controller

43

54.1

Chapter Six High velocity Home/lndex Capture

execute the motion path command saved in the buffer, the host can push the motion path
and parameter commands into the buffer on and on. By this way, the requirement for
real-time communication between the host and the controller is not very strict, and
communication efficiency is improved. At the same time, the motion controller can
achieve good continuous motion effect by preprocessing the motion path in the buffer.
The following will describe the realization of multi-segment path continuous motion by
two parts. how to push motion path and parameters commands into buffer and how to
execute coordinated motion in the buffer.

Push Motion Path and Parameters Commands into Buffer

54.1.1 Command Summary

Table5-3 Command Summary of Buffer Management Command

Function Description

GT_StrtList() Open and clear the buffer.

GT_MvXY() Specify the position of start point in buffer (2D).
GT_MvXYZ() Specify the position of start point in buffer (3D).
GT_MvVXYZA() Specify the position of start point in buffer (4D).
GT_AddList() Reopen the buffer.

GT_EndList() Close the buffer.

The commands able to be pushed into the buffer are listed in Table 5-4.

Table 5-4 Command Summary of Commands ableto be pushed into Buffer

Function Description
GT_SetSynVel() Specify the vector velocity of coordinated motion.
GT_SetSynAcc() Specify the vector acceleration of coordinated motion.
GT_LnXY() 2D linear interpolation
GT_LnXYZ() 3D linear interpolation
GT_LnXYZA() 4D linear interpolation
GT_ArcXY() Circular interpolation in XY plane (The parameters are the

circle center position and angle.)

GT_ArcXYP()

Circular interpolation in XY plane (The parameters are the
end point position and radius.)

GT_ArcYZ() Circular interpolation in YZ plane (The parameters are the
circle center position and angle.)

GT_ArcYZP() Circular interpolation in YZ plane (The parameters are the
end point position and radius.)

GT_ArczZX() Circular interpolation in ZX plane (The parameters are the

circle center position and angle.)

GT_ArcZXP()

Circular interpolation in ZX plane (The parameters are the
end point position and radius.)

___|
44

Chapter Six High velocity Home/lndex Capture

5.4.1.2 Notesof Main Point
Open and clear the buffer, Moveto the position of start point in the buffer.

The command GT_StrtList() can be called to open the buffer and clear the commands
unexecuted in the buffer. When user specifies the motion of coordinated motion for the
first time after the motion controller is powered, if the user wants to redize
multi-segments path continuous motion by the command buffer strategy, he must call
the command GT_StrtList() at first to enter the status of inputting buffer command.

On the neck of caling the command GT_StriList() to open and clear the buffer
(GT_StrtList), the user must cal the command (GT_MvXY, GT_MvXYZ or
GT_MvXYZA) to specify the position of start point in the buffer. After starting
coordinated motion, the motion controller will move from the current position to the
position of start point specified by this command along the path of linear interpolation,
during the process, it will accelerate up to target vector velocity and decelerate vector
velocity to zero. Then the controller will execute the following commands of
coordinated motion in buffer in order.

The commands GT_MvXY(), GT_MvXYZ() and GT_MvXYZA() contain vector
velocity and acceleration parameters. These parameters will be used as vector velocity
and acceleration parameters for other motion path commands pushed into the buffer
later, till new vector velocity and accel eration commands are specified.

Close the buffer.

The command GT_EndList() can be called to close the buffer. This command is valid
when the buffer is open.

Reopen the buffer.

The command GT_AddList() can be called to open a closed buffer that was opened
before, after that, the motion path and parameters commands can be pushed into buffer
again.

When the process of inputting motion path and parameters commands to the buffer is

over, the command GT_EndList() can be called again to close the buffer. User can call
the command GT_AddList() several times.

Notes of pushing coordinated motion command into the buffer

After calling GT_StrtList(), user can call GT_EndList() at any time to finish the status
of inputting buffer command. GT_AddList() can be caled to reenter the status of
inputting buffer command. Then, GT_EndList() can be called again to finish the status
of inputting buffer command. The combination of GT_AddList() and GT_EndList()
can be used for any times. When the description of motion path is completed, user must
cal GT_EndList() to inform the motion controller.

Mechanism of the motion controller processing the coordinated motion
commands in the buffer

45

Chapter Six High velocity Home/lndex Capture

User can input coordinated motion commands into the buffer continuoudly until it is
full.

The buffer in the motion controller is a 4096 X 16Bit loop buffer. After the buffer isfull,
the motion controller will refuse the motion path and parameters commands and return a
status that the buffer is full. After the motion described by the commands in the buffer
are started, there will be new space in the buffer, allowing more commands to be pushed
into.

5.4.2 commands of Starting and stopping coordinated motion in the
buffer

54.2.1 Command Summary

Table 5-5 Command Summary of Starting and Stopping Commands

Function ‘ Description
GT_StrtMtn() Start executing coordinated motion command in the buffer.
GT_StpMtn() Stop coordinated motion smoothly.
GT_EStpMtn() Stop coordinated motion abruptly.

5.4.2.2 Example

Example 1-21 Realizing multi-segment path continuous motion

This example redlizes the continuous motion of three segments path, which can be
referred to realize the continuous motion of more segments path.

void main()
{
short rtn;
GTInitial();
InputCfg();
AxisInitial();
double cntl1[5]={2000,0,0,0,0};
double cnt2[5]={0,2000,0,0,0};
double cnt3[5]={0,0,2000,0,0};
double cnt4[5]={0,0,0,2000,0};
rtn=GT_MapAxis(l,cntl); error(rtn);
rtn=GT_MapAxis(2,cnt2); error(rtn);
rtn=GT_MapAxis(3,cnt3); error(rtn);
rtn=GT_MapAxis(4,cnt4); error(rtn);
/[The above refers to sample 5-2.
rtn=GT_MvXYZA(0,0,0,0,0.01,0.00000001); error (rtn);
/* Specify the position of start point (Omm, Omm, Omm, Omm) in the buffer,
specify vector velocity of 3m/min and vector acceleration of 0.9m/min? */
rtn=GT_LnXY(10,10); error(rtn); //Specify 2D linear interpolation, the
end point is a 10mm,
10mmrtn=GT_ArcXY(0,0,1

46

Chapter Six High velocity Home/lndex Capture

23); error(rtn);
/I Specify circular interpolation in XY plane, the circle center positionisat (0, 0)
and the circular angle is 123 degree.
rtn=GT_LnXYZA(0,0,10,12); error(rtn); //Specify 4D linear vector, the end
pointisat (0,0,10,12)

rtn=GT_EndList(); error(rtn); //Closethe buffer.
rtn=GT_StrtvMtn(); error(rtn); /[Start motion described by the
commands above.
}

5.4.2.3 Notes of Main Point
Start motion described by the commandsin buffer.

The command GT_StrtMtn() can be called to start motion described by the commands
in the buffer in order. Before calling the command, user must confirm that there are
motion path commands in the buffer that can be executed, that is, the host has called at
least the commands GT_StriList() and GT_MvXY(GT_MvXYZ, GT_MvXYZA)
before.

After the command GT_StrtMtn is called, and before the command GT_EndList is
called, the motion controller will, and execute the commands added in the buffer on and
on.

Stop coordinated motion

If the motion described by the commands in the buffer has been started and the user
wants to stop it, user may call the commands GT_StpMtn() and GT_EStpMtn(). The
command GT_StpMtn() is similar with the command GT_SmthStp() for independent
axis motion stopping, stopping the coordinated motion smoothly. While the command
GT_EStpMtn() is similar with the command GT_AbptStp() for independent axis
motion stopping, stopping the coordinated motion abruptly.

In addition to stopping the coordinated motion in the buffer, the commands
GT_StpMtn() and GT_EStpMtn() also close the buffer at the same time, just like calling
the command GT_EndList().

After the commands GT_StpMtn() or GT_EStpMtn() is called, the motion path
command sent by the user will be seemed as command of single-segment path motion,
and executed immediately.

In the status of “coordinated motion completed”, if there are still some motion path
commands in buffer, user can cal the command GT_StrtMtn() to restart motion
described by the commands in buffer. Then the motion controller will start coordinated
motion from current position to the position where the command GT_StpMtn() or
GT_EStpMtn() stopped at in terms of the vector velocity specified in the command
GT_MvXY (GT_MvXYZ, GT_MvXYZA) , and decelerate the velocity to zero, and
then continue to execute commands in the buffer.

a7

Chapter Six High velocity Home/lndex Capture

User cannot call the stop command during the execution of command
& GT_MvXY(GT_MvXYZ,GT_MvXYZA) or the execution of back to the
Ha position of breakpoint in coordinated motion , i.e. the process of moving to
the start point of the buffer cannot be stopped. Now, sending stop
command will cause motion error.

Notice

5.4.3 Planning Strategy of Vector Velocity in Multi-segment path

The vector velocity of along the path applies the T-curve acceleration/deceleration
strategy. The commands GT_SetSynVel() and GT_SetSynAcc() specify the
corresponding target vector velocity and accel eration respectively.

For the motion path commands in buffer (except GT_MvXY(), GT_MvXYZ() and
GT_MvXYZA()), the vector velocity the path will accelerate from zero to the target
velocity at the first segment path (linear interpolation or circular interpolation), and
decelerate to zero to agree with the end position of the last segment. While at the joint
of each linear interpolation segment or circular interpolation segment along the whole
path, the controller will reduce the change of vector velocity along the path as much as
possible, to obtain continuous and stable motion specialty.

While at this time, the acceleration characteristic of each motor axis should be
considered to prevent higher acceleration from causing path distortion. Therefore, there
isacommand named GT_SetAccLmt() (a command for each motor axis) can be used to
specify the acceleration limit of each axis according to its actual mechanical and
electrical characteristics, and applied to the following strategy to decide the vector
velocity at joint.

Strategy One: At the joint of two segments, the natura transition of the two segments
should be considered at first. The vector velocity should accelerate and decelerate
according to specified velocity and acceleration. At the same time, it is necessary to
confirm that the transformation of velocity in each relevant motor axis doesn’'t exceed
the acceleration limit specified for each axis. Otherwise, another strategy should be
applied (strategy two). If the vector velocity for each segment in two segments specified
by the user is different, such strategy should be applied (Figure 5-4(a)(b)(c)): the
deceleration part is happened in the first ssgment, and the acceleration part is happened
in the second segment. This will assure that, the motion vector velocity at any segment
will not exceed the target vector velocity specified by user.

Chapter Six High velocity Home/lndex Capture

N/ V,
Back Section Front Section
. Back Section
Front Section \
T

@ (b)

V
Back Section
Front Section | Back Section
Front Section
- -
T T

(c) (d)

4y

Fig. 54 Velocity Strategy at Track

Strategy Two: At thejoint of two segments, if the situation described in Strategy One is
happened, an appropriate vector velocity at the turning point should be calculated, and
decelerate the vector velocity as little as possible at the premise of satisfying the
acceleration limit of each axis at turning point, to avoid large velocity transformation at
the joint to the best. At this situation, the velocity transformation strategy is also like the
description above Figure 5-4(d)): the deceleration part is happened in the first segment,
and the acceleration part is happened in the second segment.

Notices: When specifying velocity and acceleration for path planning, user should make
sure that the deceleration part be completed in one segment, i.e. achieving the vector
velocity at the turning point in one segment.

5.4.4 Breakpoint information in Multi-segment path Continuous

M otion

After the host cals the commands GT_StpMtn() and GT_EStpMtn(), calling the
commands GT_GetBrkPnt() and GT_GetMtnNm() can get the relevant information
about breakpoint. GT_GetBrkPnt() can be caled to get the coordinate position of
breakpoint and GT_GetMtnNm() can be called to get the number of segment at
breakpoint. The number of segmentsis defined as the following default rule.

After starts the coordinated motion in buffer, the segment number will increase by

L]
49

Chapter Six High velocity Home/lndex Capture

degrees. GT_MvXY() (or GT_MvXYZ() or GT_MvXYZA()) doesn’'t have a segment
number, i.e. the segment number is 0 when this command is executed, then the
following segment number will be increased in order.

When the execution of the segments in the buffer is completed, but user doesn't call
GT_EndList() to close the buffer. The motion controller will consider the coordinated
motion is not completed yet. At this time, the bitO and bitl for the status of coordinate
system will not be set, and the segment number will remain as the current segment
number executed. The user also can call GT_GetMtnNm() during the motion process; it
will return the current segment number being executed.

Theincreasing rule of segment numbersis:

1. When the motion of current segment path is completed, if there is other
command in the buffer, the segment number will increase by 1, if thereis none,
the segment number will remain as the current value.

2. During the coordinated motion in buffer, when GT_StpMtn() or GT_EStpMtn()
are used to stop the coordinated motion (which will cause the Bit0 and Bitl of
the coordinate system status register to be set), the segment number will remain
asthe current value.

3. When the user calls the command GT_StrtList(), the segment number will be
set to zero.

4. The segment number is increased from zero. When it reaches the maximum
number (65536), the numbers will overflow and increase from zero again.

5.4.5 Coordinate System Status Register

The motion controller provides a status register to describe the status of planning
coordinated motion. User may use GT_GetCrdSts() to access this 16-bit register. The
definition of each sign is listed in Table 5-6. The symbol bits in the status register only
indicates the status of current coordinated motion, and are managed by the motion
controller. User cannot interfere the status of this register.

Table 5-6 Definition of Bitsin Coordinate System Status Register

Bit Definition
0 1 = the coordinated motion are finished, or there is no coordinated motion.
1 1 = The status of pushing motion path and parameters commands into

buffer is finished (When GT_EndList(), GT_StpMtn() or GT_EStpMtn()
are caled, thishit is set.).

2 1 = The sample time (interpolation period) is too short to cause motion error
(When this bit = 1, please modify the sampl e time immediately.).

3 1 = Thelast command for coordinated motion is error.

4 1 = current segment path motion is completed.

5 1 = Alarm of exceeding acceleration limit (No matter which coordinate axis

exceeds limit, this bit will be set.).
6 1 = Allow auto stop for coordinated motion at abnormal situation (When
there is dlarm signal or axis inactive sign or open loop sign given by the

50

Chapter Six High velocity Home/lndex Capture

Bit

Definition
motor axis relevant to the coordinated motion s the coordinated motion will
be stopped automatically).

1 =in status of single-segment path motion, 0 = in status of multi-segments
path continuous motion in buffer,

Reserved.

1 = abnormal situation occurs in the motor axis relevant to the coordinate
system and the coordinated motion is stopped automatically.

1 =abnormal error occurs in the coordinated motion (In normal, this bit will
not be set, unless abnormal situation occurs in the motion controller. If this
bit is set, please stop using the controller immediately, turn off the power
and restart the controller.).

Reserved. The default statusis 0.

1 = The buffer is empty (After the buffer motion starts, if thereis no motion
path command in the buffer, this bit will be set.).

Reserved. The default statusis 0.

When Bit6 of the coordinate system status register is set to 1, if the motion of any axis
mapped in the coordinate system encounters abnormal situation (including servo alarms,
axis inactivation, open loop or triggering limit switch.), the motion controller will stop
the coordinated motion and planning. This will assure the integrality of the whole
motion path and the safety of the motor axis that take part in the coordinated motion. If
Bit6 = 0, when the motion of any axis encounters abnormal situation, the motion
controller will only stop the motion of this axis, but continue to plan the coordinated
motion. The motion of other motor axes mapped in the coordinate system will continue
asthey were, but it is very dangerous. Bit6 = 1 or = 0 are done by GT_CrdAuStpOn()
and GT_CrdAuStpOff(), the default value of bit6 in the controller is 1.

51

Chapter Six High velocity Home/lndex Capture

Chapter Six High velocity Home/Index Capture

The motion controller provides a high-velocity position capture register for each axis, to
save the axis's actual position exactly at the time of the external signal triggering.
GT-400-SV alows the user to use the C (Index) signal of incremental encoder or home
switch signal as the triggering signal of capturing the axis position. SD, SE and SG
allow the home switch signal to be used as the triggering signal of capturing the axis
position. The controller can use the command GT_Captindex() (only for SV card) and
GT_CaptHome() to select the kind of signal to capture position and permit to capture.

After the controller captures the Index or Home signal needed, the sign of Index/Home
captured in the status register of specified axiswill be set to 1, and the sign bit of setting
Index capture or Home capture in the status register (15 bit or 14 bit) will be cleared. If
the user wants to trigger next capture of position, he must give the permission of the
position capture again and clear the sign of Index/Home captured in the status register
of specified axis before the next position capture happens. The position captured by the
controller is the actual position of specified axis when the capture signa triggers. The
precision of captured position is +/-1 pulse. The motion controller uses hardware to
capture position, so the motion velocity of the controller will not affect the capture
precision.

The high-velocity position capture function of the controller is mainly used to fix the
home position. For those users who require high precision for the repeated positioning,
they may use Home+lndex method to fix the home position, that is, after capturing
Home signal, capture position of the Index signal closest to Home signal.

Example 6-1 Home+I ndex Programming (Only for SV Card)

This example fixes the home position and set to zero.

void home(long pos)

{
unsigned short status;
long actl_pos;

rtn=GT_CIrSts(); error(rtn); //Clear status.

rtn=GT_CaptHome(); error(rtn); //Specify the capture mode of
Home capturing.

rtn=GT_PrfIT(); error(rtn); //Specify T-curve of current axis.

rtn=GT_SetVel(4); error(rtn); //Specify velocity of 4 pulse/ST.

rtn=GT_SetAcc(1); error(rtn); //Specify acceleration of 1
pulse/ST?.

rtn=GT_SetPos(pos); error(rtn); //Specify target position.

rtn=GT_Update(); error(rtn); //Update parameter.

rtn=GT_GetSts(&status); error(rtn); //Get axisstatus.

52

Chapter Six High velocity Home/lndex Capture

while(!(status&0x8)) //Weait for Home capturing
{
if(status&0x1) return; //If the motion is completed but Home is not
triggered, exit.
rtn=GT_GetSts(&status); error(rtn); //Get axis status.
}
rtn=GT_GetCapt(&pos); error(rtn); //Get position captured.
rtn=GT_SetPos(pos); error(rtn); //Specify capture position of
target position.
rtn=GT_Update(); error(rtn); //Update parameter.
rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_GetSts(&status); error(rtn); //Get statusvalue.
while(!(status&0x1)) //Wait until the motion is completed.
{
rtn=GT_GetSts(&status); error(rtn); //Get status.
}
rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_Captindex(); error(rtn); //Specify the capture mode of
Index capturing.
pos=pos+3000; //Captured position + 8000 pulse
rtn=GT_SetPos(pos); error(rtn); //Move 8000 pulse from
captured position.
rtn=GT_Update(); error(rtn);
rtn=GT_GetSts(&status); error(rtn); //Get status.
while(!(status&0x8)) //Get status and wait for index capturing.
{
rtn=GT_GetSts(&status); error(rtn);
}
rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_GetCapt(&pos); error(rtn); //Get position captured.
rtn=GT_SetPos(pos); error(rtn); //Specify the captured position
of target position.
rtn=GT_Update(); error(rtn);
rtn=GT_GetSts(&status); error(rtn); //Get status.
while(!(status&0x1)) //Wait until the motion is completed.
{
rtn=GT_GetSts(&status); error(rtn);
}
rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_ZeroPos(); error(rtn); //Specify actual and target
position of zero.
}
void main()
{
short rtn;
GTInitial();
InputCfg();

AxisInitial();
rtn=GT_Axis(1); error(rtn);
Home (200000);

}

53

Chapter Six High velocity Home/lndex Capture

Example 6-2 Home Programming

This example isto go back Home, i.e. return to home point.

void home(long pos)

{
unsigned short status;
long actl_pos;

rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_CaptHome(); error(rtn); // Specify the capture mode of
Home capturing.
rtn=GT_PrfIT(); error(rtn); //Specify the independent motion
mode of T-curve.
rtn=GT_SetVel(4); error(rtn); //Specify velocity of 4 pulse/ST.
rtn=GT_SetAcc(1); error(rtn); //Specify acceleration of 1
pulse/ST?,
rtn=GT_SetPos(pos); error(rtn); //Specify target position.
rtn=GT_Update(); error(rtn); //Update parameter.
rtn=GT_GetSts(&status); error(rtn); //Get axisstatus.
while(!(status&0x8)) /Wit for Home capturing
{
if(status&0x1) return; //If the motion is completed but Home is not
triggered, exit.
rtn=GT_GetSts(&status); error(rtn); //Get axis status.
}
rtn=GT_GetCapt(&pos); error(rtn); //Get position captured.
rtn=GT_SetPos(pos); error(rtn); //Specify capture position of
target position.
rtn=GT_Update(); error(rtn); //Update parameter.
rtn=GT_CIrSts(); error(rtn); //Clear status.
rtn=GT_GetSts(&status); error(rtn); //Get status.
while(!(status&0x1)) //Wait until the motion is completed.
{
rtn=GT_GetSts(&status); error(rtn); //Clear status.
}
rtn=GT_ZeroPos(); error(rtn); /[Specify actual and target
position of zero.
}
void main()
{
short rtn;
GTinitial();
InputCfg();

AxisInitial();
rtn=GT_Axis(1); error(rtn);
Home (200000);

}

Chapter Seven Safety M echanism

Chapter Seven Safety Mechanism

7.1 Monitor AxisMotion Error and Restore Status

The motion controller provides the function of monitoring axis motion error.

For the close loop control, sometimes the actual position of motor may be far from the
target position. This situation usually means some dangers existing, such as motor fault,
reversed connection or disconnection of A and B signals of encoder, stemming of motor
caused by too large mechanical friction or mechanical fault. In order to detect this
situation, to improve the safety of the system and prolong the service life of the
equipment, GT-400-SV controller sets programmable and modifiable position error
limit of specified axis.

The command GT_SetPosErr() can be called to specify the position error limit and the
command GT_GetPosErr() can be called to get it.

In each sample time, the motion controller compares the position error limit with the
actual position error to check if a motion error occurs. If the actual position error of
specified axis overreaches the error limit, the controller will consider this axis has
motion error.

When the motion error of specified axis occurs, the controller will generate the
following events.

® Thesign of motion error in status register = 1.

e If the sign of allowing auto stop when position error overreach
error band = 1, the motion of specified axis will be stopped, the sign of
motion completed will be set to 1, and motor of specified axis will be
inactive. Otherwise, only the sign of motion error in the status register of
specified axis will be set to 1. The user can use the commands
GT_AuStpOn() or GT_AuStpOff() to set or clear the sign of allowing auto
stop when position error overreach error band. The default value of
this sign is 0, i.e. the motion of specified axis will not be stopped
automatically when motion error occurs.

Torestore from the error status to normal status, the user must take the following
steps.
Confirm the causes of motion error and correct them.
® Clear the sign of motion error in status register.

® Use GT_SynchPos(), GT_SetAtlPos() or GT_ZeroPos() to synchronize the
actual and target position of the axis in error, or reset the actual and target

55

Chapter Seven Safety M echanism

position to zero.
® Usethe command GT_AxisOn() to reactivate this axis.

® After the steps above are completed, this axis will reenter the normal status
and wait for next motion.

7.2 Treat AxisDriver Alarm

For the purpose of safety and longer service life of motor and driver, some motor
drivers set the detecting and protecting of system fault (such as input voltage limit of
driver, protection of too large change for input signal). When the driver detects
abnormal or fault situation, it will trigger the fault protection function and output an
alarm signal.

The controller provides a dedicated input of driver alarm signal. When it detects the
input signal of motor driver alarm, the controller will set the sign bit of driver alarm
and the sign bit of motion completed in the status register of specified axis as 1, and
inactivates the motor driver of this axis (same as the effect of the command
GT_AXxisOff()).

To restore from the driver alarm status to normal status, the user must take the
following steps:

® Confirm the causes of the alarm signal and correct them.

® Usethe command GT_DrvRst() to reset the driver.

® Use the command GT_CIrSts() or GT_RstSts() to clear the sign of driver
alarmin the status register.

® Use the command GT_SynchPos(), GT_SetAtlPos() or GT_ZeroPos() to
synchronize the actual and target position of the axis in error, or reset the
actual and target position to zero.

® Usethe command GT_AxisOn() to reactivate this axis

After the steps above are completed, this axis will reenter the normal status and wait for
next motion.

7.3 Treat Limit Status

Negative position over bound Safe Motion bound Hositive position over bound

Negative Limit Switch Positive Limit Switch

Fig. 7-1 Definition of Motion bound of Specified Axis

The limit switch can be used to indicate automatically the motion bound of axes. The
“safe” motion bound of axiswith limit switchisillustrated in Fig. 7-1.
|
56

Chapter Seven Safety M echanism

After receiving the signal triggered by limit switch, the controller will operate as
follow:

® The controller will set the sign of relevant limit switch triggering in the
status register of the axis in limit switch, and notify the host to take proper
actions to process.

® Meanwhile, the controller will stop the motion of this axis immediately to
prevent it from moving further towards the area of over the bound.

Once a controlled axis triggers a limit switch, this axis will only be allowed to move
towards the opposite direction. For example, suppose that the positive limit switch of a
controlled axis be triggered, the controller will only alow the axis to move towards the
negative direction, so as to return back to the safe motion range.

After the controlled axis returns back to the safe motion bound, the host must call the
command GT_CIrSts() or GT_RstSts() to clear the relevant status bit, to restore the
status of controlled axis from the status of over bound to normal status.

If a specified axis works in electronic gearing mode, this axis triggers the limit switch,
and if the master axis is inactivated status, its motion direction will be also restricted by
the limit switch status of slave axis. For example, when the negative limit switch of the
dlave axisis triggered, the slave axis will only be allowed to mover towards the positive
direction and the master axis will only be allowed towards a certain direction: if the gear
ratio is negative, the master axis will only be allowed towards the negative direction.
This relation restricting each other will keep until the secondary axis returns back to the
safe area.

57

Chapter Eight Interrupt

Chapter Eight Interrupt

The motion controller can send interrupt request to the host, so that the host can process
the events during the motion of each control axis in time. This interrupt method is
generally more convenient and effective than that the host inquiring status of each
control axis.

The motion controller provides two interrupt method. One is called Event Interrupt,
mainly to treat the events during the motion of control axes in time. The other is Time
Interrupt, that the controller sends time interrupt to the host in certain period. When
the motion controller is included in a system, this interrupt can be used as the system
timer.

Since the two interrupt methods share one interrupt request signal of the host computer
the host in the system only allows to evoke the commands GT_Tmrintr() and
GT_Evntintr() to select one interrupt method. The command GT_Tmrintr() sets the
interrupt of control axis as time interrupt, whose period is decided together by the
control cycle of controller and the set value of the command GT_SetintrTm(). For
example, if the control cycle of controller is 200 microseconds and the host uses the
command GT_SetIntrTm() to set a value of 10, the period of time interrupt = 10*200
milliseconds. The command GT_Evntintr() closes the time interrupt and turns to the
event interrupt. The default interrupt by the controller is the event interrupt.

The events of control axis corresponding to bit0-bit6 in the status register of control axis
listed in Table 4-14 can al trigger the event interrupt request. For each control axis, the
host uses the command GT_SetIntrMsk() to set the interrupt mask register of the control
axis, and to determines whether an event can cause an interrupt request to the host or
not.

8.1 Interrupt Treatment in DOS

If a control axis has the above interrupt situation and activates the interrupt request
signal, the host should respond to the interrupt request according to the actual situation
and perform proper treatment. After interrupt treatment, the host shall send the
instruction GT_RstIntr() to clear the interrupt request condition of the current motor, to
enable the next interrupt to happen. This command has a parameter of “Clear relevant
mask symbol”.

The host can only respond to one interrupt of control axis one time. For example, when
user is setting the parameters of current axis #1, the control axis #3 sends an interrupt
request signal to the host. Now, to treat this interrupt, the host must set #3 as the current
axis (by the command GT_Axisl()). If severa control axes send interrupt request at the
same time, the control axis with smallest number will have the highest interrupt priority.

58

Chapter Eight Interrupt

The following lists a typica interrupt treatment sequence to describe how the host
responds to an interrupt. Suppose the control axis #3 (The current axis is #1.) isin a
status of exceeding limit due to instant motion error caused by “abrupt stop”, and at the
same time, suppose the interrupt mask register of the control axis allows the host to
respond to the above interrupt request signal sent from the motor. Now, the responding
of the host to the interrupt is listed in Table 8-1. At the last of the above process, all the
status bits will be cleared, the interrupt request signal of the host is restored and there is
no interrupt waiting for treatment.

Table 8-1 Treatment of the Host Responding to I nterrupt

Interrupt Event Responding of the Host

mg[:&r;taror and exceeding limit cause The host sends the command GT_Axisl ().

The host finds that the motion error and

The controller returns the status of the
control axis that causes the interrupt
reguest and set it as current axis.

limit exceeding symbol bit is 1, and treat
the motion error first. The host sends the
instruction GT_RstIntr(OXEF) to clear the

motion error symbol bit.

The controller clears the motion error bit
and restores the host interrupt request | -
signal to low level.

Since the limit exceeding situation of axis
is still effective, the controller sends limit
exceeding interrupt request to the host
immediately.

The host sends the instruction

GT_Axisl().

The host finds that the limit exceeding bit
is 1 and executes relevant treating
program. Then the host sends the
instruction GT_RstIntr(00DF) to clear the
limit exceeding symbol hit.

The controller returns the status of the
control axis that causes the interrupt
reguest and set it as current axis.

The controller clears the limit exceeding
symbol bit and restores the host interrupt | -
source to low level.

The instructions GT_Rstintr() and GT_Axisl() are only effective when there is a
interrupt request. If there is no interrupt, an inquiry command, such as GT_GetSts() can
be used to check the status of axis.

For a control axis requesting an interrupt, the host can only respond to one event
interrupt. When several events request interrupt at the same time, it is not necessary to
treat these requests as described in the above example. The controller can send only one
interrupt request to the host. During the processing of the interrupt, the host can use the
command GT_Getlntr() to get the status of the axis sending interrupt request to judge
and proceed relevant treatment. Then the host can use the command GT_Rstintr() to
clear al the interrupt events (GT_Rstintr() and GT_AXxisl() can only be used in an
interrupt service routine. If GT_Getintr() is evoked when there is no interrupt, the
returned status will be the status of current axis.).

When several axes request interrupt at the same time, the host can aso use the same

59

Chapter Eight Interrupt

treating method. When responding to the interrupt of a control axis with smallest
number, the host uses the command GT_GetSts() to view the status of other control axes
and proceeds relevant treatment. Then, the host uses the command GT_RstSts() or
GT_CIrSts() to clear relevant status symbals.

When an axisis disabled, except the motion error and drive alarm status, the other status
cannot cause event interrupt. Please pay attention when using the controller.

Sample 8-1 Event I nterrupt Sample (For | SA Bus Card)

void interrupt handler(...)

disable(); /[Close interrupt.
GT_Axisl(); //Set the axiswith interrupt as current axis.
GT_Getlntr(&event); //Get the status register of the axis with interrupt.

If(event& 0x8) //Judge whether it isa HOME triggering interrupt.
(
GT_GetCapt(& HomePos); //Get Home captured position.
GT_SetPos(HomePos); //Set target position as Home captured position.
GT_Update(); /[Update parameter.
)

GT_Rstintr(0); /[Clear the interrupt of moton control card.

outportb(0x20,0x20); //Send EOI to master 82509.

outportb(0xa0,0x20); //Send EQI to dave 8259.

enable(); //Open interrupt.

Sample 8-2 Time Interrupt Sample (For PCI Bus Card)

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include "userlib.h"

GT_ISR oldisr;
int count;
void interrupt Onlnterrupt(...)
{
GT_ClearInt(0); /[Clear interrupt.
count++; /[Count + 1. User may set one's own code.

outportb(0x20,0x20); // Send EOI to master 8259.
outportb(0xa0,0x20); // Send EQI to slave 8259.

}
main()
{
short nret=GT_Open(); //Open the motion controller.
if(nret) //Check the return value.
printf("Open fail\n");
return O;
}
oldisr=GT_Hooklsr(Onlnterrupt); //Hook interrupt.
nret=GT_SetIntrTm(500); //Set time interrupt period as 500* 200
mi croseconds.
if(nret)
{

60

Chapter Eight Interrupt

printf("Set Interrupt Time fail\n");
return O;

nret=GT_TmrlIntr(); //Set time interrupt.
while('kbhit())
{

printf("Count:%d\n",count); //Print count.
delay(500);

}
getch();
nret=GT_Evntintr(); //Set event interrupt.
GT_Unhooklsr(oldisr); /[Cancel hooked interrupt and restore the
original interrupt.
return O;
}

8.2 Interrupt Treatment in WINDOW S98/2000/NT

When developing program in DOS, user can modify interrupt vector and hook the
interrupt service routine (ISR for short) directly to respond to the interrupt request
generated by the motion controller. However, in WINDOWS, the operating system
separates the system kernel from applications and no longer allows user program to
modify ISR. So, GT-400-PCI driver program initiates two kinds of interrupt treatment
mechanism concerning user program and equipment 1SR, called Event Synchronization
Mechanism and I nterrupt Preprocessing Mechanism. The former is applicable to treat
event interrupt and time interrupt. The latter is only applicable to treat event interrupt.
This two kinds of mechanism can be used together or independently.

8.2.1 Event Synchronization M echanism

The principle is to alow equipment ISR and top-layer user program to share an event,
to synchronize of user program and equipment ISR, so as to enable the user program to
respond to the event from hardware equipment.

The detailed approach is to create a synchronization event in user program, and use the
APl function GT_SetIntSyncEvent(HEVENT hintEvent) provided by the controller
driver to set synchronization event for equipment ISR. Thus, user program and
equipment ISR become two common processes sharing a synchronization event.
Generaly, user program will start a new thread to avoid blocking itself. It is effective to
evoke WaitForSingleObject() to wait for event in the new thread. Once equipment
interrupt occurs, equipment ISR will activate interrupt synchronization event. Now, the
user thread is activated at WaitForSingleObject() and starts executing the following part
of the thread.

Please pay attention that, before evoking CloseHandle() to close event and equipment,
user program must evoke GT_SetintSyncEvent(NULL) to notify equipment ISR to

61

Chapter Eight Interrupt

clear theinterrupt synchronization event.

During this process, user must have a clear understanding that, user thread is only
notified that an interrupt happened just now, rather than it is in the process of treating
interrupt; In fact, the interrupt has been cleared by the kernel. In addition, due to the
influence of the system efficiency and interrupt frequency, it is not guaranteed that each
and every interrupt will activate user thread. When the interrupt frequency is very high
and the thread calling in the operating system is slow, there may be interrupt stacking
for several times. Normally, the required interrupt frequency <=10KHz.

For the detailed programming, please refer to the following codes (All the Windows
programs are written in VC++ environment.).

Sample 8-3 Interrupt Event Synchronization Mechanism

//Overdll Variable
HANDLE hSyncEvent; //Synchronization event handle
bool stopflag; /[Thread stop flag

/ICodes in main function
HANDLE hSubThread;
DWORD idSubThread;

/[Create a synchronization event.
hSyncEvent=CreateEvent(NULL ,true,false, NULL); //WIN32 API function
if(hSyncEvent==INVALID_HANDLE_VALUE)

{
/1..Check validity here.

}
//Set synchronization event for equipment ISR, to realize event sharing.
nret=GT_SetIntSyncEvent(hSyncEvent);
/IAPI function provided by GT400.DLL.
if(nret)
{
//Check function execution.
}
stopflag=false;
//In order not to block oneself, create and start a new thread.
hSubThread=CreateThread(NULL,
0,
intproc, //New thread function.
NULL ,//Parameter used in new thread function.
0,
&idSubThread);
//Until now, the task of main function is compl eted.

/[The following is a thread function to wait for synchronization event.
___|

62

Chapter Eight Interrupt

DWORD WINAPI intproc(LPVOID param)

{
ResetEvent(hSyncEvent); //Assure that the event isin non-signaled status.
while(1)
{
/lwaiting for interrupt happen
WaitForSingleObject(hSyncEvent,INFINITE);//Wait for event.
if(stopflag)
break;
/fadd your code for handling intrerrupt event here
I.....
IIreset event state
ResetEvent(hSyncEvent);//Reset synchronization event.
}

GT_SetIntSyncEvent(NULL);//Notify equipment ISR to release event.
//close Synchronize Event Handle

CloseHandle(hSyncEvent); //Close synchronization event handle.
ExitThread(0); /Exit the thread.

return O;

8.2.2 Interrupt Preprocessing M echanism

The principle is to preset some commands (which refer to the GT commands used by
motion control card) for equipment before interrupt is generated, and execute relevant
command to the interrupt according to the preset structure when equipment generates a
specified interrupt.

The use of preprocessing is relatively simple. Generally, it will assign a certain size of
memory space to save the commands to be set for equipment, fill this memory
according to the specified structure (defined in gt400data.h) and evoke the API function
GT_SetBgCommandSet () provided by the driver of control card to set commands for
equipment. When the equipment generates an interrupt, it will search automatically the
data structure, find and execute the command corresponding to the interrupt. The
execution result will also be saved in the structure. The user-layer program can use
GT_GetBgCommandResult () to get command execution result. For the functions
available for background command set, please refer to Table 5-1. The command format
is of adding Intr before the origina function. For example, GT_PrfIT() will become
Intr_GT_PrfIT as a background command. For the detailed programming, please refer
to the following codes:

Sample 8-4 I nterrupt Preprocessing Mechanism

//Define the maximum memory size to be used.
#define MAX_SIZE 500

63

Chapter Eight Interrupt

/[Buffer requires a size = 4+4* (the number of interrupt requiring command to be
set) + 16* (the sum of al commands).
/lIn the following codes, the minimum space size needed: 4+4*2 (two kinds of
interrupt) +16* (2+1) = 60 bytes.
PBGCOMMANDSET pBgCmdSet;//Define a pointer.
pBgCmdSet=(PBGCOMMANDSET)malloc(MAX_SIZE);//Allocate memory.
if(pBgCmdSet==NULL)
{
//Check validity.
}
PBACKGROUND_COMMAND pBackCmd,;
PGENERAL_COMMAND pCmd;
//Specify how many kinds of interrupt require background commands.
pBgCmdSet->Count=2; //Set backgrounds commands for two kinds
of interrupt.
//Set a command array for each interrupt respectively. The same interrupt allows
several commands.
pBackCmd=pBgCmdSet->BackgroundCommand;

pBackCmd->InterruptMask=0x01, //Specify interrupt source.

pBackCmd->CommandCount=2; /[The number of commands to be
executed when generating the interrupt.

//Fill each command one by one.

/[The first command

pCmd=pBackCmd->GenCommand;

pCmd->usCommand= Intr_GT_SetPos; //Set characters for command type .

pCmd->OutputL ength=2;

/[How many words (length) of data to be output into DSP when executing the

command.

pCmd->InputL ength=0;

/l How many words (length) of data to be input into DSP when executing the

command.
pCmd->in.IData=20000; /lInput data.
pCmd->out.|Data=0; /[Output data.

/IFill the next command.
pCmd=PGENERAL_COMMAND((char*)pCmd+sizeof(GENERAL_COMMA
ND)); //Point to next memory unit.

pCmd->usCommand= Intr_GT_Update; //Set command.

pCmd->OutputL ength=0;

/I How many words (length) of data to be output into DSP when executing the
command.

pCmd->InputL ength=0;

/[l How many words(length) of data to be input into DSP when executing the
command.

pCmd->in.|Data=0; /lInput data.

64

Chapter Eight Interrupt

pCmd->out.|Data=0; //Output data.

//Set acommand array for another interrupt.

pBackCmd=

PGENERAL_COMMAND((char*)pCmd+sizeof(GENERAL_COMMAND));
//Point to next memory unit.

pBackCmd->InterruptM ask=0x02;//Specify interrupt source.
pBackCmd->CommandCount=1;// The number of commands to be executed
when generating the interrupt.

/1 Fill the first command.

pCmd=pBackCmd->GenCommand;

pCmd->usCommand= Intr_GT_SetKp; // Set characters for command type.
pCmd->OutputL ength=1;

/l How many words (length) of data to be output into DSP when executing the
command.

pCmd->InputL ength=0;

/l How many words (length) of data to be input into DSP when executing the

command.
pCmd->in.|Data=0; /lInput data.
pCmd->out.|Data=20; /[Output data.

/[Transfer command buffer to equipment ISR.
short nret=GT_SetBgCommandSet(pBgCmdSet, MAX_SIZE);
if(nret)

/ICheck the execution of function.

}

/[Then rel ease memory.
free(pBgCmdSet);

65

Chapter Ninel/O of Universal Digital Amount

Chapter Nine General Purposed 1/0

The motion controller provides input/output (1/0) ports for general use. The host can
use command to control these 1/Os.

The port 0 (EXI0) for general purposed input can be used as probe input signal. Use a
relevant command to enable capture function of the signal, which may cause the motion
controller to capture the actual position of al control axes and auxiliary encoders when
the signal is active.

16-bit Output Port: The host uses the command GT_ExOpt(Data) to set the value of
this port. The corresponding relation between Data and the general purposed output port
EXOO0-EXO15 on the connector CN2 of the controller is as follows.

Bit - Definition Bit - Definition Bit - Definition Bit - Definition
BitO----EXO0 Bitl----EXO1 Bit2----EXO2 Bit3----EXO3
Bit4----EXO4 Bit5----EXO5 Bit6----EXO6 Bit7----EXO7
Bit8----EXO8 Bit9----EXO9 Bit10----EXO10 Bit11----EXO11
Bit12----EXQ12 Bit13----EXO13 Bitl4----EXQ14 Bit15----EXQO15

16-bit Input Port: The host uses the command GT_ExInpt(& Data) to get the logic
level of this port. The corresponding relation between the returned data Data and the
definition of EX10-EXI15 bitsis asfollows.

Bit - Definition Bit - Definition Bit - Definition Bit - Definition
BitO----EXI0 Bitl----EXI11 Bit2----EX12 Bit3----EX13
Bit4----EX14 Bit5----EXI5 Bit6----EX16 Bit7----EX17
Bit8----EX18 Bit9----EX19 Bit10----EX110 Bit11----EX111
Bit12----EX112 Bit13----EX113 Bit14----EX114 Bit15----EX115

Sample 9-1 If EXI5 isat high level, set EXOO at high level.
void main()

{

short rtn, ex_inp;

rtn=GT_ExInpt(&ex_inp); error(rtn);
if(ex_inp& 0x20)
{

rtn=GT_ExOpt(0x1); error(rtn);

}

66

Part Two

Description of Library Functions

Chapter Ten List of Functions

Chapter ElevenDescription of Functions

Chapter Ten List of Functions

Function
GT_AbptStp()

Chapter Ten List of Functions

Description
Stop the motion of current axis abruptly.

GT_AuStpOff()

Enable automatic stopping when motion error.

GT_AuStpOn()

Disable automatic stopping when motion error.

GT_AuUpdtOff()

Disable automatic updating of parameters and commands of
current axis.

GT_AuUpdtOn()

Enable automatic updating of parameters and commands of
current axis.

GT_Axis() Set acontrol axis as current target axis.

GT_Axisl() Set the control axis sending interrupt request as current
axis(prohibited in Windows environment).

GT_AXxisOff() Make the current axis in servo-off condition.

GT_AxisOn() Make the current axis in servo-on status.

GT_BrkOff() Clear the breakpoint of current axis and close breakpoint

mode.

GT_CaptHome()

Allow the current axis to capture position when HOME signal
is activated.

GT_Captindex()

Allow the current axis to capture position when INDEX
signal is activated.

GT_CaptProb()

Enable probe capture function.

GT_Clos«() Close the motion controller.

GT_CloseLp() Set the current axisin close loop servo control.
GT_Clearint Clear interrupt generated by control card.
GT_CIrEncPos() Clear the auxiliary encoder position value.
GT_CIrsts() Clear the status of current axis.

GT_CtriIMode()

Set the control output of current axis as analog output or pulse
outpuit.

GT_DrvRst() Reset the servo driver of current axis.
GT_EncPos() Get the position of auxiliary encoder.
GT_EncSns() Set the counting direction of encoder.
GT_EncVel() Get the velocity of auxiliary encoder.

GT_EStpMtn()

Stop the coordinate system motion abruptly.

GT_Evntintr()

Set the interrupt of the controller to the host as axis event
interrupt.

GT_ExInpt()

Get the value of general purposed input port.

GT_ExOpt()

Set the value of general purposed output port.

68

Chapter Ten List of Functions

Function ‘ Description
GT_ExtBrk() Set breakpoint triggering mode of the current axis home point
signal.
GT_GetAcc() Get the setting accel eration of current axis.
GT_GetAdc() Get the AD conversion result.
GT_GetAddr() Get the communication base address of the motion controller

(prohibited in Windows environment).

GT_GetAtlErr()

Get the actual position error of the current axis.

GT_GetAtlPos()

Get the actual position of current axis.

GT_GetBgCommand
Result()

Get the execution result of controller background command
Set.

GT_GetBrkCn()

Get the breakpoint position comparison value of current axis.

GT_GetCapt()

Get the INDEX or HOME captured position of current axis.

GT_GetCmdSts()

Get the execution status of the previous control command.

GT_GetCurrentCard
No()

Get the card ID of current control card.

GT_GetEncCapt()

Get the captured value of auxiliary encoder.

GT_GetEncSts()

Get the status of auxiliary encoder.

GT_GetlLmt() Get the servo filter error integral limit of current axis.
GT_Getlntgr() Get the position error integral of current axis.
GT_Getlntr() Get the interrupt event of current axis (prohibited in Windows

environment).

GT_GetIntrMsk()

Get the interrupt mask word of current axis.

GT_GetIntrTm()

Get the timer set value of time interrupt.

GT_GetJerk() Get the jerk setting value of current axis.

GT_GetKaff() Get the servo filter acceleration feedback coefficient of
current axis.

GT_GetKd() Get the servo filter differential coefficient of current axis.

GT_GetKi() Get the servo filter integral coefficient of current axis.

GT_GetKp() Get the servo filter gain of current axis.

GT_GetKvff()

Get the servo filter velocity feed coefficient of current axis.

GT_GetL mtSwi()

Get the status of limit switch.

GT_GetMAcc()

Get the setting maximum acceleration of current axis.

GT_GetMode()

Get the mode word of current axis.

GT_GetMtrBias()

Get the setting DAC bias of current axis.

GT_GetMtrCmd()

Get the motor control value of current axis in open loop
mode.

GT_GetMtrLmt()

Get the servo filter output limit of current axis.

GT_GetPos() Get the setting position of current axis.
GT_GetPosErr() Get the servo filter position error limit of current axis.
GT_GetRatio() Get the electronic gear ration of current axis.

GT_GetSmplTm()

Get the servo sampling period of controller.

69

Chapter Ten List of Functions

Function ‘ Description
GT_GetSts() Get the status word of current axis.
GT_GetVel() Get the setting velocity of current axis.
GT_HardRst() Reset the motion controller with hardware.
GT_Home() Start automatic HOME capture.

GT_Hooklsr() Hook interrupt service routine for the controller.

GT_Index() Set the automatic HOME capture mode (Single HOME or
HOME+INDEX).

GT_LmtSns() Set the triggering level of limit switch.

GT_LmtsOff() Disable the limit switch of current axis.

GT_LmtsOn() Make effective the limit switch of current axis.

GT_MItiUpdt()

Update parameters of several control axes.

GT_MtnBrk()

Set the breakpoint triggering mode of motion arrival of
current axis.

GT_NegBrk() Set the negative position breakpoint mode of current axis.

GT_Open() Open the motion controller.

GT_OpenLp() Set the current axisin open loop control.

GT_PosBrk() Set the positive position breakpoint mode of current axis.

GT_PrflG() Set the motion mode of current axis as electronic gear mode.

GT_PrflS() Set the motion mode of current axis as S-curve mode.

GT_PrfIT() Set the motion mode of current axis as T-curve mode.

GT_PrflV() Set the motion mode of current axis as velocity control mode.

GT_Reset() Reset the motion controller.

GT_Rstintr() Reset the current axis interrupt event (prohibited in Windows
environment).

GT_RstSts() Reset the status of current axis.

GT_SetAcc() Set the acceleration of current axis (T-curve and velocity

control modes).

GT_SetAdcChn()

Set the number of AD conversion channels.

GT_SetAddr() Set the communication base address of the motion controller
(Prohibited in Windows environment).

GT_SetAtlPos() Set the actual position of current axis.

GT_SetTime() Adjust the output pulse width.

GT_SetBgCommand
Set()

Set the background execution command set at interrupt.

GT_SetBrkCn()

Set the comparison value of breakpoint position of current
axis (used together with the positive or negative position
breakpoint mode).

GT_SetEncCapt()

Set INDEX capture of auxiliary encoder.

GT_SetiLmt()

Set the servo filter error differential limit of current axis.

GT_SetIntSyncEvent(
)

Set synchronization event for the interrupt of motion
controller.

70

Chapter Ten List of Functions

Function
GT_SetIntrMsk()

Description
Set the interrupt mask word of current axis.

GT_SetIntrtm()

Set the time constant of time interrupt of controller.

GT_SetJerk() Set the jerk of current axis (S-curve mode).

GT_SetKaff() Set the servo filter acceleration feedback gain of current axis.

GT_SetKd() Set the servo filter differential coefficient of current axis.

GT_SetKi() Set the servo filter integral coefficient of current axis.

GT_SetKp() Set the servo filter gain of current axis.

GT_SetKvff() Set the servo filter velocity feed coefficient of current axis.

GT_SetMAcc() Set the maximum acceleration of current axis (S-curve
mode).

GT_SetMtrBias() Set the DAC bias value of current axis.

GT_SetMtrCmd()

Set the motor control value of current axisin open loop mode.

GT_SetMtrLmt()

Set the servo filter output limit of current axis.

GT_SetPos() Set the target position of current axis (S-curve and T-curve
modes).

GT_SetPosErr() Set the servo filter position error limit of current axis.

GT_SetRatio() Set the electronic gear transmission ratio of current axis

(electronic gear mode).

GT_SetSmplTm()

Set the servo sampling period of controller.

GT_SetVel() Set the target velocity of current axis (S-curve, T-curve and
velocity control modes).

GT_SmthStp() Stop the motion of current axis smoothly.

GT_StepDir() Set the output way of current axis in pulse output mode as
“Pulse + Direction”.

GT_StepPulse() Set the output way of current axis in pulse output mode as
“Positive and Negative Pulse”.

GT_SynchPos() Set the target position of current axis same as the actual

position.

GT_SwitchtoCardNo(

)

Switch current card.

GT_Tmrintr()

Set the interrupt of the controller to host as time interruption.

GT_Unhooklsr()

Unhook the ISR held by the function GT_Hooklsr for the
control card and restore the original ISR.

GT_Update()

Update parameters of current axis.

GT_ZeroPos()

Reset the actual and target position of current axisto zero.

71

Chapter Eleven Description of Functions

Chapter Eleven Description of Functions

Each interface function will be described as follows one by one in the

alphabetic order.
% Except being stated specially, the sample programs are all written in
Ll BC3.1 language environment.
Notice | For all the function return values, please refer to Chapter Two Function
(Library Function) Return Values.

GT_AbptStp

Function Prototype: short GT_AbptStp(void)

Description of Function: This function is used to stop the motion of current axis abruptly, and
set the parameter of target velocity and actual velocity as zero. After being executed, this
function will become effective for abrupt stop. The command GT_AbptStp() is effective in the
four motion control modes for control axis.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SmthStp

Function Evoking: In the following sample, when detecting that EX115 port of external 10 is

at logic 1, stop the motion of the first axis abruptly.
void main()
{
short rtn,ex_data;
rtn=GT_ExInpt(&ex_data); error(rtn); //Get the status of input port.

rtn=GT_AXxis(1); error(rtn); //Set the first axis as current axis.
if (ex_data& 0x8000) /ICheck EX115isat logic 1 or not.
: rtn=GT_AbptStp(); error(rtn); //Abrupt stop.
}
GT_AuStpOff

Function Prototype: short GT_AuStpOff(void)

Description of Function: This function clears the Automatic Stop when Error bit of the axis
mode register. When this bit is cleared, if the current axis meets the preset conditions for
motion error during the servo control process (i.e. the actual position error exceeds the value
set by the function GT_SetPosErr()), the controller will only set the error flag of axis motion,
rather than stop the servo motor control output of the axis automatically.

System: DOS, WINDOWS
Applicable Card: All GT series cards

72

Chapter Eleven Description of Functions
___|

Relevant Function: GT_AuStpOn
Function Evoking: The following sample disable the automatic stop function of the motor

when the fourth axis has error in motion.
void main()
{
short rtn;
rtn=GT_AXxis(4); error(rtn);
rtn=GT_AuStpOff (); error(rtn);
}

GT_AuStpOn

Function Prototype: short GT_AuStpOn(void)
Description of Function: This function sets the Automatic Stop when Error bit of the axis
mode register. If the current axis meets the preset conditions for motion error during the servo
control process (i.e. the actual position error exceeds the value set by the function
GT_SetPosErr()), the controller will stop the servo motor control output of the axis and stop
the motor.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_AuStpOff
Function Evoking: The following sample sets the automatic stop symbol of the motor when
the third axis has error in motion.
void main()
{
short rtn;
rtn=GT_Axis(3); error(rtn);
rtn=GT_AuStpOff (); error(rtn);
}

GT_AuUpdtOff

Function Prototype: short GT_AuUpdtOff(void)
Description of Function: This function clears the Automatic Updating bit of the axis mode
register of the current axis. After this bit is cleared, the breakpoint already meeting the
triggering condition will only have breakpoint symbol set and parameters of control axis will
not updated. This bit will remain until the host evokes the function GT_AuUpdtOn().
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_AuUpdtOn
Function Evoking: This sample clears the Automatic Updating bit of the axis mode register
of the second axis.
void main()
{
short rtn;
rtn=GT_Axis(2); error(rtn);

e .__|
73

Chapter Eleven Description of Functions

rtn=GT_AuUpdtOff (); error(rtn);
}

GT_AuUpdtOn

Function Prototype: short GT_AuUpdtOn(void)

Description of Function: This function sets the Automatic Updating bit of the axis
mode register of the current axis to 1. After this function becomes effective, the
breakpoint meeting the triggering condition will update automatically the
parameters of control axis. This bit will remain until the host evokes the function
GT_AuUpdtOff().

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_AuUpdtOff

Function Evoking: This sample clears the Automatic Updating bit of the mode register of the

first axis.

void main()

{
short rtn;
rtn=GT_Axis(1); error(rtn);
rtn=GT_AuUpdtOn(); error(rtn);
}

GT_Axis

Function Prototype: short GT_Axis(unsigned short num)

Description of Function: This function sets the specified axis as current axis.
The commands related to control axis evoked later are all for the specified axis.
The current axis will not change until this command of the control axis is evoked
again. The parameter “num” means the specified axis number, the value of which
isfrom 1, 2, 3to 4, representing the first, second, third and fourth axis respectively.
System: DOS, WINDOWS

Applicable Card: All GT series cards
Function Evoking: In the following sample, the second axis is set as current axis and the
following commands are al for the second axis.
void main()
{
short rtn;
rtn=GT_Axis(2); error(rtn);
rtn=GT_Setpos(1000); error(rtn);
rtn=GT_SetVel(10); error(rtn);
rtn=GT_SetAcc(1); error(rtn);
}

GT_Axisl

Function Prototype: short GT_Axisl(void);

74

Chapter Eleven Description of Functions
___|

Description of Function: When receiving an event interrupt request, the host
can evoke this function to set the axis sending the interrupt request as current
axis. The commands evoked later are all for the axis generating the interrupt
request, until another current axis assign command is evoked.

If the motion controller is in the mode of allowing event interrupt request to the
host, once the controller encounters an event satisfying interrupt condition, it will
send the interrupt request to the host immediately, and the host shall treat this
request. Now, evoke the command GT_Axisl() and the motion controller will set the
control axis sending the interrupt request as the current axis automatically, and not set each
axis any more to check whether an interrupt happens, which allows the host to get the interrupt
status quickly and perform corresponding treatment.

System: DOS
Applicable Card: All GT series cards

Function Evoking: The following sample treats the positive limit switch event of the axis
generating interrupt in the interrupt routine.
void interrupt handler(...)

{
short rtn;
unsigned short intr_sts;
long actl_pos, pos,
disable();
rtn=GT_Axisl(); if(rtn!=0) return;
rtn=GT_GetIntr(&intr_sts); if(rtn!=0) return;
if (intr_sts& 0x20) // positive limit switch error
{
rtn=GT_GetAtlPos(&actl_pos); if(rtn!=0) return;
pos=actl_pos-20000;
rtn=GT_SetPos(pos); if(rtn!=0) return;
rtn=GT_Update(); if(rtn!=0) return;
rtn=GT_RstIntr(0x9f); if(rtn!=0) return;
}
enable();
return;
}
GT_AxisOff

Function Prototype: short GT_AxisOff(void);
Description of Function: This function sets the current axis in uncontrolled status and
disablesthe driver.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_AxisOn
Evoke Function: This sample sets the second axis as in the uncontrolled status and disable the
driver.
void main()

{

75

Chapter Eleven Description of Functions

short rtn;

rtn=GT_AXxis(2); error(rtn);

rtn=GT_AXxisOff(); error(rtn);
}

GT_AxisOn

Function Prototype: short GT_AxisOn(void);
Description of Function: This function sets the current axis in controlled status and enables
the driver.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_AxisOff
Evoke Function: This sample sets the second axis as in the controlled status after digital filter
parameters are set for it, and activates the axis driver servo.
void main()
{
short rtn;
rtn=GT_AXxis(2); error(rtn);
rtn=GT_SetKp(10); error(rtn);
rtn=GT_Update(); error(rtn);
rtn=GT_AxisOn(); error(rtn);

GT_BrkOff

Function Prototype: short GT_BrkOff(void);
Description of Function: This function clears the breakpoint already set for the current axis,
but not triggered yet.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_BrkOn
Evoke Function: This sample clears the breakpoint set for the first axis, but not triggered yet.
void main()
{
short rtn;
rtn=GT_Axis(1); error(rtn);
rtn=GT_BrkOff(); error(rtn);
}

GT_CaptHome

Function Prototype: short GT_CaptHome(void);

Description of Function: This function sets the position capture event of Home signal. After
evoking this function, the position capture register will record the actua position when Home
signal is activated. Executing GT_CaptHome() once only captures the position information of

76

Chapter Eleven Description of Functions

Home signal once. To capture the position of next Home signal, user must clear the
corresponding status symbol bit, i.e. evoking the function of GT_CIrSts() or GT_RstSts(), and
use GT_CaptHome() to set the position capture event of Home signal. The process of capturing
Home signal is done by hardware, irrelevant with the velocity of motion axis.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_Captindex, GT_CaptProb
Evoke Function: The following sample sets the position capture event of Home signal for the
third axis.
void main()
{
short rtn;
rtn=GT_AXxis(3); error(rtn);
rtn=GT_CIrSts(); error(rtn);
rtn=GT_CaptHome(); error(rtn);
}

GT_Captlndex

Function Prototype: short GT_Captlndex(void);
Description of Function: This function sets the position capture event of Index signal. After
evoking this function, the position capture register will record the actual position when Index
signal is activated. Executing GT_Captlndex() once only captures the position information of
Index signal once. To capture the position of next Index signal, user must clear the
corresponding status symbol hit, i.e. evoking the function of GT_CIrSts() or GT_RstSts(), and
set the position capture event of Index signal. The actual position captured can be used as the
accurate coordinate home point of the motion axis. The process of capturing Home signd is
done by hardware, irrelevant with the velocity of motion axis.
System: DOS, WINDOWS
Applicable Card: SV
Relevant Function: GT_CaptHome, GT_CaptProb
Evoke Function: The following sample sets the position capture event of Index signal for the
third axis.
void main()
{

short rtn;

rtn=GT_Axis(3); error(rtn);

rtn=GT_CIrSts(); error(rtn);

rtn=GT_Captindex(); error(rtn);

}

GT_CaptProb

Function Prototype: short GT_CaptProb(void);

Description of Function: This function sets the capture probe input signal event. The motion

controller uses the channel 0 (EXI0) of general purposed input as probe input. After this
___|

77

Chapter Eleven Description of Functions

function is evoked, the position capture register of al control axes and the position capture

register of auxiliary encoder will record the actual position when the probe signal comes.

When the capture event happens, the symbol (i.e. bit3) indicating that a capture happens in the

status characters of al the control axes will be set.

Executing GT_CaptProb() once only captures the position information of one probe input

signal. To capture the position of next signal, user must evoke this function again to set the

capture probe input signal event. The actua position captured can be used as the accurate

coordinate home point of the control axis. The process of capturing Home signal is done by

hardware,, irrelevant with the velocity of motion axis.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_CaptHome, GT_Captlndex

Evoke Function: The following sample sets a capture probe input signal event, detect status
during motion, get and print the actual position captured by the second axis when capturing
event happens.

void main()

{
short rtn;
unsigned short status;
long actl_pos;

rtn=GT_CaptProb(); error(rtn);

rtn=GT_AXxis(2); error(rtn);
rtn=GT_GetSts(& status); error(rtn);
while(status& 0x400)

{
if (status& 0x4)
{
rtn=GT_GetAtlPos(& actl_pos); error(rtn);
printf(“the capture pos of axis 2 is. %ld\n”,actl_pos);
break;
}
rtn=GT_GetSts(& status); error(rtn);
}
}
GT_Close

Function Prototype: short GT_Close(void);

Description of Function: Close the motion controller. Generally this function this command is
evoked at the end of user program.

System: DOS (PCI Bus), WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_Open

78

Chapter Eleven Description of Functions

GT _CloseLp

Function Prototype: short GT_CloselL p(void);
Description of Function: This function sets the current axis asin close loop control. When the
system is powered, the default status of each control axis is close loop control. If the current
axis has been activated (i.e. the function GT_AxisOn() was evoked.), but is still in open loop
status, evoking this function may cause the motor to stop abruptly sometimes. This is due to
that, in the current open loop, the motor may float, causing a quite large deviation between the
actual position and target position of the motor. So, when the current axis has been activated,
before evoking this function, it is better to prohibit the current axis activation (i.e. evoking the
function GT_AxisOff()) first, and then evoke the function GT_SynchPos() to make the target
position equal to the actual position.
System: DOS, WINDOWS
Applicable Card: SV
Relevant Function: GT_OpenLp
Evoke Function: Without any danger, the following sample sets the first axis as in close
loop control status .
void main()
{

short rtn;

rtn=GT_Axis(1); error(rtn);

rtn=GT_AXxisOff(); error(rtn);

rtn=GT_SynchPos(); error(rtn);

rtn=GT_Update(); error(rtn);
rtn=GT_ClosLp(); error(rtn);
}

GT_Clearint

Function Prototype: short GT_ClearInt(unsigned short CardNo)

Description of Function: Use this function to clear the interrupt state of the control card. In
the end of the interrupt service routine (ISR), user must evoke this function to recover the state of
control card from interrupt to normal.

Function Parameter: CardNo is the corresponding control card number. Please refer to
GT_SwitchtoCardNo for detail. When asingle card isin use, this value will always be 0.

Function Return: 0 means success and -1 means failure.

Function Evoking: Refer to DOS interrupt treatment.

Applicable Card: PCI Bus Card

System: DOS

Function Evoking: GT_Clearint is only effective in the interrupt service routine. The typical
useisasfollows:

void interrupt My _lsr(...) //ISR to be used.
{

79

Chapter Eleven Description of Functions
___|

.../lUser code

GT_ClearInt(0);

outportb(0x20,0x20);

outportb(0xa0,0x20); //State interrupt service ending to interrupt controller.

GT_CIrEncPos

Function Prototype: short GT_ClrEncPos(unsigned short EncNum)

Description of Function: Clear the value in the auxiliary encoder specified by EncNum.
Function Parameter: The parameter Enc_Num indicates the auxiliary encoder number
requiring to clear its position. The motion controller has two auxiliary encoders, No. 1 and No.
2.

Function Return: 0 means success and -1 means failure.

Applicable Card: The card with this selectable function.

System: DOS, WINDOWS

GT_ClIrSts

Function Prototype: short GT_CIrSts(void);
Description of Function: This function clears the event status bit of the current axis, but
doesn't affect the interrupt triggered by event of the motion controller. It just clears the event
related bit of the current axis status word, and enables the setting of a bit when the next new
event happens. For the definition of each bits of status word, please refer to Table 11-1.
After executing GT_CIrSts(), Bit0~Bit7 is cleared. When new event happens next time, the
corresponding bit will be set to “1”. Bit8-bitl5 is controlled wholly by the motion controller,
which this function doesn’t affect.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Function Evoking: The following sample clears the event status bit of the fourth axis.
void main()
{
short rtn;
rtn=GT_AXxis(4); error(rtn);
rtn=GT_CIrSts(); error(rtn);

}
Table 11-1 Defintion of Each Bit in Status Register
Bit Definition

0 Motion completion symbol bhit. If the motion of control axis is completed,
this bit = 1. This symbol isineffective in electronic gear motion mode.

1 Alarm bit of motor servo driver. If the driver of control axis alarms, the bit
=1

2 Breakpoint arrival bit. If the breakpoint is enabled, when any conditions are
met, thisbit is set to 1.

3 Index/Home triggering bit. After setting a position capture command, when
the controller detects required Index/Home capture conditions, this bit = 1.

e .__|
80

Chapter Eleven Description of Functions
___|

Bit Definition
4 Motion error bit. If the position error exceeds the allowed scope (Refer to
4.4.7.3 Description.), the controller will set this bit as 1. Only when the
controller is not in motion error status any more, can this bit be cleared.
5 Triggering bit of positive limit switch. If the switch istriggered, this bit = 1.
6 Triggering bit of negative limit switch. If the switch is triggered, this bit =
1
7 Command error bit. If there is error command, the controller will set it as 1.
8 Open loop/close loop status of motor (1 means close loop and 0 means open
loop.)
9 Motor servo activation/prohibit status (1 means activation and O means
prohibit.)
10 Motion status symbol hit. It indicates continuously whether the control axis
isin motion. If itisin motion, the bit = 1. If in static, the bit = 0.
11 Limit switch activation/prohibit status (1 means activation and 0 means
prohibit.)
12 The number symbol of current axis (13bit = high level and 12bit = low
13 level.). The coding of the current axis numbersis as follows.
Bit 13 Bit12 AXis
0 0 1
0 1 2
1 0 3
1 1 4
14 Set Home switch signal capture symbol.
15 Set Index signal capture symbol.
GT_CtrIMode

Function Prototype: short GT_CtrIMode(int mode);
Description of Function: This function sets the output mode of current axis as analog voltage
output or pulse output.
Function Parameter: “mode” means motion control output mode. There are two modes, 0
means the analog voltage output mode and 1 means pulse output mode. The default status of
the motion controller is the analog voltage output mode.
System: DOS, WINDOWS
Applicable Card: SV
Function Evoking: The following sample sets the first axis as in pulse output mode to control
the step motor.
void main()
{
short rtn;
rtn=GT_Axis(1); error(rtn);
rtn=GT_CtrIMode(1); error(rtn);
}

GT_DrvRst

Function Prototype: short GT_DrvRst(void);
Description of Function: When the driver of current axis sends fault alarm, after evoking this

81

Chapter Eleven Description of Functions

function, the controller will send resetting signal to the axis driver to reset the driver. Before
evoking this function, the current axis has to be in drive prohibition status. Otherwise, the
command is ineffective.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Function Evoking: In the following sample, if the fourth axis generates drive alarm signal,
reset the driver and clear alarm signal.

void main()
{
short rtn;
unsigned short status;

rtn=GT_AXxis(4); error(rtn);
rtn=GT_GetSts(& status); error(rtn);
if (status& 0x2)
{
rtn=GT_DrvRst(); error(rtn);
rtn=GT_RstSts(0xfffd); error(rtn);

GT_EncPos

Function Prototype: short GT_EncPos(short Enc_Num, long* Actl_pos);

Description of Function: Thisfunction is to get the actual position of auxiliary encoder.

The parameter Enc_Num means the auxiliary encoder number to be gotten. The motion
controller has two routes of auxiliary encoder, No. 1 and No. 2. The parameter * Actl_pos gets
the actual position of specified auxiliary encoder.

System: DOS, WINDOWS

Applicable Card: SV, SG, SP

Relevant Function: GT_EncVel

Function Evoking: The following sample gets and prints the position of auxiliary encoder No.
2.

void main()

{
short rtn;
long actl_pos,

rtn=GT_EncPos(2, & actl_pos); error(rtn);
printf(“the actual position of assistant encoder 2 is: %ld\n”, actl_pos);

GT_EncSns

Function Prototype: short GT_EncSns(unsigned int Sense);

Description of Function: The motion controller requires the positive direction of the control
axis (motor) consistent with that of the corresponding encoder, so as to form correct negative
feedback. If the wrong connection or other reasons causes the two directions opposite to each

82

Chapter Eleven Description of Functions
___|

other, user can evoke this function to use a software method to verify the positive counting
direction of encoder, to make it consistent with the positive direction of the motor motion.

BitO to bit6 in the parameter Sense indicate that whether the counting direction of each
corresponding axis encoder needs to be revised, as listed in Table 2-3. In the table, if a
corresponding bit is set to 0, it means that the counting direction of corresponding axis encoder
will not be modified. Whereas, if it is set to 1, it means that the counting direction of
corresponding axis encoder will be modified. All the bits are O by default in register.

System: DOS, WINDOWS

Applicable Card: SV

Function Evoking: The following sample reverses the direction of the first and second axes,
and keeps the direction of the third and fourth axis encoder, and auxiliary encoder No. 1 and

No.2 the same.
void main()
{
short rtn;
rtn=GT_EncSns(3); error(rtn);
}
Table 11-2 Definition of Bitsin Encoder Register
Bit Description Definition
6-15 | Not used. Set to 0.
5 Auxiliary encoder No. 2 0: No change 1: Reversed
4 Auxiliary encoder No. 1 0: No change 1: Reversed
3 Axist4 0: No change 1: Reversed
2 AXis#3 0: No change 1: Reversed
1 AXis#2 0: No change 1: Reversed
0 AXxis#l 0: No change 1: Reversed

GT_EncVe

Function Prototype: short GT_EncVel(short Enc_Num, double* Actl_vel);
Description of Function: Thisfunction isto get the actual velocity of auxiliary encoder.
The parameter Enc_Num indicates the number of auxiliary encoder to be gotten. The motion
controller has two routes of auxiliary encoder, No. 1 and No. 2. The parameter *Actl_vel gets
back the actual position of specified auxiliary encoder.
System: DOS, WINDOWS
Applicable Card: SV, SG, SP
Relevant Function: GT_EncPos
Function Evoking: The following sample gets and prints the velocity of auxiliary encoder No.
2.
void main()
{
short rtn;
double actl_vel;
rtn=GT_EncVel(2, &actl_vel); error(rtn);

83

Chapter Eleven Description of Functions

printf(“the actual velocity of assistant encoder 2 is: %f\n”, actl_vel);

GT_EStpMtn

Function Prototype: short GT_EStpMtn(void);

Description of Function: This function stops abruptly the multiple-axis coordination motion
command based on the coordinate system. After the function is executed, there is no velocity
decelerating course, and the synthesized velocity of current motion and the target synthesized
velocity becomes zero immediately. In the buffer command execution status, after the motion
stops, it will save necessary information when the motion scope, so as to evoke the function
GT_StrtMtn () to continue the execution of buffer command. In the abrupt command input
execution status, after the motion stops, the information of current motion will be abandoned.
User cannot send interrupt command when executing positioning instruction, that is, the
process moving to the positioning point cannot be interrupted. Now, sending interrupt
command will cause motion error.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_StpMtn

Function Evoking: The following sample stops abruptly the motion in coordiate system in
executing the cmmmand in buffer.

void main()
{
short rtn;
rtn=GT_StrtList(); error(rtn);

rtn=GT_MvXY Z(0,0,0,16,3.7); error(rtn);
rtn=GT_LnXYZ(1234,5678,9013); error(rtn);
rtn=GT_StrtMtn(); error(rtn);
rtn=GT_ArcXY (2345,6789,360); error(rtn);
rtn=GT_EndList(); error(rtn);
rtn=GT_EStpMtn(); error(rtn);

}

GT_Evntintr

Function Prototype: short GT_Evntintr(void);

Description of Function: This function sets the interrupt request by the motion controller to
the host as axis event interrupt.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_Tmrlntr

Function Evoking: GT_Evntintr()

Chapter Eleven Description of Functions
___|

GT_ExInpt

Function Prototype: short GT_ExInpt (unsigned short * Data);

Description of Function: This function gets the status of general purposed input of the motion
controller.

Function Parameter: *Data returns the status. The corresponding relation of each bit to
general purposed input port is asfollows.

Bit-Definition Bit-Definition Bit-Definition Bit-Definition
BitO----EXI0 Bitl----EXI11 Bit2----EX12 Bit3----EX13
Bit4----EX14 Bit5----EXI5 Bit6----EX16 Bit7----EX17
Bit8----EXI8 Bit9----EX19 Bit10----EX110 Bit11----EX111
Bit12----EX112 Bit13----EX113 Bitl4----EX114 Bit15----EX115

System: DOS, WINDOWS

Applicable Card: All GT series cards
Relevant Function: GT_ExOpt
Function Evoking: The following sample gets the status of general purposed input. If EXI8is
at logic 1, stop the motion in coordinate system.
void main()

{

short rtn, ex_inp;

rtn=GT_ExInpt(&ex_inp); error(rtn);
if(ex_inp& 0x100)
{
rtn=GT_StpMtn(); error(rtn);
}
}
GT_ExOpt

Function Prototype: short GT_ExOpt(unsigned short Data);

Description of Function: This function sets the status of general purposed input of the motion

controller.

Function Parameter: Data is the status to be set. The corresponding relation of each bit to
general purposed input port is as follows.

Bit-Definition Bit-Definition Bit-Definition Bit-Definition
BitO----EXO0 Bitl----EXO1 Bit2----EXO2 Bit3----EXO3
Bit4----EXO4 Bit5----EXO5 Bit6----EXO6 Bit7----EXO7
Bit8----EXO8 Bit9----EXO9 Bit10----EXO10 Bit11----EXO11
Bit12----EXQO12 Bit13----EXO13 Bit14----EX0O14 Bit15----EXQO15

System: DOS, WINDOWS

Applicable Card: All GT series cards
___|

85

Chapter Eleven Description of Functions
___|

Relevant Function: GT_ExInpt
Function Evoking: The following sample sets the general purposed output EXOO at logic 1 if
the general purposed input EXI5isat logic 1.
void main()
{
short rtn, ex_inp;
rtn=GT_ExInpt(&ex_inp); error(rtn);
if(ex_inp& 0x20)
{
rtn=GT_ExOpt(0x1); error(rtn);
}

GT_ExtBrk

Function Prototype: short GT_ExtBrk(void);

Description of Function: This function sets the breakpoint mode of current axis as home point
switch triggering breakpoint mode. After evoking the function, when the controller detects that
the axis home point switch is effective, trigger the breakpoint to set the breakpoint symbol of
axis status register as 1 and clear the breakpoint mode, i.e. except the host sets the breakpoint
again, the host will not trigger this breakpoint any more. Meanwhile, when the automatic
update symbol of axis mode status register is 1, the controller will update all the dual-buffer
structure parameters and commands of the current axis.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Function Evoking: The following sample sets the breakpoint mode of the second axis as the
home point switch triggering breakpoint mode, and automatically updates the command of
smooth stop when the home point switch istriggered.

void main()
{
short rtn;
rtn=GT_AXxis(2); error(rtn);

rtn=GT_AuUpdtOn(); error(rtn);
rtn=GT_CaptHome(); error(rtn);

rtn=GT_ExtBrk(); error(rtn);
rtn=GT_PrflT(); error(rtn);
rtn=GT_SetPos(87654); error(rtn);
rtn=GT_SetVel(32); error(rtn);
rtn=GT_SetAcc(1.1); error(rtn);
rtn=GT_Update(); error(rtn);
rtn=GT_SmthStp(); error(rtn);
}

GT_GetAcc

Function Prototype: short GT_GetAcc(double* Acc);
___|

86

Chapter Eleven Description of Functions

Description of Function: Thisfunction gets the accel eration of current axis set by the function
GT_SetAcc().

Function Parameter: * Acc returns the acceleration.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetAcc

Function Evoking: The following sample gets the acceleration set for the third axis.

void main()

{
short rtn;
double acc;

rtn=GT_Axis(3); error(rtn);
rtn=GT_GetAcc(&acc); error(rtn);
}

GT_GetAdc

Function Prototype: short GT_GetAdc(short Channel, short* Adc_Data);

Description of Function: This function gets the AD conversion result. The sampling
frequency of eight channels under AD conversion is 770Hz.

Function Parameter: The parameter Channel sets AD channel number, with a value range of
1-8. The parameter *Adc_Data returns AD conversion result, with a value range of 0-2047
(indicating positive voltage: 0V to 10V) and 2048~4095 (indicating negative voltage: -0V to
-10V). For evoking it, please refer to the sample.

System: DOS, WINDOWS
Applicable Card: Card with A/D function
Function Evoking: This function can be evoked at any time. The following sample gets the
AD conversion result of channel two.

void main()
{
short rtn;
short Adc_Data;
rtn=GT_GetAdc(2,& Adc_Data);
if(rtn!=0) return;
if(Adc_Data>2047) Adc_Data=-10*(Adc_Data-2048)/2048;
printf(“the Adc_Datais: d%”, Adc_Data);

GT_GetAddr

Function Prototype: short GT_GetAddr(unsigned short * Base_addr);

Description of Function: This function gets the communication base address between the host

and the motion controller set by the function GT_SetAddr() or the default base address (0x300)

by the host at the time of being powered.

Function Parameter: *Base_addr returns the base address used in current communication. If

user used GT_SetAddr() to set a base address, but this address has an error, what the parameter
___|

87

Chapter Eleven Description of Functions

returns will also be this wrong base address.
Function Return: The difference between this function and other functions is that, because
there is no data exchange with the motion controller, the return value of this function will
aways be 0.
System: DOS
Applicable Card: I1SA Bus Card
Relevant Function: GT_SetAddr
Evoke Function: The following sample gets and prints the base address.
void main()
{
short rtn;
unsigned shor base_addr;
rtn=GT_GetAddr(&base_addr); error(rtn);
printf(“the base addressis. %d\n” ,base_addr);

GT_GeAtlErr

Function Prototype: short GT_GetAtlErr (short * Aerr);

Description of Function: This function gets the actual position error of current axis, i.e. the
difference between the current planned position and the current actual position. This function
isusually used to monitor the servo control position error.

Function Parameter: * Aerr returns the actual position error.

System: DOS, WINDOWS

Applicable Card: SV

Function Evoking: The following sample gets and prints the actual position error of the

second axis.

void main()

{
short rtn, actl_err;
rtn=GT_AXxis(2); error(rtn);
rtn=GT_GetAtlErr(&actl_err); error(rtn);
printf(“the actual error is: %d\n” ,actl_err);

}

GT_GetAtlPos

Function Prototype: short GT_GetAtlPos(long * Apos);

Description of Function: Thisfunction gets the actual position of current axis.

Function Parameter: * Apos returns the actual position.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetAtlPos

Function Evoking: The following sample gets and prints the actual position of the first axis.
void main()
{

e .__|
88

Chapter Eleven Description of Functions
___|

short rtn;

long actl_pos;

rtn=GT_AXis(2); error(rtn);
rtn=GT_GetAtIPos(& actl_pos); error(rtn);
printf(“the actual posis: %ld\n” ,actl_pos);

GT_GetBgCommandResult

Function Prototype: short WINAPI GT_GetBgCommandResult (PBGCOMMANDSET
BgCmdset, ULONG CmdsetSize);

Description of Function: Get the background command set execution result of the controller.
Function Parameter: pBgCmdset is the start address of the background command set. The
variable result of the structure GENERAL_COMMAND saves the command execution result.
0 means success in executing command, -1 means failure in executing relevant command. The
parameter CmdsetSize indicates the space size of the background command set, with a unit in
byte.

Function Return: O means success and -1 means failure.

System: WINDOWS

Applicable Card: PCI Bus Card

Relevant Function: GT_SetBgCommandSet

GT_GetBrkCn

Function Prototype: short GT_GetBrkCn(long * Brk);

Description of Function: This function gets the breakpoint position of the current axis set by
the function GT_SetBrkCn().

Function Parameter: *Brk returns the breakpoint position.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetBrkCn

Function Evoking: GT_GetBrkCn()

GT_GetCapt

Function Prototype: short GT_GetCapt (long * Capt);
Description of Function: This function gets the position value where Index or Home signal
captured by the current axis appears. This value kept the same in motion situation until the
next capture event happens.
Function Parameter: * Capt returns the captured position value by the current axis.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_CaptHome, GT_Captindex, GT_CaptProb
Function Evoking: The following sample gets the position value of the point where Home
signal is captured by the third axis and keeps the position stay at the point.
void main()

89

Chapter Eleven Description of Functions
___|

{
short rtn;

unsigned short status;

long capt_pos,

rtn=GT_GetSts(& status); error(rtn);

if (status& 0x8)

{
rtn=GT_GetCapt(& capt_pos); error(rtn);
rtn=GT_SetPos(capt_pos); error(rtn);
}

GT_GetCmdSts

Function Prototype: short GT_GetCmdSts(unsigned short * Cstatus);

Description of Function: This function gets the contents of the command status register of the
controller.

Function Parameter: * Cstatus returns the value of the register. In main user program, detect
the return value of each function to tell the execution status of communication and command.
If the command return valueis 1, it indicates that the command from the host is wrong, and the
controller reports error in the command. Once a command error happens, the motion controller
will neglect these illegal motion commands. The host can evoke this command to get the
reason for command error. This register is a 16-bit register. The definition of each bit isin the
following table.

Bit Definition
Bit0 1. Overflow of control parameters input by command. The commands
generating error include GT_SetPos(), GT_SetVel(), GT_SetAcc(),
GT_SetAtlPos(), etc.
Bitl 1: lllegal control parameters input by command. The commands generating
error include GT_SetVel(), GT_SetAcc(), GT_SetJerk(), GT_SetMAcc(),
GT_SetMtrLmt(), GT_SetKp(), GT_SetKi(), GT_SetKd(), GT_SetKvff(),
GT_SetKaff(), GT_SetiLmt(), GT_SetPosErr(), etc.
Bit2 1: The host sends the command GT_MItiUpdt (value), but value=0.
Bit3 1: lllega usage of GT_DrvRst(). When the current axis is in the servo
activation status, the host sending this command will generate error symbol.

Bit4 1: No event interrupt from the controller, but the host sends the command
concerning interrupt.

Bit5 (Blank)

Bit6 1: When the current axis is in motion, the host sends a command to modify
the work mode of the current axis (except that the current axis is in the
electronic gear mode).

Bit7 1: The position capture completion symbol of the current axis status register
is 1, or when the command GT_Captindex() (GT_CaptHome()) has been
set but the position has not been captured yet, the host sends the command

0

Chapter Eleven Description of Functions
___|

Bit Definition

GT_Captindex().

Bit8 1: The position capture completion symbol of the current axis status register
is 1, or when the command GT_Captindex() (GT_CaptHome()) has been
set but the position has not been captured yet, the host sends the command
GT_CaptHome().

Bit9 1: When the driver alarm symbol of the current axis status register is 1, the
host sends the command GT_AxisOn().

Bit10 (Blank)

Bitll 1: When the “motion status symbol” in the current axis status register is 1,
the host sends the command GT_ZeroPos() and sets this bit to 1. When the
motion mode of current axisis the velocity control mode, the host sends the
command GT_SynchPos() and makes it effective, and this bit is set to 1.
When the “motion status symbol” of the current axis status register is 1, use
GT_Update() or GT_MItiUpdt() to modify the control parameters of current
axis. But these parameters cannot be modified in the current motion mode
(for example, in S-curve motion mode and when the motor isin motion, the
host sends the command GT SetVel(), and GT Update() or
GT_MItiUpdt()).

Bit12 1: Illegal commands for coordinate system, including:

The physical axis mapped isin motin when the coordinate system is
being built.

When the buffer command is in execution, evoke the command
GT_StrtMtn().

When the buffer command is in execution, evoke the command
GT_StrtList().

When the buffer command is being input, evoke the command

GT_AddList ().
When the immediate command input is in execution and the motion is not
yet finished, evoke a new motion description command.
Bit13 1. Error in evoking the commands GT_MvXY (), GT_MvXYZ() and
GT_MVXYZA().
Bit14 (Blank)
Bit15 1: The buffer is full. Now, since the buffer is full, the motion description
command evoked just now has not be received by the motion controller,
and the host has to evoke the command repeatedly until it is received.

System: DOS, WINDOWS
Applicable Card: All GT series cards
Function Evoking: This function can be evoked at any time.

91

Chapter Eleven Description of Functions

GT_GetCurrentCardNo

Function Prototype: short GT_GetCurrentCardNo(void);

Description of Function: This function gets the current control card number, ranged from 0 to
15.

System: DOS, WINDOWS

Applicable Card: PCI Bus Card

Relevant Function: GT_SwitchtoCardNo

Function Evoking: GT_GetCurrentCardNo (1)

GT_GetEncCapt

Function Prototype: short GT_GetEncCapt(long *value);

Description of Function: This function gets the actual count value of the auxiliary encoder
when INDEX signal is captured.

When INDEX signal is not captured, evoke the previous actual count value gotten by this
function.

Function Parameter: *value is the actua position of auxiliary encoder when the signd is
captured.

System: DOS, WINDOWS

Applicable Card: Select GT series cards with “INDEX signal capture function of auxiliary
encoder”.

Relevant Function: GT_GetEncSts, GT_SetEncCapt

GT_GetEncSts

Function Prototype: short GT_GetEncSts(unsigned short *value);
Description of Function: This function gets the capture status of auxiliary encoder.
Function Parameter: Bit3 in the returned parameter means whether INDEX signal is captured
or not:
“0” means “not captured”, and “1” means “captured”.
Once the capture succeeds, this symbol bit (bit3) will be set (= 1). It will not be cleared (= 0) to
theinitia status of O until the function GT_SetEncCapt is evoked again.
System: DOS, WINDOWS
Applicable Card: Select GT series cards with “INDEX signal capture function of auxiliary
encoder”.
Relevant Function: GT_GetEncCapt, GT_SetEncCapt

GT_GetlLmt

Function Prototype: short GT_GetlL mt(unsigned short * 11m);

Description of Function: This function the error integral limit of the current axis set by the
function GT_SetILmt ().

Function Parameter: *1Im returns the error integral limit.

System: DOS, WINDOWS

Applicable Card: SV

e .__|
92

Chapter Eleven Description of Functions
___|

Relevant Function: GT_SetlLmt

GT_GetIntgr

Function Prototype: short GT_Getlntgr(short * Intgr);

Description of Function: Thisfunction gets the integral error of the current axis servo filter.
Function Parameter: *Intgr returns the integral error.

System: DOS, WINDOWS

Applicable Card: SV

GT_Getintr

Function Prototype: short GT_GetIntr(unsigned * Status);

Description of Function: This function gets the status character of the axis generating
interrupt request. If the command is executed but the motion controller doesn’t generate
interrupt request, the function GT_GetIntr() will get the status character of the current axis.
Function Parameter: *Status returns the status character. For its meaning, please see Table
11-1 of the function GT_CIrSts(). Bit 0-bit6 indicates the event related with interrupt. When
the interrupt mask character corresponding to an event is set as alowing interrupt, if the
interrupt condition is satisfied, the motion controller will send interrupt regquest to the host.
After the host responds to this interrupt, evoke GT_Getlntr() to inquire the type of interrupt
event.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Special Notice: In WINDOWS environment, what the function GT_Getlntr gets is the
interrupt status character when the previous interrupt is generated by the motion controller.
Status = 0: The controller doesn’t generate an interrupt, or the previous one is the time event.
Status #* 0: For detailed meaning, please see the following table. Pay attention that, Bit12
and Bit13 in the status indicate the axis generating the previous event interrupt. In the interrupt
service routine, evoke this function to tell the interrupt type.

GT_GetintrMsk

Function Prototype: short GT_GetIntrMsk (unsigned short * Mask);

Description of Function: Thisfunction gets the interrupt mask character of the current axis set
by the function GT_SetIntrMsk ().

Function Parameter: *Mask returns the interrupt mask character. For its meaning, please
refer to the bit definition of the function GT_Rstintr() and description of the function
GT_SetintrMsk().

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetIntrMsk

GT_GetintrTm

Function Prototype: short GT_GetIntrTm(unsigned short * Timer);
Description of Function: This function gets the time constant of time interrupt of the motion

e .__|
93

Chapter Eleven Description of Functions

controller set by the function GT_SetIntrTm().
Function Parameter: *Timer returns the time constant.
System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetintrTm

GT_GetJerk

Function Prototype: short GT_GetJerk (double * Jerk);

Description of Function: This function gets the jerk of the current axis set by the function
GT_SetJerk ().

Function Parameter: The double-precision parameter * Jerk returns the jerk.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetJerk

GT_GetK aff

Function Prototype: short GT_GetKaff (unsigned short * Kaff);

Description of Function: This function gets the acceleration feedback gain of the current axis
set by the function GT_SetKaff().

Function Parameter: *Kaff returns the accel eration feedback gain.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetK aff

GT_GetKd

Function Prototype: short GT_GetKd(unsigned short * Kd);

Description of Function: This function gets the differential gain of the current axis set by the
function GT_SetKd().

Function Parameter: *Kd returns the differential gain.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetKd

GT_GetKi

Function Prototype: short GT_GetKi (unsigned short * Ki);

Description of Function: This function gets the integral gain of the current axis set by the
function GT_SetKi ().

Function Parameter: *Ki returnsthe integral gain.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetKi

94

Chapter Eleven Description of Functions

GT_GetKp

Function Prototype: short GT_GetKp(unsigned short * Kp);

Description of Function: This function gets the percentage gain of the current axis set by the
function GT_SetKp().

Function Parameter: *Kp returns the percentage gain.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetKp

GT_GetKvff

Function Prototype: short GT_GetKvff (unsigned short * Kvff);

Description of Function: This function gets the velocity feedback gain of the current axis set
by the function GT_SetKvff().

Function Parameter: *Kvff returns the velocity feedback gain.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetKvff

GT_GetL mtSwt

Function Prototype: short GT_GetL mtSwt (unsigned short * Switch);

Description of Function: Thisfunction gets the actual status of current limit switch.

Function Parameter: * Switch returns the level of the limit switch input signal, as defined in
the following table. If a bit = 1, it means that the input signal of the corresponding switch is at
logic 1. If abit =0, it means that the input signal is at low level. This function is not related
with the function GT_LmtSns(), and only shows the actual status of limit switch.

Bit Description Definition

8-15 | Not used. Set to 0.

7 Axis #4: Status bit of negative | O: Highlevel, 1: Low level.
direction limit switch

6 Axis #4. Status hit of positive | O: Highlevel, 1: Low level.
direction limit switch

5 Axis #3. Status bit of negative | O: Highlevel, 1. Low level.
direction limit switch

4 Axis #3. Status hit of positive | O: Highlevel, 1. Low level.
direction limit switch

3 Axis #2: Status bit of negative | 0: Highlevel, 1: Low level.
direction limit switch

2 Axis #2. Status bit of positive | O: Highlevel, 1: Low level.
direction limit switch

1 Axis #1:. Status bit of negative | O: Highlevel, 1: Low level.

95

Chapter Eleven Description of Functions

direction limit switch

0 Axis #1. Status bit of positive | O: Highlevel, 1: Low level.
direction limit switch

System: DOS, WINDOWS
Applicable Card: All GT series cards

GT_GetMAcc

Function Prototype: short GT_GetMAcc(double * Macc);

Description of Function: This function gets the maximum acceleration of the current axis set
by the function GT_SetMAcc().

Function Parameter: The double-precision parameter *Macc indicates the maximum
acceleration needed.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetMAcc

GT_GetMode

Function Prototype: short GT_GetMode (unsigned short * Mode);

Description of Function: Thisfunction gets the control mode character of the current axis.
Function Parameter: *Mode returns the control mode character. Each bit is defined in the
following table.

Bit Description
0-6 For internal use.
Motion error stop symbol bit. The commands GT_AuStpOn() and
GT_AuStpOff() can modify this symbol bit. The bit = 1 means that, afer the
motor encounters motion error, the motor servo activation will be closed
automatically and the motor will stop.
8-9 Reserved.
Automatic updating of symbol bit. The commands GT_AuUpdtOn() and
GT_AuUpdtOff() can modify this symbol bit. The bit = 1 means that, the

10 motion controller will update automatically the control axis parameters after
the breakpoint condition is satisfied.
The coding of control axis motion mode symbols are:
Bit13 Bit12 Bitll Motion Mode
0 0 0 T-curve mode
11-13 0 0 1 Velocity control mode
0 1 0 S-curve mode
0 1 1 Electronic gear mode
1 0 1 Coordinate motion mode

14-15 For internal use.
System: DOS, WINDOWS
Applicable Card: All GT series cards

GT_GetMtrBias

Function Prototype: short GT_GetMtrBias(unsigned short * Bias);
Description of Function: This function gets the net difference compensation of the current

96

Chapter Eleven Description of Functions

axis set by the function GT_SetMtrBias().

Function Parameter: *Bias returns the net difference compensation.
System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetMtrBias

GT_GetMtrCmd

Function Prototype: short GT_GetMtrCmd (short * Mcmd);

Description of Function: In open loop status, this function gets the motor control output value
of the current axis set by the function GT_SetMtrCmd().

Function Parameter: *Mcmd returns the motor control output value. When the current axisis
in close loop status, the return value of parameter *Mcmd has no meaning.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_SetMtrCmd

GT_GetMtrLmt

Function Prototype: short GT_GetMtrLmt (unsigned short * MImt);

Description of Function: This function gets the output limit of the current axis set by the
function GT_SetMtrLmt().

Function Parameter: *MImt returns the output limit.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetMtrL mt

GT_GetPos

Function Prototype: short GT_GetPos(long * Pos);

Description of Function: This function gets the position value of the current axis set by the
function GT_SetPos().

Function Parameter: * Pos returns the target position value set.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetPos

GT_GetPosErr

Function Prototype: short GT_GetPosErr(unsigned short * Perr);

Description of Function: This function gets the position error limit of the current axis set by
the function GT_SetPosErr().

Function Parameter: *Perr returns the position error limit set.

Applicable Card: SV

System: DOS, WINDOWS

Relevant Function: GT_SetPosErr

97

Chapter Eleven Description of Functions

GT_GetRatio

Function Prototype: short GT_GetRatio(double * Ratio);

Description of Function: This function gets the electrical gear deceleration ratio set by the
function GT_SetRatio() in the electrical gear work mode.

Function Parameter: *Ratio returns the electrical gear deceleration ratio set.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetRatio

GT_GetSmplTm

Function Prototype: short GT_GetSmpl Tm(double * Timer);

Description of Function: This function gets the servo period set by the function
GT_SetSmplTm().

Function Parameter: * Timer returns the servo period set, ranged from 48(us) to 1966.08 (us).
System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetSmplTm

GT_GetSts

Function Prototype: short GT_GetSts (unsigned short * Status);

Description of Function: Thisfunction gets the status character of the current axis.

Function Parameter: *Status returns the status character. For its meaning, please see Table
11-1 for the function GT_CIrSts().

System: DOS, WINDOWS

Applicable Card: All GT series cards

Function Evoking: The following sample detects the status of the first axis. If the axis doesn’t
move, give a new position value and update it.

void main()
{
short rtn;
unsigned short status;

rtn=GT_GetSts(& status); error(rtn);
if (status& 0x400) return;

rtn=GT_SetPos(10000); error(rtn);
rtn=GT_Update(status); error(rtn);

GT_GetVe

Function Prototype: short GT_GetVel (double* Vel);

Description of Function: This function gets the velocity of the current axis set by the function
GT_SetVel().

Function Parameter: *Vel returns the velocity.

e .__|
98

Chapter Eleven Description of Functions

System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_SetVel

GT_HardRst

Function Prototype: void GT_HardRst (void);
Description of Function: This function restores the motion controller. After evoking this
function, the host will output a restoring signal. So, in any condition, GT_HardRst() can
restore the controller, and reset all the initial status of the control register, which are as follows.
[1] Set al the motion parameters register to O.
[2] Setal the position capture register to 0.
[3] Clear al the event status bits.
[4] Mask al the interrupt request bits (Reset them.).
[5] Set the position control mode as T-curve control mode.
[6] Set the parameters of each filter to O.
[7] Limit the integral of four axesto 32767.
[8] Setthe position error limit of four axesto 32767.
[9] Setall the breakpoint comparison valuesto 0.
[10] Prohibit the automatic parameter updating mode.
[11] Set four axes asin close loop mode.
[12] Prohibit the automatic stopping of four axes due to motion error.
[13] The output voltage limit value of four axesis 32767.
[14] The acceleration limit of four axes (for motion in coordinate system) is 16384.
[15] Allow automatic stopping of motion in coordinate system due to motion
exception.
[16] The motion in coordinate system is in the immediate command input and
execution status.
[17] No mapping relation between the coordinate system and the four motor control
axes.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_Reset
Function Evoking: This function is evoked normally when the motion controller has error not
restorable.

GT_Home

Function Prototype: short GT_Home(long pos)

Description of Function: Evoking this function to reset the current axis automatically. After
receiving this command, the motion controller will move to the target position set by the
parameter immediately. During movement, when Home signal is triggered, the motion
controller will do different treatment according to whether user sets the command GT_Index or
not. If GT_Index has been set and HometIndex are required to be reset automatically, the
current axis will continue moving, search and stop at the position triggering Home signal. If
GT_Index is not set and only Home is required to be reset, the current axis will stop at the

99

Chapter Eleven Description of Functions
___|

position triggering Home signal.

When this command is evoked, Home signa will be in triggering status. The current axis will
first move at the opposite direction against the target position set, until it exits the signa
triggering area. Then it will move towards the target position and stop at Home position (or
Home+Index position).

Function Parameter: pos is the target position of the resetting motion, ranged from
-1,073,741,824 to 1,073,741,823. The setting of parameter requires that, before the motion
arrives at the target position, Home signal can be triggered.

Applicable Card: Select GT series card with the automatic resetting function.

System: DOS WINDOWS

Relevant Function: GT_HomeSense, GT_Index

GT_Hooklsr

Function Prototype: GT_ISR GT_Hooklsr(GT_ISR gtisr)

Description of Function: Specify an interrupt service routine (ISR) for the interrupt hook of
PCI control card.

Function Parameter: gtisr isthe start address of 1SR.

Function Return: The return value is the start address of the original ISR. It must be reserved
for the function GT_Unhooklsr.

Function Evoking: Refer to interrupt treatment in DOS.

Applicable Card: PCI Bus Card

System: DOS

Relevant Function: GT_Unhooklsr

GT_Index

Function Prototype: shortGT_Index(short value)
Description of Function: Set the automatic resetting mode as Home+Index, i.e. after finding
the Home position automatically, search the triggering point of Index signal automatically,
and stop at the triggering position of Index signal. The changing command is used together
with GT_Home to reset accurately the equipment automatically.
Function Parameter: value O (default): Do not search Index signal after automatically
resetting.
1: Search Index signal after automatically resetting.
Function Evoking: The following sample realizes the automatic resetting accurately.
void autohome()
{
short rtn;
GT_Index();
GT_Home(2000000);
}
Applicable Card: Select GT series card with the automatic resetting function.
System: DOS WINDOWS
Relevant Function: GT_Home GT_HomeSense

100

Chapter Eleven Description of Functions

GT_LmtSns

Function Prototype: short GT_LmtSns(unsigned short Sense);

Description of Function: Thisfunction sets the effective level of the limit switch.

Function Parameter: For the meaning of Sense, please see the following table. In the table, if
the corresponding bit is set to 0, it means that the input signal of limit switch is the triggering
limit bit at high level. Whereas, if it is set to 1, it means that the input signal of limit switch is
the triggering limit bit at low level. The bits in the controller are all set to being triggered at
high level. When initializing the motion controller, it is necessary to give the effective level of
limit switch correctly. Otherwise, it will not assure the normal work of the controller, or it will
cause all the positive and negative limit switch symbol bits of all the axes to be set.

Bit Description Definition

8-15 | Not used. Set to 0.

7 AXxis #4. Status hit of negative limit | O: Highlevel, 1. Low level.
switch

6 Axis #4: Status bit of positive limit | 0: Highlevel, 1: Low level.
switch

5 Axis #3: Status bit of negative limit | O: Highlevel, 1: Low level.
switch

4 Axis #3: Status bit of positive limit | O: Highlevel, 1: Low level.
switch

3 AXxis #2: Status bit of negative limit | O: Highlevel, 1: Low level.
switch

2 Axis #2: Status bit of positive limit | O: Highlevel, 1. Low level.
switch

1 Axis #1. Status hit of negative limit | O: Highlevel, 1. Low level.
switch

0 Axis #1: Status bit of positive limit | 0: Highlevel, 1: Low level.
switch

System: DOS, WINDOWS

Applicable Card: All GT series cards

Function Evoking: The following sample sets the effective levels reversed of the positive and
negative limit switches of the third axis, and clears the error status of triggering the limit
switch caused by the previous unconformity of the effective level of limit switch.

void main()
{
short rtn;
rtn=GT_LmtSns(0x30); error(rtn);
rtn=GT_AXxis(3); error(rtn);
rtn=GT_Rststs(0xffof); error(rtn);
}

101

Chapter Eleven Description of Functions

GT_LmtsOff

Function Prototype: short GT_LmtsOff (void);

Description of Function: This function prohibits the motion controller to monitor the limit
switch status of current axis. But the status is still reflected in the limit switch status register of
the controller. User can evoke GT_GetLmtSwt() to inquire the status of limit switch. The
change of the status will not cause the controller to perform any operation.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_LmtsOn

GT_LmtsOn

Function Prototype: short GT_L mtsOn(void);

Description of Function: This function makes the motion controller to start monitoring the
limit switch status of current axis. If the interrupt request is allowed, no matter it is the positive
or negative limit switch is pressed down, the controller will send the interrupt request to the
host, and the corresponding bit of the limit switch shown in Table 11-1 will be set to 1. If the
interrupt is not alowed, user may use the inquiry method to evoke the command
GT_GetLmtSwt() or GT_GetSts() to inquire the status of limit switch. The default status of the
controller isthe evoking of GT_L mtsOn().

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_L mtsOff

GT_MItiUpdt

Function Prototype: short GT_MItiUpdt(unsigned short Mask);

Description of Function: This function makes the buffer command and parameter set by
several axes to become effective immediately. The difference is that, the function GT_Update()
only makes the parameter and command set for the current axis effective.

Function Parameter: The meaning of each Mask hit is listed in the following table. If user
doesn't want the parameter set for an axis to become effective immediately, set the
corresponding bit to 0. Otherwise, set it to 1.

Bit Description
0 Axis 1
1 AXis?2
2 AXis3
3 AXis4
4-15 Not used.

System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_Update
Function Evoking: The following sample updates the parameter Kp for the first and third axes
at the same time.
void main()

e .__|
102

Chapter Eleven Description of Functions

{
short rtn;
rtn=GT_Axis(1); error(rtn);
rtn=GT_SetKp(10); error(rtn);
rtn=GT_Axis(3); error(rtn);
rtn=GT_SetKp(15); error(rtn);
rtn=GT_MItiUpdt(0x5); error(rtn);
}
GT_MtnBrk

Function Prototype: short GT_MtnBrk(void);
Description of Function: This function sets the breakpoint mode of current axis as motion
completion mode. After thisfunction is evoked, and when the motion completion symbol bit of
the controller in the axis status register is set to 1, a breakpoint will be evoked, to set the
breakpoint symbol bit in the axis status register to 1 and clear the breakpoint mode, i.e. the
controller will not trigger this breakpoint any more unless the host resets it. Meanwhile, when
the automatic updating symbol of the axis mode status register is set to 1, the controller will
update all the dual-buffer structure parameters and commands of the axis automatically.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Function Evoking: In the following sample, set the breakpoint mode of the fourth axis to the
motion completion triggering breakpoint mode, and update a new target position automatically
upon motion completion, to cause a reversed motion.
void main()
{

short rtn;

rtn=GT_Axis(1); error(rtn);

rtn=GT_AuUpdtOn(); error(rtn);

rtn=GT_MtnBrk(); error(rtn);

rtn=GT_PrflT(); error(rtn);

rtn=GT_CIrSts(); error(rtn);

rtn=GT_SetPos(10000); error(rtn);

rtn=GT_SetVel(7); error(rtn);

rtn=GT_SetAcc(0.347); error(rtn);

rtn=GT_Update(); error(rtn);
rtn=GT_SetPos(0); error(rtn);
}

GT_NegBrk

Function Prototype: short GT_NegBrk(void);

Description of Function: This function sets the breakpoint mode of current axis as breakpoint

less than the target position. Before evoking this function, first use the function GT_SetBrkCn()
to set the breakpoint position, and evoke GT_Update() or GT_MItiUpdt() to make it effective.

Then, after evoking this function, the controller will compare the actual position of the axis

103

Chapter Eleven Description of Functions

with the breakpoint position in each servo period. When the actual position is no more than the
breakpoint position, it will set the breakpoint symbol bit in the axis status register to 1 and
clear the breakpoint mode. The controller will not trigger this breakpoint any more unless the
host resets it. Meanwhile, when the automatic updating symbol of the axis mode status register
is set to 1, the controller will update all the dual-buffer structure parameters and commands of
the axis automatically.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_PosBrk

GT_OpenlLp

Function Prototype: short GT_OpenLp(void);

Description of Function: This function sets the current axis as in the servo open loop control
status. It is mainly used in controlling the motor directly. Generally, the servo driver shall bein
the close loop control status.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_Closelp

GT_Open

Function Prototype: short GT_Open(unsigned long PortBase, unsigned long irq);
Description of Function: This function opens the motion controller. It must be evoked when
user program starts.

Function Parameter: PortBase is the base address of motion controller. The parameter irq is
the interrupt number of controller (If Interrupt 10 to 15 in the host are all filled, or user doesn't
need interrupt, the parameter irq can be set to 0, indicating that there is no interrupt.). When
selecting the base address and interrupt number, pay attention that, do not interfere with other
equipment. Or, this function will fail.

System: WINDOWS

Applicable Card: ISA Bus Card

Relevant Function: GT_Close

GT_Open

Function Prototype: short GT_Open();

Description of Function: This function opens the motion controller. Evoke this function when
user program starts.

System: DOS, WINDOWS

Applicable Card: PCI Bus Card

Relevant Function: GT_Close

GT_PosBrk

Function Prototype: short GT_PosBrk(void);
Description of Function: This function sets the breakpoint mode of current axis as breakpoint

104

Chapter Eleven Description of Functions
___|

at positive target position. Before evoking this function, first use the function GT_SetBrkCn()
to set the breakpoint position, and evoke GT_Update() or GT_MItiUpdt() to make it effective.
Then, after evoking this function, the controller will compare the actual position of the axis
with the breakpoint position in each servo period. When the actual position is no less than the
breakpoint position, it will set the breakpoint symbol bit in the axis status register to 1 and
clear the breakpoint mode, i.e. the controller will not trigger this breakpoint any more unless
the host resets it. Meanwhile, when the automatic updating symbol of the axis mode status
register is set to 1, the controller will update al the dual-buffer structure parameters and
commands of the axis automatically.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_NegBrk

GT_PrflG

Function Prototype: short GT_PrflG(unsigned short Master);

Description of Function: This function sets the motion control mode of current axis as

electrical gear mode, and specifies the main axis number followed.

The parameter Master can be 1, 2, 3 or 4, indicating that Axis 1, 2, 3 and 4 are the main axes of
current axis. It can also be 5 or 6, indicating that one of the two auxiliary encodersis specified as
the main axis (The auxiliary encoder is an optional function.).

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_PrfIT, GT_PrflS, GT_PrflV

Function Evoking: When the current axis is not in motion, evoke this function. In the

following sample, set the first axis to follow the T-curve motion of the fourth axis at a scale of

—1.5, but the third axis to follow the motion of the first axis at ascale of 0.5.

void main()

{
short rtn;
rtn=GT_AXxis(4); error(rtn);
rtn=GT_PrflT(); error(rtn);

rtn=GT_Axis(1); error(rtn);
rtn=GT_PrflG(4); error(rtn);
rtn=GT_SetRatio(-1.5); error(rtn);
rtn=GT_Axis(3); error(rtn);
rtn=GT_PrflG(1); error(rtn);
rtn=GT_SetRatio(0.5); error(rtn);
rtn=GT_MItiUpdt(0x5); error(rtn);

GT_PrflS

Function Prototype: short GT_PrflS(void);
Description of Function: This function sets the motion control mode of current axis as
S-curve mode.

e .__|
105

Chapter Eleven Description of Functions

System: DOS, WINDOWS
Applicable Card: All GT series cards

Relevant Function: GT_PrfIT, GT_PrflIG, GT_PrflvV
Function Evoking: When the current axis is not in motion, evoke this function. The setting of

the S-curve control modeis as follows.

void main()

{
short rtn;
rtn=GT_Axis(1);
rtn=GT_PrflS();

rtn=GT_SetPos(12345);
rtn=GT_SetVel(3.21);
rtn=GT_SetMAcc(0.345);
rtn=GT_Jerk(0.087);
rtn=GT_Update();

}

GT_PrilT

error(rtn);
error(rtn);
error(rtn);
error(rtn);
error(rtn);
error(rtn);
error(rtn);

Function Prototype: short GT_PrflT(void);
Description of Function: This function sets the motion control mode of current axis as

T-curve mode.
System: DOS, WINDOWS
Applicable Card: All GT series cards

Relevant Function: GT_PrflS, GT_PrfIG, GT_PrflV
Function Evoking: When the current axis is not in motion, evoke this function. The setting of

the T-curve control modeis as follows.

void main()

{
short rtn;
rtn=GT_AXxis(2);
rtn=GT_PrflT();
rtn=GT_SetPos(100000);
rtn=GT_SetVel(5.7);
rtn=GT_SetAcc(0.67);
rtn=GT_Update();

GT_Prilv

error(rtn);
error(rtn);
error(rtn);
error(rtn);
error(rtn);
error(rtn);

Function Prototype: short GT_PrflV(void);
Description of Function: This function sets the motion control mode of current axis as

velocity control mode.
System: DOS, WINDOWS
Applicable Card: All GT series cards

Relevant Function: GT_PrflS, GT_PrflG, GT_PrfIT
___|

106

Chapter Eleven Description of Functions
___|

Function Evoking: When the current axis is not in motion, evoke this function. The setting of
the velocity control mode is as follows.
void main()
{
short rtn;
rtn=GT_AXxis(3); error(rtn);
rtn=GT_PrflV(); error(rtn);
rtn=GT_SetVel(17); error(rtn);

rtn=GT_SetAcc(1.1); error(rtn);
rtn=GT_Update(); error(rtn);
}

GT_Resat

Function Prototype: short GT_Reset (void)

Description of Function: This function enables the host to reset the motion controller with a
command. Itsresult is the same as that of the function GT_HardRst().

Notice: When this function is evoked, if a motor axis is in the control axis (i.e. use
GT_AxisOn() to open the control axis.), it may act. This is because that, when resetting the
motion controller, the resetting instruction also sets al the external output of the controller as
in the initial status (including closing the motor drive activation). But, due to the delayed
response of the motor itself to this closing signal, it makes the motor still be in the status of
receiving servo control command when the controller has closed the control, so as to make the
motor act. Therefore, before evoking this function, use the instruction GT_AxisOn() to close
the control axis of all the motor axes.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_HardRst

GT_Rstintr

Function Prototype: short GT_RstIntr(unsigned int Mask);

Description of Function: This function clears the interrupt symbol bit of current axis. After
the controller sends interrupt request to the host, the host shall execute the function GT_RstIntr
() when the interrupt service routine finishes, to clear the interrupt symbol of the controller, so
that the controller can send interrupt request to the host again.

Function Parameter: For the definition of Mask, please see the following table. When abit in
Mask is set to 1, the interrupt event indicated by this bit is allowed to be reserved. If the bit is
set to 0, theinterrupt event indicated by thisinterrupt is cleared.

Bit Definition
7-15 Not used. Can be set to 0.
Positive limit switch
5 Negative limit switch
4 Error in motion

107

Chapter Eleven Description of Functions

3 Index/Home captured.

2 Breakpoint condition is satisfied.

1 Axisdriver alarms.

0 The axis motion is compl eted.
System: DOS

Applicable Card: All GT series cards

GT_RstSts

Function Prototype: short GT_RstSts(unsigned short Mask);

Description of Function: This function clears the status register of the current axis according

to the definition of Mask.

Function Parameter: The definition Mask is consistent with the definition of BitO — Bit7 in
the attached table of the function GT_RstIntr(). When a bit of Mask is set to 1, this bit is alowed to
be reserved. If it isset to O, this event symbol isto be cleared.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_ ClrSts

GT_SetAcc

Function Prototype: short GT_SetAcc(double Acc);

Description of Function: This function sets the acceleration parameter of the current axis. It is
only effective in the T-curve velocity mode and velocity control mode.

Function Parameter: Acc is the acceleration to be set, ranged from 0 to 16384. The unit of
acceleration is the number of pulse/control period?. To make the new parameter set effective
reguires the evoking of the function GT_Update() or GT_MiItiUpdt().

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_GetAcc

GT_SetAdcChn

Function Prototype: short GT_SetAdcChn(unsigned short value);

Description of Function: Thisfunction sets the number of ADC channels.

Function Parameter: The parameter value sets the number of AD channels, ranged from 1 to
8.

System: DOS, WINDOWS

Applicable Card: Select GT series cards having this function.

GT_SetAddr

Function Prototype: short GT_SetAddr(unsigned short Address);

Description of Function: This function sets the base address of communication between the
host and the mation controller.

Function Parameter: Address is the base address value to be set. Its range is the setting range

108

Chapter Eleven Description of Functions

of base address alowed by the maotion controller.
System: DOS

Applicable Card: All GT series cards

Relevant Function: GT_GetAddr

GT_SetAtlPos

Function Prototype: short GT_SetAtlPos(long actl_pos);
Description of Function: Evoke this function to modify the actual and target positions of the
current axis and the planned position controlling the current control period to the specified
values. This function is only effective when the current axis stops. Otherwise, it will be
considered as an illegal command with a motion error symbol generated. This function is
ineffective when the current axisisin the electrical gear motion mode.
Function Parameter: actl_pos indicates the actual position to be set.
System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_GetAtlPos, GT_SynchPos, GT_ZeroPos
Function Evoking: The following sample sets the actua position of the fourth axis to 1000,
when it isnot in motion.
void main()
{

short rtn;

unsigned short status;

rtn=GT_AXxis(4); error(rtn);

rnn=GT_GetSts(& status); error(rtn);

if(status& 0x400) return;

rtn=GT_SetAtlPos(1000); error(rtn);

}

GT_SetBgCommandSet

Function Prototype: short WINAPI GT_SetBgCommandSet(PBGCOMMANDSET
pBgCmdset, ULONG CmdsetSize);

Description of Function: This function sets the background execution command set for the
motion control card when the card is interrupted. It will cover the previous value set. It can set
the background commands for severa interrupts once, or several background commands for
the same interrupt.

Function Parameter: pBgCmdset is the start address of command set to be executed by the
control card. CmdsetSize is the memory size for the background command set, with a unit in
byte.

Function Return: 0 means success, and —1 means failure.

The drive program of motion controller allows user to specify the GT command set to be
executed by the motion controller after it generates interrupt. Since these commands are to be
executed by the controller when it generates interrupt, and do not interact with user directly, we
call them background commands. The structure of command set is as follows:

109

Chapter Eleven Description of Functions
___|

typedef struct_ BACKGROUND_COMMANDSET

{

USHORT Count; /[The number of the subitems of command set,
i.e. the number of interrupt types to be served.

BACKGROUND_COMMAND BackgroundCommand[1];//A background command
group specifying interrupt.

}BGCOMMANDSET,*PBGCOMMANDSET;

typedef struct_BACKGROUND_COMMAND

{
USHORT InterruptMask;//The exact interrupt served by the
command array.
USHORT CommandCount; //The number of commands in the

command group.
GENERAL_COMMAND GenCommand[1]; //Command array.
}BACKGROUND_COMMAND,*PBACKGROUND_COMMAND;

typedef struct GENERAL_COMMAND //The structure of a single command.
{

USHORT usCommand; //Command character.

USHORT InputLength; //The length of data to be input by the command,
with aunit in character.

USHORT OutputL ength;//The length of data to be returned by the command,
with aunit in character.

USHORT usResult; //The command execution result.

union

{
USHORT sData[2];
ULONG IDatg;

}in; //Datainput by command.

union

{
USHORT sData[2];
ULONG IData;

}out; //Data returned by command.

}GENERAL_COMMAND,* PGENERAL_COMMAND;
System: WINDOWS
Applicable Card: PCI Bus Card
Relevant Function: GT_SetIntSyncEvent
Function Evoking: Refer to the interrupt treatment in Windows environment.

110

Chapter Eleven Description of Functions

GT_SetBrkCn

Function Prototype: short GT_SetBrkCn(long Brk);

Description of Function: This function sets the breakpoint position comparison value of the
current axis.

When evoking the functions GT_PosBrk() and GT_NegBrk(), since these two commands will
become effective immediately, user must evoke the function GT_SetBrkCn() before evoking
them, and evoke the function GT_Update() or GT_MItiUpdt() to make effective the newly set
breakpoint position.

Function Parameter: Brk indicates the breakpoint position of current axis to be set, ranged
from —1073741824 to 1073741823. To make effective the newly set parameter requires to
evoke the function GT_Update() or GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_GetBrkCn

GT_SetEncCapt

Function Prototype: short GT_SetEncCapt(void);

Description of Function: This function sets the INDEX signal capture of the auxiliary
encoder No. 1.

When using this instruction, it will clear the INDEX signal capture mode of auxiliary encoder
already set, and reset the capture mode. Meanwhile, it also clears the INDEX signal captured
status of the auxiliary encoder No. 1.

To realize the INDEX capture function of auxiliary encoder, use this function to start the
capture mode.

System: DOS, WINDOWS

Applicable Card: Select the GT series cards having the function of “INDEX signal capture of
auxiliary encoder”.

Relevant Function: GT_GetEncSts, GT_GetEncCapt

GT_SetlLmt

Function Prototype: short GT_SetlLmt(unsigned short 1Im);

Description of Function: This function sets the error integral limit of the current axis servo
filter.

Function Parameter: IImisthe error integral limit to be set, ranged from 0 to 32767. To make
effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt().

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetlLmt

GT_SetlntrMsk
Function Prototype: short GT_SetlntrMsk(unsigned short Mask);

111

Chapter Eleven Description of Functions
___|

Description of Function: Thisfunction sets the interrupt mask character.

Function Parameter: For the meaning of each Mask bit, please refer to the following table of
the function GT_RstIntr(). When abit in interrupt mask character is set to 1, the interrupt event
indicated by this bit is allowed to send interrupt request to the host. If it is set to 0, the sending
isnot alowed.

Bit Definition
Not used. Can be set to 0.

N
=
()]

Positive limit switch

Negative switch limit

Error in motion.

Index/Home captured

Breakpoint condition is satisfied.

The axis driver alarms.

O|lRr|IN|IW|~|OI|O

The motion of axisis completed.

System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_GetlntrMsk

GT_SetintrTm

Function Prototype: void GT_SetIntrTm(short Timer);

Description of Function: This function sets the time constant of time interrupt of the
controller. The time during the time interrupt of controller is decided together by the control
period of controller and the Timer value set by this function.

Function Parameter: Timer isthe multiple of control period, ranged from 0 to 32767.

For example, the control period is 200 microseconds, and the host uses the function
GT_SetintrTm() to set the value of Timer to 10. Then, the period of time interrupt = 10*200
microseconds, i.e. 2 milliseconds.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_GetIntrTm

GT_SetintSyncEvent

Function Prototype: short WINAPI GT_SetIntSyncEvent(HANDLE hEvent);

Description of Function: This function sets the interrupt synchronization event for PCI
control card, and clears the previous value set.

Function Parameter: hEvent is the handle of event. When it is NULL, the function only
resets the previous value set.

This function can treat the time interrupt and also the event interrupt generated by the motion
controller. User may evoke GT_GetIntr(unsigned * Status) to tell which kind of interrupt is the
current interrupt. Status = 0: Time interrupt. Status # 0: For detailed meaning, please refer to
the following table.

e .__|
112

Chapter Eleven Description of Functions

Bit Definition
15 Activate the Index signal capture (1 means activation).
14 Activate the home point switch capture (1 means activation).
12-13 Bitl3 Bitl2 Axis Generating Interrupt
0 0 1
0 1 2
1 0 3
1 1 4
11 Activate axis limit switch (1 means activation)
10 Motion status symbol bit (1 means being in motion.)
9 Activate/close control axis (1 means activation)
8 Open loop/Close loop (1 means close loop.)
7 Error in host command (1 meanserror.)
6 Negative limit switch action (1 means action.)
5 Positive limit switch action (1 means action.)
4 Error in motion (1 means error.)
3 Index/Home position capture arrival (1 means arrival.)
2 Breakpoint arrival (1 means arrival.)
1 Servo driver alarm (1 means aarm.)
0 Motion completion symbol bit (1 means completion.)

PCl bus mation control drive program can use the event synchronization mechanism to
synchronize with user program. When the control card generates an interrupt, it will set the
event object represented by hEvent as setting status. For the detailed event synchronization
mechanism, please see the relevant document about the developing of progress
synchronization mechanism.

Function Return: 0 means success and —1 means failure.

System: WINDOWS

Applicable Card: PCI Bus Card

Relevant Function: GT_SetBgCommandSet

Function Evoking: See the interrupt treatment in Windows environment.

GT_SetJerk

Function Prototype: short GT_SetJerk(double Jerk);

Description of Function: Thisfunction is used to set the jerk of current axisin S-curve mode.
The unit of jerk is plus/control period®.

Function Parameter: Jerk is the jerk to be set, ranged from 0 to 0.5. To make effective the
newly set parameter requires to evoke the function GT_Update() or GT_MItiUpdt() first.
System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_GetJerk

113

Chapter Eleven Description of Functions

GT_SetK aff

Function Prototype: short GT_SetKaff(unsigned short Kaff);

Description of Function: This function sets the acceleration feedback gain of the current axis
servo filter.

Function Parameter: Kaff isthe acceleration feedback gain to be set, ranged from 0 to 32767.
To make effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetK aff

GT_SetKd

Function Prototype: short GT_SetKd(unsigned short Kd);

Description of Function: This function sets the differential gain of the current axis servo
filter.

Function Parameter: Kd is the differential gain to be set, ranged from 0 to 32767. To make
effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetKd

GT_SetKi

Function Prototype: short GT_SetKi(unsigned short Ki);

Description of Function: Thisfunction setsthe integral gain of the current axis servo filter.
Function Parameter: Ki is the integral gain to be set, ranged from 0 to 32767. To make
effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetKi

GT_SetKp

Function Prototype: short GT_SetKp(unsigned short Kp);

Description of Function: This function sets the percentage gain of the current axis servo filter.
Function Parameter: Kp is the percentage gain to be set, ranged from 0 to 32767. To make
effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetKp

114

Chapter Eleven Description of Functions

GT_SetKvff

Function Prototype: short GT_SetKvff (unsigned short Kvff);

Description of Function: This function sets the velocity feedback gain of the current axis
servo filter.

Function Parameter: Kvff is the velocity feedback gain to be set, ranged from 0 to 32767. To
make effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetK vff

GT_SetMAcc

Function Prototype: short GT_SetMA cc(double Macc);

Description of Function: When the control mode is S-curve mode, evoke this function to set
the maximum accel eration of the current axis.

Function Parameter: Macc is the maximum acceleration to be set, ranged from 0 to 0.5
(excluding 0.5), with a unit of Pulse/Control Period®. To make effective the newly set
parameter requires to evoke the function GT_Update() or GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_GetMAcc

GT_SetMtrBias

Function Prototype: short GT_SetMtrBias(short Bias);

Description of Function: This function sets the bias compensation of the control output of the
current axis servo filter.

Function Parameter: Bias is the bias compensation to be set, ranged from —32768 to 32767.
To make effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first. This parameter is only effective for close loop control. The default value
in the controller isO.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetMtrBias

GT_SetMtrCmd

Function Prototype: short GT_SetMtrCmd(short Mcmd);

Description of Function: This function sets the voltage output control value in the open loop
control status.

Function Parameter: Mcmd is the motor output control value to be set, ranged from —32767
to 32767. Here, -32767 means the maximum negative voltage value, and 32767 means the
maximum positive voltage value.

System: DOS, WINDOWS

115

Chapter Eleven Description of Functions

Applicable Card: SV
Relevant Function: GT_GetMtrCmd

GT_SetMtrLmt

Function Prototype: short GT_SetMtrLmt(unsigned short MImt);

Description of Function: Thisfunction sets the limit of the current axis control output.
Function Parameter: MImt is the limit to be set, ranged from 0 to 32767. To make effective
the newly set parameter requires to evoke the function GT_Update() or GT_MItiUpdt() first.
This parameter is only effective for close loop control. The default value in the controller is 0.
System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetMtrLmt

GT_SetPos

Function Prototype: short GT_SetPos (long Pos);

Description of Function: This function sets the target position of current axis in the S-curve

and T-curve modes.

Function Parameter: Pos is the target position value to be set, ranged from —1073741824 to
1073741823. To make effective the newly set parameter requires to evoke the function GT_Update()
or GT_MItiUpdt() first. The unit of position value isthe number of pulse.

System: DOS, WINDOWS
Applicable Card: All GT series cards
Relevant Function: GT_GetPos

GT_SetPosErr

Function Prototype: short GT_SetPosErr(unsigned short Perr);

Description of Function: Thisfunction sets the position error limit of current axis.

Function Parameter: Perr is the position error limit to be set, ranged from 0 to 32767. To
make effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: SV

Relevant Function: GT_GetPosErr

GT_SetRatio

Function Prototype: short GT_SetRatio(double Ratio);

Description of Function: In the electrical gear mode, this function sets the electrical gear ratio
of the current axis, to make the primary axis and secondary axis to move at the specified ratio.
Function Parameter: Ratio isthe electrical gear ratio to be set, ranged from —16384 to 16384.
When Ratio is positive, the primary axis and secondary axis move at the same direction. When
Ratio is negative, the primary axis rotates at a reversed direction against that of the secondary
axis. To make effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

116

Chapter Eleven Description of Functions

Applicable Card: All GT series cards
Relevant Function: GT_GetRatio

GT_SetSmplTm

Function Prototype: short GT_SetSmpl Tm(double Timer);

Description of Function: Thisfunction sets the servo period of the motion controller.

The parameter Timer is the servo period to be set, with a unit in microsecond, ranged from 48
to 1966.08 microseconds. The recommended servo period by the controller is 200
microseconds.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_GetSmplTm

GT_SetTime

Function Prototype: short GT_SetTime(unsigned long value);

Description of Function: This function adjusts the width of output pulse.

Function Parameter: value isthe time of pulse width, with a unit in millisecond, ranged from
0 to 65535. The corresponding pulse width is 0 to 16ms. The output signal is at Pin23 of CN7.
System: DOS, WINDOWS

Applicable Card: SE

GT_Tmrlintr

Function Prototype: short GT_TmrIntr (void);

Description of Function: This function sets the interrupt requested by the motion controller to
the host as time interrupt. The period of time interrupt is decided together by the servo
updating period of the controller and the set value of the function GT_SetIntrTm().

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_Evntintr

Function Evoking: The following sample sets the interrupt requested by the motion controller
to the host as time interrupt.

void main()
{
short rtn;
rtn=GT_Tmrintr(); error(rtn);
}
GT_SetVve

Function Prototype: short GT_SetVel(double Vel);

Description of Function: Thisfunction sets the target velocity parameter of the current axis.
Function Parameter: Vel is the target velocity value to be set. In the T-curve and S-curve
modes, the velocity ranges from 0 to 16384. In the velocity control mode, the velocity ranges
from —16384 to 16384. The velocity unit is the number of pulses/control period. To make

117

Chapter Eleven Description of Functions

effective the newly set parameter requires to evoke the function GT_Update() or
GT_MItiUpdt() first.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetVel

GT_SmthStp

Function Prototype: short GT_SmthStp(void);

Description of Function: This function is to stop the motion of current axis. The difference
from GT_AbptStp() is that, GT_SmthStp() will decelerate until stop the motion of current axis
at the acceleration parameter set, rather than that GT_AbptStp() stops the motion abruptly. This
function can only be effective when being used together with the function GT_Update() or
GT_MItiUpdt(). GT_SmthStp() is used in the three motion control modes for the control axis,
except the electrical gear mode.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_AbptStp

GT_StepDir

Function Prototype: short GT_StepDir (void);

Description of Function: If the control output mode of the current axis is the pulse control
mode, evoking this function can set the pulse output method as “Pulse + Direction”.

When user evokes the function GT_CtrIMode() to set the control output mode as pulse output
mode, the motion controller will take “Pulse + Direction” as the default pul se output mode.
System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetPulse

GT_StepPulse

Function Prototype: short GT_StepPulse (void);

Description of Function: If the control output mode of current axis is the pulse output mode,
evoking this function can set the pul se output method as “ Positive and Negative Pulse”.
System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SetDir

GT_SwitchtoCardNo

Function Prototype: short GT_SwitchtoCardNo(short card_no);

Description of Function: This function is to switch the current card. When a PC system uses
several control cards, this function can be used to specify the current control card. When the
execution of the function succeeds, al the followed GT functions can only operate on the
current card.

Function Parameter: card no is the card number of the current card to be set, ranged from 0O

118

Chapter Eleven Description of Functions

to 15.

Function Return: 0 means success and —1 means failure.

In amultiple-card system, each control card will be alocated with a card number (0-15) when
the operating system starts. This card will keep effective before the system is restarted to
differentiate each control card. The number allocation principle follows the PNP principle that,
the first card recognized by the system will be the card O forever. Therefore, if there is no
change in hardware configuration, the numbers allocated by the system each time will be
consistent.

System: DOS. WINDOWS

Applicable Card: PCI Bus Card

Relevant Function: GT_GetCurrentCardNo

Function Evoking: GT_SwitchtoCardNo(1)

GT_SynchPos

Function Prototype: short GT_SynchPos(void);

Description of Function: This function sets the target position register of the current control
axis and the planned position register of the current servo period as the position value of the
actual position register. It is applicable to the S-curve and T-curve control mode. It can be used
to set the value of the current servo position control register equal to the value of the actual
position register, when the motion control generates error and restarting is needed. Meanwhile,
when the current axis switches in the servo activation (prohibit activation) status or the close
loop (open loop) status, this function can also assure the smooth transition of the motor. This
function can only be effective when being used together with the function GT_Update() or
GT_MItiUpdt(). This function is ineffective when the current axis is in the eectrica gear
motion mode.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_ZeroPos, GT_SetAtlPos

GT_Unhookl sr

Function Prototype: short GT_Unhooklsr(GT_ISR old_isr)

Description of Function: Unhook the ISR hooked by the function GT_Hooklsr for GT400
control card, and restore the old ISR.

Function Parameter: The parameter old_isr is the start address of the old ISR, returned by
GT_Hooklsr.

Function Return: 0 means success and —1 means failure.

Applicable Card: PCI Bus Card

System: DOS

Relevant Function: GT_Hooklsr

Function Evoking: Refer to the interrupt treatment in DOS.

Note: GT_Hooklsr and GT_Unhooklsr must be used together, i.e. after using GT_Hooklsr,
evoke GT_Unhooklsr before the whole program finishes to restore the old I SR. Otherwise, the
system will break down.

119

Chapter Eleven Description of Functions

GT_Update

Function Prototype: short GT_Update(void);

Description of Function: Some parameter setting functions and command functions of the
motion controller work in the dual-buffer register mode. The dua-buffer parameters and
commands can only become effective after the function GT_Update() is evoked.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_MItiUpdt

GT_ZeroPos

Function Prototype: short GT_ZeroPos (void),

Description of Function: Evoke this function to set the actual position register and target
position of the current control axis and the planned position register of the current servo period
to 0. This function is only effective when the current axis stops. Otherwise, it will be
considered as an illegal command and generates error symbol. This function is ineffective
when the current axisisin the electrical gear motion mode.

System: DOS, WINDOWS

Applicable Card: All GT series cards

Relevant Function: GT_SynchPos, GT_SetAtlPos

120

Googol Technology (HK) Ltd
Address: Room 3639, Annex Building

Hong Kong University of Science and Technology

Hong Kong
Tel: (852) 2358-1033
Fax: (852) 2358-4931
E-mail: info@googoltech.com
Web: http://www.googoltech.com/

Googol Technology (SZ) Ltd.
Addresss Room W211, |ER Building, South Area,

Shenzhen Hightech Industrial Park,

Shenzhen, PRC
Tel.: (0755) 2697-0823, 2697-0819, 2697-0824
Fax: (0755) 2697-0821
E-mail: support@googoltech.com

Web: http://www.googoltech.com.cn/

	Copyright Statement
	Foreword
	Contents
	Chapter One Use of Function Library of Motion Controller
	Function Library in DOS
	DLL in Windows
	1.2.1 Usage in VC
	1.2.2 Usage in VB
	1.2.3 Usage in Delphi

	Chapter Two Command Return Values and their Meaning
	2.1 Command (Function Library) Return Values
	2.2 Command Status Register

	Chapter Three Initialization of Control System
	3.1 Initialization of Motion Controller
	3.1.1 Command Summary
	3.1.2 Example
	3.1.3 Notes of Main Point

	3.2 Specify Parameters for Dedicated Input Signal
	3.2.1 Command Summary
	3.2.2 Example
	3.2.3 Notes of Main Point

	3.3 Initialization of Motion Control Axis
	3.3.1 Function List
	3.3.2 Example
	3.2.3 Notes of Main Point

	Chapter Four Independent Axis Motion
	4.1 Modes and Parameters of Motion
	4.1.1 Independent Positioning: S-curve
	4.1.1.1 Command Summary
	4.1.1.2 Example
	4.1.1.3 Notes of Main Point

	4.1.2 Independent Positioning: T-curve
	4.1.2.1 Command Summary
	4.1.2.2 Example
	4.1.2.3 Notes of Main Point

	4.1.3 independent jogging
	4.1.3.1 Command Summary
	4.1.3.2 Example
	4.1.3.3 Notes of Main Point

	4.1.4 Electronic Gearing
	4.1.4.1 Command Summary
	4.1.4.2 Example
	4.1.4.3 Notes of Main Point

	4.2 Stop Motion
	4.2.1 Command Summary
	4.2.2 Example
	4.2.3 Notes of Main Point

	4.3 Specify and Update Parameters of Specified Axis
	4.3.1 Normal Updating
	4.3.1.1 Command Summary
	4.3.1.2 Example
	4.3.1.3 Notes of Main Point

	4.3.2 Self-Updating at Breakpoint
	4.3.2.1 Positive Position Breakpoint
	4.3.2.2 Negative Position Breakpoint
	4.3.2.3 Axis Motion Completion Event Breakpoint
	4.3.2.4 Home Signal Triggering Event Breakpoint

	4.4 Specifying Target Position and Actual Position for Specified Axis
	4.4.1 Command Summary
	4.4.2 Notes of Main Point

	4.5 Axis Status
	4.5.1 Axis Status Register
	4.5.1.1 Definition of Bit in Register
	4.5.1.2 Description

	4.5.2 Axis Mode Register

	Chapter Five Coordinated Motion(The series of GT_PX do not contain)
	5.1 Coordinate Mapping
	
	
	
	
	
	Example 5-3 Coordinate Mapping of non-orthogonal axes

	5.2 Set Vector Velocity and Acceleration of Coordinated Motion
	5.2.1 Command Summary
	5.2.2 Example
	5.2.3 Notes of Main Point

	5.3 Set Motion Path in Coordinate System
	5.3.1 Command Summary
	5.3.2 Example
	5.3.3 Notes of Main Point

	5.4 Realization of Multi-segment Path Continuous Motion
	5.4.1 Push Motion Path and Parameters Commands into Buffer
	5.4.1.1 Command Summary
	5.4.1.2 Notes of Main Point

	5.4.2 commands of Starting and stopping coordinated motion in the buffer
	5.4.2.1 Command Summary
	5.4.2.2 Example
	5.4.2.3 Notes of Main Point

	5.4.3 Planning Strategy of Vector Velocity in Multi-segment path
	5.4.4 Breakpoint information in Multi-segment path Continuous Motion
	5.4.5 Coordinate System Status Register

	Chapter Six High velocity Home/Index Capture
	Chapter Seven Safety Mechanism
	7.1 Monitor Axis Motion Error and Restore Status
	7.2 Treat Axis Driver Alarm
	7.3 Treat Limit Status

	Chapter Eight Interrupt
	8.1 Interrupt Treatment in DOS
	8.2 Interrupt Treatment in WINDOWS98/2000/NT
	8.2.1 Event Synchronization Mechanism
	8.2.2 Interrupt Preprocessing Mechanism

	Chapter Nine General Purposed I/O
	Chapter Ten List of Functions
	Chapter Eleven Description of Functions
	
	GT_AbptStp
	GT_AuStpOff
	GT_AuStpOn
	GT_AuUpdtOff
	GT_AuUpdtOn
	GT_Axis
	GT_AxisI
	GT_AxisOff
	GT_AxisOn
	GT_BrkOff
	GT_CaptHome
	GT_CaptIndex
	GT_CaptProb
	GT_Close
	GT_CloseLp
	GT_ClearInt
	GT_ClrEncPos
	GT_ClrSts
	GT_CtrlMode
	GT_DrvRst
	GT_EncPos
	GT_EncSns
	GT_EncVel
	GT_EStpMtn
	GT_EvntIntr
	GT_ExInpt
	GT_ExOpt
	GT_ExtBrk
	GT_GetAcc
	GT_GetAdc
	GT_GetAddr
	GT_GetAtlErr
	GT_GetAtlPos
	GT_GetBgCommandResult
	GT_GetBrkCn
	GT_GetCapt
	GT_GetCmdSts
	GT_GetCurrentCardNo
	GT_GetEncCapt
	GT_GetEncSts
	GT_GetILmt
	GT_GetIntgr
	GT_GetIntr
	GT_GetIntrMsk
	GT_GetIntrTm
	GT_GetJerk
	GT_GetKaff
	GT_GetKd
	GT_GetKi
	GT_GetKp
	GT_GetKvff
	GT_GetLmtSwt
	GT_GetMAcc
	GT_GetMode
	GT_GetMtrBias
	GT_GetMtrCmd
	GT_GetMtrLmt
	GT_GetPos
	GT_GetPosErr
	GT_GetRatio
	GT_GetSmplTm
	GT_GetSts
	GT_GetVel
	GT_HardRst
	GT_Home
	GT_HookIsr
	GT_Index
	GT_LmtSns
	GT_LmtsOff
	GT_LmtsOn
	GT_MltiUpdt
	GT_MtnBrk
	GT_NegBrk
	GT_OpenLp
	GT_Open
	GT_Open
	GT_PosBrk
	GT_PrflG
	GT_PrflS
	GT_PrflT
	GT_PrflV
	GT_Reset
	GT_RstIntr
	GT_RstSts
	GT_SetAcc
	GT_SetAdcChn
	GT_SetAddr
	GT_SetAtlPos
	GT_SetBgCommandSet
	GT_SetBrkCn
	GT_SetEncCapt
	GT_SetILmt
	GT_SetIntrMsk
	GT_SetIntrTm
	GT_SetIntSyncEvent
	GT_SetJerk
	GT_SetKaff
	GT_SetKd
	GT_SetKi
	GT_SetKp
	GT_SetKvff
	GT_SetMAcc
	GT_SetMtrBias
	GT_SetMtrCmd
	GT_SetMtrLmt
	GT_SetPos
	GT_SetPosErr
	GT_SetRatio
	GT_SetSmplTm
	GT_SetTime
	GT_TmrIntr
	GT_SetVel
	GT_SmthStp
	GT_StepDir
	GT_StepPulse
	GT_SwitchtoCardNo
	GT_SynchPos
	GT_UnhookIsr
	GT_Update
	GT_ZeroPos

