
 

 

 

 

 

 

 

 

 

 

 

 

Advanced 
Programming Manual 

of 
Motion Controller   

GUC-ECAT Series 

V1.0 

© 2014 Googol Technology. All rights reserved 

 

www.googoltech.com 

2014.10 



Copyright statement 

1                 © 2014 Googol Technology. All rights reserved 

Copyright Statement 

Googol Technology Ltd. 

All rights reserved. 

 

Googol Technology Ltd. (Googol Technology hereafter) reserves the right to modify the products 

and product specifications described in this manual without advance notice. 

Googol Technology will not take responsibility for any direct, indirect, consequential or liability 

caused damage by improperly using of this manual and the product.  

Googol Technology owns the patent, copyright or any other intellectual property rights of this 

product and the related software. No one shall duplicate, reproduce, process or use this product 

and its parts, unless authorized by Googol Technology. 

 

 Machinery in motion can be dangerous! It is the user’s responsibility to design effective 

error handling and safety protection methods as part of the machinery. Googol 

Technology shall not be liable or responsible for any incidental or consequential 

damages. 

 

Contact Us 

Googol Technology (Shenzhen) Ltd. 

Address:  2nd Floor, West Wing, IER Building 

(PKU-HKUST Shenzhen Hong Kong 

Institution) High-tech Industrial Park, 

Nanshan, Shenzhen, PRC 

Postal Code: 518057 

Tel.:  +(86) 755-26970817, 755-26970824, 

755-26737236 

Fax:  +(86) 755- 26970821 

E-mail: support@googoltech.com 

URL: http://www.googoltech.com.cn 

Googol Technology (HK) Ltd. 

Address: Unit 1008-09, 10/F C-Bons 

International Center, 108 Wai 

Yip Street, Kwun Tong, Kowloon, 

Hong Kong 

 

Tel.: +(852) 2358-1033 

Fax: +(852 )2719-8399 

E-mail: info@googoltech.com 

URL: http://www.googoltech.com 

mailto:support@googoltech.com
http://www.googoltech.com.cn/
mailto:info@googoltech.com
http://www.googoltech.com/


Document Version 

2                 © 2014 Googol Technology. All rights reserved 

Document Version 

Version Date 

1.0 2014-10-31 

  

  

  

  

  

  

  

 

 



Foreword 

3                 © 2014 Googol Technology. All rights reserved 

Foreword 

Thank you for selecting Googol Technology motion controller 

To repay user, we will help you establish your own control system, by providing our first-class 

motion controller, perfect after-sale services, and high-efficiency technical support. 

More information about products of Googol Technology  

Googol Technology’s web site is http://www.googoltech.com. You can get more information about 

the company and products on our website, including company profile, product introduction, 

technical support, products recently released. 

You can also get more information about the company and products through the phone: +(86) 

755-26970817. 

Technical support and after-sale services 

To get our technical support and after-sale services: 

E-mail: support@googoltech.com 

Tel.: +(86) 755 2697-0843 

Addr: Googol Technology (SZ) Ltd 

2nd Floor, West Wing, IER Building (PKU-HKUST Shenzhen Hong Kong Institution) High-tech 

Industrial Park, Nanshan, Shenzhen, PRC. 

Postal Code: 518057 

Usage of this Programming Manual 

By reading this manual, you will know the control functions of GUC-ECAT series motion controller, 

learn the usage of motion functions, and become familiar with programming of specific control 

function. Finally, you can program your application for controlling according to your specific control 

system. 

User of this Programming Manual 

This manual is applicable to those engineering developers who have the base knowledge of 

programming in C or other using Dynamic Link Library (DLL) in Windows environment, with certain 

work experience in motion control and understanding of the basic architecture of servo or step 

control. 

Main Contents of this Programming Manual 

This manual consists of five chapters, which introduced the advanced motion control functions 

and programming of the GUC-ECAT series motion controller in detail. 

http://www.googoltech.com/
mailto:support@googoltech.com


Foreword 

4              © 2014 Googol Technology. All rights reserved 

Relevant Documents 

For installing and debugging of GUC-ECAT series motion controller, please refer to User’s Guide 

of GUC-ECAT series Motion Controller provided together with our product. 



Contents 

5                 © 2014 Googol Technology. All rights reserved 

 Contents  

Copyright Statement ................................................................................................................................ 1 

Contact Us ................................................................................................................................................. 1 

Document Version .................................................................................................................................... 2 

Foreword ................................................................................................................................................... 3 

Contents .................................................................................................................................................... 5 

Chapter 1 Use of Motion Function Library in OtoStudio ................................................................. 7 

1.1 Use of OtoStudio software library ................................................................................................ 7 

1.1.1 Usage of the library in OtoStudio ............................................................................................. 7 

Chapter 2 Return Values of Commands and Their Meanings ......................................................... 8 

2.1 Return values of commands ........................................................................................................ 8 

Chapter 3 System Configuration ........................................................................................................ 9 

3.1 Command to modify configuration information ............................................................................ 9 

3.1.1 Commands summary ............................................................................................................... 9 

3.1.2 Highlights ................................................................................................................................. 11 

Chapter 4 Motion Mode...................................................................................................................... 12 

4.1 Crd Motion Mode ....................................................................................................................... 12 

4.1.1 Commands summary ............................................................................................................. 12 

4.1.2 Highlights ................................................................................................................................ 23 

4.2 PVT Motion Mode ...................................................................................................................... 40 

4.2.1 Commands summary ............................................................................................................. 40 

4.2.2 Highlights ................................................................................................................................ 44 

4.2.3 Examples ................................................................................................................................ 52 

Chapter 5 Motion Program ................................................................................................................ 67 

5.1 Introduction ................................................................................................................................ 67 

5.2 Programming motion program ................................................................................................... 67 

5.2.1 Commands summary ............................................................................................................. 67 

5.2.2 Highlights ................................................................................................................................ 69 

5.2.3 Example ................................................................................................................................. 70 

5.3 Language elements ................................................................................................................... 87 

5.3.1 Data type ................................................................................................................................ 87 

5.3.2 Constant ................................................................................................................................. 88 

5.3.3 Variable .................................................................................................................................. 88 

5.3.4 Array ....................................................................................................................................... 88 

5.3.5 Function .................................................................................................................................. 88 

5.3.6 Data type conversion ............................................................................................................. 88 

5.3.7 Operators ............................................................................................................................... 88 



目录 

6                 © 2014 Googol Technology. All rights reserved 

5.3.8 Arithmetic operator ................................................................................................................. 89 

5.3.9 Logical operator ..................................................................................................................... 89 

5.3.10 Relational operator ............................................................................................................. 89 

5.3.11 Bitwise operator .................................................................................................................. 89 

5.4 Sequential control ...................................................................................................................... 89 

 

 



Chapter 1  Use of motion function library in OtoStudio 

7                 © 2014 Googol Technology. All rights reserved 

Chapter 1 Use of Motion Function Library in 

OtoStudio 

1.1 Use of OtoStudio software library  

Ethercat bus using motion controller in CPAC software platform must call Ethercat private library, and the 

method is consistent with the method of using CPAC-X00-TPX.lib, and CPAC-X00-TPX.lib could be 

used at the same time. The library file name of CPAC-OtoBox controller is CPAC GUC-X00-TPX 

ECAT.lib. The same method for using CPAC GUC-X00-TPX ECAT.lib could be used to call the advanced 

function library, and the library file name is GUC-X00-TPX-Addition 2.2.lib. 

1.1.1 Usage of the library in OtoStudio  

1. Start the OtoStudio.exe，and create a new project; 

2. The system adds CPAC GUC-X00-TPX.lib automatically; 

3. Manually add CPAC GUC-X00-TPX ECAT.lib and CPAC GUC-X00-TPX-Addition 2.2.lib to the 

library file manager; 

Now, users can call any commands in DLL and program their application programs in 

OtoStudio. 

 



Chapter 2  Return Values of Commands and their Meanings 

8                 © 2014 Googol Technology. All rights reserved 

Chapter 2 Return Values of Commands and 

Their Meanings 

2.1 Return values of commands 

CPAC controller works according to the motion controller commands sent by the host. These commands 

are encapsulated in DLL. User can call GUC-X00-TPX-Addition 2.2.lib in the library of CPAC controller 

to operate the motion controller when the user writes program to the host PC.  

When receiving commands from the host, CPAC controller will give a feedback after checking and 

verifying the commands. The definitions of return values are listed in Tab 2-1. 

Tab 2-1 Definition of Return Values of Motion Controller 

Value Meanings Processing Methods 

0 Command executed successful  

1 Command error 1. Check the execution condition of the current command 

7 Command parameters error 1. Check the value of current command parameters 

2 License error 1. If user needs this function, please contacts with Googol 

-1 Error in communication. 

1. Check drive of motion controller; 

2. Check connection between motion controller and host 

PC; 

3. Change host PC; 

4. Change motion controller 

-6 Failure in opening the card. 

1. Check drive of motion controller 

2. Check if GT_Open() was called twice. 

3. Check if the card was opened in another program 

-7 
No response of motion 

controller 
1. Change another motion controller 

 

 

It is suggested to check each command return value in user program to confirm if the 

execution of the command is successful, and establish necessary error treatment 

mechanism to assure the safety and reliability of the program. 

 



Chapter 3  System Configuration 

9                 © 2014 Googol Technology. All rights reserved 

Chapter 3 System Configuration 

Except OtoStudio configuration tools, system configuration also supports the instructions of CPAC 

GUC-X00-TPX-Addition 2.2.lib to configure in program run. 

3.1 Command to modify configuration information 

Except configuration file, User can use GT commands to initialization of control system 

3.1.1 Commands summary 

Tab 3-1 Summary of configuration commands 

Commands Description 

GT_AlarmOff Disable the drive alarm 

GT_AlarmOn Enable the drive alarm 

GT_LmtsOn Enable the limit 

GT_LmtsOff Disable the limit 

GT_ProfileScale Set the profile scale of axis 

GT_EncScale Set the encoder scale of axis 

GT_SetStopDec Set smooth stop decelerability and emergency stop decelerability 

GT_GetStopDec Get smooth stop decelerability and emergency stop decelerability 

GT_SetStopIo Set the input type of smooth stop and emergency stop 

GT_GpiSns Specify the effective electrical lever for digital input 

GT_SetAdcFilter Set the filter time parameter of adc input(for GTS-400-PX only) 

  

Tab 3-2 Definition of configuration commands 

GT_AlarmOff(axis) 

Axis:INT Axis NO 

GT_AlarmOn(axis) 

Axis:INT Axis NO 

GT_LmtsOn(axis, limitType) 

Axis:INT Axis NO 

LimitType:INT 

Enable limit type 

MC_LIMIT_POSITIVE：Enable the positive limit of axis 

MC_LIMIT_NEGATIVE：Enable the negative limit of axis 

-1：Enable both of positive and negative limit of axis, default value 

GT_LmtsOff(axis, limitType) 

Axis:INT Axis NO 

LimitType:INT 

Disable limit type 

MC_LIMIT_POSITIVE：Disable the positive limit of axis 

MC_LIMIT_NEGATIVE：Disable the negative limit of axis 



Chapter 3  System Configuration 

10                 © 2014 Googol Technology. All rights reserved 

-1：Disable both of positive and negative limit of axis, default value 

GT_ProfileScale(axis, alpha, beta) 

Axis:INT Axis NO 

Alpha:INT Alpha value of profile scale,ranging in [-32768,32767]，please refer to ii.1 

Beta:INT Beta value of profile scale,ranging in [-32768,32767]，please refer to ii.1 

GT_EncScale(axis, alpha, beta) 

Axis:INT Axis NO 

Alpha:INT Alpha value of encoder scale,ranging in [-32768,32767]，please refer to ii.1 

Beta:INT Beta value of encoder scale,ranging in [-32768,32767]，please refer to ii.1 

GT_SetStopDec(profile, decSmoothStop, decAbruptStop) 

Profile:INT Profile No 

DecSmoothStop:LREAL smooth stop decelerability,range in (0,32767] 

DecAbruptStop:LREAL emergency stop decelerability,range in (0,32767] 

GT_GetStopDec(profile, pDecSmoothStop, pDecAbruptStop) 

Profile:INT Profile No 

PDecSmoothStop:POINTER TO LREAL smooth stop decelerability 

PDecAbruptStop:POINTER TO LREAL emergency stop decelerability 

GT_SetStopIo(axis, stopType,inputType, inputIndex) 

Axis:INT Axis No，range of value: [1,8] 

StopType:INT 

Stop mode 

0: emergency stop 

1: smooth stop 

InputType:INT 

Digital input 

MC_LIMIT_POSITIVE(this macro is defined 0)  positive limit 

MC_LIMIT_NEGATIVE(this macro is defined 1)  negative limit 

MC_ALARM(this macro is defined 2)  drive alarm 

MC_HOME(this macro is defined 3)  home 

MC_GPI(this macro is defined 4)  general input 

MC_ARRIVE(this macro is defined 5)  motor arrive(GTS-400-PX only) 

InputIndex:INT 

Index of digital input, its range depends on inputType 

If inputType= MC_LIMIT_POSITIVE its value ranging in [1, 8]； 

If inputType= MC_LIMIT_NEGATIVE its value ranging in [1, 8]； 

If inputType= MC_ALARM its value ranging in [1, 8]； 

If inputType= MC_HOME its value ranging in [1, 8]； 

If inputType= MC_GPI its value ranging in [1, 16]。 

If inputType= MC_ARRIVE its value ranging in [1,8] 

GT_GpiSns(sense) 

Sense:UINT 

Set the digital input level by bit, bit0 to bit15 represents general input 1 to 

general input 16.  

0: original input level, the return of GT_GetDi() is same as the input level, 0 

means the input is low level, 1 means the input is high level. 

1: reverse input level, the return of GT_GetDi() is same as the reversed 

value of input level, 0 means the input is high level, 1 means the input is low 

level. 



Chapter 3  System Configuration 

11                 © 2014 Googol Technology. All rights reserved 

GT_SetAdcFilter( adc, filterTime) 

Sdc:INT Adc No. its value ranging in [1,8] 

FilterTime:INT Time parameter of the digital input filter,its ranging in[1,50] 

3.1.2 Highlights 

(1)  Set the direction of encoder 

GT_EncSns() command can modify the counting direction of encoder, if corresponding bit of parameter 

is set as 1, counting direction of the encoder of corresponding axis is reversed. The definition of status 

bit of the parameter as show in Tab 3-3. 

Tab 3-3 Definition of status bit of GT_EncSns() 

Status bit 8 7 6 5 4 3 2 1 0 

encoder 
AUX 

encoder 
Enc8 Enc7 Enc6 Enc5 Enc4 Enc3 Enc2 Enc1 

(2)  Set effective electrical level for limit switch 

The default limit switch is normally closed switch. In normal status, the signal of limit switch is at low level, 

and when a high level input, the switch will be triggered. If normally opened switch is used, user need to 

call GT_LmtSns() command to change effective electrical level for limit switch. 

The parameter of GT_LmtSns() indicates the effective level of the positive/negative limit switch of each 

axis. When one status bit of the parameter is set as 0, it means that the trigger level of corresponding 

limit switch is high level active. Whereas, if it is set to 1, it means that the input signal of limit switch is low 

level active. The corresponding relationship between the status bit of parameter and limit switch is as 

show in Tab 3-4. 

Tab 3-4 Definition of status bit of GT_LmtSns() 

Status bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Limit 
Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1 

— ＋ — ＋ — ＋ — ＋ — ＋ — ＋ — ＋ — ＋ 



Chapter 4  Motion Mode 

12                 © 2014 Googol Technology. All rights reserved 

Chapter 4 Motion Mode 

Each axis of GUC-800-TPX controller can operate at Point to Point motion mode, Jog motion mode, PT 

motion mode, electronic gear motion mode, follow motion mode and other motion mode.This chapter 

describes CPAC GUC-X00-TPX-Addition 2.2.lib achieve PVT motion mode and Crd motion mode. 

4.1 Crd Motion Mode 

Interpolation motion mode could realize multi-shaft coordination motion, thus to complete certain motion 

track. Therein, the interpolation motion mode has following functions: it could realize linear interpolation 

and circular interpolation; it could conduct the interpolation motion for two coordinate systems at the 

same time; each coordinate system has two caches and could realize such functions as suspension, 

recovery, etc.; it has the function of delaying the cache and outputting the digital quantity of the cache; 

and it also has the look-ahead preprocessing function and could realize the high-speed and smooth 

motion on short segment with continuous track. 

4.1.1 Commands summary 

Tab 4-1 Summary of Crd motion mode commands 

Commands Description 

GT_SetCrdPrm Set parameters of the coordinate system 

GT_GetCrdPrm Get parameters of the coordinate system 

GT_CrdData Add Crd data to FIFO 

GT_LnXY Buffer command,two-dimensional linear interpolation 

GT_LnXYZ Buffer command,three-dimensional linear interpolation 

GT_LnXYZA Buffer command,four-dimensional linear interpolation 

GT_LnXYG0 
Buffer command,two-dimensional linear interpolation with symmetry 

profile of velocity planning 

GT_LnXYZG0 
Buffer command,three-dimensional linear interpolation with symmetry 

profile of velocity planning 

GT_LnXYZAG0 
Buffer command,four-dimensional linear interpolation with symmetry 

profile of velocity planning 

GT_ArcXYR 
Buffer command,Circular interpolation in XY plane described with end 

point position and radius 

GT_ArcXYC 
Buffer command,Circular interpolation in XY plane described with end 

point position and circle center position 

GT_ArcYZR 
Buffer command,Circular interpolation in YZ plane described with end 

point position and radius 

GT_ArcYZC 
Buffer command,Circular interpolation in YZ plane described with end 

point position and circle center position 

GT_ArcZXR Buffer command,Circular interpolation in ZX plane described with end 



Chapter 4  Motion Mode 

13                 © 2014 Googol Technology. All rights reserved 

point position and radius 

GT_ArcZXC 
Buffer command,Circular interpolation in ZX plane described with end 

point position and circle center position 

GT_BufIO Buffer command, set digital output value 

GT_BufDelay Buffer command, set buffer delay time 

GT_BufDA Buffer command, coordinate buffer DA output 

GT_BufLmtsOn Buffer command, enable limit switch in coordinate buffer 

GT_BufLmtsOff Buffer command,disable limit switch in coordinate buffer 

GT_BufSetStopIo Buffer command,set stop IO information of axis in coordinate buffer 

GT_BufMove 
Buffer command, realize the Cutter direction following function. Start 

some axis’s point to point move. 

GT_BufGear 
Buffer command, realize the Cutter direction following function. Start 

some axis’s following move. 

GT_SetUserSegNum Buffer command, set the user defined segment number. 

GT_GetUserSegNum Get the user defined segment number. 

GT_GetRemainderSegNum Get the number of unfinished segments. 

GT_CrdSpace Get the free space of the FIFO 

GT_CrdClear Clear Crd data in the FIFO 

GT_CrdStart Start Crd motion 

GT_CrdStatus Get the status of coordinate system 

GT_SetOverride Set the Programming resultant velocity 

GT_SetCrdStopDec Set the resultant acceleration of smooth stop and emergency stop 

GT_GetCrdStopDec Get the resultant acceleration of smooth stop and emergency stop 

GT_GetCrdPos Get the specified coordinate of the coordinate system 

GT_GetCrdVel Get the resultant velocity of the coordinate system 

GT_InitLookAhead Initialize the FIFO of look-ahead 

 

Tab 4-2 Definition of Crd motion mode commands 

GT_SetCrdPrm(crd, pCrdPrm) 

Crd:INT Coordinate system ID, ranging in [1,2]. 

PCrdPrm:POINTER TO 

TCrdPrm 

Set parameters of the coordinate system. 

TYPE TCrdPrm : 

STRUCT 

    dimension:INT; 

    profile:ARRAY[0..7] OF INT; 

    synVelMax:LREAL; 

    synAccMax:LREAL; 

    evenTime:INT; 

    setOriginFlag:INT; 

    originPos:ARRAY[0..7] OF DINT; 

END_STRUCT 

END_TYPE 

Dimension: dimension of the coordinate system, ranging in [1,4]. 



Chapter 4  Motion Mode 

14                 © 2014 Googol Technology. All rights reserved 

Profile[8]: mapping relation of coordinate system and profile.Each 

element ranges in [0,4]. 

synVelMax: maximum synthetical velocity of the coordinate system. 

ranging in (0,32767), unit: pulse/ms 

synAccMax: maximum resultant acceleration of the coordinate system. 

ranging in (0,32767), unit: pulse/(ms*ms).  

evenTime:.minimum uniform period of each interpolation. ranging in 

[0,32767),unit:ms. 

setOriginFlag: it indicates whether the profile origin position needs to be 

specified, the parameter is used to set machining coordinate system 

which is from machine coordinate system. 0: no, origin is the current 

profile position; 1: yes, origin is the profile position given by originPos. 

originPos[8]: specify the profile position of origin. 

GT_GetCrdPrm(crd, pCrdPrm) 

Crd:INT Coordinate system ID, ranging in [1,2] 

PCrdPrm:POINTER TO 

TCrdPrm 

Get parameters of the coordinate system. 

Please refer to GT_SetCrdPrm for definitions of the structure members. 

GT_CrdData(crd, pCrdData, fifo) 

Crd:INT Coordinate system ID, ranging in [1,2] 

PCrdData:POINTER TO 

TCrdData 

Crd data 

TYPE TCrdData : 

STRUCT 

    motionType:INT; 

    circlePlat:INT; 

    pos:ARRAY[0..3] OF DINT; 

    radius:DINT; 

    circleDir:INT; 

    center:ARRAY[0..1] OF DINT; 

    vel:LREAL; 

    acc:LREAL; 

    velEndZero:INT; 

    operation:TCrdBufOperation; 

    cosI:ARRAY[0..3] OF LREAL; 

    velEnd:LREAL; 

    velEndAdjust:LREAL; 

    SchyR:LREAL; 

END_STRUCT 

END_TYPE 

pos: coordinate of end-point position.range: [-1073741823, 1073741823],  

unit: pulse. 

vel: target velocity of the crd segment. range: (0,32767), unit: pulse/ms. 

acc: acceleration of the crd segment. range: (0,32767) , unit: 

pulse/(ms*ms). 

velEndZero: indicates whether the end-point velocity is forced to 0. 

operation: operation of delay and digital output in buffer. 



Chapter 4  Motion Mode 

15                 © 2014 Googol Technology. All rights reserved 

cos: an interior parameter of crd module. 

velEnd: end velocity of the crd segment,range: [0,32767),unit:pulse/ms, 

velEndAdjust: an interior parameter of crd module. 

r: an interior parameter of crd module. 

other variables: all interior parameters which is not valid to user. 

TYPE TCrdBufOperation : 

STRUCT 

    flag:INT; 

    delay:UINT; 

    doType:INT; 

    doMask:UINT; 

    doValue:UINT; 

    dataExt:ARRAY[0..1] OF UINT; 

END_STRUCT 

END_TYPE 

Flag: indicates whether there are delay or digital output operations in the 

crd segment, range: [0,1], 0: no; 1: yes. 

Delay: delay time of the delay operation ,range: [0,16383],unit:ms 

doType: type of digital output. 

0:no digital output operations 

MC_ENABLE: output drive enable 

MC_CLEAR: output drive alarm clear. 

MC_GPO: general purpose I/O. 

doMask: bit0~bit15 indicate whether there are digital output operation in 

the corresponding channel. 0: no; 1: yes. 

doValue: bit0~bit15 are the digital output value of the corresponding 

channel. 

dataExt: an interior parameter which is not valid to user. 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_LnXY(crd, x, y, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT x-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Y:DINT y-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL 

End velocity of the crd segment,range: [0,32767),unit:pulse/ms, 

The parameter is valid when look-ahead processing isn’t used, otherwise 

is invalid, default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_LnXYZ(crd, x, y, z, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT x-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Y:DINT y-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 



Chapter 4  Motion Mode 

16                 © 2014 Googol Technology. All rights reserved 

Z:DINT z-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL 

End velocity of the crd segment,range: [0,32767),unit:pulse/ms, 

The parameter is valid when look-ahead processing isn’t used, otherwise 

is invalid,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_LnXYZA(crd, x, y, z, a, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT x-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Y:DINT y-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Z:DINT z-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

A:DINT a-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL 

End velocity of the crd segment,range: [0,32767),unit:pulse/ms, 

The parameter is valid when look-ahead processing isn’t used, otherwise 

is invalid,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_LnXYG0(crd, x, y, synVel, synAcc, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT Coordinate system ID, ranging in [1,2] 

Y:DINT x-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynVel:LREAL y-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynAcc:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_LnXYZG0(crd, x, y, z, synVel, synAcc, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT x-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Y:DINT y-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Z:DINT z-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_LnXYZAG0(crd, x, y, z, a, synVel, synAcc, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT x-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 



Chapter 4  Motion Mode 

17                 © 2014 Googol Technology. All rights reserved 

Y:DINT y-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

Z:DINT z-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

A:DINT a-Axis end-point, ranging in [-1073741823, 1073741823], unit: pulse. 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_ArcXYR(crd, x, y, radius, circleDir, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT 
arc Segment x-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

Y:DINT 
arc Segment y-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

Radius:LREAL 

Radius of the arc segment, range: [-1073741823, 1073741823],unit:p

ulse 

Radius>0:the arc segment ≤180° 

Radius<0: the arc segment ＞180° 

This description mode cannot represent the whole circle. 

CircleDir:INT 

Arc direction 

0:CW 

1:CCW 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL End velocity of the crd segment,range: [0,32767),unit:pulse/ms,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_ArcXYC(crd, x, y, xCenter, yCenter, circleDir, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

X:DINT 
arc Segment x-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

Y:DINT 
arc Segment y-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

XCenter:LREAL Arc center x-axis offset beside the start point 

YCenter:LREAL Arc center y-axis offset beside the start point 

CircleDir:INT 

Arc direction 

0:CW 

1:CCW 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL End velocity of the crd segment,range: [0,32767),unit:pulse/ms,default:0 



Chapter 4  Motion Mode 

18                 © 2014 Googol Technology. All rights reserved 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_ArcYZR(crd, y, z, radius, circleDir, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Y:DINT 
arc Segment y-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

Z:DINT 
arc Segment z-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

Radius:LREAL 

Radius of the arc segment, range: [-1073741823, 1073741823],unit:p

ulse 

Radius>0:the arc segment ≤180° 

Radius<0: the arc segment ＞180° 

This description mode cannot represent the whole circle. 

CircleDir:INT 

Arc direction 

0:CW 

1:CCW 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL End velocity of the crd segment,range: [0,32767),unit:pulse/ms,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_ArcYZC(crd, y, z, yCenter, zCenter, circleDir, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Y:DINT 
arc Segment y-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

Z:DINT 
arc Segment z-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

YCenter:LREAL Arc center y-axis offset beside the start point 

ZCenter:LREAL Arc center z-axis offset beside the start point 

CircleDir:INT 

Arc direction 

0:CW 

1:CCW 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL End velocity of the crd segment,range: [0,32767),unit:pulse/ms,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_ArcZXR(crd, z, x, radius, circleDir, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Z:DINT 
arc Segment z-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

X:DINT 
arc Segment x-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 



Chapter 4  Motion Mode 

19                 © 2014 Googol Technology. All rights reserved 

Radius:LREAL 

Radius of the arc segment, range: [-1073741823, 1073741823],unit:p

ulse 

Radius>0:the arc segment ≤180° 

Radius<0: the arc segment ＞180° 

This description mode cannot represent the whole circle. 

CircleDir:INT 

Arc direction 

0:CW 

1:CCW 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL End velocity of the crd segment,range: [0,32767),unit:pulse/ms,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_ArcZXC(crd, z, x, zCenter, xCenter, circleDir, synVel, synAcc, velEnd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Z:DINT 
arc Segment z-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

X:DINT 
arc Segment x-axis end-point,range: [-1073741823, 1073741823],uni

t:pulse 

ZCenter:LREAL Arc center z-axis offset beside the start point 

XCenter:LREAL Arc center x-axis offset beside the start point 

CircleDir:INT 

Arc direction 

0:CW 

1:CCW 

SynVel:LREAL 
Programming resultant velocity of the Crd segment, ranging in (0,32767), 

unit: pulse/ms. 

SynAcc:LREAL 
acceleration of the Crd segment, ranging in (0,32767), unit: 

pulse/(ms*ms) 

VelEnd:LREAL End velocity of the crd segment,range: [0,32767),unit:pulse/ms,default:0 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufIO(crd, doType, doMask, doValue, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

DoType:UINT 

type of digital output. 

MC_ENABLE: output drive enable. 

MC_CLEAR: output drive alarm clear. 

MC_GPO: general purpose I/O. 

DoMask:UINT 
bit0~bit15 indicate whether there are digital output operation in the 

corresponding channel. 0: no; 1: yes. 

DoValue:UINT bit0~bit15 are the digital output value of the corresponding channel. 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufDelay(crd, delayTime, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

DelayTime:UINT delay time of the delay operation, ranging in: [0,16383], unit: ms. 



Chapter 4  Motion Mode 

20                 © 2014 Googol Technology. All rights reserved 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufDA(crd, chn, daValue, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Chn:INT DA channel No., ranging in [1,8] 

DaValue:INT 
DA output value, ranging in: [-32768,32767], and the corresponding 

voltage rang is -10V~+10V 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufLmtsOn(crd, axis, limitType, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Axis:INT Axis No. of which limit be enabled, ranging in [1,8] 

LimitType:INT 

Enable limit type 

MC_LIMIT_POSITIVE: Enable the positive limit of axis 

MC_LIMIT_NEGATIVE: Enable the negative limit of axis 

-1:Enable both of positive and negative limit of axis, default value 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufLmtsOff(crd, axis, limitType, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Axis:INT Axis No. of which limit be disabled, ranging in [1,8] 

LimitType:INT 

Disable limit type 

MC_LIMIT_POSITIVE: Disable the positive limit of axis 

MC_LIMIT_NEGATIVE: Disable the negative limit of axis 

-1:Disable both of positive and negative limit of axis, default value 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufSetStopIo(crd, axis, stopType, inputType, inputIndex, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Axis:INT Axis No. of which stop IO information be changed, ranging in [1,8] 

StopType:INT 

Stop Type of which information be setted 

0: emergency stop 

1:smooth stop 

InputType:INT 

Type of digital input.  

MC_LIMIT_POSITIVE (this macro is defined 0):  positive limit.  

MC_LIMIT_NEGATIVE (this macro is defined 1): negative limit.  

MC_ALARM (this macro is defined 2):           drive alarm.  

MC_HOME (this macro is defined 3):            home. 

MC_GPI (this macro is defined 4):              general input. 

InputIndex:INT 

Digital input index,rang according to type of digital input 

inputType= MC_LIMIT_POSITIVE,ranging in[1,8] 

inputType= MC_LIMIT_NEGATIVE,ranging in[1,8] 

inputType= MC_ALARM,ranging in[1,8] 

inputType= MC_HOME,ranging in[1,8] 

inputType= MC_GPI,ranging in[1,16] 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufMove(crd,moveAxis,pos,vel, acc,modal,fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 



Chapter 4  Motion Mode 

21                 © 2014 Googol Technology. All rights reserved 

MoveAxis:INT Axis ID, ranging in [1,8], this axis can not be anyone of the coordinate axes. 

Pos:DINT Target position of point to point movement, unit: pulse 

Vel:lreal Target velocity of point to point movement, unit: pulse /ms 

Acc:lreal Acceleration of point to point movement, unit: pulse /(ms*ms) 

Modal:INT 

Command mode: 

0: this command is not a modal command, which would not block the 

execution of the following command. 

1: this command is a modal command, which would block the execution of 

the following command. 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_BufGear(crd,gearAxis, pos,fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

GearAxis:INT Axis ID, ranging in: [1,8], this axis cannot be anyone of the coordinate axes 

Pos:DINT The displacement of follow movement. Unit:pulse. 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_SetUserSegNum(crd, segNum,fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

SegNum:DINT The user defined segment number 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_GetUserSegNum(crd,pSegment, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

pSegment:POINTER TO 

DINT 

Get the user defined segment number 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_GetRemainderSegNum(short crd,long *pSegment,short fifo=0) 

Crd:INT Coordinate system ID, ranging in[1,2] 

pSegment:POINTER TO 

DINT 

Get the number of the unfinished Crd segments. 

FifoINT FIFO ID, ranging in [0,1], default is 0. 

GT_CrdSpace(crd, pSpace, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

PSpace:POINTER TO 

DINT 

Query free space of the FIFO 

Fifo:INT FIFO ID, ranging in [0,1], default is 0. 

GT_CrdClear(crd, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Fifo:INT FIFO ID to be cleared, ranging in [0,1]. 

GT_CrdStart(mask, option) 

Mask:INT 

bit0~bit1 indicate the coordinate systems to be started.  

bit0 corresponds to coordinate system 1, and bit1 corresponds to 

coordinate system 2.0: do not start; 1: start. 

Option:INT 

bit0~bit1 indicate the FIFO number to be started in the corresponding 

coordinate system.bit0 corresponds to coordinate system 1, and bit1 

corresponds to coordinate system 2. 0: start FIFO0; 1: start FIFO1. 



Chapter 4  Motion Mode 

22                 © 2014 Googol Technology. All rights reserved 

GT_CrdStatus(crd, pRun, pSegment, fifo) 

Crd:INT Coordinate system ID, ranging in[1,2] 

PRun:POINTER TO INT 

Get the motion status 

0: the FIFO specified by the coordinate system is not in motion. 

1: the FIFO specified by the coordinate system is in Crd motion mode. 

PSegment:POINTER TO 

DINT 

Get the numbe of segments that have been executed. After the 

re-establishment of the coordinate system or call GT_CrdClear 

instruction , the value will be cleared 

Fifo:INT The number of fifo that to be queried, ranging in [0,1], default is 0. 

GT_SetOverride(crd, synVelRatio) 

Crd:INT Coordinate system ID, ranging in[1,2] 

SynVelRatio:LREAL Target velocity rate, ranging in (0,1], default is 1. 

GT_SetCrdStopDec(crd, decSmoothStop, decAbruptStop) 

Crd:INT Coordinate system ID, ranging in[1,2] 

DecSmoothStop:LREAL 
Set resultant smooth stop acceleration, ranging in (0,32767), unit: 

pulse/(ms*ms). 

DecAbruptStop:LREAL 
Set resultant emergency stop acceleration, ranging in (0,32767), unit: 

pulse/(ms*ms). 

GT_GetCrdStopDec(crd, pDecSmoothStop, pDecAbruptStop) 

Crd:INT Coordinate system ID, ranging in[1,2] 

PDecSmoothStop:POINTER 

TO LREAL 

Get resultant smooth stop acceleration, unit: pulse/(ms*ms). 

PDecAbruptStop:POINTER 

TO LREAL 

Get resultant emergency stop acceleration, unit: pulse/(ms*ms). 

GT_GetCrdPos(crd, pPos) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Ppos:POINTER TO LREAL 

Returned profile position of “crd” coordinate, unit: pulse. This parameter 

is a pointer to the first element of an array. The number of elements in the 

array is decided by the dimension of the coordinate system. 

GT_GetCrdVel(crd, pSynVel) 

Crd:INT Coordinate system ID, ranging in[1,2] 

PSynVel: 

POINTER TO LREAL 

Returned resultant velocity, unit: pulse/ms. 

GT_InitLookAhead(crd, fifo, T, accMax, n, pLookAheadBuf) 

Crd:INT Coordinate system ID, ranging in[1,2] 

Fifo:INT FIFO ID, ranging in [0,1]. 

T:LREAL Turning time .unit: ms 

AccMax:LREAL Maximum acceleration. Unit: pulse/ms2 

N:INT Size of look-ahead buffer, the value ranging in[0,32767] 

PLookAheadBuf:POINTER 

TO TCrdData 

Pointer of look-ahead buffer. 



Chapter 4  Motion Mode 

23                 © 2014 Googol Technology. All rights reserved 

4.1.2 Highlights 

(1)  Establish coordinate system 

In the initialization status, all the profile axes are in the single-axis motion mode and the two coordinate 

systems are invalid. Therefore, the coordinate systems should be established first to implement Crd 

motion, and then map the profile axes to the corresponding coordinate system. Each coordinate system 

supports at most four dimensions (X-Y-Z-A). Users can use two-dimensional (X-Y) and 

three-dimensional (X-Y-Z) coordinate system to describe the motion trajectory. 

 

 

 

 

 

 

The motion described in the coordinate system is mapped to the corresponding profile axis by calling 

GT_SetCrdPrm(). The motion controller controls the axes according to the mapping relation to 

implement desired motion trajectory. All the profile axes mapped should be in static status when calling 

GT_SetCrdPrm(). 

Example: establish coordinate system 

……  

Rtn:INT; 

CrdPrm: TCrdPrm;                      (*Define the structure variable for coordinate system *) 

First:BOOL:=TRUE; 

------------------------------------------------------------------------------------------------ 

IF First THEN 

SysMemSet(ADR(crdPrm),0,sizeof(crdPrm));        (*Initialize variables to 0 *) 

crdPrm.dimension:=2;                    (*two-dimensional coordinate system *) 

crdPrm.synVelMax:=500;                 (*Maximum resultant velocity: 500pulse/ms *) 

crdPrm.synAccMax:=1;                   (*Maximum resultant acceleration: 1pulse/ms^2*) 

crdPrm.evenTime := 50;                  (*Smooth time: 50ms *) 

crdPrm.profile[0] := 1;                    (*map profiler1 to X-axis *) 

crdPrm.profile[1] := 2;                    (*map profiler2 to Y-axis *) 

crdPrm.setOriginFlag := 1;                (*Specify origin *) 

Z 

X 

Y 

 

O 

Fig 4-1 Right-handed coordinate system 



Chapter 4  Motion Mode 

24                 © 2014 Googol Technology. All rights reserved 

crdPrm.originPos[0] := 100; 

crdPrm.originPos[1] := 100; 

rtn := GT_SetCrdPrm(1,ADR(crdPrm));     (*Establish coordinate system 1 and set parameters *) 

First:=FALSE; 

END_IF 

……  

Illustration: 

dimension: dimension of the coordinate system, ranging in [1,4]. The coordinate system established in 

the example program is two-dimensional, i.e. X-Y coordinate system. 

synVelMax: the maximum resultant velocity that the coordinate system supports. If the target velocity 

given by users is greater than the maximum, then it is set to the maximum. 

synAccMax: the maximum resultant acceleration that the coordinate system supports. If the acceleration 

given by user is larger than the maximum, then it is set to the maximum. 

evenTime: minimum even pace time of each Crd segment. If the Crd segment is short and the target 

velocity is high, the resultant velocity looks like the curve illustrated in Fig 4-2. There are only 

accelerating segment and decelerating segment, and form an angle. The value of acceleration changes 

from positive to negative instantly thus causes a big impulse. By setting evenTime, the target velocity 

can be decreased. The velocity curve will look like that illustrated in Fig 4-3, thus the impulse is reduced. 

V

t
 

Fig 4-2 evenTime=0 

V

t
 

Fig 4-3 evenTime>0 

profile[x]: mapping relation of coordinate system and profile. Profile[0..7] mapped to 1~8 profile axis. 

For example, if profile axisl is not used in coordinate system, the value of profile[x] is 0; if profile axis1 is 

used as X axis, the value of profile[x] is 1. Similary,Y axis is 2, Z axis is 3, A axis is 4. Multi-profile axes is 

to be mapped to the same coordinate axis is not allowed. And a profile axis be mapped to different axes 

is not allowed too, otherwise ,the command return error. Coordinate system’s axis number ranges in 

[1,4]. 

setOriginFlag: it indicates whether the profile origin position needs to be specified, the parameter is 

used to set machining coordinate system which is from machine coordinate system. 0: origin is the 

current profile position; 1: origin is the profile position given by originPos. 

originPos[x] : specify the profile position of origin, that is offset relative to machine coordinate system. 

Establishing a machining coordinate system as shown in Fig 4-4. 



Chapter 4  Motion Mode 

25                 © 2014 Googol Technology. All rights reserved 

X

Y

X'

Y'

(100,100)

Machine coordinate 

system

Processing coordinate system

O

O'

 

Fig 4-4 Offset of the machining coordinate system 

(2)  Coordinate movement 

To realize coordinate movement, the motion controller provides a buffer with. It allows user to push 

several motion path and parameter commands into the buffer, and then start motion,the controller will 

execute the data in order, till all the data was executed. 

There are two Crd FIFOs (FIFO0 and FIFO1) in each coordinate system, FIFO0 is the principal motion 

FIFO, and FIFO1 is auxiliary motion FIFO, and there are 4096 Crd segments in each FIFO. 

FIFO support dynamic management, that is, after the crd motion, the FIFO will be released automatically, 

users are allowed to transport new data. In this way, it can support more than 4096 Crd segments。 

Linear interpolation program： 

…… …… …… 

Rtn:INT; 

Run:INT;                        (*define query variable of motion status for coordinate system *) 

Segment:DINT;                          (*the number of finished segment *) 

First:BOOL:=TRUE; 

------------------------------------------------------------------------------------------------------------- 

IF First THEN 

rtn := GT_AxisOn(1);                   

rtn := GT_AxisOn(2);                  

 

rtn := GT_CrdClear(1,0);                  (*clear the data in FIFO0 of coordinate 1*) 

(*The first Crd data *) 

rtn := GT_LnXY(1,200000,0,100,0.1,0,0);     

(*transfer linear interpolation data to FIFO0 of coordinate 1 *) 

                                      (*Coordinate of end-point: (200000,0)*) 



Chapter 4  Motion Mode 

26                 © 2014 Googol Technology. All rights reserved 

                                      (*target velocity : 100pulse/ms*) 

                                      (*acceleration : 0.1pulse/ms^2*) 

                                      (*velocity at end-point :0*) 

(*The second Crd data*) 

rtn = GT_LnXY(1,100000,173205,100,0.1,0,0); 

(*buffer digital output*) 

rtn = GT_BufIO(1,MC_GPO,16#ffff,16#55,0);  (*Type of digital output: general purpose *) 

                                      (*All the bit0~bit15 output *) 

                                      (*Output value is 0x55*) 

(*The third Crd data*) 

rtn := GT_LnXY(1,-100000,173205,100,0.1,0,0); 

(*buffer digital output*) 

rtn := GT_BufIO(1,MC_GPO,16#ffff,16#aa,0); 

(*The fourth Crd data*) 

rtn := GT_LnXY(1,-200000,0,100,0.1,0,0); 

(*buffer delay*) 

rtn := GT_BufDelay(1,400,0);              (*delay 400ms *) 

(*The fifth Crd data*) 

rtn := GT_LnXY(1,-100000,-173205,100,0.1,0,0); 

(*buffer digital output *) 

rtn := GT_BufIO(1,MC_GPO,16#ffff,16#55,0); 

(*buffer delay *) 

rtn := GT_BufDelay(1,100,0); 

(*The sixth Crd data*) 

rtn := GT_LnXY(1,100000,-173205,100,0.1,0,0); 

(*The seventh Crd data*) 

rtn := GT_LnXY(1,200000,0,100,0.1,0,0); 

rtn := GT_CrdSpace(1,ADR(space),0);     (*Get free space of FIFO0 of coordinate system1*) 

rtn := GT_CrdStart(1,0);                  (*Start Crd motion of FIFO0 of coordinate system1*) 

First:=FALSE; 

END_IF 



Chapter 4  Motion Mode 

27                 © 2014 Googol Technology. All rights reserved 

 

(*The value of run is 1 if the coordinate system is in motion *) 

rtn := GT_CrdStatus(1,ADR(run),ADR(segment),0); 

…… …… …… 

Example specification： 

Data is transmitted to the interpolation cache through GT_LnXY() instruction which includes terminal 

coordinate, acceleration and target speed, and GT_BufIO() instruction could be called to realize the 

digital quantity output in the cache and GT_BufDelay() instruction could be called to realize the delay 

operation in the cache. In this routine, totally 7 sections of motion data are transmitted to the 

interpolation cache, and the running result of the routine is a hexagon as shown in Fig 4-5. Therein, 

cache delay and digital quantity output are conducted during the motion.. 

 

Fig 4-5 Trajectory of linear interpolation example 

GT_CrdStatus() instruction could be used to inquire FIFO motion state (moving or stationary) designated 

by coordinate system, number of segments that have currently completed the interpolation motion, 

wherein the number of segments is accumulatively counted after the first GT_CrdStart() is called since 

the establishment of the coordinate system and is reset till the coordinate system is destroyed or 



Chapter 4  Motion Mode 

28                 © 2014 Googol Technology. All rights reserved 

GT_CrdClear() is called. 

Circular interpolation program： 

Rtn:INT; 

Run:INT;                              (*Define motion status query variable*) 

Segment:DINT;                   (*Define query variable for the number of segments finished *) 

First:BOOL:=TRUE; 

------------------------------------------------------------------------------------------------------------- 

IF First THEN 

rtn := GT_AxisOn(1);                   

rtn := GT_AxisOn(2);                  

 

rtn := GT_CrdClear(1,0);                  (*clear the data in FIFO0 of coordinate 1*) 

 

(*linear interpolation data*) 

rtn := GT_LnXY(1,200000,0,100,0.1,0,0); 

 

(*circulaer interpolation data *)  

rtn := GT_ArcXYC(1,200000,0,-100000,0,0,100,0.1, 0,0); 

                                     (*describe the whole circle with center point mode *) 

                                     (*center point: (100000,0)*) 

                                     (*coincide with the end-point and start-point: (200000,0)*) 

                                     (*CW circle*) 

                                     (*target velocity: 100pulse/ms*) 

                                     (*acceleration: 0.1pulse/ms^2*) 

                                     (*end velocity: 0*) 

(*circulaer interpolation data *) 

rtn := GT_ArcXYR(1,0,200000,200000,1,100,0.1,0,0); 

                                     (*1/4 circle described by radius mode *) 

                                     (*end point: (0,200000)*) 

                                     (*radius: 200000*) 

                                     (*CCW circle *) 



Chapter 4  Motion Mode 

29                 © 2014 Googol Technology. All rights reserved 

rtn := GT_LnXY(1,0,0,100,0.1,0,0);          (*back to the origin *) 

rtn := GT_CrdSpace(1, ADR(space),0);      (*Get free space of FIFO0 of coordinate system1*) 

rtn := GT_CrdStart(1,0);                    (*Start Crd motion of coordinate system1*) 

First:=FALSE; 

END_IF 

 

rtn := GT_CrdStatus(1,ADR(run),ADR(segment),0);    

(*Get motion status of FIFO0 of coordinate system1*) 

(*The value of run is 1 if the coordinate system is in motion *) 

IF run=1 THEN 

…… …… …… 

The trajectory of circular interpolation example is illustrated in Fig 4-6. 

 

Fig 4-6 Trajectory of circular interpolation example 



Chapter 4  Motion Mode 

30                 © 2014 Googol Technology. All rights reserved 

Controller supports circular interpolation on XY plane, YZ plane and ZX plane, arc rotating direction is 

defined according to the right-hand rotation rule. Form the “top” of two-dimensional coordinate plane(i.e. 

the positive direction of the third axis which is vertical to the two-dimensional coordinate plane), to 

confirm the CW direction and CCW direction. In short to remember: Extend the thumb of right hand, and 

make fist with the other four fingers; the thumb points to the positive direction of the third axis and the 

direction of the other four fingers is the CCW rotating direction. When the coordinate system is a 

two-dimensional system(X-Y), the CCW direction of circular interpolation in XOY coordinate plane is 

defined as the same way. As illustrated in Fig 4-7. 

 

Fig 4-7 CCW direction of circular interpolation 

Controller provides two mode to describe circular interpolation: radius mode and center point mode. 

User can choose the suitable mode to program. Both follow the G code standard. 

1) Radius mode 

Radius mode use GT_ArcXYR(),GT_ArcYZR() and GT_ArcZXR() command to describe the circular 

interpolation. User need to input the end point,radius,circular rotating direction, velocity and acceleration 

and so on. Radius can be positive or negative, Its absolute value is the radius of arc. If radius > 0, means 

the arc ≤180 degree, if radius < 0, means the arc > 180 degree. This mode cannot describe a whole 

circle. As illustrated in Fig 4-8. 

 

Fig 4-8 Schematic diagram of radius > 0 and radius < 0 



Chapter 4  Motion Mode 

31                 © 2014 Googol Technology. All rights reserved 

2) Center point mode 

Center point mode use GT_ArcXYC(),GT_ArcYZC() and GT_ArcZXC() command to describe the 

circular interpolation. User need to input end point, offset between the center point and start point, 

circular rotating direction, velocity and acceleration. Offset between the center point and start point show 

as Fig 4-9. 

 

Fig 4-9 Center point description 

The parameter of center point is signed offset to the start point. If the start point is (xStart, yStart), the 

center point parameter set by user is (xCenter, yCenter), then the center point is (xStart+xCenter, 

yStart+yCenter). If start point is coincide with end point, there will be a whole circle motion. 

User need ensure the parameter can describe an arc correctly, if not, command result will be wrong 

(return value is 7). 

(3)  Look-ahead processing 

Features of short segment interpolation processing: In order to ensure the smoothness of the contact 

surface between the tools and the processing piece, it is necessary to ensure the constancy of the 

tangential speed during the track motion and meanwhile ensure the track processing precision.  

According to Fig 4-10, we could know that the terminal point of each segment in the Figure has an 

inflection point (the track has obviously changed point), and the speed must be reduced, but whether the 

speed shall be reduced to 0 depends on the length, speed, acceleration, speed change limit of the 

inflection point of the segment, etc. and the terminal speed of various segments calculated according to 

relevant processing parameters. 

 

Fig 4-10 X-Y Plane Multi-segment Track Chart 

According to Fig 4-11, we could know that the segment combination of the fitted curve track on the basis 



Chapter 4  Motion Mode 

32                 © 2014 Googol Technology. All rights reserved 

of short segments shall have the constant tangential speed during processing, but the speed must be 

reduced to a rational value (rational terminal speed) at the inflection point (the 8th point) in order to 

ensure that the processing actuator (the basic machine and the motor) could bear the speed variation 

caused by the track feature change at the inflection point. 

 

 

Fig 4-11 –Y Plane Short Segment Track Chart 

In order to solve the conflict between high speed and high precision, the look-ahead preprocessing 

mode is adopted for the motion controller to control the speed during the motion process. 

Users could call the look-ahead preprocessing module provided by the motion controller according to the 

technological characteristic parameter (pulse equivalent, target speed, maximum acceleration, allowable 

turning time, etc.) to give out the terminal speed of each segment. Meanwhile, the motion controller 

executes the acceleration and deceleration operations strictly according to the terminal speed of each 

segment. In the motion controller, the set of instructions for realizing the speed preprocessing function is 

called look-ahead preprocessing instruction (also called LookAhead). 

From Fig 4-12 we can get that the velocity increases obviously in the process of micro-segment 

machining by using the look-ahead processing module. 

 

Fig 4-12 Velocity curve comparison between with and without look-ahead process 

With look-ahead process 

Without look-ahead process 



Chapter 4  Motion Mode 

33                 © 2014 Googol Technology. All rights reserved 

Example of look-ahead processing: 

Rtn:INT; 

I:INT; 

    CrdDataSend: TCrdData; 

CrdData:ARRAY[0..199] OF TCrdData;              (*define buffer for look-ahead processing *) 

PosTest:ARRAY[0..1] OF DINT; 

First:BOOL:=TRUE; 

IF First THEN 

rtn := GT_AxisOn(1);                   

rtn := GT_AxisOn(2);                  

  

    rtn := GT_InitLookAhead(1,0,5,1,200,crdData);  

(*Initialize look-ahead module of FIFO0 of coordinate system1*) 

    (*Insert Crd data: micro-segment machining *) 

    posTest[0] := 0; 

    posTest[1] := 0; 

FOR I:=1 TO 300 BY 1 DO 

        rtn := GT_LnXY(1,8000+posTest[0],9000+posTest[1],100,0.8,0,0); 

        posTest[0] := posTest[0]+1600; 

        posTest[1] := posTest[1]+1852; 

END_FOR 

rtn := GT_CrdData(1,0,0);             (*insert the data in look-ahead buffer to Crd buffer *) 

rtn := GT_CrdStart(1,0); 

First:=FALSE; 

END_IF 

…… 

Illustration: 

Turning time (T): the third parameter of GT_InitLookAhead(), unit: ms. The empirical range of T is 

1ms~10ms. The greater the T is, the higher the terminal velocity calculated is, but the machining 

precision decreases. On the contrary, the machining precision increases but the terminal velocity 

calculated is low. Therefore the value of T should be chosen suitably. 

Maximum acceleration (accMax): the forth parameter of GT_InitLookAhead(), unit: pulse/(ms*ms). The 



Chapter 4  Motion Mode 

34                 © 2014 Googol Technology. All rights reserved 

maximum acceleration the system supports. Its value varies for different mechanism and motor drive. 

Size of look-ahead cache and memory pointer of look-ahead cache: this look-ahead module is 

composed of look-ahead cache memory provided by user, so the user could properly define the size of 

the cache according to the needs thereof and the computer conditions, the larger the look-ahead cache 

is, the larger the memory occupies. In detail, the user needs to firstly define an interpolation data array 

variable and applies certain cache, and then transfer the memory pointer to the look-ahead module of 

the motion controller through GT_InitLookAhead() instruction. During the look-ahead processing, the 

user could not operate the cache, or else the data in the look-ahead cache could be destroyed, thus 

causing data error. 

If the number of segments in the look-ahead buffer is not zero, the Crd data transferred by buffer 

command enter the look-ahead buffer. After the look-ahead buffer is full, the data entered first into the 

look-ahead buffer will enter Crd buffer if there are new data inserted. 

If all the Crd data have been input, and there are still data in look-ahead buffer that have not entered Crd 

buffer, then the GT_CrdData(1,NULL,0) should be called to transfer the data in the look-ahead buffer to 

the Crd buffer until the look-ahead buffer is clear. 

If the data volume is large, users should use GT_CrdSpace() to get the free space of Crd buffer. If there 

are free space, calling buffer command will transfer data, otherwise buffer command will return error 

which indicates failure of data transfer and the data should be transferred again. 

If the look-ahead preprocessing function is not used, then the motion controller will not optimize the 

terminal speed and the target speed of the interpolation segment but control the speed strictly according 

to the target speed and the terminal speed designated by the user. If the user calls the instruction of 

GT_LnXYG0(), GT_LnXYZG0() and GT_LnXYZAG0(), then the motion instruction will finish a complete 

acceleration and deceleration process. In other words, the resultant speed of each segment is started 

from 0 and is also ended at 0. In case of calling other interpolation motion instructions (including linear 

interpolation and circular interpolation instructions), the user could designate the target speed and the 

terminal speed of the interpolation segment and meanwhile the motion controller will control the speed 

strictly according to the target speed and the terminal speed designed by the user. 

After the look-ahead preprocessing function is used, the controller will set a rational value which is not 

always 0 for the terminal speed of each segment according to the parameter set by the user. If the 

terminal speed of certain interpolation data is required to be 0 according to user’s technological 

requirement, then it is necessary to call GT_LnXYG0(), GT_LnXYZG0() or GT_LnXYZAG0() to set the 

terminal speed of the linear interpolation segment as 0. In case of calling other interpolation motion 

instructions (including linear interpolation and circular interpolation instructions), the terminal speed set 

by the user will be invalid and the actual terminal speed will be a rational terminal speed calculated by 

the look-ahead preprocessing module according to the look-ahead preprocessing parameter set by the 

user and the motion track. In addition, if the cache delay exists between certain interpolation motion data 

and the next interpolation motion data, then the terminal speed of the interpolation motion will be set as 

0. 

Look-ahead processing only supports 3-axis or less than 3 axes Crd motion. If the coordinated system 

established is more than 3 axes, it will return error when using look-ahead processing, and 7 (parameter 

error) is returned when calling buffer command. 

The curve of the resultant speed without look-ahead preprocessing is as shown in Fig 4-13, and the 



Chapter 4  Motion Mode 

35                 © 2014 Googol Technology. All rights reserved 

resultant speed will ceaselessly change. The curve of the resultant speed with look-ahead preprocessing 

is as shown in Fig 4-14. Since the interpolation motions in the routine are in the same straight line, the 

speed could be kept at the target speed, thus to greatly improve the processing efficiency. 

 

Fig 4-13 Velocity curve without look-ahead processing 

 

Fig 4-14 Velocity curve without look-ahead processing 

(4)  Suspension and resumption of FIFO 

During cache interpolation process, user may stop processing and check the processing effect or 

conduct other operations such as tool changing, etc. after stopping processing. The motion controller 

supports the above operations. In order to realize the above operation process, two interpolation caches 

are provided to each coordinate system: FIFO0 and FIFO1. Both the two caches have 4096 segments of 

interpolation caches and could independently set their own look-ahead preprocessing caches. 



Chapter 4  Motion Mode 

36                 © 2014 Googol Technology. All rights reserved 

FIFO0 is the principal FIFO, and the Crd data of principal Crd motion should be stored in FIFO0. The Crd 

motion of FIFO0 can be suspended to execute the Crd motion of FIFO1. After the motion of FIFO1 

finished, the motion of FIFO0 can resume from the breakpoint.  

FIFO1 is the auxiliary FIFO, and the Crd data of auxiliary Crd motion can be stored in FIFO1. Only if the 

motion of FIFO0 stops, the data in FIFO1 can be transferred. If the motion of FIFO0 is executing, 

transferring data to FIFO1 will cause error. The motion of FIFO1 can also be suspended and resumed, 

but in the interval of suspension and resumption the motion of FIFO0 cannot execute, otherwise FIFO1 

will be cleared and the motion of FIFO1 cannot be resumed. 

If the motion of FIFO0 needs to be resumed after the motion of FIFO1 finishes, the coordinate location 

value must be the same before and after the suspension of FIFO0. Otherwise FIFO0 cannot start motion 

and return error by calling GT_CrdStart(). 

(5)  Cutter direction following 

Tool following refers to the technology that part of shaft changes along with the change of the resultant 

displacement of the interpolation motion during the interpolation motion process, thus to enable the tool 

to be always at the suitable processing direction during the processing. The interpolation module of this 

controller has two instructions to realize this technology: GT_BufMove() and GT_BufGear(), wherein 

GT_BufMove() instruction could be used to interpolate modal and modeless point motions during the 

interpolation motion process while GT_BufGear() instruction could be used to realize the motion of other 

shafts following the interpolation resultant displacement  

1) Point to point motion in interpolation process 

In the interpolation process Point to Point movement of other axis in the interpolation process is realized 

by pushing GT_BufMove() command into command buffer. It should be particularly noted that the 

second parameter of this command is NO. of axis to motion in Point to Point mode. The axis to move in 

point to point mode cannot be axes in the coordinate system; what’s more, if the axis is not in the point to 

point mode and is moving, this command cannot be executed correctly. The third parameter is the target 

position of point to point movement, which is the absolute position relative to the zero point of the 

machine. The forth parameter is the target velocity of the point to point movement, which must be a 

positive value. The fifth parameter is acceleration of the move, which must be a positive value. The sixth 

parameter set the command to be modal or non-modal. Modal command means while executing this 

point to point movement, the following commands in the interpolation buffer would wait until it’s finished; 

non-modal command means: after motion controller starts the point to point movement, it execute the 

next command in the command buffer without waiting for the end of the point to point movement. The 

example is illustrated as follows: 

PROGRAM PLC_PRG 

VAR 

  Enable : BOOL; 

Rtn : INT;  

Run : INT; (*define query variable of motion states of coordinate system *)  

Segment : DINT; (*define variable for the number of finished segment *) 



Chapter 4  Motion Mode 

37                 © 2014 Googol Technology. All rights reserved 

END_VAR 

----------------------------------------------------------------------------------------------------- 

If Enable THEN 

rtn := GT_CrdClear(1,0); (*clear the data in FIFO0 of coordinate 1*)  

rtn := GT_LnXY(1,200000,200000,100,0.1,0,0); (*linear interpolation command*)  

rtn := GT_BufMove(1,4,50000,30,0.1,0,0); (* point to point mode command in buffer  

ID of axis: 4 

target position: 50000 pulse 

target velocity: 100 pulse/ms  

target acceleration: 0.1 pulse/(ms*ms) 

non-modal command *) 

rtn := GT_LnXY(1,200000,0,100,0.1,0,0); (*linear interpolation command*)  

rtn := GT_BufMove(1,4,100000,30,0.1,1,0); (*point to point mode command in buffer 

ID of axis: 4 

target position: 100000 pulse 

target velocity: 100 pulse/ms 

target acceleration: 0.1 pulse/(ms*ms) 

modal command *) 

rtn := GT_ArcXYC(1,-200000,0,-200000,0,0,100,0.1,0,0); (*circular interpolation command *) 

Enable := FALSE; 

END_IF 

The result of the example code is as Fig 4-15.  



Chapter 4  Motion Mode 

38                 © 2014 Googol Technology. All rights reserved 

 

Fig 4-15 Point to Point motion trajectory of interpolation buffer 

The blue line is the resultant velocity of interpolation movement; the red line is the resultant velocity of 

the point to point moving axis. According to the figure, the first point to point movement is a non-modal 

command, which is moving with the interpolation at the same time; the second point to point movement 

is a modal command, it blocks the interpolation, the interpolation resumes after the point to point 

movement finished. When using the point to point movement function of the interpolation module, pay 

attention to the following matters:  

a) The target position of point to point movement is absolute position relative to the zero point of 

the machine.  

b) If the last point to point movement in the buffer isn’t finished, while a new point to point 

movement is sent, then the controller would profile according to the new point to point 

movement command, which means the target position the target velocity in the interpolation 

buffer can be modified.  

c) The point to point movement would not stop when user stops the movement of the interpolation 

buffer. To stop the point to point movement, execute GT_Stop() to stop the axis’s moving. 

When the buffer movement resumes, user must check the point to point mode axis to ensure 

it’s at the proper position  

d) In the modal point to point moving process, if the axis stops by exceptional results such as 

triggered a limit switch, the remaining command in the interpolation buffer would not be 

executed any more. In this situation, user has to check the exceptional results, and reset the 

relative parameters, and make the system normal before resume working  

2) Follow motion in interpolation process 

Following movement of other axis in the interpolation process is realized by pushing GT_BufGear() 

command into command buffer. The second parameter of this command is the axis ID which to move in 



Chapter 4  Motion Mode 

39                 © 2014 Googol Technology. All rights reserved 

following mode.It should be noted that, this axis can not be an axis in the coordinate system; if this axis 

is moving when the GT_BufGear() is sent, the command cannot be executed correctly. The third 

parameter is the distance of the follow movement, this value is a relative value, which is the following 

axis has to move in the next interpolation moving process. 

Example is illustrated as follows:  

PROGRAM PLC_PRG 

VAR 

  Enable : BOOL; 

Rtn : INT;  

Run : INT; (*define query variable of motion states of coordinate system *)  

Segment : DINT; (*define variable for the number of finished segment *) 

END_VAR 

----------------------------------------------------------------------------------------------- 

If Enable THEN 

rtn = GT_CrdClear(1,0); (*clear the data in FIFO0 of coordinate 1*) 

rtn = GT_LnXY(1,200000,200000,100,0.1,0,0); (*linear interpolation command *) 

rtn = GT_BufGear(1,4,50000, 0); (*following mode command in buffer  

axis ID: 4 

follow distance: 50000 pulse *) 

rtn = GT_LnXY(1,200000,0,100,0.1,0,0); (*linear interpolation command *) 

rtn = GT_BufGear(1,4,50000,0); (*following mode command in buffer 

axis ID: 4 

follow distance: 50000 pulse *) 

rtn = GT_ArcXYC(1,-200000,0,-200000,0,0,100,0.1,0,0); (*circular interpolation command *) 

  Enable := FALSE; 

END_IF 

The result of the example code is as Fig 4-16. 



Chapter 4  Motion Mode 

40                 © 2014 Googol Technology. All rights reserved 

 

Fig 4-16 Follow motion velocity curve of interpolation buffer 

The blue line is the resultant velocity of interpolation movement; the red line is the resultant velocity of 

the point to point moving axis. The velocity of following axis changes along with the resultant velocity of 

interpolation.When using the point to point movement function of the interpolation module, pay attention 

to the following matters: 

a) GT_BufGear() command must place right before the interpolation segment needs to be follow, 

do not insert any other kind commands, more than one GT_BufGear() command can be 

executed for multi-axis following movement. 

b) When coordinate system paused, as the resultant interpolation velocity decelerates to 0, the 

follow axis would decelerate to 0, too. If wants to resume the follow axis’s following movement 

as the coordinate system resumes, do not call the GT_Stop() to stop the follow axis, otherwise 

the follow axis cannot finish the last follow movement when restart the interpolation movement.  

4.2 PVT Motion Mode 

4.2.1 Commands summary 

Tab 4-3 Summary of PVT mode commands 

Commands Description 

GT_PrfPvt Set the axis as PVT mode 

GT_SetPvtLoop Set the number of loops 

GT_GetPvtLoop Get the number of loops 

GT_PvtTable Transfer data to the table in PVT description mode 

GT_PvtTableComplete Transfer data to the table in Complete description mode 

GT_PvtTablePercent Transfer data to the table in Percent description mode 

GT_PvtPercentCalculate Calculate the velocity in Percent description mode 



Chapter 4  Motion Mode 

41                 © 2014 Googol Technology. All rights reserved 

GT_PvtTableContinuous Transfer data to the table in Continuous description mode 

GT_PvtContinuousCalculate Calculate the time in Continuous description mode 

GT_PvtTableSelect Select the table 

GT_PvtStart Start Pvt motion 

GT_PvtStatus Read status 

(1)  GT_PrfPvt 

Tab 4-4 Set the axis as PVT mode 

GT_PrfPvt(profile) 

Profile:INT Profile No. 

(2)  GT_SetPvtLoop 

Tab 4-5 Set the number of loops 

GT_SetPvtLoop(profile, loop) 

Profile:INT Profile No. 

Loop:DINT 
Number of loops 

0 denotes infinite loop 

(3)  GT_GetPvtLoop 

Tab 4-6 Get the number of loops 

GT_GetPvtLoop(profile, pLoopCount, pLoop) 

Profile:INT Profile No. 

PLoopCount: POINTER TO DINT Get the number of loops executed 

PLoop: POINTER TO DINT Get the total number of loops 

(4)  GT_PvtTable 

Transfer data to the table in PVT description mode 

Tab 4-7 

GT_PvtTable(tableId, count, pTime, pPos, pVel) 

TableId:INT Table ID 

Count:DINT 
Number of data points. 1024 memory blocks each table, and 1 

memory block for 1 data point. 

PTime:POINTER TO LREAL Time array of data points, unit: ms, length of array: count 

PPos:POINTER TO LREAL Position array of data points, unit: pulse, length of array: count 

PVel:POINTER TO LREAL Velocity array of data points, unit: pulse/ms, length of array: count 

(5)  GT_PvtTableComplete 

Transfer data to the table in Complete description mode 

Tab 4-8 

GT_PvtTableComplete(tableId,count, pTime, pPos, pA, pB, pC, velBegin, velEnd) 

TableId:INT Table ID 

Count:DINT Number of data points. 1024 memory blocks each table, and 1 memory 



Chapter 4  Motion Mode 

42                 © 2014 Googol Technology. All rights reserved 

block for 1 data point. 

PTime:POINTER TO LREAL Time array of data points, unit: ms, length of array: count 

PPos:POINTER TO LREAL Position array of data points, unit: pulse, length of array: count 

pA、pB、pc:POINTER TO 

LREAL 

Working array, for internal use, length of array: count 

Users need not assign for the array 

velBegin:LREAL Start velocity, unit: pulse/ms 

velEnd:LREAL Terminal velocity, unit: pulse/ms 

(6)  GT_PvtTablePercent 

Transfer data to the table in percent description mode 

Tab 4-9 

GT_PvtTablePercent(tableId, count, pTime, pPos, pPercent, velBegin) 

TableId:INT Table ID 

Count:DINT 
Number of data points. 1024 memory blocks each table, and 1-3 

memory blocks for 1 data point. 

pTime:POINTER TO LREAL Time array of data points, unit: ms, length of array: count 

pPos:POINTER TO LREAL Position array of data points, unit: pulse, length of array: count 

pPercent:POINTER TO 

LREAL  

Percent array of data points, length of array: count 

Range of percent: [0,100] 

velBegin:LREAL Start velocity, unit: pulse/ms 

(7)  GT_PvtPercentCalculate 

Calculate the time in Continuous description mode 

Tab 4-10 

GT_PvtPercentCalculate(count, pTime, pPos, pPercent, velBegin, pVel) 

Count:DINT 

Number of data points. This command is used to calculate the time 

of each data point. The data points are not downloaded to the 

motion controller. 

pTime:POINTER TO LREAL Time array of data points, unit: ms, length of array: count 

pPos:POINTER TO LREAL Position array of data points, unit: pulse, length of array: count 

pPercent:POINTER TO LREAL 
Percent array of data points, length of array: count 

Range of percent: [0,100] 

velBegin: LREAL Start velocity, unit: pulse/ms 

pVel:POINTER TO LREAL Return velocity of each data point, unit: pulse/ms 

(8)  GT_PvtTableContinuous 

Transfer data to the table in Continuous description mode 

Tab 4-11 

GT_PvtTableContinuous(tableId, count, pPos, pVel, pPercent, pVelMax, pAcc, pDec, timeBegin) 

TableId:INT Table ID 

Count:DINT 
Number of data points. 1024 memory blocks each table, and 1-8 memory 

blocks for 1 data point. 



Chapter 4  Motion Mode 

43                 © 2014 Googol Technology. All rights reserved 

pPos:POINTER TO LREAL Position array of data points, unit: pulse, length of array: count 

pVel:POINTER TO LREAL Velocity array of data points, unit: pulse/ms, length of array: count 

pPercent:POINTER TO 

LREAL  

Percent array of data points, length of array: count 

Range of percent: [0,100] 

pVelMax:POINTER TO 

LREAL 

Max. velocity array of data points, unit: pulse/ms, length of array: count 

pAcc:POINTER TO LREAL Acceleration array of data points, unit: pulse/ms2, length of array: count 

pDec:POINTER TO LREAL Deceleration array of data points, unit: pulse/ms2, length of array: count 

TimeBegin:LREAL Start time, unit: ms 

(9)  GT_PvtContinuousCalculate 

Calculate the velocity in Percent description mode 

Tab 4-12 

GT_PvtContinuousCalculate(count, pPos, pVel, pPercent, pVelMax, pAcc, pDec, pTime) 

Count:DINT 

Number of data points. This instruction is used to calculate the velocity of 

each data point. The data points are not downloaded to the motion 

controller. 

pPos:POINTER TO LREAL Position array of data points, unit: pulse, length of array: count 

pVel:POINTER TO LREAL Time array of data points, unit: ms, length of array: count 

pPercent:POINTER TO 

LREAL 

Percent array of data points, length of array: count 

Range of percent: [0,100] 

pVelMax:POINTER TO 

LREAL 

Max. velocity array of data points, unit: pulse/ms, length of array: count 

pAcc:POINTER TO LREAL Acceleration array of data points, unit: pulse/ms2, length of array: count 

pDec:POINTER TO LREAL Deceleration array of data points, unit: pulse/ms2, length of array: count 

pTime:POINTER TO 

LREAL 
Return time of each data point, unit: ms 

(10)  GT_PvtTableSelect 

Tab 4-13 Description fo select table command 

GT_PvtTableSelect(profile, tableId) 

Profile:INT Profile No. 

TableId:INT 
Table ID 

PVT mode provides 32 tables, range: [1,32] 

(11)  GT_PvtStart 

Tab 4-14 Description fo start motion command 

GT_PvtStart(mask) 

Mask:DINT 

“mask” represents the axis No., which will be started in Pvt mode by bit. 

bit0 corresponds to 1st axis, bit1 corresponds 2st axis,…… 

When bitX is 1, it means that the controller will start the corresponding axis 

Before starting motion, GT_PvtTableSelect can be called to select a table.Default is table1 

if no tables are selected.If the table is null, motion start fails. 



Chapter 4  Motion Mode 

44                 © 2014 Googol Technology. All rights reserved 

(12)  GT_PvtStatus 

Tab 4-15 Description fo start motion command 

GT_PvtStatus(profile, pTableId, pTime, count) 

Profile:INT Profile No. 

PTableId:POINTER TO INT ID of the table in use 

pTime:POINTER TO LREAL Motion time of the axis, unit: ms 

Count:INT Number of axis read 

4.2.2 Highlights 

M otion patterns are described by parameters of data points such as position, velocity and time in the 

PVT mode.Position, velocity and time satisfy the following equFtuations. 

dctbtatp  23
 

cbtat
dt

dp
v  23 2

 

Given the parameters of position, velocity and time of two consecutive data points, the following 

equations can be established. 





















22

2

2

22

2

2

3

2

11

2

1

11

2

1

3

1

23

23

vcbtat

pdctbtat

vcbtat

pdctbtat

 

a, b, c and d can be obtained by solving these equations, thus the motion pattern of the two consecutive 

data points can be determined. 

The motion controller provides 32 tables to store data points. Each table has 1024 memory blocks. The 

tables and the axes are independent, and one table can serve for more than one axis. 

User can transfer data to the tables by calling GT_PvtTable(), GT_PvtTableComplete(), 

GT_PvtTablePercent() or GT_PvtTable(). These instructions will delete the original data in the table, so 

all data should be transferred at one time. If the axis using the table is in motion, the table should not be 

update. 

GT_PvtTableSelect() is for table selection. Tables can be switched in motion status, but the switch is not 

executed immediately. Only the data in the specified table is finished, it will switch to the new table. 

User should start motion by calling GT_PvtStart(). After the motion starts, time of all axes is set to 0. The 

motion starts immediately if the time of the first data point is 0, otherwise the motion starts with time 

delay and the delay time is the time of the first data point. 

The table can be executed repeatedly. Set the number of loop by calling GT_SetPvtLoop(), and 0 

denotes infinite loop. After table be executed, the time is initialized to the first data point instead of 0. 



Chapter 4  Motion Mode 

45                 © 2014 Googol Technology. All rights reserved 

Suppose there are four data points as illustrated in Tab 4-16, and PVT mode is used to describe the 

motion pattern. 

Tab 4-16 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 1,000 0 0 

P2 2,000 5,000 10 

P3 3,000 15,000 10 

P4 4,000 20,000 0 

1. Call GT_PrfPvt to switch to PVT mode 

2. Call GT_PvtTable to transfer the 4 data points to the table 

3. Call GT_SetPvtLoop to set loop 

4. Call GT_PvtStart to start motion 

Since the time of P1 is 1000 ms, the motion starts after calling GT_PvtStart ()with 1000 ms time delay. 

Return to P1 after it moves to P4 for the motion is in loop. The velocity curve is illustrated in Fig 4-17. 

 

There are 4 modes to describe motion patterns in the PVT mode, PVT, Complete, Percent and 

Continuous. The following sections describe these modes in detail. 

(1)  PVT description mode 

PVT description mode defines position, velocity and time of data points directly. In the interval of two 

consecutive data points, the motion controller uses 3-order polynomial to interpolate positions, and uses 

2-order polynomial to interpolate velocity. Therefore the motion pattern is determined after the 

parameters of position, velocity and time are given. 

There are 4 sets of data points are described in PVT description mode in Tab 4-17. 

Tab 4-17 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 10 

P3 2,000 15,000 10 

P4 3,000 20,000 0 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 9 

P3 2,000 15,000 9 

0 t 

v 

P1 

P2 P3 

P4 

10 

1000 2000 3000 4000 5000 6000 7000 8000 

Fig 4-17 Executing table in loop 



Chapter 4  Motion Mode 

46                 © 2014 Googol Technology. All rights reserved 

P4 3,000 20,000 0 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 7.5 

P3 2,333 15,000 7.5 

P4 3,333 20,000 0 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 750 1,667 6.6669 

P3 2,250 18,333 6.6669 

P4 3,000 20,000 0 

The motion patterns of these 4 sets of data points are illustrated in Fig 4-18. 

 

Fig 4-18 Proper data point’s parameters in PVT description mode 

It can be found that the PVT description mode is very flexible. Given the data point parameters of 

position, velocity and time the motion patterns can be obtained. 

It should be noticed that the parameters of data points should be designed carefully; otherwise ideal 

motion pattern cannot be obtained. 



Chapter 4  Motion Mode 

47                 © 2014 Googol Technology. All rights reserved 

For example, improper parameter setting of 2 sets of data points in Tab 4-18, becauses the velocity 

curve obtained not smooth. 

Tab 4-18 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 15 

P3 2,000 15,000 15 

P4 3,000 20,000 0 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 5 

P3 2,000 15,000 5 

P4 3,000 20,000 0 

Motion patterns of the 2 sets of data points are illustrated in Fig 4-19. 

 

Fig 4-19 Improper data points parameter in PVT description mode 

(2)  Complete description mode 

Complete description mode defines position and time of data points, start velocity and terminal velocity. 

Complete description mode only defines start velocity and terminal velocity. The motion controller 

calculates velocity of intermediate points according to the position and time of data points to ensure the 

continuity of velocity and acceleration. As in Tab 4-19, the set of data points is described in Complete 

mode, and the velocity curve obtained is smooth. 

Tab 4-19 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 - 

P3 2,000 15,000 - 

P4 3,000 20,000 0 

The motion patterns of this set of data points are illustrated in Fig 4-20. 



Chapter 4  Motion Mode 

48                 © 2014 Googol Technology. All rights reserved 

 

Fig 4-20 Complete description mode 

Complete mode is always used to describe smooth velocity curve, such as trigonometric functions. 

Suppose the relation of position and time is determined by P=50000*sin2 (π/2000*t). Select 5 time 

points in a function period [0,2000] to calculate their positions as illustrated in Tab 4-20. 

Tab 4-20 Complete description mode 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 500 25,000 - 

P3 1,000 50,000 - 

P4 1,500 25,000 - 

P5 2,000 0 0 

The motion patterns of this set of data points are illustrated in Fig 4-21. 



Chapter 4  Motion Mode 

49                 © 2014 Googol Technology. All rights reserved 

 

Fig 4-21 Trigonometric functions described in Complete mode 

Increasing the number of data points will decrease the approximation error to P=50000*sin2 (π/2000*t). 

Fig 4-22 shows the position error when the number of data points is 5, 10 and 50. 

 

Fig 4-22 Position error when the number of data points is 5, 10 and 50 

(3)  Percent description mode 

Percent description mode defines position, time and percent of each data point, and start velocity. 

Percent description mode can define distance, velocity and time of accelerating segment, constant 

speed segments and decelerating segment precisely.  

Percent description mode supposes the velocity variation between two consecutive points is linear. The 

following equation is used to calculate the velocity of data points with the start velocity and the 

parameters of position and time. 

i

ii

ii
i v

tt

pp
v 











1

1
1

)(2
 

Therefore, the velocity of each data point is determined after the position and time of data points are 

specified. The parameter of percent can adjust the smooth degree of a velocity curve. Percent of a data 

point denotes the percentage of acceleration variation time to velocity variation time between two 



Chapter 4  Motion Mode 

50                 © 2014 Googol Technology. All rights reserved 

consecutive data points. Fig 4-23 is used for illustration. 

 

Acceleration between P1 and P2 is constant, so the percent of P1 is 0.  

Acceleration between P2 and P3 is constant, so the percent of P2 is 0.  

Acceleration variation time between P3 and P4 is 2ta, and motion time is 2ta+te, so the percent of P3 is 

2ta/(2ta+te)*100%. 

Tuning percent will not affect the parameters of position and time of data points. In Fig 4-23 the velocity 

curve between P3 and P4 is a dashed line if percent of P3 is 0; otherwise the velocity curve is a solid 

line. 

The set of data points is described in Percent mode in Tab. 

Tab 4-21 

Data points Time (ms) Position (pulse) Percent Velocity (pulse/ms) 

P1 0 0 60 0 

P2 1,000 5,000 0 - 

P3 2,000 15,000 100 - 

P4 3,000 20,000 0 - 

The motion patterns of this set of data points are illustrated in Fig 4-24. 

P1 

P2 P3 

P4 

v 

a 

ta te ta 

t 

t 0 

0 

Fig 4-23 Definition of percent 

0 

0 



Chapter 4  Motion Mode 

51                 © 2014 Googol Technology. All rights reserved 

 

Fig 4-24 Percent description mode 

(4)  Continuous description mode 

Continuous description mode defines position, velocity, maximum velocity, acceleration, deceleration 

and percent of data points. Time of data points needs not be defined. According to these parameters, the 

motion controller separates the segment between two consecutive points into accelerating segment, 

constant speed segments and deceleration segment. 

Maximum acceleration of Pi is the upper limit of velocity between Pi and Pi+1.  

Acceleration of Pi is the acceleration in the accelerating segment between Pi to Pi+1. 

Deceleration of Pi is the deceleration in the decelerating segment between Pi to Pi+1.  

Percent of Pi is the percentage of acceleration variation time to velocity variation time in the 

accelerating/decelerating segment between Pi to Pi+1. 

The number of segments separated between two consecutive data points has relation with the 

parameters of these two points. Fig 4-25 shows some examples. 

 

 

As in Tab 4-22 the two sets of data points are described in Continuous mode 

P1 

P2 

t 

P1 

P2 

t 

v 

0 

v 

0 

P1 

P2 

t 

P1 

P2 

t 

v 

0 

v 

0 

① ② 

③ ④ 

Fig 4-25 Continuous description mode 



Chapter 4  Motion Mode 

52                 © 2014 Googol Technology. All rights reserved 

Tab 4-22 

Data 

points 

Position 

(pulse) 

Velocity 

(pulse/ms) 

Max 

Vel. 
Acceleration Deceleration Percent 

P1 0 0 10 0.01 0.01 60 

P2 20,000 0 10 0.01 0.01 0 

Data 

points 

Position 

(pulse) 

Velocity 

(pulse/ms) 

Max 

Vel. 
Acceleration Deceleration Percent 

P1 0 0 10 0.01 0.01 60 

P2 19,800 2 2 0.02 0.02 0 

P3 21,800 0 2 0.02 0.02 0 

The motion patterns of these two sets of data points are illustrated in Fig 4-26. 

 

Fig 4-26 Continuous description mode 

4.2.3 Examples 

(1)  PVT description mode 

The velocity curve consists of 5 segments with takeoff velocity.  

In the 1st segment, velocity increases and acceleration is constant.  

In the 2nd segment, velocity increases and acceleration decreases.  

In the 3rd segment, velocity is constant and acceleration is 0. 

In the 4th segment, velocity decreases and acceleration increases.  

In the 5th segment, velocity decreases and acceleration is constant. 



Chapter 4  Motion Mode 

53                 © 2014 Googol Technology. All rights reserved 

 

Fig 4-27 Velocity curve of PVT example program 

A set of data points that satisfy the above condition is as Tab 4-23. 

Tab 4-23 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 1 

P2 1,200 9,750 15.25 

P3 2,000 24,483 20 

P4 3,000 44,483 20 

P5 3,800 59,216 15.25 

P6 5,000 68,966 1 

 

VAR_GLOBAL CONSTANT  

AXIS:INT:=1 

TABLE:INT:=1 

END_VAR 

 

PROGRAM MAIN 

VAR 

 Rtn:INT; 

 Mask:DINT; 

 (*Parameter of data points in X-axis *) 

 AlTime:ARRAY[0..5] OF LREAL:=0,1200,2000,3000,3800,5000; 

 Pos:ARRAY[0..5] OF LREAL:=0,9750,24483,44483,59216,68966; 

 Vel:ARRAY[0..5] OF LREAL:=1,15.25,20,20,15.25,1; 



Chapter 4  Motion Mode 

54                 © 2014 Googol Technology. All rights reserved 

 prfVel,prfPos,t:LREAL; 

 tableId:INT; 

 First:BOOL:=TRUE; 

END_VAR 

---------------------------------------------------------------------------------------------------------------------- 

IF First THEN 

 rtn := GT_AxisOn(AXIS); 

 

 (*Set to PVT mode*) 

 rtn := GT_PrfPvt(AXIS); 

 

 (*Transfer data*) 

 rtn := GT_PvtTable(TABLE,6,ADR(alTime[0]),ADR(pos[0]),ADR(vel[0])); 

 

 (*Select data table *) 

 rtn := GT_PvtTableSelect(AXIS,TABLE); 

  

 mask := SHL(1,(AXIS-1)); 

 rtn := GT_PvtStart(mask); 

  

 First:=FALSE; 

END_IF 

 

(*Read data table and motion time *) 

rtn := GT_PvtStatus(AXIS,ADR(tableId),ADR(t),1); 

 

(*Read profile velocity *) 

rtn = GT_GetPrfVel(AXIS,ADR(prfVel),1,0); 

 

(*Read profile position *) 

rtn = GT_GetPrfPos(AXIS,ADR(prfPos),1,0); 



Chapter 4  Motion Mode 

55                 © 2014 Googol Technology. All rights reserved 

(2)  Complete description mode 

Suppose the relation of position and time is determined by P=40000*sin2 (π/2000*t). The motion should 

be cyclic and the amplitude increases 50% when pressing the button of A and decreases 50% when 

pressing the button of B. 

 

VAR_GLOBAL CONSTANT  

AXIS:INT:=1 

TABLE1:INT:=1 

TABLE2:INT:=2 

PI:LREAL:=3.1415926 

END_VAR 

 

FUNCTION Calculate : INT 

VAR_INPUT 

Amplitude:LREAL; 

n:DINT; 

pTime:POINTER TO LREAL; 

pPos:POINTER TO LREAL; 

END_VAR 

  

VAR 

i:DINT; 

END_VAR 

---------------------------------------------------------------------------------------------------------------------- 

FOR i:=0 TO n-1 BY 1 DO 

 pPos[i] := amplitude*sin(PI/2000*pTime[i])*sin(PI/2000*pTime[i]); 

END_FOR 

 

 

 

PROGRAM MAIN 

Fig 4-28 Velocity curve of Complete example program 



Chapter 4  Motion Mode 

56                 © 2014 Googol Technology. All rights reserved 

VAR 

 Rtn:INT; 

 Mask:DINT; 

 (*Parameter of data points in X-axis *) 

 AlTime:ARRAY[0..4] OF LREAL:= 0,500,1000,1500,2000; 

 Pos:ARRAY[0..4] OF LREAL; 

 a,b,c: ARRAY[0..4] OF LREAL; 

 prfVel,prfPos,t:LREAL; 

 tableId:INT; 

 amplitude:LREAL:=40000; 

 table:INT:= TABLE1; 

 key:STRING(1); 

 First:BOOL:=TRUE; 

END_VAR 

---------------------------------------------------------------------------------------------------------------------- 

IF First THEN 

 rtn := GT_AxisOn(AXIS); 

 

 (*Set to PVT mode *) 

 rtn := GT_PrfPvt(AXIS); 

 

 Calculate(amplitude,5,ADR(alTime[0]),ADR(pos[0])); 

 

 (*Transfer data *) 

rtn:=GT_PvtTableComplete(table,5,ADR(alTime[0]),ADR(pos[0]),ADR(a[0]),ADR(b[0]),ADR(c[0]),0,

0); 

 

 (*Select data table *) 

 rtn := GT_PvtTableSelect(AXIS,table); 

  

 (*Set loop *) 



Chapter 4  Motion Mode 

57                 © 2014 Googol Technology. All rights reserved 

 rtn := GT_SetPvtLoop(AXIS,0); 

 mask := SHL(1,(AXIS-1)); 

 rtn := GT_PvtStart(mask); 

 First:=FALSE; 

END_IF 

 

(*Read data table and motion time *) 

rtn := GT_PvtStatus(AXIS,ADR(tableId),ADR(t),1); 

 

(*Read profile velocity *) 

rtn = GT_GetPrfVel(AXIS,ADR(prfVel),1,0); 

 

(*Read profile position *) 

rtn = GT_GetPrfPos(AXIS,ADR(prfPos),1,0); 

   

If key<>’’ THEN 

 IF ( 'A' = key ) THEN 

  amplitude := amplitude *1.5; 

 END_IF    

 IF ( 'B' = key) THEN 

  amplitude := amplitude *0.5;  

 END_IF    

IF ( 'A' = key ) OR ( 'B' = key ) THEN 

  Calculate(amplitude,5,ADR(alTime[0]),ADR(pos[0])); 

  table := TABLE1 + TABLE2 - tableId; 

 

(*Transfer data *） 

 rtn := GT_PvtTableComplete(table, 5, ADR(alTime[0]), ADR(pos[0]), ADR(a[0]), ADR(b[0]), 

ADR(c[0]), 0, 0); 

     

  (*Select data table *) 



Chapter 4  Motion Mode 

58                 © 2014 Googol Technology. All rights reserved 

  rtn := GT_PvtTableSelect(AXIS,table); 

 END_IF 

 

 IF ( 'Q' = key) THEN 

  (*stop axis motion*) 

  mask := SHL(1,(AXIS-1)); 

  GT_Stop(mask,0); 

 END_IF 

END_IF 

(3)  Percent description mode 

Reciprocating motion executes in X-axis and positive feeding executes in Y-axis. Feeding starts in Y-axis 

when it accelerates/decelerates in X-axis. Y-axis keeps motionless when X-axis moves in even pace. 

 

Select 7 data points in X-axis, and set to loop mode. Parameters of data points are as Tab 4-24 and Tab 

4-25. 

Tab 4-24 

Data points Time (ms) Position (pulse) Percent Velocity (pulse/ms) 

P1 0 0 60 0 

P2 1,000 5,000 0 - 

P3 2,000 15,000 60 - 

P4 3,000 20,000 60 - 

P5 4,000 15,000 0 - 

P6 5,000 5,000 60 - 

P7 6,000 0 0 - 

 

v 

X-axis 

v 

Y-axis 

loop 

loop 

t 

t 

0 

0 

P1 

P2 P3 

P4 

P5 P6 

P7 

P1 

P2 P3 

P4 P5 

Fig 4-29 Motion patterns of X-axis and Y-axis 



Chapter 4  Motion Mode 

59                 © 2014 Googol Technology. All rights reserved 

Velocity of each data point can be calculated according to the parameters of data points in X-axis. 

Percent has no effect on the calculation of velocity. 

Tab 4-25 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 0 0 0 

P2 1,000 5,000 2(5000-0)/(1000-0)-0=10 

P3 2,000 15,000 2(15000-5000)/(2000-1000)-10=10 

P4 3,000 20,000 2(20000-15000)/(3000-2000)-10=0 

P5 4,000 15,000 2(15000-20000)/(4000-3000)-0=-10 

P6 5,000 5,000 2(5000-15000)/(5000-4000)-(-10)=-10 

P7 6,000 0 2(0-5000)/(6000-5000)-(-10)=0 

Select 5 data points in Y-axis, and set to loop mode. After X-axis moves to P3, start Y-axis. Thus time of 

the first data point is set to be 2000ms. Y-axis returns to P1 for loop after it reaches P5. Parameters of 

data points are as Tab 4-26 and Tab 4-27. 

Tab 4-26 

Data points Time (ms) Position (pulse) Percent Velocity (pulse/ms) 

P1 2,000 0 60 0 

P2 2,500 2,500 0 - 

P3 3,500 12,500 60 - 

P4 4,000 15,000 0 - 

P5 5,000 15,000 0 - 

Velocity of each data point can be calculated according to the parameters of data points in Y-axis. 

Percent has no effect on the calculation of velocity. 

Tab 4-27 

Data points Time (ms) Position (pulse) Velocity (pulse/ms) 

P1 2,000 0 0 

P2 2,500 2,500 2(2500-0)/(2500-2000)-0=10 

P3 3,500 12,500 2(12500-2500)/(3500-2500)-10=10 

P4 4,000 15,000 2(15000-12500)/(4000-3500)-10=0 

P5 5,000 15,000 2(15000-15000)/(5000-4000)-0=0 

When X-axis loops n times, Y-axis loops 2n-1 times. Fig 4-30 shows the XY position after X-axis loops 2 

times and Y-axis loops 3 times. Horizontal axis is the position of X-axis, and vertical axis is the position of 

Y-axis. The yellow line is the real trajectory.  



Chapter 4  Motion Mode 

60                 © 2014 Googol Technology. All rights reserved 

 

VAR_GLOBAL CONSTANT  

AXIS_X:INT:=1 

AXIS_Y:INT:=2 

 

TABLE_X:INT:=1 

TABLE_Y:INT:=2 

LOOP_COUNT:INT:=2; 

END_VAR 

 

PROGRAM MAIN 

VAR 

 Rtn:INT; 

 Fig 4-30 X-Y position in Percent description mode 



Chapter 4  Motion Mode 

61                 © 2014 Googol Technology. All rights reserved 

 Mask:DINT; 

 (*Parameters of data points in X-axis *) 

 Time_x:ARRAY[0..6] OF LREAL:= 0,1000,2000,3000,4000,5000,6000; 

 pos_x:ARRAY[0..6] OF LREAL:= 0,5000,15000,20000,15000,5000,0; 

 percent_x:ARRAY[0..6] OF LREAL:= 60,0,60,60,0,60,0; 

 Time_y:ARRAY[0..4] OF LREAL:= 2000,2500,3500,4000,5000; 

 pos_y:ARRAY[0..4] OF LREAL:= 0,2500,12500,15000,15000; 

 percent_y:ARRAY[0..4] OF LREAL:= 60,0,60,0,0; 

 

 prfVel, prfPos, alTime:ARRAY[0..1] OF LREAL; 

 tableId:INT; 

 First:BOOL:=TRUE; 

END_VAR 

---------------------------------------------------------------------------------------------------------------------- 

IF First THEN 

 

 rtn := GT_AxisOn(AXIS_X); 

 rtn := GT_AxisOn(AXIS_Y); 

 

 (*Set X-axis as PVT mode *) 

 rtn := GT_PrfPvt(AXIS_X); 

 

 (*Set Y-axis as PVT mode *) 

 rtn := GT_PrfPvt(AXIS_Y); 

 

 (*Transfer data to X-axis data table *) 

rtn := GT_PvtTablePercent(TABLE_X,7,ADR(time_x[0]),ADR(pos_x[0]),ADR(percent_x[0]),0); 

 

 (*Transfer data to Y-axis data table *) 

rtn := GT_PvtTablePercent(TABLE_Y,5,ADR(time_y[0]),ADR(pos_y[0]),ADR(percent_y[0]),0); 

 



Chapter 4  Motion Mode 

62                 © 2014 Googol Technology. All rights reserved 

 (*Select data table TABLE_X for X-axis *) 

 rtn := GT_PvtTableSelect(AXIS_X,TABLE_X); 

 

 (*Select data table TABLE_Y for Y-axis *) 

 rtn := GT_PvtTableSelect(AXIS_Y,TABLE_Y); 

  

 (*Set cycle number *) 

 rtn := GT_SetPvtLoop(AXIS_X,LOOP_COUNT); 

 

 (*Set cycle number *) 

 rtn := GT_SetPvtLoop(AXIS_Y,2*LOOP_COUNT-1); 

  

 (*start X axis and Y axis simultaneously *) 

 (*Since time of the first data point in Y-axis is 2000ms*) 

(*Y-axis starts 20000ms after X-axis starts *) 

 mask := SHL(1,(AXIS_X-1)); 

 mask := mask OR SHL(1,(AXIS_Y-1)); 

 rtn := GT_PvtStart(mask); 

 First:=FALSE; 

END_IF 

 

(*Read data tables and motion time *) 

rtn := GT_PvtStatus(AXIS_X,ADR(tableId[0]),ADR(alTime[0]),1); 

rtn := GT_PvtStatus(AXIS_Y,ADR(tableId[1]),ADR(alTime[1]),1); 

 

(*Read profile velocity *) 

rtn := GT_GetPrfVel(AXIS_X,ADR(prfVel[0]),1,0); 

rtn := GT_GetPrfVel(AXIS_Y,ADR(prfVel[1]),1,0); 

 

(*Read profile position *) 

rtn := GT_GetPrfPos(AXIS_X,ADR(prfPos[0]),1,0); 



Chapter 4  Motion Mode 

63                 © 2014 Googol Technology. All rights reserved 

rtn := GT_GetPrfPos(AXIS_Y,ADR(prfPos[1]),1,0); 

 

(4)  Continuous description mode 

X-axis moves from A to B, and Y-axis moves from C to D. When X-axis reaches B, Y-axis must reaches 

D. 

Motion time of X-axis tx and motion time of Y-axis ty are calculated by calling 

GT_PvtContinuousCalculate(). This instruction does not transfer data points to the motion controller. If 

tx>ty, Y-axis starts with a time delay of tx-ty. If tx<ty, X-axis starts with a time delay ty-tx. 

 

VAR_GLOBAL CONSTANT  

AXIS_X:INT:=1 

AXIS_Y:INT:=2 

 

TABLE_X:INT:=1 

TABLE_Y:INT:=2 

END_VAR 

------------------------------------------------------------------------------------------ 

PROGRAM MAIN 

VAR 

 Fig 4-31 Velocity curves in X-axis and Y-axis 



Chapter 4  Motion Mode 

64                 © 2014 Googol Technology. All rights reserved 

 Rtn:INT; 

 Mask:DINT; 

 (*parameters of data point in X axis *) 

 pos_x:ARRAY[0..1] OF LREAL:= 0,30000; 

 vel_x:ARRAY[0..1] OF LREAL:= 0,0; 

 velMax_x:ARRAY[0..1] OF LREAL:= 10,10; 

 percent_x:ARRAY[0..6] OF LREAL:=100,100; 

 acc_x:ARRAY[0..1] OF LREAL:= 0.01,0.01; 

 dec_x:ARRAY[0..1] OF LREAL:= 0.01,0.01; 

 time_x:ARRAY[0..1] OF LREAL; 

timeBegin_x:LREAL; 

 

 (*parameters of data point in Y axis *) 

 pos_y:ARRAY[0..1] OF LREAL:= 0,20000; 

 vel_y:ARRAY[0..1] OF LREAL:= 0,0; 

 velMax_y:ARRAY[0..1] OF LREAL:= 10,10; 

 percent_y:ARRAY[0..6] OF LREAL:=100,100; 

 acc_y:ARRAY[0..1] OF LREAL:= 0.01,0.01; 

 dec_y:ARRAY[0..1] OF LREAL:= 0.01,0.01; 

 time_y:ARRAY[0..1] OF LREAL; 

timeBegin_y:LREAL; 

 

 prfVel, prfPos, alTime:ARRAY[0..1] OF LREAL; 

 tableId: ARRAY[0..1] OF INT; 

 First:BOOL:=TRUE; 

END_VAR 

---------------------------------------------------------------------------------------------------------------------- 

IF First THEN 

 rtn := GT_AxisOn(AXIS_X); 

 

 rtn := GT_AxisOn(AXIS_Y); 



Chapter 4  Motion Mode 

65                 © 2014 Googol Technology. All rights reserved 

 

 (*set X axis as PVT mode *) 

 rtn := GT_PrfPvt(AXIS_X); 

 

 (*set Y axis as PVT mode *) 

 rtn := GT_PrfPvt(AXIS_Y); 

 

 (*Calculate motion time of  X axis *) 

 rtn :=GT_PvtContinuousCalculate(2,ADR(pos_x[0]),ADR(vel_x[0]),ADR(percent_x[0]),ADR(vel

Max_x[0]), ADR(acc_x[0]), ADR(dec_x[0]), ADR(time_x[0])); 

 

 (*Calculate motion time of  Y axis *) 

 rtn := GT_PvtContinuousCalculate(2, ADR(pos_y[0]), ADR(vel_y[0]), ADR(percent_y[0]), 

ADR(velMax_y[0]), ADR(acc_y[0]), ADR(dec_y[0]), ADR(time_y[0])); 

 

 (*Calculate start time delay *) 

 IF time_x[1] < time_y[1] THEN 

  timeBegin_x := time_y[1] - time_x[1]; 

  timeBegin_y := 0; 

 ELSE 

  timeBegin_x := 0; 

  timeBegin_y := time_x[1] - time_y[1]; 

 END_IF 

 

 (*Transfer data points in X-axis *) 

 rtn := GT_PvtTableContinuous(TABLE_X,2, ADR(pos_x[0]), ADR(vel_x[0]), ADR(percent_x[0]), 

ADR(velMax_x[0]), ADR(acc_x[0]), ADR(dec_x[0]),timeBegin_x); 

  

 (*Transfer data points in Y-axis *) 

 rtn := GT_PvtTableContinuous(TABLE_Y,2, ADR(pos_y[0]), ADR(vel_y[0]), ADR(percent_y[0]), 

ADR(velMax_y[0]), ADR(acc_y[0]), ADR(dec_y[0]),timeBegin_y); 

 



Chapter 4  Motion Mode 

66                 © 2014 Googol Technology. All rights reserved 

 (*Select data table TABLE_X for X-axis *) 

 rtn := GT_PvtTableSelect(AXIS_X,TABLE_X); 

 

 (*Select data table TABLE_Y for Y-axis *) 

 rtn := GT_PvtTableSelect(AXIS_Y,TABLE_Y); 

 

 (*Start X-axis and Y-axis simultaneously *) 

 (*Since time of the first data point in Y-axis is 2000ms *) 

(*Y-axis starts 20000ms after X-axis starts *) 

 mask := SHL(1,(AXIS_X-1)); 

 mask := mask OR SHL(1,(AXIS_Y-1)); 

 rtn := GT_PvtStart(mask); 

 First:=FALSE; 

END_IF 

 

(*Read data tables and motion time *) 

rtn := GT_PvtStatus(AXIS_X,ADR(tableId[0]),ADR(alTime[0]),1); 

rtn := GT_PvtStatus(AXIS_Y,ADR(tableId[1]),ADR(alTime[1]),1); 

 

(*Read profile velocity *) 

rtn := GT_GetPrfVel(AXIS_X,ADR(prfVel[0]),1,0); 

rtn := GT_GetPrfVel(AXIS_Y,ADR(prfVel[1]),1,0); 

 

(*Read profile position *) 

rtn := GT_GetPrfPos(AXIS_X,ADR(prfPos[0]),1,0); 

rtn := GT_GetPrfPos(AXIS_Y,ADR(prfPos[1]),1,0); 

;



Chapter 5  Motion program 

67                 © 2014 Googol Technology. All rights reserved 

Chapter 5 Motion Program 

5.1 Introduction 

In order to facilitate the expression, we name programs which call windows DLL (Dynamic Linkage 

Library) and execute in PC as "Application Program", while the program which is downloaded into and 

execute in motion controller as "Motion Program". 

Motion program is compiled with C language and then downloaded into the motion controller for 

execution. Motion program can be executed independently from PC, so PC can be free from complex 

logical management work.Firstly, PC can arrange CPU resource to do other tasks; Sencondly, the 

motion program can use motion controller resource directly without communication with PC, which 

makes better real time capability. 

When needed, PC can send commands to motion controller and receive data from controller, even when 

the motion program is running in the controller. Watch out, when the axis is controlled by both PC 

command (Application program) and motion program at the same time, please design the motion logic 

carefully in case of confusion. 

The motion controller allows 32 motion programs running on it at the same time. 

The thread scheduling mechanism built-in motion controller ensures that all execution of commands is 

complete in multi-tread environment.  

In multi-tread environment, it’s possible that one thread interrupted by the other thread, please consider 

the influence carefully between threads during the execution of motion program.   

5.2 Programming motion program 

5.2.1 Commands summary 

Tab 5-1 Summary of Motion program commands 

Command Description 

GT_Download Download motion program to controller. 

GT_GetFunId Read a function ID of motion program. 

GT_GetVarId Read a variable ID of motion program. 

GT_Bind Binding thread, function and data page 

GT_RunThread Start a thread 

GT_StopThread Stop a running thread 

GT_PauseThread Pause the running thread 

GT_GetThreadSts Read a thread’s running status 

GT_SetVarValue Set a variable value of motion program 

GT_GetVarValue Get a variable value of motion program 



Chapter 5  Motion program 

68                 © 2014 Googol Technology. All rights reserved 

(1)  GT_Download 

Tab 5-2 Download motion program to controller 

GT_Download(pFileName) 

pFileName:POINTER TO STRING The file name downloaded into motion controller core. 

(2)  GT_GetFunId 

Tab 5-3 Read a function ID of motion program 

GT_GetFunId(pFunName, pFunId) 

pFunName:POINTER TO STRING Function name of motion program 

pFunId:POINTER TO INT ID of function searched by function name 

(3)  GT_GetVarId 

Tab 5-4 Read a variable ID of motion program 

GT_GetVarId(pFunName, pVarName, pVarInfo) 

pFunName:POINTER TO STRING 

If pVarName is a global variable, this parameter is Null 

If pVarName is a local variable, this parameter is the 

corresponding function name 

pVarName:POINTER TO STRING Variable name of motion program. 

pVarInfo:POINTER TO TVarInfo 
Variable information searched by function name and variable 

name. 

(4)  GT_Bind 

Tab 5-5 Binding thread, function and data page 

GT_Bind(thread, funId, page) 

thread:INT Thread number, and its value ranging in [0,31]. 

funId:INT Function id which can be checked using GT_GetFunId. 

page:INT data page ID, and its value ranging in [0,31]. 

(5)  GT_RunThread 

Tab 5-6 Start a thread 

GT_RunThread(thread) 

thread:INT Thread number, and its value ranging in [0,31]. 

(6)  GT_StopThread 

Tab 5-7 Stop a running thread 

GT_StopThread(thread) 

thread:INT Thread number, and its value ranging in [0,31]. 

(7)  GT_PauseThread 

Tab 5-8 Pause the running thread 

GT_PauseThread(thread) 

thread:INT Thread number, and its value ranging in [0,31]. 



Chapter 5  Motion program 

69                 © 2014 Googol Technology. All rights reserved 

(8)  GT_GetThreadSts 

Tab 5-9 Read a thread’s running status 

GT_GetThreadSts(thread, pThreadSts) 

thread:INT Thread number, and its value ranging in [0,31]. 

pThreadSts:POINTER TO TThreadSts 

Read the thread status. 

typedef struct ThreadSts 

{ 

 short run; // running status 

 short error; // command return value 

 double result; // function return value 

 short line;      // current command line number 

} TThreadSts; 

(9)  GT_SetVarValue 

Tab 5-10 Set a variable value of motion program 

GT_SetVarValue(page, pVarInfo, pValue, count=1) 

page:INT 

Data page ID 

Global variable: -1 

local variable ranging in [0,31] 

pVarInfo:POINTER TO TVarInfo Variable information. 

pValue:POINTER TO DINT Value of variable which will be writen. 

count:INT Number of variable which will be written, ranging in [1,8] 

(10)  GT_GetVarValue 

Tab 5-11 Get a variable value of motion program 

GT_GetVarValue(page, pVarInfo, pValue, count=1) 

page:INT 

Data page ID, 

Global variable: -1;  

local variable range[0,31] 

pVarInfo:POINTER TO TVarInfo Variable information 

pValue:POINTER TO DINT Value of read variable 

count:INT Number of variable which to be read, its value ranging in [1,8] 

5.2.2 Highlights 

Method of motion program: 

1) Programming motion program use a text editor with C language. 

2) Compiling Motion program with MCT2008 will generate an object program files (*. Bin) and 

symbol files (ini). 

3) Calling GT_Download to download target file into controller's SDRAM. 

4) Calling GT_GetFunId() to get function ID. 



Chapter 5  Motion program 

70                 © 2014 Googol Technology. All rights reserved 

5) Calling GT_GetVarId() to get variable ID. 

6) Calling GT_Bind() to bind thread, function and data page. 

7) Calling GT_SetVarValue() to update local variable and global variable. 

8) Calling GT_RunThread() to start a thread. 

9) Calling GT_GetThreadSts() to check running status of thread, or calling GT_GetVarValue() to 

check variable. 

Calling GT_Download can download target file (*.bin) into controller's SDRAM. When a new motion 

program is downloaded, the previous motion program would be overrided.The motion program should 

be re-downloaded whenever the motion controller is powered.When releasing application program, we 

should release the target files and symbol files simultaneously, if not the motion program can not be 

downloaded and executed correctly. 

When the motion program was downloaded into controller, the program cannot be executed at once, 

user must call GT_Bind() to bind thread, function and data page, and then call GT_Bind() to start a 

thread. Motion controller allowed 32 threads running at the same time, each thread have only one 

function, but one function can be used by more than one thread at the same time, for example, when 

multi-axes homing, user can bind more than one thread to one homing function, then start these threads 

at the same time, which can realize multi-axes homing action. During the running of thread, it's not 

allowed to bind a new function with this thread until the thread is done. 

The local variables of each function have independent data pages. Motion controller provided 32 data 

pages. When binding thread and function, you must notice the used data pages. One data page can only 

be arranged to one thread, but one thread can use many data pages. The thread can change the data 

page during its running.Application can call GT_GetThreadSts to check running status of thread any 

time. 

Application can call GT_SetVarValue to update the value of every variable in motion program any time.  

Application can call GT_GetVarValue to get the value of every variable in motion program any time. 

5.2.3 Example 

(1)  Addition in single thread 

In programming the motion program for addition task , the global variable "sum" is defined for saving 

result of addition, and the local variable "begin" is defined for saving the start point of addition, while the 

local variable "end" means saving end point of addition.. When the addition task is completed, the 

program would be ended. 

//------------------------------------------------ 

// Addition 

// begin  

// end    

//------------------------------------------------ 



Chapter 5  Motion program 

71                 © 2014 Googol Technology. All rights reserved 

int sum; 

 

int add(int begin,int end) 

{ 

 int i; 

 int cc; 

  

 i=begin; 

lbl_loop: 

 cc = i > end; 

 if(cc) goto lbl_end; 

 sum = sum + i; 

 i = i + 1; 

 goto lbl_loop; 

lbl_end: 

 return sum; 

} 

 

// Application program is responsible for compiling,  

//downloading, initialling, and running of motion program. 

PROGRAM MAIN 

VAR 

 rtn: INT; 

 compile: TCompileInfo; 

 filename:STRING:='sum.c'; 

 downloadfilename:STRING:='sum.bin'; 

 funname:STRING:='add'; 

 funid: INT; 

 varname:STRING:='sum'; 

 sum:TVarInfo; 

 begin:TVarInfo; 



Chapter 5  Motion program 

72                 © 2014 Googol Technology. All rights reserved 

 end:TVarInfo; 

 value:DINT; 

 thread:TThreadSts; 

 First: BOOL := TRUE; 

END_VAR 

----------------------------------------------------------------------------------- 

IF First THEN 

 (*Reset the motion controller *) 

 rtn:=GT_Reset(); 

  

 (*compile sum.c*) 

 (*generate sum.bin and sum.ini after compiling*) 

 (*Ensure that error.ini locates in project file folder *) 

 rtn:=GT_Compile(ADR(filename), ADR(compile)); 

  

 (*Download the motion program sum.bin *) 

 rtn:=GT_Download(ADR(downloadfilename)); 

  

 (*Get the ID of function *) 

 rtn:=GT_GetFunId(ADR(funname), ADR(funid)); 

  

 (*Get the ID of global variable “sum”*) 

 rtn:=GT_GetVarId(0, ADR(varname), ADR(sum)); 

  

 (*Get the ID of local variable “begin”*) 

 varname:='begin'; 

rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(begin)); 

 

 (*Get the ID of local variable “end”*) 

 varname:='end'; 

rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(end)); 



Chapter 5  Motion program 

73                 © 2014 Googol Technology. All rights reserved 

  

 (*bind thread, function and data page *) 

 rtn:=GT_Bind(0, funId, 0); 

  

 value:=0; 

 (*Initial the global variable “sum” of motion program *) 

 rtn:=GT_SetVarValue(-1, ADR(sum), ADR(value), 1); 

  

 value:=1; 

 (*Initial the local variable “begin” of motion program *) 

 rtn:=GT_SetVarValue(0, ADR(begin), ADR(value), 1); 

  

 value:=100; 

 (*Initial the local variable “end” of motion program *) 

 rtn:=GT_SetVarValue(0, ADR(end), ADR(value), 1); 

  

 (*Start up thread *) 

 rtn:GT_RunThread(0); 

  

 First:=FALSE; 

END_IF 

 

(*Check the status of thread *) 

rtn:=GT_GetThreadSts(0,ADR(thread)); 

 

(*Check the value of global variable “sum”*) 

rtn:=GT_GetVarValue(-1, ADR(sum), ADR(value), 1); 

(2)  Addition in multi-thread 

Motion program for addition in multi-thread is as same as example program for addition in single thread. 

Application program can compile, download, initialize, and run of motion program. In contrast to example 

(1), it used 2 threads to complete addition calculation task in example (2). 



Chapter 5  Motion program 

74                 © 2014 Googol Technology. All rights reserved 

 

PROGRAM MAIN 

VAR 

 rtn:INT; 

 compile:TCompileInfo; 

 funId:INT; 

 sum,begin,end:TVarInfo; 

 value:DINT; 

 thread:TThreadSts; 

  

 First: BOOL:=true; 

 filename: STRING:='sum.c'; 

 downloadfilename: STRING:='sum.bin'; 

 funname: STRING:='add'; 

 varname:STRING:='sum'; 

END_VAR 

---------------------------------------------------------------------------------------- 

IF First THEN 

 (*Reset the motion controller *) 

 rtn:=GT_Reset(); 

 

 (*compile sum.c*) 

 (*generate sum.bin and sum.ini after compiling*) 

 (*Ensure that error.ini locates in project file folder *) 

 rtn:=GT_Compile(ADR(filename), ADR(compile)); 

 

 (*Download the motion program sum.bin *) 

 rtn:=GT_Download(ADR(downloadfilename)); 

 

 (*Get the ID of function *) 

 rtn:=GT_GetFunId(ADR(funname), ADR(funId)); 



Chapter 5  Motion program 

75                 © 2014 Googol Technology. All rights reserved 

 

 (*Get the ID of global variable “sum”*) 

 rtn:=GT_GetVarId(0, ADR(varname), ADR(sum)); 

 

 (*Get the ID of local variable “begin”*) 

 varname:='begin'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(begin)); 

 

 (*Get the ID of local variable “end”*) 

 varname:='end'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(end)); 

 

 (*bind thread, function and data page *) 

 rtn:=GT_Bind(0, funId, 0); 

 rtn:=GT_Bind(1, funId, 1); 

 

 (*Initial the global variable “sum” of motion program *) 

 value:=0; 

 rtn:=GT_SetVarValue(-1, ADR(sum), ADR(value), 1); 

 

 (*Initial the local variable “begin” of motion program in thread 0*) 

 value:=1; 

 rtn:=GT_SetVarValue(0, ADR(begin), ADR(value), 1); 

 

 (*Initial the local variable “end” of motion program in thread 0*) 

 value:=50; 

 rtn:=GT_SetVarValue(0, ADR(end), ADR(value), 1); 

 

 (*Initial the local variable “begin” of motion program in thread 1*) 

 value:=51; 

 rtn:=GT_SetVarValue(1, ADR(begin), ADR(value), 1); 



Chapter 5  Motion program 

76                 © 2014 Googol Technology. All rights reserved 

 

 (*Initial the local variable “end” of motion program in thread 1*) 

 value:=100; 

 rtn:=GT_SetVarValue(1, ADR(end), ADR(value), 1); 

 

 (*Start thread 0 and 1*) 

 rtn:=GT_RunThread(0); 

 rtn:=GT_RunThread(1); 

 

 First:=FALSE; 

END_IF 

 

(*Check the status of thread *) 

rtn:=GT_GetThreadSts(0, ADR(thread)); 

rtn:=GT_GetThreadSts(1, ADR(thread)); 

 

(*Check the value of the global variable “sum”*) 

rtn:=GT_GetVarValue(-1, ADR(sum), ADR(value), 1); 

… … 

(3)  Combined motion 

This routine realizes the coordination motion of three motion shafts and is applied for semiconductor 

processing equipment, wherein the three motion shafts are respectively defined as arm shaft, piece shaft 

and glue shaft. The motion relation of these shafts is described as follows. 

Arm shaft: when the glue shaft leaves the working area, the arm shaft is started to move towards the 

working area; after completing relevant work, the arm shaft could immediately leave the working area, 

without the need to wait any signal. 

Feed shaft: when the arm shaft leaves the working area, the piece shaft could be started. 

Glue shaft: after the arm shaft leaves the working area, the glue shaft is started to move towards the 

working area; when the piece shaft is in place, the glue shaft has completed the gluing work and then 

could leave the working area. 

Three functions are used in the motion program to realize the motion of the three shafts, wherein 

ArmMotion is used to control the arm shaft, GlueMotion is used to control the glue shaft and PieceMotion 

is used to control the piece shaft. Meanwhile, the mutual exclusion and the correlation of these motions 



Chapter 5  Motion program 

77                 © 2014 Googol Technology. All rights reserved 

are realized through four global synchronization variables. 

pieceArrival: the piece shaft arrives, and the glue shaft could be started to leave the working area. 

pieceStart: piece shaft starting flag, indicating that the piece shaft could be started. 

glueStart: glue shaft starting flag, indicating that the glue shaft could be started to move towards the 

working area. 

armStart: arm shaft starting flag, indicating that the arm shaft could be started to move towards the 

working area. 

ArmMotion function is bound with thread 0 and data page 0; GlueMotion is bound with thread 1 and data 

page 1; PieceMotion function is bound with thread 2 and data page 2. Each thread independently 

controls the motion of one shaft, and the initial value of the variable of the motion program is set as 

follows: 

Global variable pieceArrival: 0 (the piece shaft does not arrive) 

Global variable armStart: 0 (under initial state, the arm shaft motion condition is not available) 

Global variable pieceStar: 1 (under initial state, the piece shaft motion condition is available) 

Global variable glueStart: 1 (under initial state, the glue shaft motion condition is available) 

In Fig 5-1, axis 1 is the planning speed of the arm shaft, axis 2 is the planning speed of the glue shaft 

and axis 3 is the planning speed of the piece shaft. 

 

Fig 5-1 Timing diagram of combined motion 

Motion program is illustrated as follows： 



Chapter 5  Motion program 

78                 © 2014 Googol Technology. All rights reserved 

//------------------------------------------------ 

// Combined motion 

//------------------------------------------------ 

 

int pieceArrival;  //Piece shaft arrive flag 

int pieceStart;      //Piece shaft start flag 

int glueStart;   // Glue shaft start flag 

int armStart;   // Arm shaft start flag 

 

//Arm shaft motion 

void ArmMotion(short arm) 

{ 

 long armStep; 

 short cc; 

    long clock; 

    long sts; 

    short axis; 

  

lbl_loop: 

 axis=arm-1; 

 axis=1<<axis; 

  

 //Waiting for the start flag of  arm shaft. 

lbl_wait_for_arm_start: 

 cc = !armStart; 

 if(cc) goto lbl_wait_for_arm_start; 

  

 // Clear arm shaft start flag 

 armStart = 0; 

  

 //Arm shaft motion 



Chapter 5  Motion program 

79                 © 2014 Googol Technology. All rights reserved 

 GT_SetPos(arm,armStep); 

 GT_Update(axis);     

     

 //Waiting for the stop of arm shaft.  

lbl_wait_for_arm_stop: 

 GT_GetSts(arm,&sts,1,&clock); 

 cc = sts & 0x400; 

 if(cc) goto lbl_wait_for_arm_stop; 

  

 //Arm shaft returns 

 GT_SetPos(arm,0); 

 GT_Update(axis); 

  

 // Set the glue shaft start flag 

 glueStart = 1; 

  

 // Set the piece shaft start flag 

 pieceStart = 1; 

  

 // Waiting for the stop of arm shaft. 

lbl_wait_for_arm_return: 

 GT_GetSts(arm,&sts,1,&clock); 

 cc = sts & 0x400; 

 if(cc) goto lbl_wait_for_arm_return; 

  

    goto lbl_loop; 

} 

 

// Glue shaft motion 

void GlueMotion(short glue) 

{ 



Chapter 5  Motion program 

80                 © 2014 Googol Technology. All rights reserved 

 long glueStep; 

 short cc; 

    long clock; 

    long sts; 

    short axis; 

  

lbl_loop: 

 axis=glue-1; 

 axis=1<<axis; 

  

 // Waiting for the start flag of glue shaft. 

lbl_wait_for_glue_start: 

 cc = !glueStart; 

 if (cc) goto lbl_wait_for_glue_start; 

  

 // Clear glue shaft start flag 

    glueStart = 0; 

  

    // Glue shaft motion 

    GT_SetPos(glue,glueStep); 

    GT_Update(axis);    

  

    // Waiting for the stop of glue shaft 

lbl_wait_for_glue_stop: 

    GT_GetSts(glue,&sts,1,&clock); 

    cc = sts & 0x400; 

  if(cc) goto lbl_wait_for_glue_stop; 

  

    //Waiting for piece shaft arrival 

lbl_wait_for_piece_arrival: 

 cc = !pieceArrival;  



Chapter 5  Motion program 

81                 © 2014 Googol Technology. All rights reserved 

 if(cc) goto lbl_wait_for_piece_arrival; 

  

    //Glue shaft returns 

    GT_SetPos(glue,0); 

    GT_Update(axis); 

  

 // Set the arm shaft start flag 

    armStart = 1;          

  

    // Waiting for the stop of motion  

lbl_wait_for_glue_return: 

    GT_GetSts(glue,&sts,1,&clock); 

    cc = sts & 0x400; 

    if(cc) goto lbl_wait_for_glue_return; 

  

    goto lbl_loop; 

} 

 

// Piece shaft motion 

void PieceMotion(short piece) 

{ 

 long pieceStep; 

 short cc; 

    long clock; 

    long sts; 

    long pos; 

    short axis; 

    pos = 0; 

  

lbl_loop: 

 axis=piece-1; 



Chapter 5  Motion program 

82                 © 2014 Googol Technology. All rights reserved 

 axis=1<<axis;  

  

 //Waiting for the start flag of piece shaft. 

lbl_wait_for_piece_start: 

 cc = !pieceStart; 

 if (cc) goto lbl_wait_for_piece_start;     

  

 // Clear the start flag of piece shaft. 

    pieceStart = 0;       

  

 // Clear the arrival flag of piece shaft. 

 pieceArrival = 0;    

  

    //Start up the motion of piece shaft. 

    pos = pos + pieceStep; 

    GT_SetPos(piece,pos); 

    GT_Update(axis);    

  

 // Waiting for the stop of piece shaft motion 

lbl_wait_for_piece_stop: 

    GT_GetSts(piece,&sts,1,&clock); 

    cc = sts & 0x400; 

    if(cc) goto lbl_wait_for_piece_stop; 

  

 //Set the arrival flag of piece shaft. 

    pieceArrival = 1;    

     

    goto lbl_loop; 

} 

 

// Application program is responsible for compiling, downloading, 



Chapter 5  Motion program 

83                 © 2014 Googol Technology. All rights reserved 

// initialling, and running of motion program. 

PROGRAM MultiMotion 

VAR 

 ARMAxis:INT:=1; 

 GLUEAxis:INT:=2; 

 PIECEAxis:INT:=3; 

 ARM_VEL:LREAL:=10; 

 GLUE_VEL:LREAL:=10; 

 PIECE_VEL:LREAL:=10; 

 ARM_STEP:DINT:=6000; 

 GLUE_STEP:DINT:=4000; 

 PIECE_STEP:DINT:=8000; 

 

 rtn:INT; 

 trap:TTrapPrm; 

 compile:TCompileInfo; 

 armMotion,glueMotion,pieceMotion:INT; 

 pieceArrival,pieceStart,glueStart,armStart:TVarInfo; 

 arm,armStep,glue,glueStep,piece,pieceStep:TVarInfo; 

 value:DINT; 

 prfPos:ARRAY [1..8] OF DINT; 

 

 cmpfilename:STRING:='led.c'; 

 dlfilename:STRING:='led.bin'; 

 funname:STRING; 

 varname:STRING; 

 

 First: BOOL:=TRUE; 

END_VAR 

---------------------------------------------------------------------------------------------- 

IF First THEN 



Chapter 5  Motion program 

84                 © 2014 Googol Technology. All rights reserved 

 (*Reset the motion controller *) 

 rtn:=GT_Reset(); 

  

 (*Clear the alarm and limit*) 

 rtn:=GT_ClrSts(1,8); 

  

 (*Set the motion parameter of ARM *) 

 rtn:=GT_PrfTrap(ARMAxis); 

 rtn:=GT_GetTrapPrm(ARMAxis,ADR(trap)); 

 trap.acc:=0.25; 

 trap.dec:=0.25; 

 rtn:=GT_SetTrapPrm(ARMAxis,ADR(trap)); 

 rtn:=GT_SetVel(ARMAxis,ARM_VEL); 

 rtn:=GT_Update(SHL(DWORD#1,ARMAxis-1)); 

  

 (*Set the motion parameter of GLUE *) 

 rtn:=GT_PrfTrap(GLUEAxis); 

 rtn:=GT_GetTrapPrm(GLUEAxis, ADR(trap)); 

 trap.acc:=0.25; 

 trap.dec:=0.25; 

 rtn:=GT_SetTrapPrm(GLUEAxis, ADR(trap)); 

 rtn:=GT_SetVel(GLUEAxis, GLUE_VEL); 

 rtn:=GT_Update(SHL(DWORD#1,GLUEAxis-1)); 

  

 (*Set the motion parameter of PIECE*) 

 rtn:=GT_PrfTrap(PIECEAxis); 

 rtn:=GT_GetTrapPrm(PIECEAxis, ADR(trap)); 

 trap.acc:=0.25; 

 trap.dec:=0.25; 

 rtn:=GT_SetTrapPrm(PIECEAxis, ADR(trap)); 

 rtn:=GT_SetVel(PIECEAxis, PIECE_VEL); 



Chapter 5  Motion program 

85                 © 2014 Googol Technology. All rights reserved 

 rtn:=GT_Update(SHL(DWORD#1,PIECEAxis-1)); 

  

 (*compile sum.c*) 

 (*generate sum.bin and sum.ini after compiling*) 

 (*Ensure that error.ini locates in project file folder *) 

 rtn:=GT_Compile(ADR(cmpfilename), ADR(compile)); 

  

 (*Download the motion program *) 

 rtn:=GT_Download(ADR(dlfilename)); 

  

 (*Get the ID of function *) 

 funname:='armMotion'; 

 rtn:=GT_GetFunId(ADR(funname), ADR(armMotion)); 

 funname:='glueMotion'; 

 rtn:=GT_GetFunId(ADR(funname), ADR(glueMotion)); 

 funname:='pieceMotion'; 

 rtn:=GT_GetFunId(ADR(funname),ADR(pieceMotion)); 

  

 (*Get the ID of global variable*) 

 varname:='pieceArrival'; 

 rtn:=GT_GetVarId(0, ADR(varname), ADR(pieceArrival)); 

 varname:='pieceStart'; 

 rtn:=GT_GetVarId(0, ADR(varname), ADR(pieceStart)); 

 varname:='glueStart'; 

 rtn:=GT_GetVarId(0, ADR(varname), ADR(glueStart)); 

 varname:='pieceStart'; 

 rtn:=GT_GetVarId(0, ADR(varname), ADR(pieceStart)); 

  

 (*Get the ID of local variable *) 

 funname:='ArmMotion'; 

 varname:='arm'; 



Chapter 5  Motion program 

86                 © 2014 Googol Technology. All rights reserved 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(arm)); 

 varname:='armStep'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(armStep)); 

  

 funname:='GlueMotion'; 

 varname:='glue'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(glue)); 

 varname:='glueStep'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(glueStep)); 

  

 funname:='PieceMotion'; 

 varname:='piece'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(piece)); 

 varname:='pieceStep'; 

 rtn:=GT_GetVarId(ADR(funname), ADR(varname), ADR(pieceStep)); 

  

 (*bind thread, function and data page *) 

 rtn:=GT_Bind(0, armMotion, 0); 

 rtn:=GT_Bind(1, glueMotion, 1); 

 rtn:=GT_Bind(2, pieceMotion, 2); 

  

 (*Initial the global variable of motion program *) 

 value:=0; 

 rtn:=GT_SetVarValue(-1, ADR(pieceArrival), ADR(value), 1); 

 rtn:=GT_SetVarValue(-1, ADR(armStart), ADR(value), 1); 

  

 value:=1; 

 rtn:=GT_SetVarValue(-1, ADR(pieceStart), ADR(value), 1); 

 rtn:=GT_SetVarValue(-1, ADR(glueStart), ADR(value), 1); 

  

 (*Initial the local variable of motion program *) 



Chapter 5  Motion program 

87                 © 2014 Googol Technology. All rights reserved 

 value:=ARMAxis; 

 rtn:=GT_SetVarValue(0, ADR(arm), ADR(value), 1); 

 value:=ARM_STEP; 

 rtn:=GT_SetVarValue(0, ADR(armStep), ADR(value), 1); 

  

 value:=GLUEAxis; 

 rtn:=GT_SetVarValue(1, ADR(glue), ADR(value), 1); 

 value:=GLUE_STEP; 

 rtn:=GT_GetVarValue(1, ADR(glueStep), ADR(value), 1); 

  

 value:=PIECEAxis; 

 rtn:=GT_SetVarValue(2, ADR(piece), ADR(value), 1); 

 value:=PIECE_STEP; 

 rtn:=GT_SetVarValue(2, ADR(pieceStep), ADR(value), 1); 

  

 (*Start a thread *) 

 rtn:=GT_RunThread(0); 

 rtn:=GT_RunThread(1); 

 rtn:=GT_RunThread(2); 

  

 First:=FALSE; 

END_IF 

 

GT_GetPrfPos(1, ADR(prfpos), 8 ,0); 

 

5.3 Language elements 

5.3.1 Data type 

Int and float data type are supported. 

Int data type use 32 bits, range is [-2,147,483,648, 2,147,483,648]. 



Chapter 5  Motion program 

88                 © 2014 Googol Technology. All rights reserved 

Float data type use fix-pointer, 32 bits in integral part, 16 bits in fractional part. The resolution is 

(1/2)^16=0.0000152587890625。 

 

5.3.2 Constant 

The immediate and macro are allowed, the immediate can be described as Decimal, Hexadecimal or 

float number. 

5.3.3 Variable 

User can define local variables and global variables. For each function, maximal number of local 

variables is 1024; maximal number of global variables is 1024. Integral type declaration symbol is "int", 

and float type declaration symbol is "double".  

5.3.4 Array 

One dimension array and constant index and variable index are supported. 

Multi-dimension array and using array element as index are not supported.  

5.3.5 Function 

The return data type and input data type of a function can be declared. It is not allowed to call 

self-defined function but GT commands in function. 

5.3.6 Data type conversion 

F orced data type conversion is supported. The conversion symbols are "int, double". 

1. The data type conversion symbol with (), like a=(int)b 

2. The data type conversion symbol cannot change the data type definition of the variable itself. 

5.3.7 Operators 

Motion program supports arithmetic operation, logical operation, relational operation, bitwise operation. 

The grammar rule is the same as that of C language. But it is not allowed for complex operations, only 

allowed 2 operands in an operation expression, and the data type of these two operands must be same. 

Notice: Please do not use high precise float calculation, since there is only 16 bit fraction accuracy for 

float data type in motion program. 



Chapter 5  Motion program 

89                 © 2014 Googol Technology. All rights reserved 

5.3.8 Arithmetic operator 

Arithmetic operators includes plus (+), minus (-), multiply (*), divide (/), mode (%). 

5.3.9 Logical operator 

L ogical operators includes logical AND (&&), logical OR (||), and logical NOT (!). The parameter can be 

INT variable or INT constant. 

5.3.10 Relational operator 

Relational operators are used for comparison operation, includes less than(>), larger than(<), equal 

to(==), larger than or equal to(>=), less than or equal to(<=) and not equal to(!=). The parameter data 

type for comparison must be same. 

5.3.11 Bitwise operator 

B itwise operation is done by bits, includes bitwise AND(&), bitwise OR(|), bitwise NOT(~), bitwise 

XOR(^), bitwise left shift(<<), bitwise right shift(>>). 

5.4 Sequential control 

Motion program supports Jump by condition; return by condition and  grammar rules are the same as 

that of C language. 

1. Conditional jump is used as following, 

if(var) goto label； 

When the condition variable “var” is not 0, it jumps to the command which with symbol “label”. 

Using an expression as jump condition is not supported. 

2. Conditional return is used as following, 

if(var) return value； 

When the condition variable “var” is not 0, the program return, return value is "value" 

Using an expression as return condition is not supported. 

 


	Copyright Statement
	Contact Us
	Document Version
	Foreword
	Contents
	Chapter 1 Use of Motion Function Library in OtoStudio
	1.1 Use of OtoStudio software library
	1.1.1 Usage of the library in OtoStudio


	Chapter 2 Return Values of Commands and Their Meanings
	2.1 Return values of commands

	Chapter 3 System Configuration
	3.1 Command to modify configuration information
	3.1.1 Commands summary
	3.1.2 Highlights
	(1)  Set the direction of encoder
	(2)  Set effective electrical level for limit switch



	Chapter 4 Motion Mode
	4.1 Crd Motion Mode
	4.1.1 Commands summary
	4.1.2 Highlights
	(1)  Establish coordinate system
	(2)  Coordinate movement
	(3)  Look-ahead processing
	(4)  Suspension and resumption of FIFO
	(5)  Cutter direction following


	4.2 PVT Motion Mode
	4.2.1 Commands summary
	(1)  GT_PrfPvt
	(2)  GT_SetPvtLoop
	(3)  GT_GetPvtLoop
	(4)  GT_PvtTable
	(5)  GT_PvtTableComplete
	(6)  GT_PvtTablePercent
	(7)  GT_PvtPercentCalculate
	(8)  GT_PvtTableContinuous
	(9)  GT_PvtContinuousCalculate
	(10)  GT_PvtTableSelect
	(11)  GT_PvtStart
	(12)  GT_PvtStatus

	4.2.2 Highlights
	(1)  PVT description mode
	(2)  Complete description mode
	(3)  Percent description mode
	(4)  Continuous description mode

	4.2.3 Examples
	(1)  PVT description mode
	(2)  Complete description mode
	(3)  Percent description mode
	(4)  Continuous description mode



	Chapter 5 Motion Program
	5.1 Introduction
	5.2 Programming motion program
	5.2.1 Commands summary
	(1)  GT_Download
	(2)  GT_GetFunId
	(3)  GT_GetVarId
	(4)  GT_Bind
	(5)  GT_RunThread
	(6)  GT_StopThread
	(7)  GT_PauseThread
	(8)  GT_GetThreadSts
	(9)  GT_SetVarValue
	(10)  GT_GetVarValue

	5.2.2 Highlights
	5.2.3 Example
	(1)  Addition in single thread
	(2)  Addition in multi-thread
	(3)  Combined motion


	5.3 Language elements
	5.3.1 Data type
	5.3.2 Constant
	5.3.3 Variable
	5.3.4 Array
	5.3.5 Function
	5.3.6 Data type conversion
	5.3.7 Operators
	5.3.8 Arithmetic operator
	5.3.9 Logical operator
	5.3.10 Relational operator
	5.3.11 Bitwise operator

	5.4 Sequential control


