Working Speed and Feeds

		Feed Per Tooth (Inch Per Tooth) Diameter equals	
Material Group	Speed SFM*	up to 1/4"	1/4" to 1/2"
Aluminum/Related Alloys	600-1200	.001002	.002004
Brass/Bronze	300-550	.001002	.002003
Copper/Related Alloys	500-900	.001002	.002003
Cast Iron (soft 195bhn)	200-500	.001002	.002003
Cast Iron (medium 225bhn)	125-350	.001002	.002003
Cast Iron (hard 275bhn)	80-300	.0005001	.001002
Magnesium	800-1400	.001003	.003005
Monel/Nickel Alloys	65-175	.0005001	.001002
Plastics	600-1200	.001003	.003006
Steel-Heat Treated (35-40Rc)	150-350	.00030005	.0005001
Steel-Heat Treated (40-45Rc)	125-275	.00020005	.0005001
Steel-Heat Treated (45Rc)	50-200	.00020005	.0005001
Steel-Medium Carbon	175-350	.0005001	.001002
Steel, Mold & Die	50-250	.0005001	.001002
Steel, Tool	150-250	.0005001	.001002
Stainless-Soft	250-400	.0005001	.001002
Stainless-Hard	75-250	.0005001	.001002
Titanium Alloys	90-225	.00030009	.0009002

* Surface Feet/Minute SFM = 0.262 x Dia. x RPM

General Endmill Calculations

In order to find the...

RPM (Revolutions Per Minute)

The speed by which the tool or spindle is rotating

SFM (Surface Per Minute)

The manufacturer's suggested working velocity of the tool based on geometry, substrate, coatings and workpiece material

IPM (Inches Per Minute)

The feedrate by which the workpiece material passes by the endmill during production

IPT (Inches Per Tooth)

the manufacturer's suggested feedrate, measured in .001" increments, as applied to each tooth of the endmill, aka "chip load"

Feed Rate

The distance traveled by the workpiece as the tool revolves one time only

If you know these	Then the math becomes easy
Suggested Surface Feet Per Minute (SFM) (see above for material suggestions) Diameter of Tool	RPM = SFM X 3.82, ÷ Diameter of tool
Revolutions Per Minute (RPM) Diameter of Tool	SFM = .262 X RPM X Diameter of tool
RPM Chipload Per Tooth (feed per tooth per revolution) Number of teeth	IPM = RPM X chipload per tooth X Number of flutes
IPM (inches per minute) RPM (revolutions per minute) Number of Flutes on tool	$IPT = IPM \div RPM \div Number of flutes$
IPM (inches per minute) RPM (revolutions per minute)	$IPR = IPM \div RPM$

A working example to calculate RPMs...

Whereby you want to run a 3/8" diameter, 4 fluted endmill at the suggested 200 SFM. What are your suggested RPMs?

RPMs = SFM X 3.82, ÷ Diameter of tool So... 200 SFM X 3.82, ÷ .375"... equals 2,037 RPM

A working example to calculate the SFM... for the same 3/8" diameter tool when you know that your spindle runs at 18,000 RPMs...

SFM = .262 X RPM X Diameter of tool So... 262 X 18,000 X .375"... equals 1,768.5 SFM

A working example to find the work material's suggested feed-rate, for the same 3/8" diameter, 4 fluted tool, when I know the spindle is running at 2,500 RPM and a chip load of .0025" per tooth...

IPM = RPM X Chip Load per Tooth X Number of Teeth So... 2,500 X .0025" X 4... equals 25 IPM (inches per minute)

A working example to see if your chip-load is correct, for a 3/8" diameter, 2 fluted tool routing aluminum at 5,000 RPMs at 45 IPM feed...

IPT = IPM ÷ RPM ÷ Number of flutes

So... 45 ÷ 5,000 ÷ 2 flutes... equals .0045" per tooth

Courtesy of Amana Tools™