



REPORT NUMBER: 102366578MID-002R2 REPORT DATE: December 22, 2015 REVISED REPORT DATE: March 5, 2021 REVISED REPORT DATE: February 2, 2022

EVALUATION CENTER
Intertek Testing Services NA Inc.
8431 Murphy Drive
Middleton, WI 53562

RENDERED TO ARDISAM, INC. 1690 ELM STREET CUMBERLAND, WI 54829

### **PRODUCT EVALUATED:**

### MODEL SERENITY PELLET FUEL ROOM HEATER

Report of Testing Model Serenity Pellet Fuel Room Heater for compliance as an "Affected Wood Heater" with the applicable requirements of the following criteria: EPA 40 CFR Part 60 "Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces", March 16, 2015.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

### **Contents**

| I.   | IN   | TRODUCTION                                                      | . 4 |
|------|------|-----------------------------------------------------------------|-----|
| I.   | Α    | PURPOSE OF TEST                                                 | 4   |
| 1.   | В    | LABORATORY                                                      | 4   |
| I.   | С    | DESCRIPTION OF UNIT                                             | 4   |
| I.   | D    | REPORT ORGANIZATION                                             | 5   |
| II.  | SI   | JMMARY                                                          | . 5 |
| I    | l.A  | PRETEST INFORMATION                                             | 5   |
| I    | l.B  | INFORMATION LOG                                                 | 6   |
|      | 11.1 | B(1) TEST STANDARD                                              | 6   |
|      | 11.1 | B(2) Deviation from Standard Method                             | 6   |
| I    | I.C  | SUMMARY OF TEST RESULTS                                         | 6   |
| I    | l.D  | DESCRIPTION OF TEST RUNS                                        | 6   |
| I    | I.E  | SUMMARY OF OTHER DATA                                           | 7   |
|      | TΑ   | ABLE 1 EMISSIONS                                                | 7   |
|      | TΑ   | ABLE 2 TEST FACILITY CONDITIONS                                 | 7   |
|      | TΑ   | ABLE 3 DILUTION TUNNEL FLOW RATE MEASUREMENTS AND SAMPLING DATA | 7   |
|      | TΑ   | ABLE 4 DILUTION TUNNEL DUAL TRAIN PRECISION                     | 7   |
|      | ΤA   | BLE 5 GENERAL SUMMARY OF RESULTS                                | 8   |
| III. | PF   | ROCESS DESCRIPTION                                              | . 8 |
| li   | II.A | TEST SET-UP DESCRIPTON                                          | 8   |
| I    | II.B | AIR SUPPLY SYSTEM                                               | 8   |
| I    | II.C | TEST FUEL PROPERTIES                                            | 9   |
| IV.  | SA   | AMPLING SYSTEMS                                                 | . 9 |



| Project No. G102366578                     | Page 3 of 15 |
|--------------------------------------------|--------------|
| IV.A. SAMPLING LOCATIONS                   | 9            |
| IV.A.(1) DILUTION TUNNEL                   | 10           |
| IV.B. OPERATIONAL DRAWINGS                 | 11           |
| IV.B.(1) STACK GAS SAMPLE TRAIN            | 11           |
| IV.B.(2). DILUTION TUNNEL SAMPLE SYSTEMS   | 12           |
| V. SAMPLING METHODS                        | 12           |
| V.A. PARTICULATE SAMPLING                  | 13           |
| VI. QUALITY ASSURANCE                      | 13           |
| VI.A. INSTRUMENT CALIBRATION               | 13           |
| VI.A. (1). DRY GAS METERS                  | 13           |
| VI.A.(2). STACK SAMPLE ROTAMETER           | 14           |
| VI.A.(3). GAS ANALYZERS                    | 14           |
| VI.B. TEST METHOD PROCEDURES               | 14           |
| VI.B.(1). LEAK CHECK PROCEDURES            | 14           |
| VI.B.(2). TUNNEL VELOCITY/FLOW MEASUREMENT | 15           |
| VI.B.(3). PM SAMPLING PROPORTIONALITY      | 15           |
| VII. CONCLUSION                            | 15           |
| REVISION SUMMARY                           |              |

| DATE     | SUMMARY                                                                                                                                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3/5/2021 | Section II.A Pretest Information – Updated conditioning burn information from 10 hours to 50 hours performed by the                                                                       |
|          | manufacturer. Section II.D Description of test runs - Added                                                                                                                               |
|          | statement regarding anomalies, test validity, and test                                                                                                                                    |
|          | appropriateness.                                                                                                                                                                          |
| 2/2/2022 | Section II.E, Table 6b – Added table to include efficiency data based on current fuel analysis of Marth pellets.                                                                          |
|          | Section III.C – Added information regarding the use of the default oak fuel analysis for the efficiency data. Included information regarding the current fuel analysis for Marth pellets. |



### I. INTRODUCTION

Intertek Testing Services NA (Intertek) has conducted testing for Ardisam, Inc., on model Serenity Pellet Burning Room Heater to evaluate all applicable performance requirements included in "Determination of particulate matter emissions from wood heaters."

### *I.A* PURPOSE OF TEST

The test was conducted to determine if the unit is in accordance with U.S EPA requirements under EPA 40 CFR Part 60 "Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces". This evaluation was conducted on December 7, 2015. The following test methods were applicable:

ASTM E2515-11- Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel

ASTM E2779-10 - Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters

CSA B415.1-10 - Performance Testing of Solid-Fuel-Burning Heating Appliances

### I.B LABORATORY

The tests on the model Serenity Pellet Burning Heater were conducted at the Intertek testing Services Laboratory located at 8431 Murphy Drive, Middleton, WI, 53562. The laboratory is accredited by the U.S. EPA, Certificate Number 3. The test was conducted by Ken Slater and observed by Seth Bailey of Ardisam, Inc.

### I.C DESCRIPTION OF UNIT

The model Serenity Pellet Fuel Room Heater is constructed of sheet steel. The outer dimensions are 20.25-inches deep, 34-inches high, and 18.25-inches wide. The unit has a door located on the front with a viewing glass.

(See product drawings.)

Proprietary drawings and manufacturing methods are on file at Intertek in (Intertek location)



### I.D REPORT ORGANIZATION

This report includes summaries of all data necessary to determine compliance with the regulations. Raw data, calibration records, intermediate calculations, drawings, specifications and other supporting information are contained in appendices to this report.

### II. SUMMARY

### II.A PRETEST INFORMATION

A sample was submitted to Intertek directly from the client. The sample was not independently selected for testing. The test unit was received at Intertek in Middleton, WI on December 7, 2015 and was shipped via the client. The unit was inspected upon receipt and found to be in good condition. The unit was set up following the manufacturer's instructions without difficulty.

Prior to beginning the emissions tests, the manufacturer operated the unit for a minimum of 50 hours at high-to-medium burn rates to break in the stove. This break-in period was performed by the manufacturer's staff and data is included in the final report. The unit was found to be operating satisfactory during this break-in. The 50 plus hours of condition burning was conducted from November 10, 2015 to November 12, 2015. The fuel used for the break-in process was Indeck premium hardwood wood pellets. 129.2 lbs. of pellets were used in the conditioning process.

Following the pre-burn break-in process the unit was allowed to cool and ash and residue was removed from the firebox. The unit's chimney system and laboratory dilution tunnels were cleaned using standard wire brush chimney cleaning equipment. On December 7, 2015 the unit was set-up for testing.



Project No. G102366578

Page 6 of 15

### II.B INFORMATION LOG

### II.B(1) TEST STANDARD

On December 7, 2015, the unit was tested for EPA emissions. For pellet stoves, the test was conducted in accordance with ASTM E2779-10. The fuel used for the test run was premium-Grade Pellets (Marthwood).

The applicable EPA regulatory limits are:

Step 1 - 2015 - 4.5 grams per hour.

Step 2 - 2020 - 2.0 grams per hour.

### II.B(2) Deviation from Standard Method

No deviations from the standards were performed, however, only the applicable sections from each standard were used during all testing.

### II.C SUMMARY OF TEST RESULTS

The appliance tests resulted in the following performance:

Particulate Emissions: 1.119 g/hr

Carbon Monoxide Emissions: 5.37 g/hr

Heating Efficiency: 69.8% (Higher Heating Value Basis)

### II.D DESCRIPTION OF TEST RUNS

RUN #1 (December 7, 2015): The test for pellet heaters is a continuous test with three separate burn rates. At 9:20 the unit was started and operated for a minimum of 1 hour for the pretest operation. At 10:20 the unit was set to the maximum feed rate (level 5) with a burn rate of 1.78 kg/hr (wet), the scale was tared and a 25-lb weight was added to the scale to determine feed rate of the fuel, and the sampling system was started. At 11:20, the system #2 sampling filter was changed out and the unit was set to ≤50% feed rate (level 3) with a burn rate of 1.22 kg/hr (wet). At 13:20, the heater was changed to the minimum feed rate (level 1) with a burn rate of 0.79 kg/hr (wet). At 16:20, testing was completed. The total burn time was 360 minutes.



Project No. G102366578

Page 7 of 15

The test run has been found to be appropriate, with no anomalies, and the test run has been validated and is deemed compliant. No negative weight was found on the filters, as the filters and gaskets are weighed together to eliminate filter material transfer to gaskets. All weightings were handled property, with no negative weight on gaskets or probes.

### II.E SUMMARY OF OTHER DATA

**TABLE 1. - EMISSIONS** 

| Run<br>Number | Test<br>Date | Burn Rates<br>(kg/hr)(Dry) |              | Particulate<br>Emission<br>Rate<br>(g/hr) | 1 <sup>st</sup> Hour<br>Emissions<br>(g) | CO<br>Emissions<br>(g/hr) | Heating<br>Efficiency<br>(% HHV) |
|---------------|--------------|----------------------------|--------------|-------------------------------------------|------------------------------------------|---------------------------|----------------------------------|
| 1             | 12/7/15      | H*<br>M*                   | 1.70         | 1.119                                     | 1.290                                    | 5.37                      | 69.8                             |
|               | 12/7/15      | L*<br>OA*                  | 0.75<br>1.05 |                                           |                                          |                           |                                  |

<sup>\*</sup>Notes: H= High burn rate, M= Medium burn rate, L= low burn rate, OA= overall burn rate.

### **TABLE 2. - TEST FACILITY CONDITIONS**

| Run | Room<br>Temp.<br>°F before | Room<br>Temp<br>°F after | Baro. Pres.<br>In. Hg<br>before | Baro. Pres.<br>In. Hg after | R.H.%<br>before | R.H.%<br>after | Air Vel.<br>Ft/min<br>before | Air Vel.<br>Ft/min<br>after |
|-----|----------------------------|--------------------------|---------------------------------|-----------------------------|-----------------|----------------|------------------------------|-----------------------------|
| 1   | 71                         | 69                       | 29.17                           | 29.03                       | 30.0            | 27.0           | 0                            | 0                           |

### TABLE 3. - DILUTION TUNNEL FLOW RATE MEASUREMENTS AND SAMPLING DATA

| Run No.    | l lime l |          | Velocity   | Volumetric<br>Flow Rate | Ave.<br>Temp. |       | Volume<br>CF) |      | ite Catch<br>ng) |
|------------|----------|----------|------------|-------------------------|---------------|-------|---------------|------|------------------|
| ixuii ivo. |          | (ff/sec) | (dscf/min) | (°R)                    | 1             | 2     | 1             | 2    |                  |
| 1          | 360      | 13.55    | 145.82     | 550.60                  | 83.34         | 84.10 | 11.80         | 9.60 |                  |

### **TABLE 4. - DILUTION TUNNEL DUAL TRAIN PRECISION**

| Run No. | Sample  | Ratios  | Total Emissions (g) |         | % g/kg    |           |
|---------|---------|---------|---------------------|---------|-----------|-----------|
|         | Train 1 | Train 2 | Train 1             | Train 2 | Deviation | Deviation |
| 1       | 629.93  | 624.20  | 7.43                | 5.99    | 10.73%    | 0.219     |



Project No. G102366578 Page 8 of 15

### **TABLE 5. - GENERAL SUMMARY OF RESULTS**

| Run No. | Burn Rate<br>(kg/hr)(Dry)<br>(Overall) | Initial Draft<br>(in/H₂O) | Run Time<br>(min) | Average<br>Draft<br>(in/H <sub>2</sub> O) |
|---------|----------------------------------------|---------------------------|-------------------|-------------------------------------------|
| 1       | 1.099                                  | 0.024                     | 360               | 0.021                                     |

### TABLE 6a. - CSA B415.1 RESULTS - Using default fuel values for oak

| Burn Rate      | CO Emissions | Heating Efficiency | Heat Output |
|----------------|--------------|--------------------|-------------|
| (kg/hr)(Dry)   | (g/hr)       | (% HHV)            | (Btu/hr)    |
| High – 1.70    | 5.61         | 69.5               | 22,266      |
| Medium – 1.17  | 1.78         | 69.4               | 15,319      |
| Low – 0.75     | 8.00         | 67.3               | 9,575       |
| Overall – 1.05 | 5.37         | 69.8               | 13,831      |

### TABLE 6b. - CSA B415.1 RESULTS - Using fuel values for Marth pellets (10/25/2021)

| Burn Rate      | CO Emissions | Heating Efficiency | Heat Output |
|----------------|--------------|--------------------|-------------|
| (kg/hr)(Dry)   | (g/hr)       | (% HHV)            | (Btu/hr)    |
| High – 1.70    | 5.24         | 69.8               | 21,322      |
| Medium – 1.17  | 1.67         | 69.7               | 14,676      |
| Low – 0.75     | 7.47         | 67.7               | 9,183       |
| Overall – 1.05 | 5.01         | 70.1               | 13,251      |

### III. PROCESS DESCRIPTION

### III.A TEST SET-UP DESCRIPTON

A 3" horizontal flue is connected by a 90° elbow and adapters to a standard 6" diameter vertical single wall pipe and insulated chimney system was installed to 15' above floor level. The singe wall pipe extended to 8 feet above the floor and insulated chimney extended the remaining height.

### III.B AIR SUPPLY SYSTEM

Combustion air enters a 2" inlet pipe located on the back of the heater, which is directed to the pellet burn pot. All gases exit through the 3" flue also located at the back of the heater. The exhaust gases are assisted by a combustion blower.



Project No. G102366578 Page 9 of 15

### III.C TEST FUEL PROPERTIES

Wood pellets used for the testing were Marth wood pellets (premium grade), with a majority of the wood species consisting of oak and maple. The pellets have a measured heating value, using the oak default value of 8556 Btu/hr (19887 kJ/kg) and a moisture content of 4.71% on a dry basis and 4.49% on a wet basis.

The efficiency values were created using the oak default fuel values of 19,887 kJ/kg (HHV), 50% carbon, 6.6% hydrogen, and 0.5% ash.

Added efficiency values are included in the report using the fuel values acquired on 10/25/2021 for Marth wood pellets, which are the same brand of pellets used in the 2015 testing. These values are 18,967 kJ/kg (HHV), 46.9% carbon, 6.4% hydrogen, and 0.1% ash.

Including the fuel analysis of Marth wood pellets did increase the efficiency slightly, as it has a lower heating value, compared to the default value for oak wood. However, the increase in efficiency was not significant.

### IV. SAMPLING SYSTEMS

### IV.A. SAMPLING LOCATIONS

Particulate samples are collected from the dilution tunnel at a point 20 feet from the tunnel entrance. The tunnel has two elbows and two mixing baffles in the system ahead of the sampling section. (See Figure 3.) The sampling section is a continuous 13 foot section of 6 inch diameter pipe straight over its entire length. Tunnel velocity pressure is determined by a standard Pitot tube located 60 inches from the beginning of the sampling section. The dry bulb thermocouple is located six inches downstream from the Pitot tube. Tunnel samplers are located 60 inches downstream of the Pitot tube and 36 inches upstream from the end of this section. (See Figure 1.)

Stack gas samples are collected from the steel chimney section 8 feet  $\pm$  6 inches above the scale platform. (See Figure 2.)



### IV.A.(1) DILUTION TUNNEL

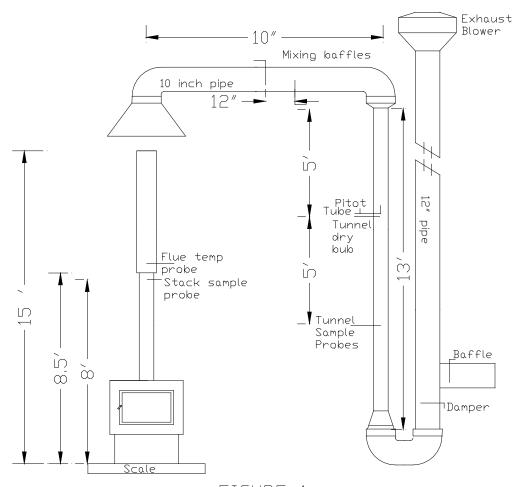
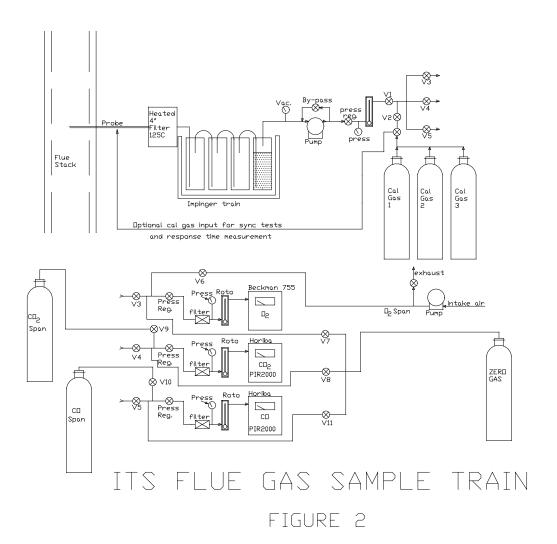




FIGURE 1



### IV.B. OPERATIONAL DRAWINGS

### IV.B.(1) STACK GAS SAMPLE TRAIN





### IV.B.(2). DILUTION TUNNEL SAMPLE SYSTEMS

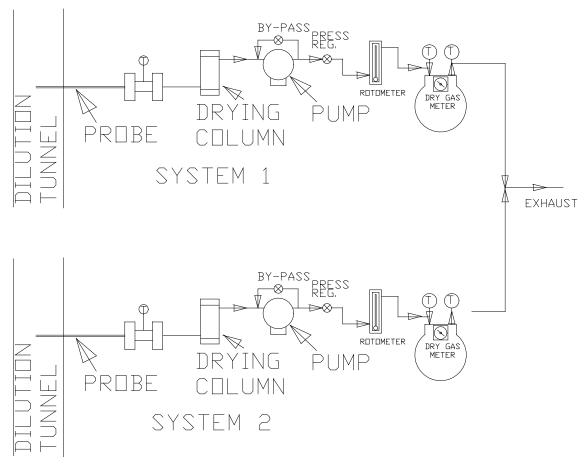



Figure 3



### V. SAMPLING METHODS

### V.A. PARTICULATE SAMPLING

Particulates were sampled in strict accordance with ASTM E2515-2011. This method uses two identical sampling systems with Gelman A/E 61631 binder free, 47-mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run. In order to measure first-hour emissions rates the a third filter set is prepared at one hour into the test run, the filter sets are changed in one of the two sample trains. The two filter sets used for this train are analyzed individually to determine the first hour and total emissions rate.

### VI. QUALITY ASSURANCE

### VI.A. INSTRUMENT CALIBRATION

### VI.A. (1). DRY GAS METERS

At the conclusion of each test program the dry gas meters are checked against our standard dry gas meter. Three runs are made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix D.

An integral part of the post test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressurizing the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated every 6 months using a Spirometer designed by the EPA Emissions Measurement Branch. The process involves sampling the train operation for 1 cubic foot of volume. With readings made to .001 ft $^3$ , the resolution is .1%, giving an accuracy higher than the  $\pm 2\%$  required by the standard.



### VI.A.(2). STACK SAMPLE ROTAMETER

The stack sample rotometer is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotometer in series with one of the dry gas meters for 10 minutes with the rotometer at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

### VI.A.(3). GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a three-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

### VI.B. TEST METHOD PROCEDURES

### VI.B.(1). LEAK CHECK PROCEDURES

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pretest and post-test leak checks are conducted with a vacuum of 10 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During, these tests the vacuum was typically less than 2 inches of mercury. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.



### VI.B.(2). TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.

### VI.B.(3). PM SAMPLING PROPORTIONALITY

Proportionality was calculated in accordance with ASTM E2515-11. The data and results are included in Appendix C.

### VII. CONCLUSION

This test demonstrates that this unit is an affected facility under the definition given in the regulation. The emission rate of 1.119 g/hr meets the EPA requirements for the Step 2 limits.

### INTERTEK TESTING SERVICES NA

Evaluated by: Ken Sin

**Ken Slater** 

**Associate Engineer - Hearth** 

Reviewed by:

**Brian Ziegler** 

**Lead Engineer - Hearth** 





### CERTIFICATE OF CONFORMITY

### **Emissions – Pellet Heater**

EPA 40 CFR Part 60, Subpart AAA, ASTM E2515-2017, ASTM E2779-2017, CSA B415.1-2010

WHI15 - 223943001

### Organization

Ardisam, Inc. 1737 Industrial Avenue, Cumberland, WI 54829 USA

**Product: Serenity** 

Catalytic: No

Maximum Output: 22,000 Btu/hr Weighted Average Emissions: 1.12 g/hr

Weighted Average Annual Delivered Efficiency (HHV): 70%

Test Fuel Type: Premium Wood Pellets

Weighted Average CO Emissions Rate (g/min): 0.08

Conformance: Complies with 2020 particulate emissions standard

Product Evaluation No.: 104591879MID-001

Test Report No.: 102366578MID-002

**Certification Body:** Intertek Testing Services NA, Inc.

Registered Address: 545 E. Algonquin Rd., Arlington Heights, IL 60005, USA

Initial Issue Date: 25-Jan-16 Date of Expiry: 08-Feb-27

Issue Status: 3

This is a certificate of conformity to confirm that the bearer has successfully completed the requirements of the Intertek certification scheme which include the testing of products and the initial assessment. The bearer is subject to continuing assessments of their compliance through surveillance and testing of products samples taken from production (as applicable to the scheme) and has been registered within the scheme for the products detailed. The validity of this certificate is contingent to the listing's status on the Intertek Directory of Building Products: bpdirectory.intertek.com.

Jean-Philippe Kayl Vice President – Global Certification

08-Feb-22

Name Signature Date

The certificate and schedule are held in force by regular annual surveillance visits by Intertek Testing Services NA, Inc. and the reader or user should contact Intertek to validate its status. This certificate remains the property of Intertek Testing Services NA, Inc. and must be returned to them on demand. This Certificate is for the exclusive use of Intertek's Client and is provided pursuant to the Certification agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this certificate. Only the Client is authorized to permit copying or distribution of this certificate and then only in its entirety. Use of Intertek's Certification mark is restricted to the conditions laid out in the agreement. Any further use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. Initial Factory Assessments and Follow up Services are for the purpose of assuring appropriate usage of the Certification mark in accordance with the agreement, they are not for the purposes of production quality control and do not relieve the Client of their obligations in this respect.

Version: 11 November 2021 SFT-BCH-OP-19c



### Certificate of Conformity WHI15-223943001 Appendix A

| Certificate of                | Conformity #: | Certificate of Conformity Issue Date: |                                                 |  |
|-------------------------------|---------------|---------------------------------------|-------------------------------------------------|--|
| WHI15-2239                    | 43001         | January 25, 2016                      |                                                 |  |
| REVISION # REVISION DATE REPO |               | REPORT PAGES                          | REVISION                                        |  |
|                               | January 25,   |                                       |                                                 |  |
| 0                             | 2016          | N/A                                   | Original Report Issue                           |  |
| 1                             | March 5, 2021 | N/A                                   | 5-year renewal                                  |  |
|                               | February 2,   |                                       |                                                 |  |
| 2                             | 2022          | N/A                                   | Update per EPA deficiency letter issued 1/26/22 |  |

| Revised Repo | ort #:               | Report Issue Date: |                                                                                                                                                                                                                                                                                                             |  |
|--------------|----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 102366578M   | 102366578MID-002     |                    | 015                                                                                                                                                                                                                                                                                                         |  |
| REVISION #   | <b>REVISION DATE</b> | REPORT PAGES       | REVISION                                                                                                                                                                                                                                                                                                    |  |
|              | December 22,         |                    |                                                                                                                                                                                                                                                                                                             |  |
| 0            | 2015                 | N/A                | Original Report Issue                                                                                                                                                                                                                                                                                       |  |
| 1            | March 5, 2021        | 5, 6               | Section II.A Pretest Information – Updated conditioning burn information from 10 hours to 50 hours performed by the manufacturer. Section II.D Description of test runs – Added statement regarding anomalies, test validity, and test appropriateness.                                                     |  |
|              | February 2,          | 8, 9               | Section II.E, Table 6b – Added table to include efficiency data based on current fuel analysis of Marth pellets.  Section III.C – Added information regarding the use of the default oak fuel analysis for the efficiency data. Included information regarding the current fuel analysis for Marth pellets. |  |
| 2            | 2022                 | Appendix B         | Added efficiency data with Marth fuel analysis.                                                                                                                                                                                                                                                             |  |

The certificate and schedule are held in force by regular annual surveillance visits by Intertek Testing Services NA, Inc. and the reader or user should contact Intertek to validate its status. This certificate remains the property of Intertek Testing Services NA, Inc. and must be returned to them on demand. This Certificate is for the exclusive use of Intertek's Client and is provided pursuant to the Certification agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this certificate. Only the Client is authorized to permit copying or distribution of this certificate and then only in its entirety. Use of Intertek's Certification mark is restricted to the conditions laid out in the agreement. Any further use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. Initial Factory Assessments and Follow up Services are for the purpose of assuring appropriate usage of the Certification mark in accordance with the agreement, they are not for the purposes of production quality control and do not relieve the Client of their obligations in this respect.

Version: 11 November 2021 SFT-BCH-OP-19c

From: Seth Bailey

To: <u>sanchez.rafael@epa.gov</u>

Cc: Robert Ruppel; Joseph Miller; Scott Thue Intertek; Brian Ziegler Intertek

Subject: 30-day notice of intent to test

Date: Friday, November 6, 2015 3:54:10 PM

To whom this may concern:

We are submitting our 30-day notification to the EPA for testing of our Serenity model pellet wood heater. Testing date will be December 7,8 and 9, 2015 providing EPA approves this notification.

Please see information below.

### **Manufacturer:**

Ardisam, Inc. 1160 8<sup>th</sup> Ave Cumberland, WI 54829

### **Test Lab:**

Intertek 8431 Murphy Drive Middleton, WI 53562 BRIAN.ZIEGLER@intertek.com

### **Third Party Certifier:**

Intertek

Rick.curkeet@intertek.com

### Model:

Serenity

### **Test Dates:**

December 7,8,9

Seth Bailey
Regulatory Compliance Manager
Ardisam, Inc.
(m) 608.332.3943
(w) 715.822.2415 ext. 130
seth.bailey@ardisam.com

## Appendix A

### **Laboratory Operating Procedure**



pg. 1 of 8

#### INTRODUCTION

This document provides a systematic guide for the technician conducting tests to EPA standard requirements. Procedures outlined here, when followed, will result in tests in conformance with ASTM E2779 and ASTM E2515. This guide cannot cover every possible contingency that may develop during a particular test program. Many questions that may arise can be answered by a complete understanding of the test standards and their intent. When in doubt on any detail check with the laboratory manager and be sure you understand the procedures involved.

The primary measurements to be obtained are particulate emission data and efficiency data. The technician's duties include the following steps. It is critical that all spaces on the data forms be properly filled in. Each test must be represented by a complete record of what was done and when.

- I. APPLIANCE INSPECTION AND SET-UP
  - A. Incoming Inspection
  - B. Unit Set-Up
- II. SAMPLING SYSTEMS SET-UP
  - A. Gas Analysis
  - B. Dilution Tunnel
- III. TEST CONDUCT
  - A. Pre-Test Fuel Load
  - B. Test Fuel Load
  - C. Unit Start up
  - D. Test Run
- IV. POST TEST PROCEDURE
  - A. Leak Checks
  - B. Particulate Sample Recovery

The technician running this test must be familiar with the following documents that are to be kept in the laboratory at all times.

- 1. ASTM E2779
- 2. ASTM E2515



pg. 2 of 8

### I. APPLIANCE INSPECTION AND SET-UP

### A. Incoming Inspection

- Check for completeness of unit including parts, accessories, installation and operating instructions, drawings and specifications, etc. Note any discrepancies or missing parts.
- Check for shipping damage. If damage has occurred, notify the laboratory manager. In some cases repairs may be made, provided the manufacturer and laboratory manager concur that repairs will not affect the unit's performance. If damage is irreparable, a new unit will need to be obtained.
- 3. Mark unit with manufacturer's name, model number, work order number, and date received.
- 4. If unit is safety listed, note label data including listing agency and serial number.

### B. Unit Set-Up

- 1. All units must be operated by the manufacturer or Intertek for a break-in period of 50 hours at a medium burn rate. NOTE: Inserts are tested as if they are freestanding stoves.
- 2. Once break-in is completed, allow unit to cool then clean unit thoroughly.
- 3. Prior to placing unit on scale, the scale must be turned on and allowed to warm up for 1-hour minimum.
- 4. Place unit on scale and align so chimney will be centered in hood. Record the weight of the unit and all accessories. (Do not weigh with chimney attached.)
- 5. Chimney and connector should be cleaned with a wire brush prior to mounting. Attach chimney and connector then seal all joints. Be sure the single wall stove pipe terminates and insulated pipe starts at proper level above scale platform. Chimney must be supported from scale so that it does not touch test enclosure or hood walls.
- 6. Plug thermocouples into data acquisition system jacks and verify that all instrumentation is working properly.
- 7. Dilution tunnel must be cleaned prior to each certification test series, and at anytime a higher burn rate follows a lower burn rate.

### II. SAMPLING SYSTEMS SET-UP

### A. Gas Analysis

1. All instruments should be turned on and allowed to warm up for 1-hour minimum.



pg. 3 of 8

Prior to calibrating, make sure that the outlet pressure on each calibration gas bottle reads 10 PSI. Adjust flow meters at each gas analyzer to required flow.

The gas analyzer (CO<sub>2</sub>, CO, O<sub>2</sub>) is zeroed on nitrogen. The O<sub>2</sub>, CO<sub>2</sub> and CO analyzer is spanned with a certified span gas mixture.

Calibrate analyzers as follows:

- a. With calibration switch at "SPAN", adjust all span controls to values specified on span gas label.
- b. Switch to "ZERO" and adjust zero controls to provide 0.00 readout on all analyzers.
- c. Repeat a. and b. until no further adjustment is required.
- d. Record these values on the appropriate data sheet.
- e. Switch to "CAL." and record all analyzer values.
- 3. Response time synchronization check.
  - a. With switch at "SAMPLE" and no fire in unit, allow readings to stabilize (O<sub>2</sub> analyzer should read 20.93, CO and CO<sub>2</sub> should read 0.00).
  - b. Switch to "CAL" setting and start the stopwatch. Note the time required for each unit to reach the calibration gas bottle value. If all three analyzers reach this value within 5 seconds of each other, synchronization is adequate. If not, contact the laboratory manager. Synchronization is adjusted by either internal instrument setting or adjustment of sample line length.
  - c. Use EPA Method 5H 6.7-6.9 procedures to check calibration of instruments.
- 4. Sample clean-up train.
  - a. Load a new filter in 4-inch glass filter holder.
  - b. Load four Impingers as follows:
    - #1: 100 ml. distilled water
    - #2: 100 ml. distilled water
    - #3: Empty
    - #4: 200-300 grams Drierite.
  - c. Place Impingers in container and connect with greased "U TUBES".
     (Grease carefully on bottom half of ball joint so that grease will not get into tubes.)
  - d. Connect filter to impinger #1 and sample line to impinger #4.
  - e. Connect stack probe to filter.
  - f. Leak check system as follows:



pg. 4 of 8

- 1) Plug probe.
- 2) Turn on sample system and increase flow rate slowly.
- 3) Set vacuum-adjust valve to obtain a vacuum of 10 inches mercury.
- 4) If sapphire float in rotometer does not stabilize below 10 on scale, system must be resealed.
- 5) Repeat leak-check procedure until satisfactory results are obtained.
- 6) Unplug probe slowly, then decrease flow rate slowly before shutting off system.
- g. Just prior to starting test, fill impinger container with ice.

### B. Dilution Tunnel Sample Train Set-Up:

- 1. Filters and holders.
  - a. Clean probes and filter holder front housings carefully and desiccate to a constant weight prior to use.
  - b. Filters and filter probe combinations should be numbered and labeled prior to use.
  - c. Weigh desiccated filters and probe filter units on analytical balance. Record the weights on the appropriate form. Note that the probe and front half of the front filter holder is to be weighed as a unit.
  - d. Carefully assemble the filter holder units and connect to sampling systems.
  - e. System #1 (Filter set #1) will have one filter set and System #2 (Filter set #2 and #3) will have two filter sets. Filter set #2 will be changed 1-hour into the test.
  - e. Change desiccate columns with dry absorbent before each test series.

### 2. Leak checking.

- a. Each sample system is to be checked for leakage prior to inserting probes in tunnel.
- b. Plug probes and start the samplers. Adjust pump bypass valve to produce a vacuum reading of 10 inches mercury. NOTE: During test, highest vacuum recorded is required for posttest leak check.
- c. Allow vacuum indication to stabilize at 10" mercury, record dry gas meter readings, (DGM<sub>1</sub>, DGM<sub>2</sub>). At a convenient DGM value start stopwatch. Time for 1 minute then stop vacuum pumps. Record dry gas meter readings again, (DGM<sub>3</sub>, DGM<sub>4</sub>). NOTE: If rotometer ball is floating above the 5-mm mark, system is leaking too much and all seals should be checked.



pg. 5 of 8

d. Calculate leakage rate as follows.

System 1: DGM3-DGM<sub>1</sub> = CFM<sub>1</sub> System 2: DGM4-DGM<sub>2</sub> = CFM<sub>2</sub>

If CFM<sub>1</sub> or CFM<sub>2</sub> is greater than 0.02 cfm, or  $_1$ S greater than 0.04 x Sample Rate, leakage is unacceptable and system must be resealed. For most tests the sample rate will be 0.25 cfm, thus leakage rates in excess of 0.04 x 0.25 = 0.010 cfm are not acceptable.

e. To prevent contamination, do not insert probes in tunnel until the start of the test run.

### III. TEST CONDUCT

### A. Pre-Test Fuel Load

1. Fill hopper with pellets, tare the scale, and place a 25lb weight on the scale to measure fuel consumed.

### B. Test Fuel Load

- 1. Determine moisture content of pellets per ASTM E871 by weighing pellets before and after oven drying.
- 2. Verify and document the pellet manufacturer and grade of pellets used for test.
- 3. Confirm enough pellets are in the hopper to complete the test, add if necessary. Tare scale and place a 25lb weight on the scale to measure fuel consumed.

### C. Unit Start-Up

- 1. With all doors and air controls closed, zero draft Magnehelic using screw located at bottom of meter.
- Before lighting a fire turn on dilution tunnel and set flow rate to 140 scfm (approximately 715 fpm) if burn rate is to be less than 3 kg/hr. For higher burn rates set flow for a 150:1 air fuel ratio (see chart for approximate values).
- Check draft imposed on cold stove. All inlets must be closed and a draft gauge in the chimney. If draft is greater than 0.005 inches water column, adjust tunnel to stack gap until draft is less than 0.005 inches water column.
- 4. With hot wire anemometer check for ambient airflow around unit (must be less than 50 ft/min).



pg. 6 of 8

- 5. Tare scale and start fire by turning the unit on per manufacturer's instructions. (Make sure stack sample probe is on the unit.)
- 6. Once fuel is burning well, operate at high fire for sufficient time to get the fuel burning well. Then adjust settings to intended test run levels.
- 7. Perform the dilution tunnel traverse as prescribed in ASTM E2515, Section 9.3.2 (Pitot tube should be carefully cleaned prior to each test.)
- 8. Pretest must burn for a minimum of 1 hour. Record room and flue temperatures.

### D. Test Run

- 1. Stack gas analyzers should be on and in the sample mode.
- 2. When the 1-hour pre-burn is complete, the test is to be started.
  - a. Insert the sample probes into the tunnel being careful not to hit sides of tunnel with probe tip.
  - b. Check tunnel Pitot tube for proper position.
  - c. Confirm heater is set to the maximum burn rate.
  - d. Record initial readings.
  - e. Turn on probe sample systems and start timing test.
  - f. Tare platform scale and add 25lb weight.
  - g. Every 10 minutes record the following:
    - 1) Dry gas meter readings.
    - 2) Weight remaining.
    - 3) All thermocouple temperatures.
    - 4) Tunnel Pitot tube reading.
    - 5) Draft reading.
    - 6) Rotometer readings.
  - h. Filter temperatures shall not exceed 90°F anytime during the test. If the filters are approaching 90°F turn on cooling pump. Filters must be kept above the dilution tunnel wet bulb temperature in order to prevent condensation.
  - i. Regularly check impinger train for ice level during test.
  - j. At 1-hour, Filter set #2 is to be removed from the dilution tunnel and Filter set #3 is added. The heater is changed from the high burn setting to the ≤50% of maximum burn rate setting and operated for 2-hours
  - k. At the 3-hour point, the heater is changed to the lowest burn rate setting.
  - I. At the 6-hour point, shut off sample trains and record last reading.
  - m. Record final dry gas meter values.
  - n. Shut down heater per manufacturer's instructions.



pg. 7 of 8

### IV. POST TEST PROCEDURES

### A. Leak Checks

### 1. Dilution Tunnel

- a. Remove sample probes from tunnel and plug with rubber stopper.
- b. Turn on sample system and set vacuum to 10" mercury or to the highest value reached during the test.
- c. At a convenient value start stopwatch and record the DGM starting value.
- d. After 1 minute stop sample system and record ending DGM value.
- e. Calculate leakage rate per pre-test description (see II.B.2.c.).

### 2. Gas Analyzers

- a. Set stack sample flow to about 75 mm on the rotometer.
- b. Plug with rubber stopper.
- c. Adjust vacuum to 10" mercury.
- d. Let system stabilize then record rotometer readings.
- e. If the rotometer readings do not equal zero, check with the laboratory manager.
- f. SLOWLY unplug probe and decrease flow rate to zero.
- g. Turn off stack sampling system.
- h. Zero, span and calibrate the analyzers (see Gas Analysis). RECORD ONLY these meter values.

### B. Particulate Sample Recovery

- 1. Disassemble filter holder and collect all loose material on filters.
- Weigh and record probes and filters for each train. NOTE: 24 hours of desiccation must pass before final "no change" weight values can be recorded.
- 3. Weigh and record probes and fillers at 6-hour intervals until weight change between weighing is less than 0.5 mg.

### V. DISPOSITION OF TESTED UNIT.

In order to meet the requirements of section 60.533(b)(8) of the EPA's 40CFR Part 60 Standards of Performance for New Residential Wood Heaters, Intertek Testing Services seals certified wood heaters by:

 Applying tamper-indicating tape to the firebox door, ash pan door, and the air controls.



pg. 8 of 8

- 2) Totally covering the unit with stretch wrap and stamping the stretch wrap with our WHI logo at various locations.
- 3) Strapping the door and ash pan closed with plastic banding so that the banding goes both around the unit laterally and from top to bottom. The banding is then stamped with our WHI logo so that the banding can't be simply replaced.
- 4) The certificate is then placed on the top of the unit and a second layer of stretch wrap is applied and stamped with our WHI logo.
- 5) The unit is placed on a pallet and strapped down with additional strapping to keep it on the pallet. It is then shipped back to the manufacturer.

# Appendix B Data and Calculation Forms

### Intertek

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | •            |    |
| Control #:    | G102366578 |              |    |

Test Duration: 360
Output Category: Overall

### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 69.8%     | 75.2%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 70%       | 75.6%     |

| Output Rate (kJ/h) | 14,580 | 13,831 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 1.05   | 2.31   | (lb/h)  |
| Input (kJ/h)       | 20,881 | 19,808 | (Btu/h) |

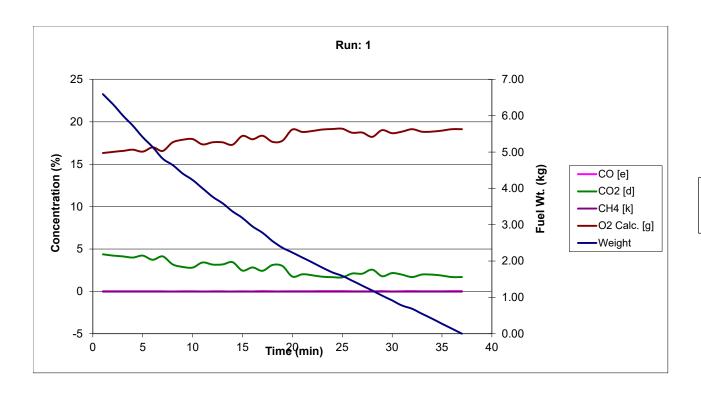
| Test Load Weight (dry kg) | 6.30 | 13.89 | dry lb |
|---------------------------|------|-------|--------|
| MC wet (%)                | 4.49 |       |        |
| MC dry (%)                | 4.70 |       |        |
| Particulate (g )          | 6.71 |       |        |
| CO (g)                    | 32   |       |        |
| Test Duration (h)         | 6.00 |       |        |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.08        | 0.37 |
| g/kg Dry Fuel    | 1.07        | 5.12 |
| g/h              | 1.12        | 5.37 |
| lb/MM Btu Output | 0.18        | 0.86 |

|--|

VERSION: 2.2 12/14/2009

| VERSION:         | 2.2                | 12/14/2009 |                 |        |            |              |            |        |
|------------------|--------------------|------------|-----------------|--------|------------|--------------|------------|--------|
| Manufacturer:    | Ardisam            |            | Appliance Type: | Pellet | (Cat, Non- | Cat, Pellet) |            |        |
| Model:           | Serenity           |            |                 |        |            |              |            |        |
| Date:            | 12/7/2015          |            | Temp. Units     | F      | (F or C)   | Default      | Fuel Value | es:    |
| Run:             | 1                  |            | Weight Units    | lb     | (kg or lb) |              | D. Fir     | Oak    |
| Control #:       | G102366578         |            |                 |        |            | HHV (kJ/kg)  | 19,810     | 19,887 |
| Test Duration:   | 360                |            |                 |        |            | %C           | 48.73      | 50     |
| Output Category: | Overall            |            | Fuel I          | Data   |            | %Н           | 6.87       | 6.6    |
|                  |                    |            |                 | D. Fir |            | %O           | 43.9       | 42.9   |
| Wood             | Moisture (% wet):  | 4.49       | HHV             | 19,887 | kJ/kg      | %Ash         | 0.5        | 0.5    |
| Loa              | d Weight (lb wet): | 14.54      | %С              | 50     |            |              |            |        |
| _                |                    |            |                 |        |            |              |            |        |


| Burn Rate (dry kg/h):        | 1.05   | %Н   | 6.6  |
|------------------------------|--------|------|------|
| Total Particulate Emissions: | 6.71 g | %O   | 42.9 |
|                              |        | %Ash | 0.5  |
|                              |        |      |      |

|            | Averages 0.01 2.67 17.85 |      |                 |       |       |      |  |
|------------|--------------------------|------|-----------------|-------|-------|------|--|
| Elapsed    | Fuel Weight              |      | as Composit     |       | Flue  | Room |  |
| Time (min) | Remaining (lb)           | CO   | CO <sub>2</sub> | $O_2$ | Gas   | Temp |  |
| 0          | 14.54                    | 0.01 | 4.37            | 16.10 | 292.2 | 70.9 |  |
| 10         | 13.94                    | 0.01 | 4.23            | 16.25 | 279.8 | 71.8 |  |
| 20         | 13.24                    | 0.01 | 4.13            | 16.36 | 297.2 | 72.2 |  |
| 30         | 12.63                    | 0.01 | 3.99            | 16.51 | 295.0 | 71.0 |  |
| 40         | 11.92                    | 0.01 | 4.21            | 16.27 | 299.7 | 71.1 |  |
| 50         | 11.32                    | 0.01 | 3.72            | 16.79 | 280.5 | 69.9 |  |
| 60         | 10.62                    | 0.00 | 4.13            | 16.36 | 297.1 | 69.6 |  |
| 70         | 10.23                    | 0.00 | 3.18            | 17.34 | 247.8 | 69.2 |  |
| 80         | 9.73                     | 0.01 | 2.89            | 17.65 | 244.9 | 69.8 |  |
| 90         | 9.33                     | 0.00 | 2.81            | 17.71 | 252.1 | 69.3 |  |
| 100        | 8.82                     | 0.00 | 3.41            | 17.07 | 238.6 | 69.4 |  |
| 110        | 8.31                     | 0.00 | 3.16            | 17.34 | 250.0 | 69.7 |  |
| 120        | 7.92                     | 0.00 | 3.18            | 17.32 | 240.1 | 68.7 |  |
| 130        | 7.42                     | 0.00 | 3.44            | 17.05 | 239.2 | 68.9 |  |
| 140        | 7.02                     | 0.01 | 2.45            | 18.10 | 245.5 | 68.9 |  |
| 150        | 6.51                     | 0.00 | 2.82            | 17.69 | 244.5 | 68.9 |  |
| 160        | 6.13                     | 0.03 | 2.42            | 18.12 | 235.8 | 69.8 |  |
| 170        | 5.63                     | 0.00 | 3.11            | 17.38 | 243.0 | 68.8 |  |
| 180        | 5.22                     | 0.00 | 2.99            | 17.49 | 243.7 | 69.0 |  |
| 190        | 4.93                     | 0.01 | 1.74            | 18.82 | 203.8 | 69.0 |  |
| 200        | 4.62                     | 0.00 | 2.02            | 18.52 | 203.9 | 68.4 |  |
| 210        | 4.32                     | 0.02 | 1.90            | 18.67 | 201.4 | 69.0 |  |
| 220        | 4.01                     | 0.03 | 1.73            | 18.82 | 186.4 | 68.6 |  |
| 230        | 3.72                     | 0.02 | 1.68            | 18.87 | 189.1 | 69.7 |  |
| 240        | 3.51                     | 0.03 | 1.65            | 18.91 | 188.3 | 69.1 |  |
| 250        | 3.22                     | 0.00 | 2.11            | 18.40 | 194.5 | 68.7 |  |
| 260        | 2.92                     | 0.00 | 2.08            | 18.45 | 194.8 | 68.8 |  |
| 270        | 2.62                     | 0.00 | 2.56            | 17.95 | 197.7 | 68.9 |  |
| 280        | 2.31                     | 0.03 | 1.79            | 18.76 | 196.3 | 69.0 |  |
| 290        | 2.02                     | 0.00 | 2.16            | 18.36 | 188.4 | 69.8 |  |
| 300        | 1.71                     | 0.01 | 1.96            | 18.57 | 187.3 | 69.4 |  |
| 310        | 1.51                     | 0.03 | 1.69            | 18.88 | 186.6 | 69.4 |  |
| 320        | 1.21                     | 0.00 | 1.99            | 18.55 | 186.0 | 69.4 |  |
| 330        | 0.92                     | 0.02 | 1.97            | 18.57 | 198.5 | 69.3 |  |
| 340        | 0.60                     | 0.01 | 1.86            | 18.69 | 186.4 | 68.3 |  |
| 350        | 0.31                     | 0.03 | 1.69            | 18.88 | 196.4 | 69.0 |  |
| 360        | 0.00                     | 0.04 | 1.69            | 18.88 | 189.9 | 69.0 |  |

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

| Manufacturer:<br>Model:<br>Date:<br>Ren:<br>Control #:<br>Test Duration: | 12/07/15<br>1<br>G 102366578<br>360                    | MHV<br>69.83%                                              | DHV<br>75.21%                                | Note: In the Trout data", "Calc. % Q.*, "Faul<br>Properties", and "Mass Balance" columns, [4], [6], [6],<br>[8], [9], [6], [9], [6], [6], [6], and [6] refer to their<br>respective variables in Clauses 13.7.3 to 13.7.5. | Combustion<br>Heat Transfe<br>Heat Output |          | 99.50% Dry<br>70.18% | Air Fuel Ratio (A<br>y Molecular Weight (M,<br>Moles Eshaust Gas (N<br>Air Fuel Ratio (AIF)<br>500 kJih<br>881 kJih | ( <sub>4</sub> ) 29.15 | 54HC<br>0.8 |                        |                        | ation Efficiency:<br>Total input (kJ):<br>otal Outout (kJ):<br>Efficiency:<br>Total CO (c): | 125,287 116<br>87,482 82<br>69,83% |                          |                              | Initial Dry V                    | llood (wet basis):<br>Weight Wt <sub>h</sub> , (kg):<br>ure Content Dry | 6.30                     | Mo                  |                        | Gai: 4.49<br>lig: 6.30<br>CA: 50<br>HY: 6.6<br>CX: 42.9 |                      |         |            |                       |                                |                |        |                          |           |                 |                    |                              |                        |                  |                    |                                        |              |         |                           |
|--------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|----------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|-------------|------------------------|------------------------|---------------------------------------------------------------------------------------------|------------------------------------|--------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------------|--------------------------|---------------------|------------------------|---------------------------------------------------------|----------------------|---------|------------|-----------------------|--------------------------------|----------------|--------|--------------------------|-----------|-----------------|--------------------|------------------------------|------------------------|------------------|--------------------|----------------------------------------|--------------|---------|---------------------------|
|                                                                          | Comb Eff HT Eff Output Burn Rate Grams CO Input MC wet | 99.50%<br>70.18%<br>14,580<br>1.05<br>32<br>20,881<br>4.49 | 99.50%<br>75.58%<br>kJih<br>kah<br>a<br>kJih | Ultimate CO <sub>2</sub> CO <sub>2 at</sub> 12.80 F <sub>0</sub> 1.943                                                                                                                                                     | Burn Duration<br>Burn Rate<br>Stack Temp  |          |                      | 550 ksh<br>8.0 Deg.C                                                                                                |                        |             |                        |                        |                                                                                             |                                    | Fuel Hea                 |                              | 6.60<br>HHV LHV<br>19.887 18.464 | 6 Blufb                                                                 | HHV LH<br>8555.6 794     | V<br>3.4            |                        |                                                         |                      |         |            |                       |                                |                |        |                          |           | SUMS            |                    |                              | AVERAGE                |                  |                    | ************************************** |              |         |                           |
|                                                                          | Averages                                               | 0.01                                                       | 2.67                                         | 7.16 20.79 18.11 108.98                                                                                                                                                                                                    | 20.81 101.8%                              | 70.8% 7  | 2.1% 50.             | 47 2.76 58.11                                                                                                       | 8 2.63                 | 50.10       | 26617 4.17             | 6.60 2.60              | 19887.00                                                                                    | 4.49 7                             | 9.21 21.01               | 0.64                         | 2.16 -0.03                       | 0.06                                                                    | 42.13 321                | .09 0.22            | -0.46 138              | 1.29 34.12                                              | 2.61 382             | .13 347 | 75.69 263  | 31.81 25              | 563.20 2533.96                 | 3310.61 3068.  | 293.96 | 5418.43 288-             | 6.64 2321 | 79 120924.      | 8 -15824.61        | 59380.30 4545                |                        | 35028.23         | -2150.51           | 37178.7                                | 91588.3      | -2150.5 | 32.2 -44.5                |
|                                                                          | INPUT DAT                                              | TA                                                         |                                              | Oxygen Calculation Input Dat<br>Excess Total Calc. % Flue                                                                                                                                                                  | Room Eff                                  |          | Net A                |                                                                                                                     |                        |             | Total Carbon H         | Fuel Propertie         |                                                                                             | Ster                               | -                        | Mass Balance<br>100 mole dry |                                  | kg Wood per<br>100 mole did                                             |                          |                     |                        |                                                         | Sta<br>loisture Ten  |         | Heat Conte |                       | - Ambient to Stack             | Temperature    | Room   |                          | Ener      | gy Losses (kJ/l |                    |                              | Total                  | Total            | Chemical           |                                        |              |         |                           |
| Element                                                                  | Weight<br>Remaining (kg                                | COTH                                                       | CO, [4]                                      | Excess Total Calc.% Flue Av FA O: O: fel Gas (*C) Te                                                                                                                                                                       | mp (°C) %                                 | Transfer | S De                 |                                                                                                                     | mee Now                |             |                        | rdroger Oxyo           |                                                                                             | Moisture                           | (moles/1                 | 100 mole dry 1               | 100 gas)<br>01 04                | 100 mole dia                                                            | CO. O.                   | Moles per kg        | g of Dry Wood<br>HC N  |                                                         | loisture Ter         |         | 20. (      |                       | CO N <sub>2</sub>              | CH, H-O        | remo   | co. c                    | h cc      | Flue Gas Con    | Stituent<br>CH,    | H-O Comb H-O Fu              |                        | Loss             | Chemical<br>Loss 1 | Sensible and                           |              |         | Grams Produced            |
| 0                                                                        | 6.60                                                   | 0.01                                                       | 4.37                                         | 352.3% 20.69 16.31 144.5                                                                                                                                                                                                   | 21.6 101.0%                               | 73.9% 7  | 4.6% 27              | 8 6.60 0.00                                                                                                         | 6.30                   | 0.00        | 0 4.17                 | 6.60 2.68              | 19887.00                                                                                    | 4.49 70                            | 9.31 21.04               |                              | 3.50 -0.02                       | 0.10                                                                    | 42.04 156                | 91 0.08             | -0.24 762              | 80 33.64                                                | 2.61 417             | 70 490  | 01.04 358  |                       | 84.05 3544.43                  | 4722.73 4288.1 | 294.78 | 206.03 578               | 41 21.9   | 2703.70         | -213.40            | 1623.52 126                  | 4 5045.20              | 0.00             | 0                  | 0.00                                   | 0            | 0 0     | 0.00 0.00                 |
| 10                                                                       | 6.32                                                   | 0.01                                                       | 4.23                                         |                                                                                                                                                                                                                            | 22.1 100.9%                               |          | 5.1% 28              |                                                                                                                     |                        |             |                        | 6.60 2.68              |                                                                                             |                                    | 9.30 21.03               |                              | 3.39 -0.02                       |                                                                         | 41.98 163                | 47 0.14             | -0.24 787              | 41 33.65                                                | 2.61 410             |         | 6.99 346   |                       | 67.46 3330.00                  | 4419.39 4029.5 |        | 192.97 565               |           |                 |                    | 1614.95 125                  |                        | 2034.55          | -72                | 2106.22                                | 6145         |         | 1.60 -1.58                |
| 20                                                                       | 5.01                                                   | 0.01                                                       | 4.13                                         |                                                                                                                                                                                                                            | 22.3 101.0%                               |          | 3.3% 29<br>2.8% 30   |                                                                                                                     |                        |             |                        | 6.60 2.68<br>6.60 2.68 |                                                                                             |                                    | 9.29 21.03<br>9.28 21.03 |                              | 3.31 -0.02                       |                                                                         | 42.02 168<br>42.03 176   | 57 0.11             | -0.25 805<br>-0.26 836 | 80 33.67                                                | 2.61 420<br>2.61 419 |         |            |                       | 45.04 3604.90<br>28.91 3488.86 | 4813.70 4361.4 |        | 209.63 632<br>208.63 658 |           | 2 2908.42       |                    | 1627.28 126:<br>1627.77 126. | 3 5309.91<br>8 5417.80 | 1503.72          | -55                | 1558.36                                | 4128<br>4140 |         | 0.88 -1.14                |
| 40                                                                       | 5.41                                                   | 0.01                                                       | 4.21                                         |                                                                                                                                                                                                                            | 21.7 101.0%                               |          | 3.4% 28              |                                                                                                                     |                        |             |                        | 5.60 2.68              |                                                                                             |                                    | 9.30 21.03               |                              | 3 37 -0.03                       |                                                                         | 42.05 164                | 55 0.05             | -0.25 791              | 69 33.67                                                | 2.61 421             |         | 11.95 381  | 11 31 37              | 04.82 3554.05                  | 4104.00 4417.0 | 294.86 | 213.26 627               |           |                 | -223.95            | 1629.51 126                  |                        | 1498.37          | -57                | 1555.03                                | 4128         |         | 0.63 -1.13                |
| 50                                                                       | 5.14                                                   | 0.01                                                       | 3.72                                         | 430.5% 20.73 17.00 138.1                                                                                                                                                                                                   | 21.1 101.1%                               | 72.0% 7  | 2.8% 32              |                                                                                                                     |                        |             | 5506 4.17              | 6.60 2.68              | 19887.00                                                                                    |                                    | 9.27 21.03               |                              | 2.99 -0.03                       | 0.09                                                                    | 42.04 192                | 02 0.12             | -0.29 895              | 44 33.74                                                | 2.61 411             |         | 12.69 350  |                       | 08.88 3370.93                  | 4471.83 4079.5 | 294.21 | 195.60 672               |           | 3018.45         |                    | 1621.20 125.                 | 9 5411.93              | 1525.47          | -62                | 1587.73                                | 4060         | -62 0   | 0.98 -1.30                |
| 60                                                                       | 4.82                                                   | 0.00                                                       | 4.13<br>3.18                                 |                                                                                                                                                                                                                            | 20.9 101.2%                               |          | 3.5% 29              |                                                                                                                     |                        |             | 4691 4.17<br>3856 4.17 | 6.60 2.68<br>6.60 2.68 | 19887.00                                                                                    |                                    | 9.30 21.03               |                              | 3.30 -0.03                       | 0.10                                                                    | 42.12 169.               | 10 0.02             | -0.27 809              |                                                         | 2.61 420             |         | 11.86 379  |                       | 85.09 3544.45                  | 4861.91 4409.5 | 294.04 | 212.38 640<br>165.83 694 |           |                 | -238.17<br>-339.92 | 1630.26 126:<br>1606.91 123: |                        | 1256.41          | -55                | 1311.01                                | 3435         |         | 0.13 -1.00<br>-0.30 -1.18 |
| 70                                                                       | 4.64                                                   | 0.00                                                       | 3.18                                         | 524.1% 20.76 17.58 119.9<br>583.7% 20.77 17.88 118.3                                                                                                                                                                       | 21.0 101.5%                               |          | 1.9% 42              |                                                                                                                     |                        | 29.60       | 3856 4.17              | 6.60 2.68<br>6.60 2.68 | 19887.00                                                                                    | 4.49 75                            | 9.24 21.02               |                              | 2.55 -0.03                       |                                                                         | 42.31 234                | 16 -0.06<br>96 0.15 | -0.38 ####             | MAN 23.05                                               | 2.61 393             |         | 19.16 296  |                       | 85.89 2853.15<br>28.95 2796.82 | 3740.86 3454.5 |        | 165.83 694<br>161.72 758 |           |                 | -339.92            | 1608.91 123.                 |                        | 1017.60          | -60                | 1086.27                                | 2839         |         | 0.88 -1.18                |
| 90                                                                       | 4.23                                                   | 0.00                                                       | 2.81                                         | 603.5% 20.78 17.97 122.3                                                                                                                                                                                                   | 20.7 101.8%                               | 69.3% 7  | 0.6% 43              |                                                                                                                     | 4 4.04                 |             | 3903 4.17              | 6.60 2.68              |                                                                                             |                                    | 9.22 21.01               |                              | 2.26 -0.03                       | 0.07                                                                    | 42.22 269                | 94 0.07             | -0.42 ####             | MAW 34.00                                               | 2.61 395             |         |            |                       | 55.80 2922.35                  | 3837.62 3538.1 | 293.85 | 169.59 819               | 59 21.2   | 3478.39         |                    | 1615.38 124.                 | 6 5854.10              | 1149.04          | -60                | 1218.04                                | 2754         | -69 0   | 0.41 -1.31                |
| 100                                                                      | 4.00                                                   | 0.00                                                       | 3.41                                         |                                                                                                                                                                                                                            | 20.8 101.6%                               |          | 3.8% 35              |                                                                                                                     |                        |             |                        | 6.60 2.68<br>6.60 2.68 | 19887.00                                                                                    |                                    | 9.26 21.02               |                              | 2.73 -0.03                       |                                                                         | 42.28 215                | 32 -0.05            | -0.35 984              |                                                         | 2.61 387             |         |            | 06.08 27              | 32.83 2701.67                  | 3531.15 3271.5 |        | 156.70 604               |           |                 | -312.74            | 1599.84 123:<br>1609.37 123: |                        | 1057.02          | -72                | 1128.67                                | 3309         |         | -0.32 -1.23               |
| 120                                                                      | 3.59                                                   | 0.00                                                       | 3.16                                         |                                                                                                                                                                                                                            | 21.0 101.7%                               |          | 3.3% 38              |                                                                                                                     |                        |             | 3000 4.17              | 5.60 2.68              |                                                                                             |                                    | 9.24 21.02               |                              | 2.54 -0.03                       |                                                                         | 42.25 234                | SS 0.00             | 0.37 ####              |                                                         | 2.61 388             |         |            |                       | 98 16 2795 62                  | 3779.73 3400.5 |        | 167.21 702<br>158.63 664 |           |                 | -333.94            | 1609.37 123.1                |                        | 983.50           | -60                | 104.42                                 | 2848<br>2852 |         | 0.00 -1.11                |
| 130                                                                      | 3.37                                                   | 0.00                                                       | 3.44                                         | 475.8% 20.74 17.30 115.1                                                                                                                                                                                                   | 20.5 101.6%                               | 74.6% 7  | 5.8% 35              | 5 3.37 48.93                                                                                                        | 3 3.22                 | 48.93       | 3856 4.17              | 6.60 2.68              | 19887.00                                                                                    | 4.49 75                            | 9.25 21.02               | 0.82                         | 2.76 -0.03                       | 0.08                                                                    | 42.27 212                | 39 -0.05            | -0.35 973              |                                                         | 2.61 388             | 28 373  | 11.71 282  | 25.26 27              | 51.50 2720.14                  | 3555.38 3293.9 | 293.64 | 157.76 600               | 05 -15.1  | 4 2546.70       | -308.62            | 1600.16 123.                 | 4 4804.34              | 931.57           | -63                | 994.08                                 | 2925         | -63 4   | -0.29 -1.07               |
| 140                                                                      | 3.19                                                   | 0.01                                                       | 2.45                                         |                                                                                                                                                                                                                            | 20.5 102.0%                               |          | 8.4% 49              |                                                                                                                     |                        |             |                        | 6.60 2.68              |                                                                                             |                                    | 9.20 21.01               |                              | 1.98 -0.03                       |                                                                         | 42.23 316                | 57 0.13             | -0.48 mmm              | MAW 34.13                                               | 2.61 391             |         |            | 28.98 28              | 51.97 2819.57                  | 3693.52 3414.0 | 293.67 | 163.48 927<br>162.98 783 |           |                 |                    | 1617.36 123                  |                        | 1243.00          | -76                | 1320.61                                | 2587         |         | 0.74 -1.53                |
| 150                                                                      | 2.95<br>2.78                                           | 0.00                                                       | 2.82                                         |                                                                                                                                                                                                                            | 20.5 102.0%                               |          | 1.7% 43              |                                                                                                                     | 1 2.82                 |             |                        | 6.60 2.68<br>6.60 2.68 |                                                                                             |                                    | 9.22 21.01<br>9.19 21.00 |                              | 2.27 -0.03<br>1.97 -0.03         |                                                                         | 42.32 268                | 99 -0.02            | -0.43 ####             | MAN 34.03                                               | 2.61 391<br>2.61 386 | 23 385  |            |                       | 36.97 2804.73<br>90.94 2650.34 | 3672.91 3396.1 | 293.67 | 162.98 783<br>151.97 874 |           |                 | -384.59<br>-387.22 | 1611.66 123.<br>1605.60 123. |                        | 1087.04          | -75                | 1162.08<br>1224.60                     | 2759<br>2536 |         | -0.10 -1.3<br>2.68 -1.3   |
| 170                                                                      | 2.55                                                   | 000                                                        | 3.11                                         |                                                                                                                                                                                                                            | 20.4 101.7%                               |          | 3.7% 39              |                                                                                                                     | 0 2.44                 |             | 3919 4.17              | 6.60 2.68              | 19887.00                                                                                    |                                    | 9.24 21.02               |                              | 2.50 -0.03                       |                                                                         | 42.26 239                | 74 0.00             | -0.38 ANN              | MAN 23.93                                               | 2.61 390             |         | 8.50 288   | 89.72 28              | 13.98 2781.96                  | 3540.81 3368.6 | 293.57 | 161.36 692               |           |                 | -340.70            | 1606.08 123                  |                        | 1032.14          | -67                | 1099.01                                | 2887         |         | 0.00 -12                  |
| 180                                                                      | 2.37                                                   | 0.00                                                       | 2.99                                         |                                                                                                                                                                                                                            | 20.6 101.8%                               |          | 2.9% 40              |                                                                                                                     |                        |             | 3000 4.17              | 6.60 2.68              |                                                                                             |                                    | 9.23 21.02               |                              | 2.40 -0.03                       |                                                                         | 42.28 251.               | 35 0.00             | -0.40 ####             |                                                         | 2.61 390             |         | 10.59 289  |                       | 22.43 2790.34                  | 3653.15 3378.1 | 293.72 | 161.94 728               |           |                 | -357.21            | 1608.17 123.0                |                        | 813.16           | -54                | 865.82                                 | 2187         |         | 0.00 -0.9                 |
| 190                                                                      | 2.24                                                   | 0.01                                                       | 1.74                                         |                                                                                                                                                                                                                            | 20.5 102.6%                               |          | 7.3% 70<br>10.9% 60  |                                                                                                                     |                        |             |                        | 6.60 2.68<br>6.60 2.68 |                                                                                             | 4.49 75                            | 9.15 21.00               |                              | 1.42 -0.03                       |                                                                         | 42.22 463                | 64 0.34             | -0.52 ####             | MAW 34.54                                               | 2.61 368<br>2.61 368 |         |            | 28.59 21              | 72.74 2147.49                  | 2771.64 2601.8 | 293.69 | 123.76 103               |           |                 |                    | 1608.67 121.<br>1603.07 121. |                        | 839.30<br>759.79 | -67                | 906.03                                 | 1730<br>1851 |         | 1.23 -1.42<br>0.15 -1.31  |
| 210                                                                      | 1.96                                                   | 0.00                                                       | 1.90                                         |                                                                                                                                                                                                                            | 20.6 102.2%                               |          | 9.7% 64              |                                                                                                                     |                        |             | 2011 4.17              | 6.60 2.68              |                                                                                             |                                    | 9.16 21.00               |                              | 1.55 -0.03                       |                                                                         | 42.46 390                | 03 0.37             | -0.62 ####             | MAN 34.32                                               | 2.61 367             |         |            |                       | 34.74 2100.44                  | 2720.20 2013.1 | 293.36 | 121.24 915               |           |                 |                    | 1603.07 121.                 |                        | 796.79           | -51                | 854.45                                 | 1831         |         | 1.38 -1.3                 |
| 220                                                                      | 1.82                                                   | 0.03                                                       | 1.73                                         |                                                                                                                                                                                                                            | 20.3 101.7%                               |          | 0.1% 69              |                                                                                                                     |                        |             |                        | 6.60 2.68              | 19887.00                                                                                    |                                    | 9.15 20.99               |                              | 1.43 -0.03                       |                                                                         | 41.73 459                | 98 0.77             | -0.52 ANN              |                                                         | 2.61 358             |         | 1.71 194   |                       | 96.70 1874.44                  | 2403.73 2271.5 |        | 106.47 894               |           |                 |                    | 1590.98 120.                 |                        | 775.27           | -44                | 818.80                                 | 1815         |         | 2.81 -1.20                |
| 230<br>240                                                               | 1.69                                                   | 0.02                                                       | 1.68                                         |                                                                                                                                                                                                                            | 20.9 102.4%                               |          | 9.5% 72<br>8.9% 73   |                                                                                                                     |                        |             | 2175 4.17<br>2170 4.17 | 6.60 2.68<br>6.60 2.68 | 19887.00                                                                                    |                                    | 9.15 20.99<br>9.14 20.99 |                              | 1.38 -0.03<br>1.36 -0.03         |                                                                         | 42.06 479.<br>41.90 487  | 73 0.50             | -0.52 8899             |                                                         | 2.61 360<br>2.61 359 |         |            | 71.30 193<br>67.89 19 | 02.72 1900.20<br>19.46 1896.96 | 2440.10 2302.6 |        | 108.87 945<br>108.24 955 |           |                 | -616.01<br>-607.09 | 1598.51 120.<br>1597.45 120. |                        | 663.70<br>674.36 | -52                | 715.28<br>720.09                       | 1511         |         | 1.54 -1.21<br>2.01 -1.15  |
| 250                                                                      | 1.60                                                   | 0.00                                                       | 2.11                                         |                                                                                                                                                                                                                            | 20.4 102.6%                               |          | 3.4% 58              |                                                                                                                     | 5 1.40                 |             |                        | 6.60 2.68              | 19887.00                                                                                    |                                    | 9.14 20.99               |                              | 1.71 -0.03                       | 0.04                                                                    | 42.43 376                | 55 0.04             | -0.50 8889             |                                                         | 2.61 353             | 42 273  |            |                       | 77 02 2003 33                  | 2576 68 2427 5 | 293.78 | 115.86 782               | 73 10.8   |                 | -507.09            | 1993.83 121                  | 8 5287.50              | 676.06           | -46                | 742.00                                 | 1490         | -40 2   | 0.14 -1.21                |
| 260                                                                      | 1.32                                                   | 0.00                                                       | 2.06                                         |                                                                                                                                                                                                                            | 20.4 102.5%                               | 71.3% 7  | 3.0% 58              | 8 1.32 79.91                                                                                                        |                        | 79.91       |                        | 6.60 2.68              | 19887.00                                                                                    |                                    | 9.18 21.00               |                              | 1.69 -0.03                       | 0.05                                                                    | 42.37 381.               | 53 0.10             | -0.50 ANNO             | MAW 34.35                                               | 2.61 363             | 59 273  | 5.44 206   |                       | 30.61 2006.89                  | 2581.59 2431.1 | 293.57 | 115.89 794               | 44 28.6   | 3235.60         | -528.63            | 1593.87 121.                 |                        | 693.95           | -65                | 758.50                                 | 1880         | -65 0   | 0.36 -1.23                |
| 270                                                                      | 1.19                                                   | 0.00                                                       | 2.56                                         |                                                                                                                                                                                                                            | 20.5 102.1%                               |          | 6.2% 47              |                                                                                                                     |                        |             |                        | 6.60 2.68              |                                                                                             |                                    | 9.21 21.01               |                              | 2.05 -0.03                       |                                                                         | 42.36 301.               | 55 0.00             | -0.48 ####             |                                                         | 2.61 365             | 21 279  |            |                       | 75.67 2051.46                  | 2541.87 2485.6 | 293.66 | 118.49 641               |           |                 |                    | 1585.26 121.                 |                        | 624.30           | -56                | 680.67<br>850.76                       | 2002         | -56 0   | 0.00 -1.01                |
| 280<br>290                                                               | 1.05                                                   | 0.03                                                       | 1.79                                         |                                                                                                                                                                                                                            | 20.6 101.9%                               |          | 9.1% 67.             |                                                                                                                     |                        |             | 2595 4.17<br>2595 4.17 | 6.60 2.68<br>6.60 2.68 |                                                                                             |                                    | 9.15 21.00               |                              | 1.47 -0.03                       |                                                                         | 41.87 444.               | 50 0.62             | -0.62 ####             |                                                         | 2.61 364             |         |            |                       | 51.87 2027.92<br>10.24 1887.86 | 2010.34 2457.2 | 293.71 | 115.77 935<br>109.42 715 |           |                 |                    | 1597.09 121.<br>1589.29 120. |                        | 801.98           | -49                | 850.76<br>715.29                       | 1793<br>1952 |         | 2.27 -1.29<br>-0.30 -1.24 |
| 300                                                                      | 0.78                                                   | 0.01                                                       | 1.96                                         | 900.6% 20.83 18.85 85.3                                                                                                                                                                                                    | 20.8 102.3%                               | 71.5% 7  | 3.1% 62              | 0 0.78 88.25                                                                                                        | 5 0.74                 | 88.25       | 2180 4.17              | 6.60 2.68              | 19887.00                                                                                    | 4.49 75                            | 9.17 21.00               | 0.47                         | 1.60 -0.03                       | 0.05                                                                    | 42.17 404                | 67 0.30             |                        | WWW 34.37                                               | 2.61 359             | 41 255  | 3.71 194   | 45.51 180             | 97.68 1875.43                  | 2406.53 2272.1 | 293.95 | 107.70 787               | 30 85.8   | 3186.68         | -535.54            | 1589.14 120.                 | 7 5341.93              | 585.64           | -49                | 634.84                                 | 1595         | -49 0   | 0.93 -1.05                |
| 310                                                                      | 0.69                                                   | 0.03                                                       | 1.60                                         |                                                                                                                                                                                                                            | 20.8 101.8%                               |          | 9.8% 71              |                                                                                                                     |                        |             |                        | 6.60 2.68              |                                                                                             |                                    | 9.14 20.99               |                              | 1.40 -0.03                       |                                                                         | 41.75 471                | 45 0.77             | -0.64 ####             |                                                         | 2.61 359             |         |            |                       | 86.61 1864.47                  | 2391.87 2259.4 |        | 105.98 911               |           |                 |                    | 1592.32 120.                 |                        | 653.03           | -38                | 691.31                                 | 1506         |         | 2.33 -1.11                |
| 320<br>330                                                               | 0.55                                                   | 0.00                                                       | 1.99                                         |                                                                                                                                                                                                                            | 20.8 102.6%                               |          | 3.9% 61              |                                                                                                                     |                        |             |                        | 6.60 2.68<br>6.60 2.68 |                                                                                             |                                    | 9.17 21.00<br>9.17 21.00 |                              | 1.61 -0.03                       |                                                                         | 42.39 401.<br>42.10 402. | 74 0.11<br>21 0.35  | -0.62 ANNO             |                                                         | 2.61 358<br>2.61 365 |         |            |                       | 77.11 1855.08<br>82.63 2058.35 | 2379.24 2248.1 |        | 107.07 773<br>118.20 856 |           |                 |                    | 1590.47 120.<br>1595.57 121. |                        | 670.03<br>753.51 | -68                | 737.73                                 | 1894         |         | 0.38 -1.25<br>1.33 -1.23  |
| 340                                                                      | 0.42                                                   | 0.02                                                       | 1.00                                         |                                                                                                                                                                                                                            | 20.1 102.1%                               |          | 2.2% 65              |                                                                                                                     |                        |             |                        | 5.60 2.68              |                                                                                             |                                    | 9.17 21.00               |                              | 1.52 -0.03                       |                                                                         | 42 10 402                |                     | -0.55 8886             |                                                         | 2.61 356             |         |            |                       | 02.63 2000.30<br>02.18 1879.85 | 2410 38 2278 1 |        | 108.10 841               |           |                 |                    | 1593.96 120.                 |                        | 732.94           | -00                | 800.29                                 | 1899         |         | 0.92 -1.33                |
| 350                                                                      | 0.14                                                   | 0.03                                                       | 1.60                                         | 1052.4% 20.84 19.14 21.4                                                                                                                                                                                                   | 20.6 101.7%                               | 66.4% 6  | 7.5% 71              | 4 0.14 97.88                                                                                                        | 8 0.13                 | 97.88       | 3924 4.17              | 6.60 2.68              | 19887.00                                                                                    | 4.49 75                            | 9.14 20.99               | 0.41                         | 1.39 -0.03                       | 0.04                                                                    | 41.73 473                | 53 0.78             |                        | MAW 34.45                                               | 2.61 364             | 51 276  | 7.03 210   | 05.78 205             | 53.46 2029.49                  | 2512.48 2459.1 | 293.71 | 115.47 997               | .15 223.4 | 8 3974.01       | -571.34            | 1599.25 121.                 | 6 6459.34              | 1274.65          | -60                | 1343.29                                | 2550         | -69     | 4.33 -2.02                |
| 360                                                                      | 0.00                                                   | 0.04                                                       | 1.60                                         | 1045.1% 20.84 19.13 87.7                                                                                                                                                                                                   | 20.6 101.6%                               | 67.8% 6  | 8.8% 71              | 0.001 100.0                                                                                                         | 0.00                   | 100.00      | 1329 4.17              | 6.60 2.68              | 19887.00                                                                                    | 4.49 75                            | 9.14 20.99               | 0.41                         | 1.40 -0.03                       | 0.04                                                                    | 41.64 470.               | 56 0.85             | -0.62 ANN              | MAW 34.41                                               | 2.61 360             | 86 262  | 10.28 199  | 95.69 19-             | H6.50 1923.70                  | 2470.44 2331.1 | 293.73 | 109.10 935               | 10 245.7  | 5 3744.85       | -556.94            | 1593.35 120.                 | 2 6195.15              | 414.12           | -21                | 434.93                                 | 915          | -21 1   | 1.61 -0.63                |
|                                                                          |                                                        |                                                            |                                              |                                                                                                                                                                                                                            |                                           |          |                      |                                                                                                                     |                        |             |                        |                        |                                                                                             |                                    |                          |                              |                                  |                                                                         |                          |                     |                        |                                                         |                      |         |            |                       |                                |                |        |                          |           |                 |                    |                              |                        |                  |                    |                                        |              |         |                           |



Note: In the legend, [d], [e], [g], and [k] refer to their respective variables in Clauses 13.7.3 and 13.7.5

This Excel spreadsheet calculates solid fuel appliance efficiency and heat output in accordance with the procedure specified in CSA B415.1-09. In general the column headings correspond to the variables used in the Standard.

All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

Version 2.2 14 December 2009

### Intertek

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | _            |    |
| Control #:    | G102366578 |              |    |

Test Duration: 360
Output Category: Overall

### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 70.1%     | 75.7%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 70%       | 76.0%     |

| Output Rate (kJ/h) | 13,968 | 13,251 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 1.05   | 2.31   | (lb/h)  |
| Input (kJ/h)       | 19,915 | 18,892 | (Btu/h) |

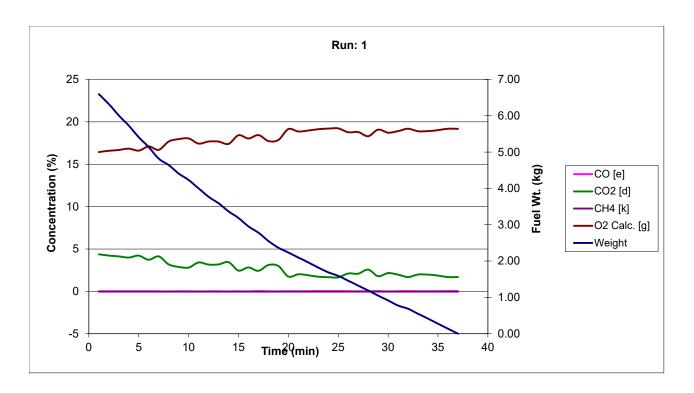
| Test Load Weight (dry kg) | 6.30 | 13.89 | dry lb |
|---------------------------|------|-------|--------|
| MC wet (%)                | 4.49 |       |        |
| MC dry (%)                | 4.70 |       |        |
| Particulate (g )          | 6.71 |       |        |
| CO (g)                    | 30   |       |        |
| Test Duration (h)         | 6.00 |       |        |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.08        | 0.36 |
| g/kg Dry Fuel    | 1.07        | 4.78 |
| g/h              | 1.12        | 5.01 |
| lb/MM Btu Output | 0.19        | 0.83 |

|--|

VERSION: 2.2 12/14/2009

| VERSION:         | 2.2                | 12/14/2009 |                 |        |            |              |            |        |  |  |
|------------------|--------------------|------------|-----------------|--------|------------|--------------|------------|--------|--|--|
| Manufacturer:    | Ardisam            |            | Appliance Type: | Pellet | (Cat, Non- | Cat, Pellet) |            |        |  |  |
| Model:           | Serenity           |            |                 |        |            |              |            |        |  |  |
| Date:            | 12/7/2015          |            | Temp. Units     | F      | (F or C)   | Default      | Fuel Value | es     |  |  |
| Run:             | 1                  |            | Weight Units    | lb     | (kg or lb) |              | D. Fir     | Oak    |  |  |
| Control #:       | G102366578         |            |                 |        |            | HHV (kJ/kg)  | 19,810     | 19,887 |  |  |
| Test Duration:   | 360                |            |                 |        |            | %C           | 48.73      | 50     |  |  |
| Output Category: | Overall            |            | Fuel I          | Data   |            | %Н           | 6.87       | 6.6    |  |  |
|                  |                    |            |                 | Marth  |            | %O           | 43.9       | 42.9   |  |  |
| Wood             | Moisture (% wet):  | 4.49       | HHV             | 18,967 | kJ/kg      | %Ash         | 0.5        | 0.5    |  |  |
| Loa              | d Weight (lb wet): | 14.54      | 14.54 %C 46.87  |        |            |              |            |        |  |  |


| Wood Moisture (% wet):       | 4.49   | HHV  | 18,967 | kJ/kg |
|------------------------------|--------|------|--------|-------|
| Load Weight (lb wet):        | 14.54  | %C   | 46.87  |       |
| Burn Rate (dry kg/h):        | 1.05   | %Н   | 6.41   |       |
| Total Particulate Emissions: | 6.71 g | %O   | 46.62  |       |
|                              |        | %Ash | 0.1    |       |

|            | Averages       | 0.01    | 2.67            | 17.85          | 228.17<br>Temp | 69.45<br>. (°F) |
|------------|----------------|---------|-----------------|----------------|----------------|-----------------|
| Elapsed    | Fuel Weight    | Flue Ga | as Composit     | ion (%)        | Flue           | Room            |
| Time (min) | Remaining (lb) | CO      | CO <sub>2</sub> | O <sub>2</sub> | Gas            | Temp            |
| 0          | 14.54          | 0.01    | 4.37            | 16.10          | 292.2          | 70.9            |
| 10         | 13.94          | 0.01    | 4.23            | 16.25          | 279.8          | 71.8            |
| 20         | 13.24          | 0.01    | 4.13            | 16.36          | 297.2          | 72.2            |
| 30         | 12.63          | 0.01    | 3.99            | 16.51          | 295.0          | 71.0            |
| 40         | 11.92          | 0.01    | 4.21            | 16.27          | 299.7          | 71.1            |
| 50         | 11.32          | 0.01    | 3.72            | 16.79          | 280.5          | 69.9            |
| 60         | 10.62          | 0.00    | 4.13            | 16.36          | 297.1          | 69.6            |
| 70         | 10.23          | 0.00    | 3.18            | 17.34          | 247.8          | 69.2            |
| 80         | 9.73           | 0.01    | 2.89            | 17.65          | 244.9          | 69.8            |
| 90         | 9.33           | 0.00    | 2.81            | 17.71          | 252.1          | 69.3            |
| 100        | 8.82           | 0.00    | 3.41            | 17.07          | 238.6          | 69.4            |
| 110        | 8.31           | 0.00    | 3.16            | 17.34          | 250.0          | 69.7            |
| 120        | 7.92           | 0.00    | 3.18            | 17.32          | 240.1          | 68.7            |
| 130        | 7.42           | 0.00    | 3.44            | 17.05          | 239.2          | 68.9            |
| 140        | 7.02           | 0.01    | 2.45            | 18.10          | 245.5          | 68.9            |
| 150        | 6.51           | 0.00    | 2.82            | 17.69          | 244.5          | 68.9            |
| 160        | 6.13           | 0.03    | 2.42            | 18.12          | 235.8          | 69.8            |
| 170        | 5.63           | 0.00    | 3.11            | 17.38          | 243.0          | 68.8            |
| 180        | 5.22           | 0.00    | 2.99            | 17.49          | 243.7          | 69.0            |
| 190        | 4.93           | 0.01    | 1.74            | 18.82          | 203.8          | 69.0            |
| 200        | 4.62           | 0.00    | 2.02            | 18.52          | 203.9          | 68.4            |
| 210        | 4.32           | 0.02    | 1.90            | 18.67          | 201.4          | 69.0            |
| 220        | 4.01           | 0.03    | 1.73            | 18.82          | 186.4          | 68.6            |
| 230        | 3.72           | 0.02    | 1.68            | 18.87          | 189.1          | 69.7            |
| 240        | 3.51           | 0.03    | 1.65            | 18.91          | 188.3          | 69.1            |
| 250        | 3.22           | 0.00    | 2.11            | 18.40          | 194.5          | 68.7            |
| 260        | 2.92           | 0.00    | 2.08            | 18.45          | 194.8          | 68.8            |
| 270        | 2.62           | 0.00    | 2.56            | 17.95          | 197.7          | 68.9            |
| 280        | 2.31           | 0.03    | 1.79            | 18.76          | 196.3          | 69.0            |
| 290        | 2.02           | 0.00    | 2.16            | 18.36          | 188.4          | 69.8            |
| 300        | 1.71           | 0.01    | 1.96            | 18.57          | 187.3          | 69.4            |
| 310        | 1.51           | 0.03    | 1.69            | 18.88          | 186.6          | 69.4            |
| 320        | 1.21           | 0.00    | 1.99            | 18.55          | 186.0          | 69.4            |
| 330        | 0.92           | 0.02    | 1.97            | 18.57          | 198.5          | 69.3            |
| 340        | 0.60           | 0.01    | 1.86            | 18.69          | 186.4          | 68.3            |
| 350        | 0.31           | 0.03    | 1.69            | 18.88          | 196.4          | 69.0            |
| 360        | 0.00           | 0.04    | 1.69            | 18.88          | 189.9          | 69.0            |

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

| Model:<br>Date:<br>Run:<br>Control #:<br>I Duration: 3 |                        | min           |                         | [a] [b], [c], [b], [u], [u], [w], [ii] | lance" columns, [e], [d], [g],<br>and [k] refer to their | Combust               | ing Efficiency:<br>ion Efficiency:<br>fer Efficiency: | 99.50%       | Air Fuel I<br>Dry Molecular We<br>Dry Moles Eshaust<br>Air Fuel Ratio | ight (M <sub>e</sub> ) 2<br>I Gas (N <sub>e</sub> ): 15 | 19.16<br>183.71 %H<br>15.66 0.1 |           |             |                           |             | ): 119,491   | 113,332 (Blu<br>79,490 (Blu |                             | Initial           | Dry Weight Wt | basis): 4.49<br>i(kg): 6.30<br>nt Dry 4.70 |                      | Moisture Co              | Dry kg :       | 6.30                     |                  |                    |                    |                              |                            |                          |                            |                               |                  |                            |                    |                       |          |                    |                  |          |                  |              |            |       |
|--------------------------------------------------------|------------------------|---------------|-------------------------|----------------------------------------|----------------------------------------------------------|-----------------------|-------------------------------------------------------|--------------|-----------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|-----------|-------------|---------------------------|-------------|--------------|-----------------------------|-----------------------------|-------------------|---------------|--------------------------------------------|----------------------|--------------------------|----------------|--------------------------|------------------|--------------------|--------------------|------------------------------|----------------------------|--------------------------|----------------------------|-------------------------------|------------------|----------------------------|--------------------|-----------------------|----------|--------------------|------------------|----------|------------------|--------------|------------|-------|
|                                                        | EH                     | HHV<br>70.14% | LHV<br>75.65%<br>99.50% | respective variables in C              | Ultimate CO <sub>2</sub>                                 | Heat Outs<br>Heat Inc | ut: 13.251 E<br>ut: 18.892 E                          | Blub<br>Blub | 13.968 kJh<br>19.915 kJh                                              |                                                         |                                 |           |             |                           |             | v: 70.14%    | 73.430 1012                 |                             |                   | monate cons   | 4.10                                       |                      |                          | cox            | 45.62                    |                  |                    |                    |                              |                            |                          |                            |                               |                  |                            |                    |                       |          |                    |                  |          |                  |              |            |       |
|                                                        | HT EM<br>Output        |               | 76.03%<br>kJ/h          |                                        | CO <sub>2ml</sub> 20.36<br>F <sub>0</sub>                | Burn Durati           | on: 6.00                                              | h            |                                                                       |                                                         |                                 |           |             |                           |             |              | Loss                        | d Weight (kg):              | 6.60              |               |                                            |                      |                          |                |                          |                  |                    |                    |                              |                            |                          |                            |                               |                  |                            |                    |                       |          |                    |                  |          |                  |              |            |       |
|                                                        | Burn Rate<br>Grams CO  | 30            | kah                     |                                        | 1.013                                                    | Burn Ra               |                                                       | Ibh          | 1.050 ksh                                                             |                                                         |                                 |           |             |                           |             |              | Fuel                        | Heating<br>se in kJ/kg - CV | HHV<br>: 18.967 1 | LHV<br>7.585  | Blufb 8159.8                               | LHV<br>7565.2        |                          |                |                          |                  |                    |                    |                              |                            |                          |                            |                               |                  |                            |                    |                       |          |                    |                  |          |                  |              |            |       |
|                                                        | Input<br>MC wet        | 19,915        | kJ/h                    |                                        |                                                          | Stack Ten             | rp: 226.4 I                                           | Deg. F       | 108.0 Deg. C                                                          |                                                         |                                 |           |             |                           |             |              |                             |                             |                   |               |                                            |                      |                          |                |                          |                  |                    |                    |                              |                            |                          |                            |                               |                  | SUMS                       |                    |                       | A        | VERAGE             |                  |          | SUI              | rs           |            |       |
|                                                        | Averages<br>INPUT DATA |               | 2.67                    | 7.39 20.86<br>Oxygen Calculatio        |                                                          | 20.81 101.75<br>Combu |                                                       | 72.3%<br>Net | 47.06 2.76<br>Air Wet W1                                              |                                                         | 2.63 58.1<br>v Wt. % D          |           | 3.91        | 6.41 2.9<br>Fuel Properti |             | 0 4.49<br>Mw | 79.13 20                    | 99 0.68<br>Mass Bal         |                   | 0.03 0        | 07 39.32<br>od per                         | 300.80               | 0.21 -0.43               | 1289.79        | 32.95 2.61               | 382.13<br>Stack  |                    |                    | 2563.20 2<br>rge - Ambient t |                            | 61 3068.54               | 293.96 5057<br>Boom        | .07 27033.0                   | 8 2166.66        | 112747.22<br>Losses (kJ/kg | -14259.38          | 57330.11              |          | 5260.02<br>Total   | 33155.27         | -1928.27 | 35083.5          | 87603.8      | -1928.3    | 30.1  |
| psed                                                   | Weight                 | %             | *                       | Excess Total                           | Calc. % Flue                                             | Room Eff              | Transfer                                              | Eff          | Fuel Now C                                                            |                                                         | Now Coma                        | med Total |             | droger Oxyo               | en Calorifi | c Moisture   |                             | les/100 mole                | dry flue gas)     | 100 m         | ole dfa                                    |                      | s per kg of Dry          |                | Moisture                 |                  | - Treat            |                    | ue Gas Constit               | went                       |                          | Temo                       |                               |                  | lue Gas Const              | tuent              |                       |          | Loss               |                  | Chemical | Sensible and     |              | Chem       | Grams |
| 10 R                                                   | emaining (kg)          | CO [e]        | CO <sub>2</sub> [d]     | Air EA 0 <sub>2</sub>                  | O, (g) Gas (°C) To                                       | mp (°C) %             | 74.1%                                                 | 74.8%        | Ratio Wt                                                              | x 1                                                     | Wt <sub>4</sub> y               | Input     | /12= [a] /1 | 1= [b] /16=               | [c] Value   |              |                             | u] [w]                      | 00                | [k] P         | 6k CO <sub>2</sub>                         | 0, 147.60 0          | CO HC                    | N <sub>2</sub> | H <sub>2</sub> O Present | K                | 4001.04            | O <sub>2</sub>     | 200                          | N <sub>2</sub> CH          | H <sub>2</sub> O         | K CC                       | 1 <sub>3</sub> O <sub>3</sub> | 20.45            | N <sub>2</sub>             | CH                 | H <sub>2</sub> O Comb |          | Rate<br>ATTA GS    | Loss             | Loss 1   | Latent Loss      | Output       | Loss 2     | 0.00  |
|                                                        | 6.32                   | 0.01          | 4.23                    | 380.1% 20.82                           | 16.59 137.7                                              | 22.1 100.89           | 74.7%                                                 | 75.3%        | 25.8 6.32                                                             | 4.14 6                                                  | 1.04 4.1                        | 4 7801    |             | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.17 21                    |                             |                   |               | 11 39.18                                   | 153.74 0             | 0.13 -0.22               |                | 12.51 2.61<br>12.52 2.61 | 417.70           | 4506.99            | 3462.26            | 3367.46 33                   | 30.00 4419                 | 39 4029.91               | 295.26 180.                |                               | 37.12            | 2443.82                    | -194.21            | 1560.75               | 125.36   | 4685.25            | 1927.11          | -64      | 1991.51          |              | -64        | 1.49  |
|                                                        | 5.01                   | 0.01          | 4.13                    | 391.8% 20.82<br>409.6% 20.83           |                                                          | 22.3 100.99           |                                                       | 73.5%        | 27.4 6.01<br>28.4 5.73                                                |                                                         | 5.74 8.9<br>5.47 13.1           |           |             | 5.41 2.91<br>5.41 2.91    |             | 0 4.49       | 79.17 21.<br>79.17 21.      | 00 1.05                     |                   |               | 11 39.22                                   | 158.50 0<br>165.77 0 | 0.10 -0.23<br>0.11 -0.24 |                | 12.54 2.61<br>12.56 2.61 | 420.47<br>419.23 | 4989.10<br>4984.44 |                    | 3645.04 30<br>3628.91 35     | 104.90 4813<br>188.86 4786 | 70 4361.49               | 295.50 195.<br>294.79 194  |                               | 29.71<br>30.68   | 2710.80                    | -204.04<br>-213.48 | 1572.58<br>1572.98    |          | 5025.29<br>5126.27 | 1423.12          | -49      | 1472.29          | 3948<br>3960 | -49<br>-52 | 0.82  |
|                                                        | 5.41                   | 0.01          | 4.21                    | 382.6% 20.82                           | 16.61 148.7                                              | 21.7 101.09           | 72.9%                                                 | 73.6%        | 25.9 5.41                                                             | 18.00                                                   | 5.17 18.0                       | 0 5366    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.18 21.                   | .00 1.07                    | 3.49              | 0.02 0.       | 11 39.25                                   | 154.75 0             | 0.07 -0.23               | 737.85         | 32.53 2.61               | 421.87           | 5071.95            | 3811.31            | 3704.82 36                   | 64.05 4894                 | 99 4432.97               | 294.86 199                 | 07 589.81                     | 21.24            | 2703.63                    | -202.59            | 1574.75               | 126.41 5 | 5012.32            | 1418.12          | -51      | 1469.20          | 3948         | -51        | 0.50  |
|                                                        | 5.14                   | 0.01          | 3.72                    | 445.6% 20.83<br>393.0% 20.82           |                                                          | 21.1 101.09           |                                                       | 73.0%        | 30.5 5.14<br>27.5 4.82                                                |                                                         | 1.91 22.1<br>1.60 26.5          |           |             | 5.41 2.91                 | 18967.0     |              | 79.16 21.<br>79.18 21       | 00 0.95                     | 3.09              |               | 09 39.24<br>10 39.32                       | 180.39 0             | 0.12 -0.26               |                | 12.60 2.61<br>12.56 2.61 | 411.21<br>420.40 | 4652.69            | 3504.72<br>3790.55 | 3408.88 33                   | 70.93 4471                 | 83 4079.52               | 294.21 182.<br>294.04 198. | 58 632.20<br>25 602.65        | 33.06<br>5.13    | 2813.68                    | -232.43<br>-215.36 | 1565.46               |          | 5121.05            | 1443.48          | -56      | 1499.45          | 3903<br>3285 | -55        | 0.91  |
|                                                        | 4.64                   | 0.00          | 3.16                    | 541.8% 20.85                           | 17.68 119.9                                              | 20.6 101.79           | 72.6%                                                 | 73.8%        | 35.9 4.64                                                             | 29.60                                                   | 1.43 29.6                       | 0 3578    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.15 21.                   | .00 0.81                    | 2.64              | 0.03 0.       | 08 39.49                                   | 219.71 -4            | 0.05 -0.34               |                | 12.77 2.61               | 393.02           | 3919.16            | 2964.04            | 2885.89 28                   | 153.15 3740                | 86 3454.57               | 293.79 154.                | 78 651.22                     | -14.73           | 2807.14                    | -306.66            | 1553.98               | 123.86   | 4909.59            | 963.61           | -62      | 1025.65          | 2714         | -62        | -0.2  |
|                                                        | 441                    | 0.01          | 2.89                    | 603.1% 20.86<br>623.4% 20.86           |                                                          | 21.0 101.45           |                                                       | 72.2%        | 39.3 4.41                                                             |                                                         | 1.21 33.1                       |           |             | 5.41 2.91                 | 18967.0     |              | 79.14 20.<br>79.14 20.      | 99 0.73                     | 2.41              |               | 07 39.30                                   | 244.72 0             | 0.15 -0.35               | ARVANAV        | 12.79 2.61               | 391.40           | 3840.50<br>4016.80 | 2905.35            |                              | 96.82 3664                 | 00 3386.47<br>62 3538.12 | 294.12 150:                |                               | 42.57<br>19.80   | 3014.60                    | -315.99            | 1552.74               |          | 5279.54            | 1037.66          | -54      | 1091.23          | 2690<br>2636 | -54        | 0.82  |
|                                                        | 4.00                   | 0.00          | 3.41                    | 498.8% 20.84                           | 17.44 114.8                                              | 20.8 101.69           | 74.8%                                                 | 75.9%        | 33.5 4.00                                                             | 39.33                                                   | 182 39.3                        | 3 4164    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.16 21.                   | 00 0.86                     | 2.82              | 0.03 0.       | 09 39.46                                   |                      | 0.05 -0.32               | 917.38         | 12.71 2.61               | 387.94           | 3706.34            | 2806.08            | 2732.83 27                   | 01.67 3531                 |                          | 293.94 146.                | 26 567.18                     | -14.05           | 2478.47                    | -282.27            | 1545.42               | 123.38   | 4564.39            | 1002.00          | -65      | 1066.78          | 3162         | -65        | -0.3  |
|                                                        | 3.77                   | 0.00          | 3.16                    | 543.6% 20.85<br>540.7% 20.85           |                                                          | 20.4 101.69           |                                                       | 73.5%        | 35.0 3.77                                                             |                                                         | 160 42.8                        |           |             | 5.41 2.91                 | 18967.0     |              | 79.15 20.                   | 99 0.80                     | 2.63              |               | 08 39.43                                   | 220.44 0             | 0.00 -0.34               | 985.50         | 12.76 2.61<br>12.75 2.61 | 394.24           | 3957.61            |                    | 2913.00 28                   | 80.00 3779                 | 73 3485.94               | 294.10 156                 |                               | 0.00             | 2841.12                    | -301.29<br>-399.58 | 1554.47               |          | 5033.89            | 984.06           | -50      | 1042.71          | 2724<br>2726 | -59        | 0.0   |
|                                                        | 3.37                   | 0.00          | 3.44                    | 492.1% 20.84                           | 17.40 115.1                                              | 20.5 101.59           | 74.8%                                                 | 76.0%        | 33.1 3.37                                                             | 48.93                                                   | 122 48.5                        | 3 3578    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.16 21.                   |                             | 2.85              | 0.03 0.       | 09 39.46                                   |                      | 0.05 -0.31               | 907.04         | 2.71 2.61                | 388.28           | 3731.71            | 2825.26            | 2751.50 27                   | 20.14 3555                 |                          | 293.64 147.                | 25 563.33                     | -14.13           | 2467.28                    | -278.58            | 1545.76               | 123.44   | 4554.35            | 883.10           | -57      | 939.61           | 2795         | -57        | -0.2  |
|                                                        | 3.19                   | 0.01          | 2.45                    | 729.5% 20.87<br>621.2% 20.86           |                                                          | 20.5 101.99           |                                                       | 72.0%        | 46.5 3.19<br>40.4 2.95                                                |                                                         | 1.04 51.6<br>1.82 55.2          |           |             | 5.41 2.91                 | 18967.0     |              | 79.13 20.<br>79.14 20.      |                             |                   |               | 05 39.41<br>07 39.50                       | 296.60 0             | 0.13 -0.44               | ANYMAN         | 12.95 2.61<br>12.86 2.61 | 391.73           | 3871.62            |                    | 2851.97 28                   | 119.57 3693<br>104.73 3672 | 52 3414.04               | 293.67 152<br>293.67 152   |                               | 35.86            | 3592.49                    | -389.81<br>-346.73 | 1551.47               |          | 5945.07            | 1174.75          | -70      | 1244.44          | 2573<br>2539 | -70<br>-68 | -0.0  |
|                                                        | 2.78                   | 0.03          | 2.42                    | 732.5% 20.87                           | 18.44 113.2                                              | 21.0 101.15           | 68.6%                                                 | 69.4%        | 45.6 2.78                                                             | 57.83                                                   | 2.66 57.8                       | 3538      | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.11 20.                   | 99 0.62                     | 2.04              | 0.02 0.       | 05 39.02                                   |                      | 0.47 -0.39               |                | 2.86 2.61                | 386.37           | 3634.61            | 2752.59            |                              | 50.34 3461                 | 02 3209.52               | 294.14 141.                | 83 819.35                     | 132.92           | 3384.91                    | -349.10            | 1550.45               | 123.22   | 5803.58            | 1113.05          | -41      | 1154.50          | 2525         | -41        | 2.5   |
|                                                        | 2.55                   | 0.00          | 3.11                    | 554.6% 20.85<br>581.0% 20.86           |                                                          | 20.4 101.69           |                                                       | 73.9%        | 35.6 2.55                                                             |                                                         | 2.44 61.3                       |           |             | 5.41 2.91                 | 18967.0     |              | 79.15 20.<br>79.14 20.      | 99 0.79                     | 2.58              |               | 08 39.44                                   | 224.92 0             | 0.00 -0.34               | ANYMAN         | 52.77 2.61<br>52.80 2.61 | 390.35<br>390.78 | 3818.50            | 2889.72            | 2813.98 27                   | 181.96 3840<br>190.34 3853 | 81 3368.63               | 293.57 150                 |                               | 0.00             | 2791.48                    | -307.36<br>-327.17 | 1551.25               |          | 4959.55<br>5103.28 | 977.39<br>769.79 | -60      | 1037.71          | 2760<br>2091 | -60        | 0.0   |
|                                                        | 2.24                   | 0.01          | 1.74                    | 1051.8% 20.89                          | 19.14 25.4                                               | 20.5 102.45           | 66.0%                                                 | 67.6%        | 65.4 2.24                                                             | 66.09                                                   | 2.14 66.0                       | 9 2450    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.10 20.                   |                             |                   | 0.03 0.       | 04 39.40                                   | 433.78 0             | 0.32 -0.62               | *****          | 33.32 2.61               | 358.57           | 2931.02            | 2228.59            | 2172.74 21                   | 47.49 2771                 | 64 2601.81               | 293.69 115                 | 48 956.71                     | 90.36            | 3848.95                    | -553.01            | 1551.77               | 121.63 6 | 5141.89            | 793.41           | -60      | 853.04           | 1657         | -60        | 1.15  |
|                                                        | 2.10                   | 0.00          | 1.90                    | 908.2% 20.88 963.8% 20.89              |                                                          | 20.2 102.69           |                                                       | 71.1%        | 56.7 2.10<br>59.8 1.95                                                |                                                         | 2.00 68.1                       |           |             | 5.41 2.91                 |             |              | 79.12 20.<br>79.11 20       | 99 0.51                     | 1.69              |               | 05 39.62                                   | 370.38 0             | 0.04 -0.56               | ******         | 33.20 2.61               | 358.62           | 2945.74<br>2878.75 | 2239.93            | 2183.83 21                   | 158.44 2785<br>109.89 2720 | 26 2615.10<br>87 2555.35 | 293.36 116.                | 71 829.63                     | 10.85            | 3352.90                    | -500.96<br>-493.56 | 1546.78               |          | 5477.59<br>5702.20 | 719.17<br>753.18 | -64      | 783.32<br>805.15 | 1771         | -64<br>-52 | 1.25  |
|                                                        | 1.82                   | 0.03          | 1.73                    | 1054.6% 20.89                          | 19.14 85.8                                               | 20.3 101.59           | 69.2%                                                 | 70.3%        | 64.9 1.82                                                             | 72.38                                                   | 1.74 72.3                       | 8 2470    |             | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.09 20                    | 98 0.45                     |                   |               | 04 38.94                                   | 430.39 0             | 0.72 -0.56               | ******         | 33.20 2.61               | 358.91           | 2551.71            |                    | 1896.70 18                   | 74.44 2403                 | 73 2271.58               | 293.48 99.3                |                               | 204.76           | 3333.36                    | -498.47            | 1535.14               | 120.77   | 5631.77            | 733.46           | -38      | 771.72           | 1737         | -35        | 2.62  |
|                                                        | 1.59                   | 0.02          | 1.68                    | 1098.3% 20.89<br>1115.9% 20.89         |                                                          | 20.9 102.29           |                                                       |              | 67.5 1.69<br>68.4 1.59                                                |                                                         | 1.61 74.2<br>1.52 75.8          |           |             | 5.41 2.91<br>5.41 2.91    |             |              | 79.10 20.<br>79.09 20.      |                             | 1.43              |               | 04 39.25<br>04 39.10                       | 448.79 0<br>455.96 0 | 0.47 -0.62               | ANYMAN         | 33.32 2.61               | 350.40<br>359.99 | 2588.21<br>2583.31 | 1971.30            | 1922.72 19                   | 00.20 2440<br>196.96 2434  | 10 2302.68<br>80 2298.80 | 294.09 101.<br>293.78 100: |                               | 134.04<br>175.02 | 3512.79                    | -554.31<br>-546.31 | 1541.96               |          | 5741.62            | 627.94           | -46      | 673.84<br>678.32 | 1446         | -46        | 1.44  |
|                                                        | 1.46                   | 0.00          | 2.11                    | 865.1% 20.88                           | 18.77 90.3                                               | 20.4 102.59           | 71.8%                                                 | 73.6%        | 54.2 1.46                                                             | 77.85                                                   | 1.40 77.8                       | 5 2425    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.12 20.                   | 99 0.53                     | 1.76              | 0.03 0.       | 05 39.60                                   | 352.57 0             | 0.04 -0.53               |                | 33.15 2.61               | 353.42           | 2730.46            | 2078.52            | 2027.02 20                   | 03.33 2576                 | 68 2427.50               | 293.53 108.                | 12 732.83                     | 10.12            | 2977.05                    | -476.85            | 1538.06               | 121.18 5 | 5010.50            | 640.64           | -60      | 700.15           | 1784         | -60        | 0.13  |
|                                                        | 1.32                   | 0.00          | 2.56                    | 876.4% 20.88<br>695.2% 20.87           |                                                          | 20.4 102.45           |                                                       | 73.2%        | 54.9 1.32<br>44.6 1.19                                                |                                                         | 1.27 79.5                       |           |             | 5.41 2.91                 | 18967.0     |              | 79.12 20.                   |                             |                   |               | 05 39.54                                   |                      | 0.09 -0.53               | ANYMAN         | 33.15 2.61               | 363.59           | 2735.44            |                    |                              | 06.89 2581                 | 59 2431.79<br>87 2485.69 | 293.57 108.<br>293.66 110. |                               | 26.74            | 3017.08                    | -475.95<br>-385.74 | 1538.11               |          | 5079.09<br>4454.07 | 657.46           | -58      | 715.45           | 1798<br>1913 | -58        | 0.34  |
|                                                        | 1.05                   | 0.03          | 1.79                    | 1019.6% 20.89                          |                                                          | 20.6 101.79           | 68.2%                                                 |              |                                                                       |                                                         | 1.00 84.1                       | 1 2475    |             | 5.41 2.91                 |             | 0 4.49       | 79.10 20                    | 98 0.46                     | 1.52              | 0.03 0.       | 05 39.07                                   |                      | 0.58 -0.56               | *****          | 33.19 2.61               | 354.45           | 2764.83            |                    |                              | 27.92 2510                 | 34 2457.21               | 293.71 108.                | 03 875.37                     | 165.24           | 3496.94                    | -496.17            | 1541.05               |          | 5811.72            | 758.43           | -43      | 801.59           | 1717         | -43        | 2.12  |
|                                                        | 0.92                   | 0.00          | 2.16                    | 844.1% 20.88<br>929.0% 20.88           |                                                          | 21.0 102.69           |                                                       |              | 53.1 0.92<br>57.8 0.78                                                |                                                         | 0.88 86.1<br>0.74 88.2          |           |             | 5.41 2.91<br>5.41 2.91    | 18967.0     |              | 79.12 20.<br>79.11 20       | 98 0.54                     |                   |               | 05 39.71<br>05 39.36                       |                      | 0.08 -0.54               | ANYMAN         | 33.16 2.61<br>33.16 2.61 | 350.04<br>359.41 | 2571.21            |                    | 1910.24 18                   | 187.86 2423<br>175.43 2406 | 53 2272.73               | 294.16 102.<br>293.95 100. |                               |                  | 2744.80                    | -479.00<br>-482.14 | 1533.66               |          | 4674.05<br>5061.27 | 509.97<br>554.87 | -65      | 675.16<br>598.86 | 1865         | -65        | -0.28 |
|                                                        | 0.69                   | 0.03          | 1.60                    | 1080.4% 20.89                          | 19.18 85.9                                               | 20.8 101.69           | 68.9%                                                 | 70.0%        | 65.4 0.69                                                             | 89.58                                                   | 0.66 89.5                       | 8 2059    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.09 20.                   | 98 0.44                     | 1.45              | 0.03 0.       | 04 38.96                                   |                      | 0.71 -0.58               |                | 33.23 2.61               | 359.03           | 2538.54            | 1934.12            | 1886.61 18                   | 64.47 2391                 | 87 2259.48               | 293.95 98.9                | 0 853.12                      | 203.43           | 3391.11                    | -513.64            | 1536.31               | 120.74   | 5689.97            | 617.79           | -34      | 651.46           | 1442         | -34        | 2.17  |
|                                                        | 0.55                   | 0.00          | 1.99                    | 922.0% 20.88 923.6% 20.88              |                                                          | 20.8 102.59           |                                                       |              | 57.5 0.55<br>57.5 0.42                                                |                                                         | 0.52 91.3<br>0.40 93.6          |           |             | 5.41 2.91                 | 18967.0     |              | 79.11 20.<br>79.11 20.      |                             |                   |               | 05 39.56<br>05 39.29                       | 376.04 0             | 0.10 -0.56               | ANNAMAN        | 33.20 2.61               | 358.68<br>365.66 | 2525.50<br>2807.35 | 1924.34            |                              | 55.08 2379<br>56.35 2651   |                          | 293.93 99.5<br>293.87 110. |                               |                  | 2921.02<br>3243.20         | -500.97<br>-472.22 | 1534.62<br>1539.78    |          | 4925.98<br>5442.70 | 635.17           | -61      | 695.98<br>762.33 | 1810         | -61<br>-49 | 0.35  |
|                                                        | 0.27                   | 0.01          | 1.86                    | 988.9% 20.89                           | 19.02 85.8                                               | 20.1 102.49           | 70.6%                                                 | 72.3%        | 61.2 0.27                                                             | 95.86 0                                                 | 26 95.8                         | 6 2510    | 3.91 6      | 5.41 2.91                 | 18967.0     | 0 4.49       | 79.11 20.                   | 98 0.47                     | 1.57              | 0.03 0.       | 05 39.45                                   | 403.63 0             | 0.23 -0.59               | ANYMAN         | 33.25 2.61               | 358.91           | 2558.96            | 1950.00            | 1902.18 18                   | 79.85 2410                 | 38 2278.15               | 293.30 100:                | 96 787.07                     | 65.67            | 3155.41                    | -522.32            | 1537.83               | 120.79   | 5245.41            | 694.23           | -60      | 754.54           | 1816         | -60        | 0.85  |
|                                                        | 0.14                   | 0.03          | 1.60                    | 1085.1% 20.89<br>1078.6% 20.89         |                                                          | 20.6 101.69           |                                                       |              | 65.6 0.14<br>65.2 0.00                                                |                                                         | 0.13 97.8                       |           |             | 5.41 2.91<br>5.41 2.91    |             |              | 79.09 20.<br>79.09 20.      |                             |                   | 0.02 0.       | 04 38.94<br>04 38.85                       |                      | 0.73 -0.58               | ******         | 33.23 2.61               | 364.51<br>360.86 |                    |                    |                              | 129.49 2612                | 48 2459.12<br>44 2331.15 |                            |                               |                  | 3706.02                    | -514.25<br>-501.34 | 1543.00               |          | 6105.23<br>5859.07 | 1204.78          | -60      | 1205.11          |              | -60        | 4.04  |
|                                                        |                        |               |                         | 1010.0.0 20.00                         |                                                          |                       |                                                       |              |                                                                       |                                                         |                                 |           |             |                           |             |              |                             |                             |                   |               |                                            |                      |                          |                |                          |                  |                    |                    |                              |                            |                          |                            |                               |                  |                            |                    |                       |          |                    |                  |          |                  |              |            |       |



All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | -            |    |
| Control #:    | C102366578 |              |    |

Test Duration: 60
Output Category: High Burn Rate

#### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 69.5%     | 74.9%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 70%       | 75.3%     |

| Output Rate (kJ/h) | 23,473 | 22,266 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 1.70   | 3.74   | (lb/h)  |
| Input (kJ/h)       | 33,760 | 32,025 | (Btu/h) |

| Test Load Weight (dry kg) | 1.70 | 3.74 | dry lb |
|---------------------------|------|------|--------|
| MC wet (%)                | 4.49 |      |        |
| MC dry (%)                | 4.70 |      |        |
| Particulate (g )          | 6.71 |      |        |
| CO (g)                    | 6    |      |        |
| Test Duration (h)         | 1.00 |      |        |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.29        | 0.24 |
| g/kg Dry Fuel    | 3.95        | 3.31 |
| g/h              | 6.71        | 5.61 |
| lb/MM Btu Output | 0.66        | 0.56 |

| Air/Fuel Ratio (A/F) | 29.74 |
|----------------------|-------|
|----------------------|-------|

| Run: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VERSION.                     | 2.2                 | 12/14/2003 |                 |             |        |            |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|------------|-----------------|-------------|--------|------------|---------------|
| Date: 12/7/2015   Temp. Units   F (F or C) (kg or lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Manufacturer:                | Ardisam             |            | Applia          | ince Type:  | Pellet | (Cat, Non- | -Cat, Pellet) |
| Run: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Model:                       | Serenity            |            |                 |             |        |            |               |
| Control #: G102366578 Test Duration: 60 Output Category: High Burn Rate  Wood Moisture (% wet): 4.49 Load Weight (lb wet): 3.92 Burn Rate (dry kg/h): 1.70 Total Particulate Emissions: 6.71 g %0 42.9 %Ash 0.5  Averages 0.01 4.11 16.38 291.63 70.93 Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO2 O2 Gas Temp  0 3.92 0.01 4.37 16.10 292.2 70.9 10 3.32 0.01 4.23 16.25 279.8 71.8 20 2.62 0.01 4.13 16.36 297.2 72.2 30 2.01 0.01 3.99 16.51 295.0 71.0 40 1.30 0.01 4.21 16.27 299.7 71.1 50 0.70 0.01 3.72 16.79 280.5 69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                        | 12/7/2015           |            | Te              | emp. Units  | F      | (F or C)   | Defa          |
| Test Duration: 60 Output Category: High Burn Rate  Wood Moisture (% wet): 4.49 Load Weight (lb wet): 3.92 Burn Rate (dry kg/h): 1.70 Total Particulate Emissions: 6.71 g %O 42.9  **Ash 0.5  **Averages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Run:                         | 1                   |            | We              | eight Units | lb     | (kg or lb) |               |
| Output Category: High Burn Rate         Fuel Data D. Fir %           Wood Moisture (% wet): Load Weight (lb wet): 3.92         4.49 %C 50         HHV 19,887 %C 50         kJ/kg         %As           Burn Rate (dry kg/h): 1.70         %H 6.6         6.6         6.71 g         %O 42.9 %Ash 0.5           Total Particulate Emissions: 6.71 g         0.01 4.11 16.38 291.63 70.93 Temp. (°F)         70.93 Temp. (°F)           Elapsed Time (min) Remaining (lb)         Flue Gas Composition (%) Flue Room Temp         Flue Room Temp           0         3.92 0.01 4.37 16.10 292.2 70.9         70.9           10         3.32 0.01 4.23 16.25 279.8 71.8           20         2.62 0.01 4.13 16.36 297.2 72.2           30         2.01 0.01 3.99 16.51 295.0 71.0           40 1.30 0.01 4.21 16.27 299.7 71.1           50 0.70 0.01 3.72 16.79 280.5 69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control #:                   | G102366578          |            |                 |             |        |            | HHV (kJ/kg    |
| Wood Moisture (% wet):   4.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Duration:               | 60                  |            |                 |             |        |            | %             |
| Wood Moisture (% wet):         4.49         HHV         19,887 to 50         kJ/kg         %As           Load Weight (lb wet):         3.92         %C         50         50         50         6.6         6.6         9         6.6         9         42.9         6.6         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         6.7         9         42.9         8         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         70.93         7                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Output Category:</b>      | High Burn Rate      |            |                 | Fuel        | Data   |            | %             |
| Load Weight (Ib wet):   3.92   %C   50       Burn Rate (dry kg/h):   1.70   %H   6.6     Total Particulate Emissions:   6.71 g   %O   42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                     |            |                 |             | D. Fir |            | %             |
| Burn Rate (dry kg/h): 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wood                         | Moisture (% wet):   | 4.49       |                 | HHV         | 19,887 | kJ/kg      | %As           |
| Total Particulate Emissions: 6.71 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loa                          | d Weight (lb wet):  | 3.92       |                 | %C          | 50     |            |               |
| Averages   0.01   4.11   16.38   291.63   70.93   Temp. (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bui                          | rn Rate (dry kg/h): | 1.70       |                 | %Н          | 6.6    |            |               |
| Averages   0.01   4.11   16.38   291.63   70.93   Temp. (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Particulate Emissions: |                     | 6.71       | g               | %O          | 42.9   |            |               |
| Elapsed   Fuel Weight   Flue Gas Composition (%)   Flue   Room   Gas   Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                     |            |                 | %Ash        | 0.5    |            |               |
| Elapsed   Fuel Weight   Flue Gas Composition (%)   Flue   Room   Gas   Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                     |            |                 |             |        |            |               |
| Elapsed Time (min)         Fuel Weight Remaining (lb)         Flue Gas Composition (%) CO         Flue Gas |                              | Averages            | 0.01       | 4.11            | 16.38       | 291.63 | 70.93      |               |
| Time (min)         Remaining (lb)         CO         CO2         O2         Gas         Temp           0         3.92         0.01         4.37         16.10         292.2         70.9           10         3.32         0.01         4.23         16.25         279.8         71.8           20         2.62         0.01         4.13         16.36         297.2         72.2           30         2.01         0.01         3.99         16.51         295.0         71.0           40         1.30         0.01         4.21         16.27         299.7         71.1           50         0.70         0.01         3.72         16.79         280.5         69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                     |            |                 |             | Tem    | o. (°F)    |               |
| 0         3.92         0.01         4.37         16.10         292.2         70.9           10         3.32         0.01         4.23         16.25         279.8         71.8           20         2.62         0.01         4.13         16.36         297.2         72.2           30         2.01         0.01         3.99         16.51         295.0         71.0           40         1.30         0.01         4.21         16.27         299.7         71.1           50         0.70         0.01         3.72         16.79         280.5         69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elapsed                      | Fuel Weight         | Flue Ga    | s Composit      | ion (%)     | Flue   | Room       |               |
| 10     3.32     0.01     4.23     16.25     279.8     71.8       20     2.62     0.01     4.13     16.36     297.2     72.2       30     2.01     0.01     3.99     16.51     295.0     71.0       40     1.30     0.01     4.21     16.27     299.7     71.1       50     0.70     0.01     3.72     16.79     280.5     69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time (min)                   | Remaining (lb)      | CO         | CO <sub>2</sub> | $O_2$       | Gas    | Temp       |               |
| 20     2.62     0.01     4.13     16.36     297.2     72.2       30     2.01     0.01     3.99     16.51     295.0     71.0       40     1.30     0.01     4.21     16.27     299.7     71.1       50     0.70     0.01     3.72     16.79     280.5     69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                            | 3.92                | 0.01       | 4.37            | 16.10       | 292.2  | 70.9       |               |
| 30     2.01     0.01     3.99     16.51     295.0     71.0       40     1.30     0.01     4.21     16.27     299.7     71.1       50     0.70     0.01     3.72     16.79     280.5     69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                           | 3.32                | 0.01       | 4.23            | 16.25       | 279.8  | 71.8       |               |
| 40         1.30         0.01         4.21         16.27         299.7         71.1           50         0.70         0.01         3.72         16.79         280.5         69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                           | 2.62                | 0.01       | 4.13            | 16.36       | 297.2  | 72.2       |               |
| 50 0.70 0.01 3.72 16.79 280.5 69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                           | 2.01                | 0.01       | 3.99            | 16.51       | 295.0  | 71.0       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                     |            |                 | 16.27       | 299.7  |            |               |
| 60 0.00 0.00 4.13 16.36 297.1 69.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                           | 0.70                | 0.01       | 3.72            | 16.79       | 280.5  |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                           | 0.00                | 0.00       | 4.13            | 16.36       | 297.1  | 69.6       |               |

12/14/2009

VERSION: 2.2

| Note 1: For other fuels, use the heating value and |
|----------------------------------------------------|
| fuel composition determined by analysis of fuel    |
| sample in accordance with Clause 0.2               |

Oak

19,887

50

6.6 42.9

0.5

**Default Fuel Values** D. Fir

19,810

48.73

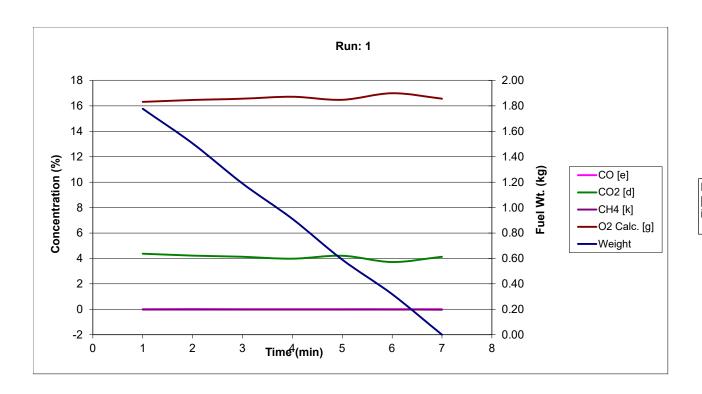
6.87

43.9

0.5

HHV (kJ/kg)

%C


%Н

**%**O

%Ash

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.





All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | -            |    |
| Control #:    | C102366578 |              |    |

Test Duration: 60
Output Category: High Burn Rate

#### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 69.8%     | 75.3%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 70%       | 75.7%     |

| Output Rate (kJ/h) | 22,477 | 21,322 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 1.70   | 3.74   | (lb/h)  |
| Input (kJ/h)       | 32,198 | 30,543 | (Btu/h) |

| Test Load Weight (dry kg) | 1.70 | 3.74 | dry lb |
|---------------------------|------|------|--------|
| MC wet (%)                | 4.49 |      |        |
| MC dry (%)                | 4.70 |      |        |
| Particulate (g )          | 6.71 |      |        |
| CO (g)                    | 5    |      |        |
| Test Duration (h)         | 1.00 |      |        |
|                           |      | -    |        |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.30        | 0.23 |
| g/kg Dry Fuel    | 3.95        | 3.09 |
| g/h              | 6.71        | 5.24 |
| lb/MM Btu Output | 0.69        | 0.54 |

| Air/Fuel Ratio (A/F) | 29.74 |
|----------------------|-------|
|----------------------|-------|

| VERSION.                | 2.2                          | 12/14/2009           |                      |                                  |                         |                              |              |
|-------------------------|------------------------------|----------------------|----------------------|----------------------------------|-------------------------|------------------------------|--------------|
| Manufacturer:           | Ardisam                      |                      | Applia               | nce Type:                        | Pellet                  | (Cat, Non-                   | Cat, Pellet) |
| Model:                  | Serenity                     |                      |                      |                                  |                         |                              |              |
| Date:                   | 12/7/2015                    |                      | Te                   | mp. Units                        | F                       | (F or C)                     | Default      |
| Run:                    | 1                            |                      | We                   | ight Units                       | lb                      | (kg or lb)                   |              |
| Control #:              | G102366578                   |                      |                      |                                  |                         |                              | HHV (kJ/kg)  |
| Test Duration:          | 60                           |                      |                      |                                  |                         |                              | %C           |
| <b>Output Category:</b> | High Burn Rate               |                      |                      | Fuel I                           | Data                    |                              | %Н           |
|                         |                              |                      |                      |                                  | Marth                   |                              | %O           |
| Wood                    | Moisture (% wet):            | 4.49                 |                      | HHV                              | 18,967                  | kJ/kg                        | %Ash         |
| Loa                     | d Weight (lb wet):           | 3.92                 |                      | %С                               | 46.87                   |                              |              |
| Bui                     | n Rate (dry kg/h):           | 1.70                 |                      | %Н                               | 6.41                    |                              | г            |
| Total Partic            | culate Emissions:            | 6.71 g               |                      | %O                               | 46.62                   |                              |              |
|                         |                              |                      |                      | %Ash                             | 0.1                     |                              |              |
|                         |                              |                      |                      |                                  |                         |                              |              |
|                         | Averages                     | 0.01                 | 4.11                 | 16.38                            | 291.63                  | 70.93                        |              |
|                         |                              |                      |                      |                                  | Temp                    | o. (°F)                      | Г            |
| Elapsed                 | Fuel Weight                  | Flue Gas             | Composit             | ion (%)                          | Flue                    | Room                         |              |
| Time (min)              | Remaining (lb)               | co                   | CO <sub>2</sub>      | O <sub>2</sub>                   | Gas                     | Temp                         |              |
| 0                       | 3.92                         | 0.01                 | 4.37                 | 16.10                            | 292.2                   | 70.9                         |              |
| 4.0                     |                              |                      |                      |                                  |                         |                              |              |
| 10                      | 3.32                         | 0.01                 | 4.23                 | 16.25                            | 279.8                   | 71.8                         |              |
| 10<br>20                |                              |                      | 4.23<br>4.13         | 16.25<br>16.36                   | 279.8<br>297.2          | 71.8<br>72.2                 |              |
|                         | 3.32                         |                      |                      |                                  |                         | 72.2<br>71.0                 |              |
| 20<br>30<br>40          | 3.32<br>2.62<br>2.01<br>1.30 | 0.01<br>0.01<br>0.01 | 4.13<br>3.99<br>4.21 | 16.36<br>16.51<br>16.27          | 297.2                   | 72.2<br>71.0<br>71.1         |              |
| 20<br>30                | 3.32<br>2.62<br>2.01<br>1.30 | 0.01<br>0.01<br>0.01 | 4.13<br>3.99         | 16.36<br>16.51<br>16.27<br>16.79 | 297.2<br>295.0          | 72.2<br>71.0<br>71.1<br>69.9 |              |
| 20<br>30<br>40          | 3.32<br>2.62<br>2.01<br>1.30 | 0.01<br>0.01<br>0.01 | 4.13<br>3.99<br>4.21 | 16.36<br>16.51<br>16.27          | 297.2<br>295.0<br>299.7 | 72.2<br>71.0<br>71.1         |              |

12/14/2009

VERSION: 2.2

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

50

6.6

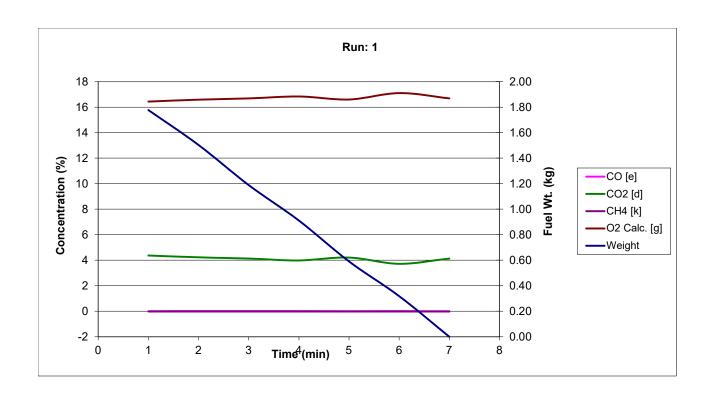
42.9

0.5

**Default Fuel Values** D. Fir

19,810

48.73


6.87

43.9

0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.





All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | -            |    |
| Control #     | C102266579 |              |    |

Test Duration: 120
Output Category: ledium Burn Rate

#### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 69.4%     | 74.8%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 70%       | 75.1%     |

| Output Rate (kJ/h) | 16,148 | 15,319 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 1.17   | 2.58   | (lb/h)  |
| Input (kJ/h)       | 23,268 | 22,072 | (Btu/h) |

| Test Load Weight (dry kg) | 2.34 | 5.16 | dry lb |
|---------------------------|------|------|--------|
| MC wet (%)                | 4.49 |      |        |
| MC dry (%)                | 4.70 |      |        |
| Particulate (g )          | 6.71 |      |        |
| CO (g)                    | 4    |      |        |
| Test Duration (h)         | 2.00 |      |        |
|                           |      |      |        |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.21        | 0.11 |
| g/kg Dry Fuel    | 2.87        | 1.53 |
| g/h              | 3.36        | 1.78 |
| lb/MM Btu Output | 0.48        | 0.26 |

| Air/Fuel Ratio (A/F) | 39.80 |
|----------------------|-------|
|----------------------|-------|

| VERSION:                                  | 2.2                                                                                | 12/14/2009                                                                                               |                                                                      |                                                                             |                                                                                                      |                                                                              |              |
|-------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------|
| Manufacturer:                             | Ardisam                                                                            |                                                                                                          | Applian                                                              | ce Type:                                                                    | Pellet                                                                                               | (Cat, Non-                                                                   | Cat, Pellet) |
| Model:                                    | Serenity                                                                           |                                                                                                          |                                                                      |                                                                             |                                                                                                      |                                                                              |              |
| Date:                                     | 12/7/2015                                                                          |                                                                                                          | Ten                                                                  | np. Units                                                                   | F                                                                                                    | (F or C)                                                                     | Defa         |
| Run:                                      | 1                                                                                  |                                                                                                          | Weig                                                                 | ght Units                                                                   | lb                                                                                                   | (kg or lb)                                                                   |              |
| Control #:                                | G102366578                                                                         |                                                                                                          |                                                                      |                                                                             |                                                                                                      | , ,                                                                          | HHV (kJ/kg   |
| Test Duration:                            | 120                                                                                |                                                                                                          |                                                                      |                                                                             |                                                                                                      |                                                                              | · %          |
| <b>Output Category:</b>                   | Medium Burn Rate                                                                   |                                                                                                          |                                                                      | Fuel [                                                                      | Data                                                                                                 |                                                                              | %            |
|                                           |                                                                                    |                                                                                                          |                                                                      |                                                                             | D. Fir                                                                                               |                                                                              | %            |
| Wood                                      | Moisture (% wet):                                                                  | 4.49                                                                                                     |                                                                      | HHV                                                                         | 19,887                                                                                               | kJ/kg                                                                        | %As          |
|                                           | d Weight (lb wet):                                                                 | 5.40                                                                                                     |                                                                      | %C                                                                          | 50                                                                                                   | J                                                                            |              |
|                                           | n Rate (dry kg/h):                                                                 | 1.17                                                                                                     |                                                                      | %Н                                                                          | 6.6                                                                                                  |                                                                              |              |
|                                           | culate Emissions:                                                                  | 6.71 g                                                                                                   |                                                                      | %O                                                                          | 42.9                                                                                                 |                                                                              |              |
|                                           |                                                                                    | J                                                                                                        |                                                                      | %Ash                                                                        | 0.5                                                                                                  |                                                                              |              |
|                                           |                                                                                    |                                                                                                          |                                                                      |                                                                             |                                                                                                      |                                                                              |              |
|                                           |                                                                                    |                                                                                                          |                                                                      |                                                                             |                                                                                                      |                                                                              |              |
|                                           | Averages                                                                           | 0.00                                                                                                     | 3.08                                                                 | 17.43                                                                       | 247.86                                                                                               | 69.23                                                                        |              |
|                                           | Averages                                                                           | 0.00                                                                                                     | 3.08                                                                 | 17.43                                                                       |                                                                                                      |                                                                              |              |
| Elapsed                                   | •                                                                                  |                                                                                                          | 3.08<br>Composition                                                  |                                                                             | 247.86<br>Temp<br>Flue                                                                               |                                                                              |              |
| •                                         | Averages  Fuel Weight  Remaining (lb)                                              |                                                                                                          |                                                                      |                                                                             | Temp                                                                                                 | o. (°F)                                                                      |              |
| Time (min)                                | Fuel Weight<br>Remaining (lb)                                                      | Flue Gas<br>CO                                                                                           | Composition                                                          | on (%)<br>O <sub>2</sub>                                                    | Temp<br>Flue<br>Gas                                                                                  | o. (°F)<br>Room<br>Temp                                                      |              |
| Time (min)                                | Fuel Weight<br>Remaining (lb)                                                      | Flue Gas                                                                                                 | CO <sub>2</sub>                                                      | on (%)<br>O <sub>2</sub>                                                    | Temp<br>Flue<br>Gas                                                                                  | o. (°F)<br>Room<br>Temp<br>69.6                                              |              |
| Time (min)                                | Fuel Weight<br>Remaining (lb)                                                      | Flue Gas<br>CO<br>0.00                                                                                   | Composition                                                          | on (%) O <sub>2</sub> 16.36 17.34                                           | Temp<br>Flue<br>Gas                                                                                  | 0. (°F)<br>Room<br>Temp<br>69.6<br>69.2                                      |              |
| Time (min)  0 10                          | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01                                      | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01                                                                   | CO <sub>2</sub> 4.13 3.18                                            | on (%)<br>O <sub>2</sub>                                                    | Temp<br>Flue<br>Gas<br>297.1<br>247.8                                                                | 0. (°F)<br>Room<br>Temp<br>69.6<br>69.2                                      |              |
| Time (min)  0 10 20                       | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01<br>4.50                              | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00                                                           | CO <sub>2</sub> 4.13 3.18 2.89                                       | on (%) O <sub>2</sub> 16.36 17.34 17.65                                     | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9                                                       | 0. (°F)<br>Room<br>Temp<br>69.6<br>69.2<br>69.8                              |              |
| Time (min)  0 10 20 30                    | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01<br>4.50<br>4.11                      | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00                                                   | 4.13<br>3.18<br>2.89<br>2.81                                         | on (%) O <sub>2</sub> 16.36 17.34 17.65 17.71                               | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1                                              | 69.6<br>69.8<br>69.3<br>69.4                                                 |              |
| Time (min)  0 10 20 30 40                 | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01<br>4.50<br>4.11<br>3.60              | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00                                           | 4.13<br>3.18<br>2.89<br>2.81<br>3.41                                 | on (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07                         | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6                                     | 69.6<br>69.8<br>69.3<br>69.4                                                 |              |
| Time (min)  0 10 20 30 40 50              | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09                          | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00                                   | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16                         | on (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34                   | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0                            | 69.6<br>69.8<br>69.8<br>69.3<br>69.4<br>69.7                                 |              |
| Time (min)  0 10 20 30 40 50 60           | Fuel Weight<br>Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70                  | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00                                   | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18                 | on (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32             | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1                   | 69.6<br>69.8<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9                 |              |
| Time (min)  0  10  20  30  40  50  60  70 | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20                | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                            | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18                 | on (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32 17.05       | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2          | 69.6<br>69.2<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9<br>68.9         |              |
| Time (min)  0 10 20 30 40 50 60 70 80     | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20 1.80 1.29 0.91 | Flue Gas<br>CO  0.00  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.00  0.01  0.00  0.00 | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18<br>3.44<br>2.45 | on (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32 17.05 18.10 | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2<br>245.5 | 69.6<br>69.8<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9<br>68.9<br>69.8 |              |

0.00

0.00

2.99

17.49

243.7

120

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

50 6.6

42.9

0.5

**Default Fuel Values** D. Fir

19,810

48.73

6.87

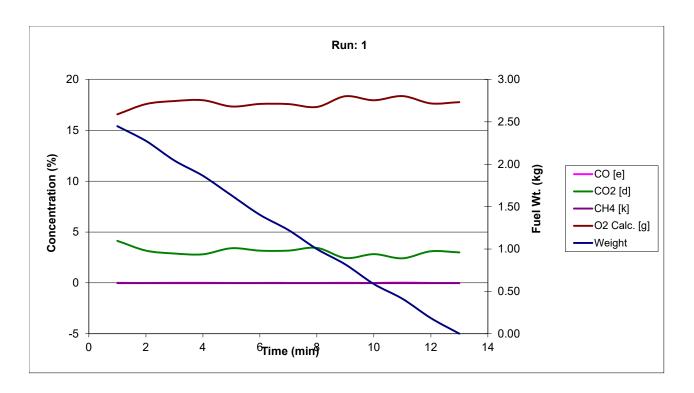
43.9

0.5

HHV (kJ/kg)

69.0

%C


%Н

%O

%Ash

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

| Manufacture<br>Mod<br>Dat<br>Re<br>Control<br>Test Duratio | t: Seren<br>t: 12/07/<br>t: 1<br>t: G10239                                       | 7715<br>90578<br>min<br>HH<br>f 60.48                                                                                              | 40% 74.                                                                      | LHV<br>4.75%                                                                                                             | Note: In the "I<br>Properties", a<br>[a]. [b]. [c]. [h]<br>respective var                                                                | input data", "Co<br>nd "Mass Bala<br>j. [u], [w], (ii), ar<br>riables in Clau                                                      | nce" column<br>d [k] refer to<br>ses 13.7.3 to                                                                                  | Fuel s, [e], [d], [f] their s 13.7.5.                                                                                       | $\neg$                                                                                                                                                                                                                                                                                     | Combs<br>Heat Tra<br>Heat Or                                 | ating Effici<br>ation Effici<br>nafer Effici<br>dout: 1<br>nout: 2                     | iency:<br>iency:<br>5.319 B                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               | 2% De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y Molece<br>Moles E<br>Air Fue<br>148 kJi<br>268 kJi                                                                                                                                                                                                                                                                                                                  | dar Weig<br>ahaust I<br>Ratio (a                                                 | an (N.):                                                                                                    | 29:<br>1380<br>39:                                                            | 44  | 14HC<br>0.8                                                                                              |                                                                           |                                                                                |                                                                                                 |                                                                      |                                                                                                    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tal Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (kJ):<br>(kJ):<br>(Ro):                                      | 46,536<br>32,297                                             | 6 44,1<br>7 30.6                                                     |                                                                                                                                                             |                                                                                                                                                              |                                                                                          |                                                                                                                                                                      |                                                                     | of Wood<br>Dry Weig<br>Moisture                                   | ek Wt                                                                      | kg): :                                  | 34                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moist                                                                                  | ine Conte                                                                           | t M <sub>Cath</sub><br>ley kg :<br>CA:<br>HY:<br>CX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                                                    |                                                                                                                      |                                                                                                                        |                                                                            |                                                                                                                                 |                                                                                                                |                                                                      |                                                                                                                                |                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                   |                                             |                                                                                                      |                                                                                                                                                  |                                                                                                          |                                                                                                      |                                                                                                  |                                                            |                                                                                                                                |                                                                                              |                                                                |                                                                                                                             |                                                              |                                                                          |                                                                                             |                                                                                |                                                                |                                                                         |                                                                                          |                                                                            |
|------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                            | Outp<br>Burn R<br>Grams<br>Inpu                                                  | put 16,1<br>Rate 1.17<br>a CO 4                                                                                                    | 148 k.<br>17 ks                                                              | kJ/h                                                                                                                     |                                                                                                                                          |                                                                                                                                    | CO <sub>Dull</sub>                                                                                                              | 19.80<br>F <sub>0</sub><br>1.044                                                                                            |                                                                                                                                                                                                                                                                                            | Burn Dun<br>Burn I<br>Stack T                                |                                                                                        | 2.00<br>2.58<br>N3.8 D                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               | h<br>ah 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6 De                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                             |                                                                               |     |                                                                                                          |                                                                           |                                                                                |                                                                                                 |                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              |                                                                      | Fu                                                                                                                                                          | 'uel Heat                                                                                                                                                    | iaht (ka):<br>tina<br>LJIka - CV                                                         | : 2.4<br>HH<br>V: 19.8                                                                                                                                               | v L                                                                 | LHV<br>8.464                                                      | 8                                                                          | tulb 8                                  | HV L<br>55.5 79                                                                                                                          | V<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                    |                                                                                                                      |                                                                                                                        |                                                                            |                                                                                                                                 |                                                                                                                |                                                                      |                                                                                                                                |                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                   |                                             |                                                                                                      |                                                                                                                                                  |                                                                                                          |                                                                                                      |                                                                                                  |                                                            |                                                                                                                                |                                                                                              |                                                                |                                                                                                                             |                                                              |                                                                          |                                                                                             |                                                                                |                                                                |                                                                         |                                                                                          |                                                                            |
|                                                            | MCw                                                                              | vet 4.40                                                                                                                           | 42                                                                           |                                                                                                                          |                                                                                                                                          |                                                                                                                                    |                                                                                                                                 |                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                                                                                             |                                                                               |     |                                                                                                          |                                                                           |                                                                                |                                                                                                 |                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              |                                                                      |                                                                                                                                                             |                                                                                                                                                              |                                                                                          |                                                                                                                                                                      |                                                                     |                                                                   |                                                                            |                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                    |                                                                                                                      |                                                                                                                        |                                                                            |                                                                                                                                 |                                                                                                                |                                                                      |                                                                                                                                |                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                   |                                             |                                                                                                      | SUM                                                                                                                                              |                                                                                                          |                                                                                                      |                                                                                                  |                                                            |                                                                                                                                | AVER                                                                                         | AGE                                                            |                                                                                                                             |                                                              |                                                                          | SUI                                                                                         | WS                                                                             |                                                                |                                                                         |                                                                                          |                                                                            |
|                                                            | Averag                                                                           | O.D SECOND                                                                                                                         | .00 2                                                                        | 3.08                                                                                                                     | 5.55                                                                                                                                     | 20.76                                                                                                                              | 17.69                                                                                                                           | 119.92                                                                                                                      | 20.68                                                                                                                                                                                                                                                                                      | 101.                                                         | % 71                                                                                   | 1.5%                                                                                                                                                                                                                                                                                                                                                                                         | 72.6%                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41 1                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                               | 50.11<br>% Wet                                                                                              | 1.1                                                                           | _   | 50.11<br>% Dev                                                                                           | 483                                                                       | 286                                                                            | 4.17                                                                                            | 6.60                                                                 | to<br>tred Per                                                                                     | 2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.00                                                         | 4.49                                                         | 79.2                                                                 | 24 2                                                                                                                                                        |                                                                                                                                                              | 0.73<br>Mass Bal                                                                         |                                                                                                                                                                      | 7 -0                                                                | 0.03                                                              | 0.07<br>to Wood                                                            |                                         | 21 24                                                                                                                                    | .06 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .05                                                                                    | -0.39                                                                               | 107.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33.94                                                                                                                        | 2.61                                                               |                                                                                                                      | 93.07<br>čack                                                                                                          | 39                                                                         | 21.14                                                                                                                           | 2965<br>Conten                                                                                                 | .03                                                                  | 2886.7                                                                                                                         |                                                                                              | 54.01                                                                                                             | 3743.84                                                                                                                          | 3455                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                | 51.53                                                                                           | 2420.5                                                                                                            | 4 2                                         | 12.07                                                                                                | 40838.                                                                                                                                           | to of Dry                                                                                                | 92.21                                                                                                | 20923.                                                                                           | 80 1                                                       | 1610.18                                                                                                                        | 5440<br>Tot                                                                                  |                                                                | 13189.12                                                                                                                    | <br>-817.54                                                  | 140                                                                      | 05.7                                                                                        | 3509                                                                           | 06.5                                                           | 817.5                                                                   | 3.6                                                                                      | 6                                                                          |
| Element                                                    |                                                                                  |                                                                                                                                    |                                                                              |                                                                                                                          | Uxygen                                                                                                                                   | Calculation                                                                                                                        |                                                                                                                                 | input                                                                                                                       |                                                                                                                                                                                                                                                                                            | Long                                                         | USC P                                                                                  | seat.                                                                                                                                                                                                                                                                                                                                                                                        | Net                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r we                                                                                                                                                                                                                                                                                                                                                                  | E WII                                                                            | % wat                                                                                                       | Dry                                                                           | Vt. | % Dry                                                                                                    |                                                                           |                                                                                |                                                                                                 |                                                                      |                                                                                                    | Devoso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                            | new .                                                        |                                                                      |                                                                                                                                                             |                                                                                                                                                              |                                                                                          | unce<br>dry flue                                                                                                                                                     |                                                                     |                                                                   | eg weddo<br>100 mole                                                       |                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | f Dry Wi                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                    |                                                                                                                      | emp                                                                                                                    |                                                                            | near                                                                                                                            | Comen                                                                                                          |                                                                      |                                                                                                                                | Constitu                                                                                     |                                                                                                                   | empera                                                                                                                           | nure                                                                                                 | Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | om                                                                                                                                                                                                                             |                                                                                                 |                                                                                                                   |                                             |                                                                                                      | Gas Co                                                                                                                                           |                                                                                                          | rueij                                                                                                |                                                                                                  |                                                            |                                                                                                                                | Los                                                                                          |                                                                | Total                                                                                                                       | <br>hemical                                                  |                                                                          | ble and                                                                                     | Tot                                                                            |                                                                | Chem                                                                    | -                                                                                        | rama Pro                                                                   |
|                                                            |                                                                                  |                                                                                                                                    |                                                                              |                                                                                                                          |                                                                                                                                          |                                                                                                                                    |                                                                                                                                 |                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                                                                                             |                                                                               |     |                                                                                                          |                                                                           |                                                                                |                                                                                                 |                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              |                                                                      |                                                                                                                                                             |                                                                                                                                                              |                                                                                          |                                                                                                                                                                      |                                                                     |                                                                   |                                                                            |                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                    |                                                                                                                      |                                                                                                                        |                                                                            |                                                                                                                                 |                                                                                                                |                                                                      |                                                                                                                                | - w-2011                                                                                     | M                                                                                                                 | CH                                                                                                                               | H                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                | -0                                                                                              | _                                                                                                                 |                                             | riu                                                                                                  | week CO                                                                                                                                          |                                                                                                          | н.                                                                                                   | H-O Co                                                                                           |                                                            |                                                                                                                                |                                                                                              |                                                                |                                                                                                                             |                                                              |                                                                          |                                                                                             |                                                                                |                                                                | Loss 2                                                                  |                                                                                          |                                                                            |
|                                                            | Welc                                                                             | oht %                                                                                                                              |                                                                              |                                                                                                                          | Excess                                                                                                                                   | Total C                                                                                                                            | alc. %                                                                                                                          | Plue<br>en (CC)                                                                                                             | Tamp (°C                                                                                                                                                                                                                                                                                   |                                                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                             | 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                                                                                             |                                                                               |     |                                                                                                          |                                                                           |                                                                                |                                                                                                 |                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              |                                                                      |                                                                                                                                                             |                                                                                                                                                              |                                                                                          |                                                                                                                                                                      |                                                                     |                                                                   |                                                                            |                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                    |                                                                                                                      |                                                                                                                        |                                                                            |                                                                                                                                 |                                                                                                                |                                                                      |                                                                                                                                |                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                   |                                             |                                                                                                      |                                                                                                                                                  |                                                                                                          |                                                                                                      |                                                                                                  |                                                            |                                                                                                                                |                                                                                              |                                                                |                                                                                                                             |                                                              |                                                                          |                                                                                             |                                                                                |                                                                |                                                                         |                                                                                          |                                                                            |
| Time                                                       | Remainin                                                                         | ng (kg) CO                                                                                                                         | (e) CO                                                                       | O, [d]                                                                                                                   | Air EA                                                                                                                                   | Total C                                                                                                                            | alc. %<br>D <sub>2</sub> (g)                                                                                                    | Plus<br>es (°C)                                                                                                             | Temp ("C                                                                                                                                                                                                                                                                                   | 5 %                                                          |                                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                             | Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tio !                                                                                                                                                                                                                                                                                                                                                                 | Nt                                                                               | ×                                                                                                           | Wt                                                                            | -   | y                                                                                                        | Inp                                                                       | put /                                                                          | 12= [s]                                                                                         | /1= D                                                                | [6]                                                                                                | /16= [c]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ue F                                                         | uel Burr                                                     | nt [h)                                                               | N)                                                                                                                                                          | [u]                                                                                                                                                          | [w]                                                                                      | 0                                                                                                                                                                    |                                                                     | [k]                                                               | Nk                                                                         |                                         | 0, 1                                                                                                                                     | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                      | HC                                                                                  | N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>2</sub> O                                                                                                             | Preser                                                             | 4                                                                                                                    | K                                                                                                                      |                                                                            | CO <sub>2</sub>                                                                                                                 | 0,                                                                                                             |                                                                      | co                                                                                                                             |                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                | 201                                                                                             | 0,                                                                                                                |                                             | co                                                                                                   | N <sub>2</sub>                                                                                                                                   |                                                                                                          | M <sub>4</sub>                                                                                       |                                                                                                  |                                                            |                                                                                                                                |                                                                                              |                                                                | Loss                                                                                                                        | Loss 1                                                       | Later                                                                    | t Loss                                                                                      | Outp                                                                           | tput I                                                         | Loss 2                                                                  | co                                                                                       |                                                                            |
|                                                            | Remainin<br>2.45                                                                 | ng (kg  CO <br>5 0.0                                                                                                               | (e) CO                                                                       |                                                                                                                          | Air EA<br>379.4%                                                                                                                         | O <sub>2</sub> 20.70                                                                                                               | atc. %<br>D <sub>2</sub> (q) 4<br>16.57                                                                                         | Plue<br>les (°C)<br>147.3                                                                                                   | Temp (°C                                                                                                                                                                                                                                                                                   | 101.                                                         | 2% 7                                                                                   | % 2.4%                                                                                                                                                                                                                                                                                                                                                                                       | %<br>73.2%                                                                                                    | Ra<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 2                                                                                                                                                                                                                                                                                                                                                                   | Mt<br>45                                                                         | x<br>0.00                                                                                                   | 2.3                                                                           |     | 0.00                                                                                                     | ling<br>0                                                                 | put /                                                                          | 12= [a]<br>4.17                                                                                 | /1= D                                                                | 0 [6]                                                                                              | /16≈ [c]<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.00 F                                                       | 4.49                                                         | 79.3                                                                 | h)<br>30 2                                                                                                                                                  | [u]<br>21.03                                                                                                                                                 | (w)<br>0.99                                                                              | 3.3                                                                                                                                                                  | 0 -0                                                                | [k]<br>0.03                                                       | 0.10                                                                       | 4                                       | 102 160                                                                                                                                  | 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02                                                                                     | HC<br>0.27                                                                          | N <sub>2</sub><br>909.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O<br>33.70                                                                                                    | Preser<br>2.61                                                     | 42                                                                                                                   | K<br>10.40                                                                                                             | 50                                                                         | 00 <sub>3</sub><br>41.86                                                                                                        | 3790                                                                                                           | 55                                                                   | 3685.0                                                                                                                         | 9 35                                                                                         | 44.45                                                                                                             | 4861.91                                                                                                                          | 4402                                                                                                 | 1 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04 21                                                                                                                                                                                                                          | 2.38                                                                                            | 540.9                                                                                                             |                                             | 1.49                                                                                                 | N <sub>2</sub>                                                                                                                                   | 3 -23                                                                                                    | 8.17                                                                                                 | 1630.2                                                                                           |                                                            | O Fuel N<br>126.35                                                                                                             | 5325                                                                                         | 92                                                             | 0.00                                                                                                                        | Loss 1                                                       | Later                                                                    | nt Loss<br>00                                                                               | Outs                                                                           | tput I                                                         | 0                                                                       | 0.00                                                                                     | 00                                                                         |
|                                                            | Remainin<br>2.45<br>2.21                                                         | ng (kg) CO)<br>5 00<br>7 00                                                                                                        | (e) CO                                                                       |                                                                                                                          | Air EA<br>379.4%<br>524.1%                                                                                                               | 70tal C<br>O <sub>2</sub><br>20.70<br>20.76                                                                                        | alc. %<br>D <sub>2</sub> (g) 0<br>16.57<br>17.58                                                                                | Place<br>les (°C)<br>147.3<br>119.9                                                                                         | 20.9<br>20.6                                                                                                                                                                                                                                                                               | 101.                                                         | 7% 73<br>9% 73                                                                         | %<br>2.4%<br>2.3%                                                                                                                                                                                                                                                                                                                                                                            | %<br>73.2%<br>73.6%                                                                                           | Rs<br>29<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 2<br>5 2                                                                                                                                                                                                                                                                                                                                                            | Mt<br>45<br>27                                                                   | 0.00<br>7.16                                                                                                | 2.3<br>2.1                                                                    |     | 9<br>0.00<br>7.16                                                                                        | 0<br>553                                                                  | put //<br>0<br>22                                                              | 12- [a]<br>4.17<br>4.17                                                                         | 6.60<br>6.60                                                         | (b)                                                                                                | 716= [c]<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.00<br>7.00                                                 | 4.49<br>4.49                                                 | 79.3<br>79.2                                                         | N)<br>30 2<br>24 2                                                                                                                                          | [u]<br>21.03<br>21.02                                                                                                                                        | (w)<br>0.99<br>0.75                                                                      | 33<br>25                                                                                                                                                             | 1 I<br>0 -0<br>5 -0                                                 | (R)<br>0.03<br>0.03                                               | 0.10<br>0.05                                                               | 4                                       | 10 <sub>2</sub> (                                                                                                                        | 10 0<br>16 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02<br>02<br>05                                                                         | HC<br>-0.27<br>-0.38                                                                | N <sub>2</sub><br>909.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O<br>33.70<br>33.93                                                                                           | 2.61<br>2.61                                                       | 42                                                                                                                   | K<br>10.40<br>13.02                                                                                                    | 50                                                                         | CO <sub>2</sub><br>41.86<br>19.16                                                                                               | 3790<br>2964                                                                                                   | 55                                                                   | 3685.0<br>2885.8                                                                                                               | 9 35                                                                                         | 44.45<br>53.15                                                                                                    | 4861.91<br>3740.86                                                                                                               | 4409<br>3454                                                                                         | 51 29<br>57 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D4 21                                                                                                                                                                                                                          | 2.38                                                                                            | 540.9<br>694.0                                                                                                    |                                             | 5.78                                                                                                 | N <sub>2</sub><br>2948.6<br>3011.0                                                                                                               | 3 -23<br>7 -33                                                                                           | 8.17<br>9.92                                                                                         |                                                                                                  |                                                            |                                                                                                                                | 5325<br>5248                                                                                 | 92                                                             | 0.00                                                                                                                        | 0<br>-98                                                     | 150                                                                      | 00                                                                                          | 406                                                                            | 54                                                             | 0<br>-95                                                                | 0.00                                                                                     | 10                                                                         |
|                                                            | Remainin<br>2.45<br>2.27<br>2.04                                                 | ng (kg  CO <br>5 0.0<br>7 0.0<br>4 0.0                                                                                             | % CO<br>(e) CO<br>00 4<br>00 3<br>01 2                                       |                                                                                                                          | Excess<br>Air EA<br>379.4%<br>524.1%<br>583.7%                                                                                           | 70tal C<br>O <sub>2</sub><br>20.70<br>20.76<br>20.77                                                                               | alc. %<br>D <sub>2</sub> (g)<br>16.57<br>17.58<br>17.88                                                                         | Place<br>les (°C)<br>147.3<br>119.9<br>118.3                                                                                | 20.9<br>20.6<br>21.0                                                                                                                                                                                                                                                                       | 101.<br>101.<br>101.                                         | 2% 73<br>2% 73<br>2% 73                                                                | %<br>2.4%<br>2.3%<br>0.9%                                                                                                                                                                                                                                                                                                                                                                    | %<br>73.2%<br>73.6%<br>71.9%                                                                                  | Ra<br>29<br>38<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 2<br>5 2<br>2 2                                                                                                                                                                                                                                                                                                                                                     | Mt<br>45<br>27<br>04                                                             | X<br>0.00<br>7.16<br>16.57                                                                                  | 2.3<br>2.1<br>1.9                                                             |     | 7.16<br>16.57                                                                                            | 555<br>330                                                                | 22<br>00                                                                       | 4.17<br>4.17<br>4.17<br>4.17                                                                    | /1= p<br>6.60<br>6.60                                                | (b)<br>0                                                                                           | 2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00<br>7.00<br>7.00                                         | 4.49<br>4.49<br>4.49                                         | 79.3<br>79.2<br>79.2                                                 | N)<br>30 2<br>24 2<br>22 2                                                                                                                                  | [u]<br>21.03<br>21.02<br>21.01                                                                                                                               | (w)<br>0.99<br>0.75<br>0.69                                                              | 33<br>25<br>23                                                                                                                                                       | 1 1<br>0 -0<br>5 -0<br>3 -0                                         | (N)<br>0.03<br>0.03<br>0.03                                       | 0.10<br>0.05<br>0.07                                                       | 1                                       | 10 <sub>2</sub> 1<br>112 160<br>131 23-<br>111 260                                                                                       | 10 0<br>16 -0<br>96 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02<br>05<br>16                                                                         | 0.27<br>-0.38<br>-0.39                                                              | N <sub>2</sub><br>909.07<br>800000<br>800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95                                                                                  | 2.61<br>2.61<br>2.61<br>2.61                                       | 42<br>39<br>39                                                                                                       | K<br>10.40<br>13.02<br>11.40                                                                                           | 50<br>39<br>38                                                             | H1.86<br>19.16<br>H0.50                                                                                                         | 3790<br>2964<br>2905                                                                                           | 55<br>.04<br>.35                                                     | 3885.0<br>2885.8<br>2828.9                                                                                                     | 9 35<br>9 28<br>5 27                                                                         | 44.45<br>53.15<br>96.82                                                                                           | 4861.91<br>3740.86<br>3864.00                                                                                                    | 4409<br>3454<br>3385                                                                                 | 51 29-<br>57 295<br>67 29-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D4 21<br>79 16<br>12 16                                                                                                                                                                                                        | 2.38<br>5.83<br>11.72                                                                           | 540.9<br>694.0<br>758.1                                                                                           | -                                           | 5.78<br>5.62                                                                                         | N <sub>2</sub><br>2948.6<br>3011.0<br>3233.2                                                                                                     | 3 -23<br>7 -33<br>1 -35                                                                                  | 8.17<br>9.92<br>0.32                                                                                 | 1630.2<br>1608.9                                                                                 | 1 0                                                        | 126.35<br>123.86<br>123.68                                                                                                     | 5325<br>5248<br>5579                                                                         | 92<br>02<br>88                                                 | 0.00<br>1457.08<br>1095.69                                                                                                  | 0<br>-98<br>-60                                              | 0<br>150                                                                 | 00<br>5.40<br>6.38                                                                          | 0<br>406<br>281                                                                | 54<br>12                                                       | 0<br>-95<br>-60                                                         | 0.00<br>-0.43<br>0.88                                                                    | 10<br>43<br>18                                                             |
|                                                            | Remainir<br>2.45<br>2.27<br>2.04<br>1.86                                         | ng (kg) CO)<br>5 0.0<br>7 0.0<br>4 0.0<br>6 0.0                                                                                    | N CO 4<br>00 4<br>00 3<br>01 2<br>00 2                                       |                                                                                                                          | Air EA<br>379.4%<br>524.1%<br>583.7%<br>603.5%                                                                                           | 70tal C<br>O <sub>2</sub><br>20.70<br>20.76<br>20.77<br>20.78                                                                      | alc. %<br>D <sub>2</sub> (g) 6<br>16.57<br>17.58<br>17.88<br>17.97                                                              | Plue<br>ies (°C)<br>147.3<br>119.9<br>118.3<br>122.3                                                                        | 20.9<br>20.6<br>21.0<br>20.7                                                                                                                                                                                                                                                               | 101.<br>101.<br>101.<br>101.                                 | 7% 77<br>5% 77<br>5% 76<br>5% 66                                                       | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%                                                                                                                                                                                                                                                                                                                                                            | %<br>73.2%<br>73.6%<br>71.9%<br>70.6%                                                                         | Ra<br>29<br>38<br>42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 2<br>5 2<br>2 2<br>4 1                                                                                                                                                                                                                                                                                                                                              | Nt<br>45<br>27<br>04<br>86                                                       | x<br>0.00<br>7.16<br>16.57<br>23.96                                                                         | 23<br>2.1<br>1.9<br>1.7                                                       |     | 7<br>0.00<br>7.16<br>16.57<br>23.96                                                                      | 553<br>390<br>390                                                         | put /*<br>22<br>09<br>03                                                       | 4.17<br>4.17<br>4.17<br>4.17<br>4.17                                                            | 6.60<br>6.60<br>6.60                                                 | (b)<br>0<br>0                                                                                      | 716= [c]<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vali<br>19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.00<br>7.00<br>7.00<br>7.00                                 | 4.49<br>4.49<br>4.49<br>4.49                                 | 79.3<br>79.2<br>79.2<br>79.2                                         | N)<br>30 2<br>24 2<br>22 2<br>22 2                                                                                                                          | [u]<br>21.03<br>21.02<br>21.01<br>21.01                                                                                                                      | (w)<br>0.99<br>0.75<br>0.69<br>0.67                                                      | 33<br>25<br>23<br>22                                                                                                                                                 | 1 1<br>0 -0<br>5 -0<br>3 -0<br>6 -0                                 | 0.03<br>0.03<br>0.03<br>0.03                                      | 0.10<br>0.05<br>0.07<br>0.07                                               | 1                                       | 10 <sub>2</sub> (10<br>1.12 161<br>1.31 23<br>1.11 261<br>1.22 261                                                                       | 10 0<br>16 -0<br>96 0<br>94 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02<br>05<br>06<br>16<br>07                                                             | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42                                              | N <sub>2</sub><br>909.07<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00                                                                         | 2.61<br>2.61<br>2.61<br>2.61<br>2.61                               | 42<br>30<br>30<br>30                                                                                                 | K<br>10.40<br>13.02<br>11.40<br>15.45                                                                                  | 50-<br>39-<br>38-<br>40-                                                   | H1.85<br>19.16<br>40.50<br>16.80                                                                                                | 3750<br>2964<br>2965<br>3036                                                                                   | 55<br>.04<br>.35<br>.25                                              | 3685.0<br>2885.8<br>2828.9<br>2955.8                                                                                           | 9 36<br>9 28<br>5 27<br>0 29                                                                 | 44.45<br>53.15<br>96.82<br>22.35                                                                                  | 4861.91<br>3740.86<br>3864.00<br>3837.62                                                                                         | 4409<br>3454<br>3386<br>3538                                                                         | 51 29-<br>57 290<br>87 29-<br>12 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D4 21<br>79 16<br>12 16<br>85 16                                                                                                                                                                                               | 238<br>5.83<br>11.72<br>9.59                                                                    | 640.9<br>694.0<br>758.1<br>819.5                                                                                  | -1<br>-1<br>-2                              | 5.78<br>5.78<br>5.62<br>1.21                                                                         | 2948.6<br>3011.0<br>3233.2<br>3478.2                                                                                                             | 1 -23<br>7 -33<br>1 -35<br>3 -37                                                                         | 8.17<br>9.92<br>0.32<br>4.14                                                                         |                                                                                                  | 1 0                                                        |                                                                                                                                | 5325<br>5248                                                                                 | 92<br>02<br>88                                                 | 0.00                                                                                                                        | 0<br>-98<br>-60<br>-69                                       | 150<br>110<br>121                                                        | 00<br>5.40<br>6.38<br>8.04                                                                  | 406                                                                            | 54<br>12                                                       | 0<br>-95<br>-60<br>-69                                                  | 0.00<br>-0.43<br>0.88<br>0.41                                                            | 10<br>43<br>18                                                             |
|                                                            | Remainin<br>2.46<br>2.21<br>2.04<br>1.86                                         | ng (kg) CO)<br>5 0.0<br>7 0.0<br>4 0.0<br>5 0.0                                                                                    | N CO CO 4 00 3 01 2 00 2 00 3                                                |                                                                                                                          | Excess<br>Air EA<br>379.4%<br>524.1%<br>583.7%<br>603.5%<br>462.3%                                                                       | Total C<br>O <sub>2</sub><br>20.70<br>20.76<br>20.77<br>20.78<br>20.74                                                             | alc. %<br>D <sub>2</sub> [g] 6<br>16.57<br>17.58<br>17.88<br>17.97                                                              | 147.3<br>119.9<br>118.3<br>122.3                                                                                            | 20.9<br>20.6<br>21.0<br>20.7<br>20.8                                                                                                                                                                                                                                                       | 101.<br>101.<br>101.<br>101.<br>101.                         | 2% 75<br>5% 75<br>5% 76<br>5% 60                                                       | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%<br>4.6%                                                                                                                                                                                                                                                                                                                                                    | %<br>73.2%<br>73.6%<br>71.9%<br>70.6%<br>75.8%                                                                | Rs<br>29<br>38<br>42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 2<br>5 2<br>2 2<br>4 1<br>9 1                                                                                                                                                                                                                                                                                                                                       | Nt<br>45<br>27<br>04<br>86<br>63                                                 | X<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35                                                                | 2.3<br>2.1<br>1.9<br>1.7                                                      |     | 7<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35                                                             | 955<br>396<br>396<br>436                                                  | put /*<br>22<br>09<br>03<br>66                                                 | 12= [a]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17                                                 | /1- p<br>6.60<br>6.60<br>6.60<br>6.60                                | [6]<br>0<br>0<br>0<br>0                                                                            | 716= [c]<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vali<br>19881<br>19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.00<br>7.00<br>7.00<br>7.00<br>7.00                         | 4.49<br>4.49<br>4.49<br>4.49<br>4.49                         | 79.3<br>79.2<br>79.2<br>79.2<br>79.2                                 | N)<br>30 2<br>24 2<br>22 2<br>22 2<br>25 2                                                                                                                  | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02                                                                                                             | 0.99<br>0.75<br>0.69<br>0.67<br>0.61                                                     | 33<br>25<br>23<br>22<br>27                                                                                                                                           | 0 -0<br>5 -0<br>3 -0<br>6 -0<br>3 -0                                | DK3<br>0.03<br>0.03<br>0.03<br>0.03                               | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.08                                 | 4                                       | 10 <sub>2</sub> (10<br>112 16<br>131 23<br>111 26<br>122 26<br>128 21                                                                    | 10 0<br>16 -0<br>96 0<br>94 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02<br>.05<br>15<br>07                                                                  | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42<br>-0.35                                     | N <sub>2</sub><br>909.07<br>********<br>********<br>254.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87                                                                | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61                       | 42<br>39<br>39<br>39<br>38                                                                                           | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94                                                                         | 50-<br>39/<br>38-<br>40/<br>371                                            | H1.85<br>19.16<br>H0.50<br>16.80                                                                                                | 3790.<br>2964.<br>2905.<br>3036.<br>2806.                                                                      | 55<br>04<br>35<br>25<br>08                                           | 2885.8<br>2828.9<br>2955.8<br>2732.8                                                                                           | 9 35<br>9 28<br>5 27<br>0 29<br>3 27                                                         | 44.45<br>53.15<br>56.82<br>22.35<br>01.67                                                                         | 4861.91<br>3740.86<br>3664.00<br>3837.62<br>3531.15                                                                              | 4409<br>3454<br>3386<br>3538<br>3271                                                                 | 51 29-<br>57 290<br>67 29-<br>12 290<br>57 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04 21<br>79 16<br>12 16<br>85 16<br>94 15                                                                                                                                                                                      | 2.38<br>5.83<br>11.72<br>12.59<br>6.70                                                          | 640.9<br>694.0<br>758.1<br>819.5<br>604.2                                                                         | -1<br>-1<br>-1<br>-2                        | 5.78<br>5.62<br>1.21<br>5.05                                                                         | N <sub>2</sub><br>2948.6<br>3011.0<br>3233.2<br>3478.2<br>2658.6                                                                                 | 3 -23<br>7 -33<br>1 -35<br>3 -37<br>7 -31                                                                | 8.17<br>9.92<br>0.32<br>4.14<br>2.74                                                                 | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8                                                   | 5<br>1<br>0<br>8                                           | 126.35<br>123.86<br>123.68<br>124.08<br>123.38                                                                                 | 5325<br>5248<br>5579                                                                         | 92<br>02<br>88                                                 | 0.00<br>1457.08<br>1095.69<br>1149.04<br>1057.02                                                                            | 0<br>-98<br>-80<br>-69<br>-72                                | 155<br>115<br>121                                                        | 00<br>IS 40<br>IS 38<br>IS 04<br>IS 67                                                      | 0<br>406<br>281<br>275<br>330                                                  | 54<br>12<br>54                                                 | 0<br>-95<br>-60<br>-69<br>-72                                           | 0.00<br>-0.43<br>0.88<br>0.41<br>-0.32                                                   | 10<br>43<br>18<br>11                                                       |
|                                                            | Remainin<br>2.40<br>2.21<br>2.04<br>1.80<br>1.60                                 | oht 50 mg (kg) CO) 5 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                         | (e) CO 00 4 00 3 01 2 00 2 00 2                                              |                                                                                                                          | Excess<br>Air EA<br>379.4%<br>524.1%<br>583.7%<br>603.5%<br>462.3%<br>533.9%                                                             | Total C<br>O <sub>2</sub><br>20.70<br>20.76<br>20.77<br>20.78<br>20.74<br>20.76                                                    | alc. %<br>O <sub>2</sub> (g) 0<br>16.57<br>17.58<br>17.88<br>17.97<br>17.34<br>17.59                                            | Place<br>less (°C)<br>147.3<br>119.9<br>118.3<br>122.3<br>114.8<br>121.1                                                    | 20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0                                                                                                                                                                                                                                               | 101.<br>101.<br>101.<br>101.<br>101.<br>101.                 | 7% 77<br>2% 77<br>2% 77<br>2% 77<br>2% 77                                              | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%<br>4.6%<br>2.1%                                                                                                                                                                                                                                                                                                                                            | 73.2%<br>73.6%<br>71.9%<br>70.6%<br>73.3%                                                                     | Rs 29 38 42 43 35 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 2<br>5 2<br>2 2<br>4 1<br>9 1<br>6 1                                                                                                                                                                                                                                                                                                                                | Nt<br>45<br>27<br>04<br>86<br>63<br>40                                           | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72                                                       | 23<br>2.1<br>1.9<br>1.7<br>1.5                                                |     | y<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72                                                    | 553<br>390<br>390<br>431<br>381                                           | put //<br>0<br>22<br>09<br>03<br>66<br>88                                      | 12= [s]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17                                         | /1- p                                                                | [b]<br>0<br>0<br>0<br>0<br>0                                                                       | 716= [c]<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vali<br>19881<br>19881<br>19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00         | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49                 | 79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2                         | h) 30 2<br>24 2<br>22 2<br>22 2<br>26 2<br>24 2                                                                                                             | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02                                                                                                    | (w)<br>0.99<br>0.75<br>0.89<br>0.67<br>0.81<br>0.75                                      | 25<br>23<br>22<br>27<br>27                                                                                                                                           | 1 1<br>0 -0<br>5 -0<br>3 -0<br>6 -0<br>3 -0<br>4 -0                 | BQ<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03                        | 0.10<br>0.05<br>0.07<br>0.07<br>0.07                                       | 4                                       | 10 <sub>3</sub> 6<br>112 16<br>131 23<br>111 26<br>122 26<br>128 21<br>128 23                                                            | 10 0<br>16 -4<br>96 0<br>94 0<br>32 -4<br>95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02<br>02<br>05<br>15<br>07<br>05                                                       | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42<br>-0.35<br>-0.37                            | N <sub>2</sub><br>909.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91                                                       | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61                       | 42<br>39<br>39<br>39<br>38<br>38                                                                                     | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24                                                                | 50-<br>39-<br>38-<br>40-<br>371-<br>392-                                   | 41.85<br>19.16<br>40.50<br>16.80<br>06.34<br>67.61                                                                              | 3790.<br>2964.<br>2905.<br>3036.<br>2806.<br>2902.                                                             | 55<br>.04<br>.35<br>.25<br>.08<br>.13                                | 2885.8<br>2828.9<br>2905.8<br>2732.8<br>2913.0                                                                                 | 9 35<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28                                                 | 44.45<br>53.15<br>96.82<br>22.35<br>01.67<br>80.00                                                                | 4861.91<br>3740.86<br>3664.00<br>3837.62<br>3531.15<br>3779.73                                                                   | 3454<br>3386<br>3538<br>3271<br>3486                                                                 | 51 29-<br>57 29-<br>67 29-<br>12 29-<br>57 29-<br>54 29-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D4 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16                                                                                                                                                                             | 2.38<br>5.83<br>11.72<br>12.59<br>16.70<br>17.21                                                | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9                                                                | -1<br>-1<br>-1<br>-1                        | 5.78<br>5.62<br>1.21<br>5.05                                                                         | N <sub>2</sub><br>2948.6<br>3011.0<br>3233.3<br>3478.3<br>2658.6<br>3047.4                                                                       | 3 -23<br>7 -23<br>1 -25<br>9 -27<br>7 -31<br>9 -23                                                       | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94                                                         | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8<br>1609.3                                         | 5<br>1<br>0<br>8                                           | 126.35<br>123.86<br>123.68                                                                                                     | 5325<br>5245<br>5579<br>5854<br>4815<br>5317                                                 | 92<br>02<br>88<br>.10<br>.00                                   | 0.00<br>1457.08<br>1095.69<br>1149.04<br>1057.02<br>1039.41                                                                 | -98<br>-60<br>-69<br>-72<br>-65                              | 155<br>115<br>121<br>121                                                 | 00<br>IS.40<br>IS.38<br>IS.04<br>IS.67<br>IA.42                                             | 0<br>406<br>281<br>275<br>330<br>284                                           | 54<br>12<br>54<br>59<br>48                                     | 0<br>-98<br>-60<br>-69<br>-72<br>-65                                    | 0.00<br>-0.43<br>0.88<br>0.41<br>-0.32<br>0.00                                           | 10<br>63<br>18<br>11<br>12<br>10                                           |
|                                                            | Remainin<br>2.45<br>2.27<br>2.04<br>1.86<br>1.63<br>1.40                         | oht 5, ng (kg) CO   5 00 07 00 00 00 00 00 00 00 00 00 00 00                                                                       | (e) CO 00 4 00 3 01 2 00 2 00 3 00 3 00 3                                    |                                                                                                                          | Excess<br>Air EA<br>379.4%<br>524.1%<br>583.7%<br>603.5%<br>482.3%<br>525.9%<br>523.0%                                                   | Total O <sub>2</sub> 20.70 20.76 20.77 20.78 20.77 20.78 20.74 20.76 20.76                                                         | alc. %<br>0, tel 0<br>16.57<br>17.58<br>17.88<br>17.97<br>17.34<br>17.59<br>17.58                                               | Plue<br>las (°C)<br>147.3<br>119.9<br>118.3<br>122.3<br>114.8<br>121.1<br>115.6                                             | 20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4                                                                                                                                                                                                               | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.         | 2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>75<br>75<br>75<br>75             | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%<br>4.6%<br>2.1%<br>3.1%                                                                                                                                                                                                                                                                                                                                    | 73.2%<br>73.6%<br>71.9%<br>70.6%<br>73.8%<br>74.4%                                                            | Rs 29 38 42 43 35 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 2<br>5 2<br>2 2<br>4 1<br>9 1<br>6 1<br>4 1                                                                                                                                                                                                                                                                                                                         | Nt<br>45<br>27<br>04<br>86<br>63<br>40<br>22                                     | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06                                              | 23<br>21<br>19<br>17<br>15<br>13                                              |     | y<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06                                           | 955<br>396<br>396<br>431<br>381<br>383                                    | put //<br>0<br>22<br>09<br>03<br>66<br>88<br>35                                | 12= [s]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17                                 | /1- p<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60                        | [b]<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vali<br>19881<br>19881<br>19881<br>19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00 | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49         | 79.3<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2                 | h) 30 2<br>24 2<br>22 2<br>22 2<br>25 2<br>24 2<br>24 2                                                                                                     | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02                                                                                  | (w)<br>0.99<br>0.75<br>0.89<br>0.67<br>0.61<br>0.75                                      | 25<br>23<br>22<br>27<br>27<br>25                                                                                                                                     | 1 1<br>0 -0<br>5 -0<br>3 -0<br>6 -0<br>3 -0<br>4 -0<br>5 -0         | PQ<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03                | 0.10<br>0.05<br>0.07<br>0.07<br>0.08<br>0.07                               | 4                                       | 10 <sub>3</sub> (1) 1.12 160 1.31 23- 1.11 260 1.22 260 1.28 211 1.25 23- 1.25 23-                                                       | 10 0<br>16 -4<br>96 0<br>94 0<br>32 -4<br>95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02<br>02<br>05<br>15<br>07<br>05<br>05                                                 | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42<br>-0.35<br>-0.37<br>-0.37                   | N <sub>2</sub><br>909.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91<br>33.91                                              | 2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51       | 42<br>39<br>39<br>39<br>38<br>38<br>38                                                                               | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77                                                       | 50-<br>39-<br>38-<br>40-<br>37-<br>39-<br>37-<br>37-                       | 60 <sub>3</sub><br>41.85<br>119.16<br>40.50<br>16.80<br>16.34<br>57.61<br>54.71                                                 | 3790.<br>2964.<br>2905.<br>3036.<br>2806.<br>2902.<br>2842.                                                    | 55<br>.04<br>.35<br>.25<br>.08<br>.13<br>.43                         | 2885.8<br>2828.9<br>2955.8<br>2732.8<br>2913.0<br>2768.1                                                                       | 9 35<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28<br>6 27                                         | 44.45<br>53.15<br>96.82<br>22.35<br>01.67<br>80.00<br>36.62                                                       | 4861.91<br>3740.86<br>3664.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84                                                        | 4409<br>3454<br>3386<br>3538<br>3271<br>3486<br>3313                                                 | 51 29-<br>57 29-<br>67 29-<br>12 29-<br>57 29-<br>57 29-<br>55 29-<br>55 29-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D4 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16                                                                                                                                                                             | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>7.21<br>8.63                                           | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>664.1                                                       | 1 4 4 2 -1                                  | 5.78<br>5.62<br>1.21<br>5.05<br>1.00                                                                 | N <sub>2</sub><br>2948.6<br>3011.0<br>3233.3<br>3478.3<br>2658.6<br>3047.4<br>2862.4                                                             | 3 -23<br>7 -23<br>1 -35<br>9 -37<br>7 -31<br>9 -33                                                       | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03                                                 | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8                                                   | 5<br>1<br>0<br>8                                           | 126.35<br>123.86<br>123.68<br>124.08<br>123.38                                                                                 | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5099                                         | 92<br>.02<br>.88<br>.10<br>.00<br>.06                          | 0.00<br>1457.08<br>1096.69<br>1149.04<br>1057.02<br>1039.41<br>983.50                                                       | Less 1<br>0<br>-98<br>-60<br>-69<br>-72<br>-65<br>-64        | 155<br>115<br>121<br>121<br>112<br>110                                   | 00<br>5.40<br>6.38<br>8.04<br>8.67<br>9.42<br>7.28                                          | 0<br>406<br>281<br>275<br>330<br>284<br>285                                    | 54<br>12<br>54<br>09<br>48                                     | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64                             | 0.00<br>-0.43<br>0.88<br>0.41<br>-0.32<br>0.00<br>0.00                                   | 00<br>43<br>88<br>81<br>11<br>32<br>00                                     |
|                                                            | Weld Remainin 2.45 2.27 2.00 1.85 1.40 1.22 1.00 1.20 1.20 1.20 1.20 1.20 1.2    | oht 5: ng (kg) CO  5 00 7 00 8 00 8 00 0 00 2 00 0 00                                                                              | N (e) CO<br>00 4<br>00 3<br>01 2<br>00 2<br>00 2<br>00 3<br>00 3<br>00 3     |                                                                                                                          | Excess<br>Ar EA<br>379.4%<br>524.1%<br>523.1%<br>603.5%<br>462.3%<br>525.9%<br>523.0%<br>475.8%                                          | Total O <sub>2</sub> 20.70 20.76 20.77 20.78 20.74 20.76 20.76 20.76                                                               | alc. %<br>D <sub>2</sub> fel 6<br>16.57<br>17.58<br>17.88<br>17.97<br>17.34<br>17.59<br>17.59                                   | Page (es (°C) 147.3 119.9 118.3 122.3 114.8 121.1 115.6 115.1                                                               | 20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4<br>20.4                                                                                                                                                                                                                               | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.         | 2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>7% 75<br>7% 75                            | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%<br>4.6%<br>2.1%<br>3.1%<br>4.6%                                                                                                                                                                                                                                                                                                                            | 73.2%<br>73.6%<br>71.9%<br>70.6%<br>75.6%<br>73.3%<br>74.4%                                                   | Rs 29 38 42 43 35 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 2 5 2 2 2 4 1 9 1 6 1 4 1 5 1 5 1 5 1                                                                                                                                                                                                                                                                                                                               | Nt<br>45<br>27<br>04<br>86<br>63<br>40<br>22<br>00                               | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20                                     | 23<br>2.1<br>1.9<br>1.7<br>1.5<br>1.3                                         |     | y<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20                                  | 555<br>390<br>390<br>431<br>381<br>381                                    | put /* 22 09 03 66 88 88 35                                                    | 12- [s]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17                         | /1= p<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60                | [b]<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vali<br>19881<br>19881<br>19881<br>19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00 | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49 | 79.3<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2         | h) 30 2<br>24 2<br>22 2<br>22 2<br>26 2<br>24 2<br>24 2<br>26 2                                                                                             | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02                                                                         | (w)<br>0.99<br>0.75<br>0.89<br>0.87<br>0.81<br>0.75<br>0.76                              | 25<br>23<br>22<br>27<br>25<br>27<br>25<br>25                                                                                                                         | 1 1<br>0 -0<br>5 -0<br>3 -0<br>6 -0<br>3 -0<br>4 -0<br>5 -0         | P4<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03        | 0.10<br>0.08<br>0.07<br>0.07<br>0.08<br>0.07<br>0.08                       | 1                                       | 10 <sub>2</sub> (112 160<br>1.12 160<br>1.31 23-<br>1.11 260<br>1.22 260<br>1.28 211<br>1.25 23-<br>1.25 23-<br>1.27 211                 | 10 0<br>16 -6<br>96 0<br>94 0<br>32 -4<br>95 0<br>65 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00<br>02<br>06<br>16<br>07<br>05<br>00<br>00<br>00                                     | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42<br>-0.35<br>-0.37<br>-0.37<br>-0.37          | N <sub>2</sub><br>909.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91<br>33.91<br>33.91                                     | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61       | 42<br>39<br>39<br>39<br>38<br>39<br>38                                                                               | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77<br>18.28                                              | 50<br>39<br>38<br>40<br>37<br>38<br>37<br>37<br>37                         | 00;<br>41.85<br>49.16<br>40.50<br>16.80<br>06.34<br>67.61<br>54.71                                                              | 2964<br>2965<br>3036<br>2806<br>2806<br>2802<br>2842<br>2825                                                   | 55<br>04<br>35<br>25<br>08<br>13<br>43                               | 2885.8<br>2885.8<br>2828.9<br>2955.8<br>2732.8<br>2913.0<br>2768.1                                                             | 9 36<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28<br>6 27<br>0 27                                 | 44.45<br>53.15<br>56.82<br>22.35<br>51.67<br>80.00<br>36.62<br>20.14                                              | 4861.91<br>3740.86<br>3864.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84<br>3555.38                                             | 4409<br>3454<br>3386<br>3538<br>3271<br>3486<br>3313<br>3293                                         | 51 29-<br>57 290<br>67 29-<br>12 290<br>57 290<br>54 29-<br>95 290<br>53 290<br>53 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16<br>55 15                                                                                                                                                                    | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>17.21<br>8.63<br>17.76                                 | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>654.1<br>600.0                                              | 1 2 2 1 -1                                  | 5.78<br>5.78<br>5.62<br>1.21<br>5.05<br>1.00<br>1.00<br>5.14                                         | N <sub>2</sub><br>2948.6<br>3011.0<br>3233.2<br>3478.2<br>2658.6<br>3047.4<br>2882.4<br>2846.7                                                   | 3 -23<br>7 -33<br>1 -35<br>9 -37<br>7 -31<br>9 -33<br>1 -33                                              | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03<br>8.62                                         | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8<br>1609.3                                         | 5<br>1<br>0<br>8                                           | 126.35<br>123.86<br>123.68<br>124.08<br>123.38                                                                                 | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5099<br>4804                                 | 92<br>02<br>88<br>10<br>00<br>00<br>05                         | 0.00<br>1457.08<br>1095.69<br>1149.04<br>1057.02<br>1039.41                                                                 | Loss 1<br>0<br>-96<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63 | 155<br>115<br>121<br>112<br>110<br>104                                   | 00<br>6.40<br>6.38<br>8.04<br>8.67<br>94.42<br>17.28                                        | 0<br>406<br>281<br>275<br>330<br>284                                           | 54<br>12<br>54<br>09<br>48<br>52                               | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63                      | 0.00<br>-0.43<br>0.85<br>0.41<br>-0.32<br>0.00<br>0.00                                   | 10<br>43<br>18<br>11<br>32<br>10<br>10<br>29                               |
|                                                            | Remainin<br>2.46<br>2.27<br>2.04<br>1.85<br>1.46<br>1.22<br>1.00<br>0.85         | ng (kg) CO) 77 0.0 84 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 85 0.0 | N (e) CO  00 4  00 3  01 2  00 2  00 3  00 3  00 3  00 3                     |                                                                                                                          | Excess Air EA 3.79.4% 524.1% 524.1% 583.7% 603.5% 482.3% 525.9% 523.0% 475.8% 700.6%                                                     | Total C <sub>2</sub> 20.70 20.76 20.77 20.78 20.74 20.76 20.74 20.76 20.74 20.80                                                   | alc. %<br>D <sub>2</sub> fel 6<br>16.57<br>17.58<br>17.88<br>17.97<br>17.34<br>17.59<br>17.58<br>17.59<br>17.58                 | Page (PC) 147.3 119.9 118.3 122.3 114.8 121.1 115.6 115.1 118.6                                                             | 20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4<br>20.5<br>20.5                                                                                                                                                                                                                       | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101. | 2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>76 75<br>76 75<br>76 75<br>76 75          | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%<br>4.6%<br>2.1%<br>3.1%<br>4.6%<br>7.0%                                                                                                                                                                                                                                                                                                                    | 73.2%<br>73.6%<br>71.9%<br>70.6%<br>73.5%<br>74.4%<br>75.6%<br>68.4%                                          | Rs 29 38 42 43 35 38 38 38 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 2 2 2 2 4 1 9 1 6 1 4 1 5 1 9 0                                                                                                                                                                                                                                                                                                                                     | Nt<br>45<br>27<br>04<br>86<br>63<br>40<br>22<br>00                               | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20<br>66.63                            | 23<br>21<br>19<br>17<br>15<br>13<br>11<br>09<br>07                            |     | y<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20<br>66.63                         | 955<br>390<br>390<br>431<br>381<br>383<br>383<br>383                      | put /* 22 09 03 66 88 35 56 30                                                 | 12- [s]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17                 | /1- p                                                                | [b]<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vali<br>19881<br>19881<br>19881<br>19881<br>19881<br>19881<br>19881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00 | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49 | 79.3<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2         | h) 30 2<br>24 2<br>22 2<br>22 2<br>25 2<br>24 2<br>24 2<br>26 2<br>26 2<br>27 2<br>28 2                                                                     | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02                                                                | [w]<br>0.59<br>0.75<br>0.89<br>0.87<br>0.81<br>0.75<br>0.76<br>0.82                      | 25<br>23<br>22<br>27<br>25<br>27<br>25<br>27                                                                                                                         | 1 1<br>0 -0<br>5 -0<br>3 -0<br>6 -0<br>3 -0<br>4 -0<br>5 -0<br>8 -0 | P4<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.0 | 0.10<br>0.05<br>0.07<br>0.07<br>0.05<br>0.07<br>0.08<br>0.05               | 4                                       | 100 4<br>1.12 168<br>1.31 23<br>1.11 268<br>1.12 268<br>1.22 268<br>1.28 215<br>1.25 23<br>1.25 23<br>1.27 215<br>1.23 316               | 10 0<br>16 -4<br>96 0<br>94 0<br>32 -4<br>95 0<br>55 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00<br>02<br>06<br>16<br>07<br>05<br>00<br>00<br>00<br>00                               | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42<br>-0.35<br>-0.37<br>-0.37<br>-0.37<br>-0.36 | N <sub>2</sub><br>909.07<br>909.08<br>909.08<br>909.08<br>909.08<br>909.08<br>909.08<br>909.08<br>909.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91<br>33.91<br>33.86<br>34.13                            | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61       | 42<br>39<br>39<br>39<br>38<br>38<br>38<br>38                                                                         | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77<br>18.28<br>11.73                                     | 50<br>39<br>38<br>40<br>37<br>39<br>37<br>37<br>37<br>37                   | 00 <sub>3</sub><br>41.85<br>19.16<br>40.50<br>16.80<br>16.34<br>67.61<br>34.71<br>71.62                                         | 3790<br>2964<br>2905<br>3036<br>2806<br>2992<br>2842<br>2825<br>2928                                           | 55<br>04<br>35<br>25<br>08<br>13<br>43<br>26<br>98                   | 2885.8<br>2885.8<br>2828.9<br>2955.8<br>2732.8<br>2913.0<br>2768.1<br>2751.5<br>2851.9                                         | 9 35<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28<br>6 27<br>0 27<br>7 28                         | 44.45<br>53.15<br>56.82<br>22.35<br>51.67<br>80.00<br>36.62<br>20.14<br>19.57                                     | 4861.91<br>3740.86<br>3864.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84<br>3555.38<br>3693.52                                  | 4409<br>3454<br>3386<br>3538<br>3271<br>3486<br>3313<br>3293<br>3414                                 | 51 29-<br>57 290<br>67 290<br>12 290<br>57 290<br>34 29-<br>35 290<br>34 290<br>34 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16<br>55 15<br>64 15                                                                                                                                                           | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>(7.21<br>8.63<br>(7.76<br>(3.48                        | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>664.1<br>600.0<br>927.2                                     | 1 2 2 1 -1 1 0 1 0 1                        | 5.78<br>5.62<br>1.21<br>5.05<br>1.00<br>1.00<br>5.14<br>8.42                                         | N <sub>2</sub><br>2948.6<br>3011.0<br>3233.2<br>3478.2<br>2658.6<br>3047.4<br>2862.4<br>2646.7<br>3852.6                                         | 3 -23<br>7 -33<br>1 -35<br>9 -37<br>7 -31<br>9 -33<br>1 -33<br>0 -30<br>2 -43                            | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03<br>8.62<br>2.60                                 | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8<br>1609.3                                         | 5<br>1<br>0<br>8                                           | 126.35<br>123.86<br>123.68<br>124.08<br>123.38                                                                                 | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5099                                         | 92<br>02<br>88<br>10<br>00<br>00<br>05                         | 0.00<br>1457.08<br>1096.69<br>1149.04<br>1057.02<br>1039.41<br>983.50<br>931.57<br>1243.00                                  | -58<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-78         | 0<br>150<br>111<br>121<br>112<br>110<br>104<br>29                        | 00<br>6.40<br>6.38<br>8.04<br>9.67<br>9.42<br>17.28<br>4.08                                 | 0<br>406<br>281<br>275<br>330<br>284<br>285<br>292<br>258                      | 54<br>12<br>54<br>59<br>48<br>52<br>25<br>87                   | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-78               | 0.00<br>-0.43<br>0.88<br>0.41<br>-0.32<br>0.00<br>0.00<br>-0.29<br>0.74                  | 10<br>43<br>18<br>11<br>12<br>10<br>10<br>10<br>14                         |
| 7 ime 0 10 20 30 40 50 60 70 80                            | Remainin<br>2.46<br>2.27<br>2.04<br>1.63<br>1.63<br>1.40<br>1.22<br>1.00<br>0.63 | ng (kg) CO) 5 0.0 77 0.0 84 0.0 85 0.0 85 0.0 95 0.0 90 0.0 90 0.0                                                                 | S (16) CO CO CO 4 CO 3 01 2 CO CO 3 01 2 CO 3 00 3 00 3 00 3 00 3 00 3 00 3  | O <sub>2</sub> [d]                                                                                                       | Air EA<br>3379.4%<br>524.1%<br>583.7%<br>603.5%<br>482.3%<br>525.9%<br>523.0%<br>475.8%<br>601.3%                                        | Total C<br>20.70<br>20.76<br>20.77<br>20.78<br>20.74<br>20.76<br>20.76<br>20.76<br>20.76<br>20.76<br>20.76<br>20.76                | alc. % 0-168 16.57 17.58 17.88 17.87 17.54 17.59 17.58 17.30 18.35 17.95                                                        | Page (PC) 147.3 119.9 118.3 122.3 114.8 121.1 115.6 115.1 118.6 118.1                                                       | 20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4<br>20.5<br>20.5<br>20.5                                                                                                                                                                                                               | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101. | 2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75<br>2% 75 | %<br>2.4%<br>2.3%<br>0.9%<br>9.3%<br>4.6%<br>2.1%<br>3.1%<br>4.6%<br>7.0%                                                                                                                                                                                                                                                                                                                    | %<br>73.2%<br>73.6%<br>71.9%<br>70.6%<br>73.5%<br>74.4%<br>75.6%<br>68.4%                                     | Ra<br>29<br>38<br>42<br>43<br>35<br>38<br>38<br>38<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tio 5 2 5 2 5 2 2 2 4 1 9 1 1 8 1 1 4 1 1 5 1 1 9 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                               | Nt<br>45<br>27<br>04<br>86<br>63<br>40<br>22<br>20<br>00<br>82                   | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20<br>56.63<br>76.09                   | 23<br>21<br>19<br>17<br>15<br>13<br>11<br>09<br>07                            |     | y 0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20<br>66.63<br>76.09                   | 553<br>300<br>300<br>430<br>330<br>330<br>330<br>330<br>330<br>330        | put /* 22 09 03 66 88 35 56 36 46                                              | 12= [a]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17         | /1= p<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60        | [b]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vali<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00 | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49 | 79.3<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2 | hj 30 2<br>24 2<br>22 2<br>22 2<br>25 2<br>24 2<br>24 2<br>26 2<br>26 2<br>27 2<br>28 2                                                                     | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02                                                       | [w]<br>0.99<br>0.75<br>0.89<br>0.87<br>0.81<br>0.75<br>0.76<br>0.82<br>0.58              | 25<br>23<br>22<br>27<br>25<br>27<br>25<br>25<br>27<br>19                                                                                                             | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             | P4<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.0 | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.05<br>0.07<br>0.08<br>0.05<br>0.05 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 100 4<br>1.12 168<br>1.31 23<br>1.11 268<br>1.12 268<br>1.22 268<br>1.25 23<br>1.25 23<br>1.27 21<br>1.23 316<br>1.32 268                | 10 0<br>16 -0<br>96 0<br>94 0<br>32 -0<br>95 0<br>55 0<br>55 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>02<br>06<br>16<br>07<br>05<br>00<br>00<br>00<br>00<br>05                         | HC<br>-0.27<br>-0.38<br>-0.39<br>-0.42<br>-0.35<br>-0.37<br>-0.37<br>-0.35<br>-0.48 | N <sub>2</sub> 909.07 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91<br>33.91<br>33.91<br>33.86<br>34.13                   | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61       | 42<br>39<br>39<br>39<br>39<br>39<br>39<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77<br>18.28<br>11.73<br>11.23                            | 50<br>39<br>38<br>40<br>37<br>37<br>37<br>37<br>38                         | 00 <sub>3</sub><br>81.85<br>80.90<br>80.90<br>80.90<br>80.34<br>87.61<br>94.71<br>94.71<br>71.62                                | 3790<br>2964<br>2906<br>3036<br>2806<br>2802<br>2842<br>2825<br>2923<br>2913                                   | 55<br>04<br>35<br>25<br>08<br>13<br>43<br>26<br>98<br>49             | 2685.0<br>2685.6<br>2626.9<br>2955.6<br>2732.8<br>2913.0<br>2768.1<br>2751.5<br>2851.9<br>2850.9                               | 9 36<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28<br>6 27<br>0 27<br>7 28                         | 44.45<br>53.15<br>96.82<br>22.36<br>91.67<br>80.00<br>36.62<br>20.14<br>19.57<br>94.73                            | 4861.91<br>3740.86<br>3864.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84<br>3555.38<br>3693.52<br>3672.91                       | 4409<br>3454<br>3386<br>3538<br>3271<br>3486<br>3313<br>3293<br>3414                                 | 51 29<br>57 29<br>17 29<br>12 29<br>57 29<br>57 29<br>54 29<br>55 29<br>53 29<br>53 29<br>54 29<br>54 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D4 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16<br>55 15<br>64 15<br>67 16                                                                                                                                                  | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>17.21<br>8.63<br>17.76<br>3.48                         | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>664.1<br>600.0<br>927.2                                     | 1 5 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5.78<br>5.62<br>1.21<br>5.05<br>1.00<br>1.00<br>5.14<br>8.42<br>5.12                                 | N <sub>0</sub><br>2948.6<br>3011.0<br>3233.3<br>3478.3<br>2658.6<br>3047.4<br>2882.4<br>2846.7<br>3852.8<br>3329.1                               | 3 -23<br>7 -33<br>1 -35<br>9 -37<br>7 -31<br>9 -33<br>1 -33<br>0 -30<br>2 -43                            | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03<br>8.62<br>2.60                                 | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8<br>1609.3<br>1600.1<br>1617.3                     | 5<br>1<br>0<br>8<br>4<br>7<br>1<br>1<br>5<br>6<br>6        | 126.35<br>123.86<br>123.68<br>124.08<br>123.38<br>123.94<br>123.49<br>123.44<br>123.75                                         | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5029<br>4804<br>6290<br>5621                 | 92<br>02<br>88<br>10<br>00<br>00<br>06<br>95<br>34<br>46       | 0.00<br>1457.08<br>1095.09<br>1149.04<br>1057.02<br>1039.41<br>983.50<br>931.57<br>1243.00<br>1087.04                       | -58<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-78<br>-75  | 155<br>115<br>121<br>112<br>110<br>104<br>29<br>130                      | 00<br>5.40<br>6.38<br>8.04<br>9.67<br>9.42<br>17.28<br>4.08<br>9.61                         | 0<br>406<br>281<br>275<br>330<br>284<br>285<br>292<br>268<br>275               | 54<br>12<br>54<br>59<br>48<br>52<br>25<br>87                   | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-75               | 0.00<br>-0.43<br>0.88<br>0.41<br>-0.32<br>0.00<br>0.00<br>-0.29<br>0.74<br>-0.10         | 10<br>43<br>85<br>11<br>32<br>10<br>10<br>29<br>14                         |
| Time 0 10 20 30 40 50 60 70 80 80                          | Remainin 2.40 2.20 2.04 1.60 1.60 1.40 1.20 0.60 0.55 0.41                       | ng (kg) CO   5                                                                                                                     | 00 4<br>00 3<br>01 2<br>00 2<br>00 3<br>00 3<br>00 3<br>00 3<br>00 3<br>00 3 | O <sub>j</sub> [d]                                                                                                       | Air EA<br>379.4%<br>524.1%<br>583.7%<br>603.5%<br>482.3%<br>523.0%<br>475.8%<br>700.6%<br>700.5%                                         | Total C<br>O <sub>2</sub> 20.70<br>20.76<br>20.77<br>20.78<br>20.74<br>20.76<br>20.76<br>20.74<br>20.80<br>20.78<br>20.80<br>20.78 | alc. %<br>0, tell 0<br>16.57<br>17.58<br>17.88<br>17.87<br>17.97<br>17.34<br>17.59<br>17.58<br>17.50<br>18.35<br>17.95<br>18.35 | Page (PC) 147.3 119.9 118.3 119.9 118.3 114.8 121.1 115.6 115.1 115.6 115.1 115.6                                           | 70 p p p p p p p p p p p p p p p p p p p                                                                                                                                                                                                                                                   | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101. |                                                                                        | % 2.4% 2.3% 0.9% 0.9% 4.6% 2.1% 3.1% 4.6% 7.0% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 8.3% 0.4% 0.4% 8.3% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4 | %<br>73.2%<br>73.6%<br>71.9%<br>70.6%<br>73.5%<br>74.4%<br>73.5%<br>63.4%<br>63.1%                            | Ra 23 36 42 43 35 36 49 43 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tio 5 2 5 2 5 2 2 2 4 1 9 1 1 8 1 1 4 1 1 5 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                   | Nt<br>45<br>27<br>04<br>86<br>63<br>40<br>22<br>20<br>00<br>82<br>59<br>41       | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20<br>66.63<br>76.09<br>83.16          | 23<br>2.1<br>1.2<br>1.7<br>1.5<br>1.3<br>1.1<br>0.9<br>0.7                    |     | y 0.00<br>7.16<br>16.57<br>23.36<br>42.72<br>50.06<br>59.20<br>66.63<br>76.08                            | 555<br>300<br>300<br>430<br>330<br>335<br>335<br>335<br>335<br>335<br>335 | put P<br>222<br>09<br>03<br>56<br>56<br>58<br>55<br>55<br>56<br>14             | 12= [a]<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17<br>4.17 | /4= p 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.                          | [b]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vali<br>1983<br>1983<br>1983<br>1983<br>1983<br>1983<br>1983<br>1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00 | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49 | 79.3<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2 | h) 30 2 24 2 22 2 22 2 24 2 24 2 24 2 24 2 2                                                                                                                | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02                                                       | [w]<br>0.59<br>0.75<br>0.69<br>0.67<br>0.81<br>0.75<br>0.76<br>0.82<br>0.58<br>0.67      | 25<br>22<br>27<br>25<br>25<br>27<br>25<br>27<br>29<br>27                                                                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                               | BQ 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0                         | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.05<br>0.07<br>0.08<br>0.05<br>0.05 | 4                                       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                 | 110 0<br>116 4<br>96 0<br>94 0<br>95 0<br>95 0<br>95 0<br>95 0<br>95 0<br>95 0<br>95 0<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00<br>02<br>06<br>06<br>07<br>07<br>05<br>00<br>00<br>00<br>00<br>05<br>13             | MC -0.27 -0.38 -0.39 -0.42 -0.35 -0.37 -0.37 -0.48 -0.43 -0.43                      | N <sub>2</sub><br>1000.07<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1 | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91<br>33.91<br>33.86<br>34.13<br>34.03<br>34.03          | 261<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261 | 42<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                                 | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77<br>18.28<br>11.73<br>11.23<br>16.37                   | 50<br>39<br>38<br>40<br>37<br>37<br>37<br>38<br>38<br>38                   | CO <sub>2</sub><br>41.86<br>119.16<br>40.50<br>116.80<br>106.34<br>67.61<br>54.71<br>71.62<br>50.74                             | 0;<br>3790.<br>2964.<br>2905.<br>3036.<br>2806.<br>2802.<br>2842.<br>2825.<br>2913.<br>2752.                   | 55<br>04<br>35<br>25<br>08<br>13<br>43<br>26<br>98<br>49             | 2685.0<br>2685.6<br>2626.9<br>2955.6<br>2732.8<br>2913.0<br>2768.1<br>2751.5<br>2851.9<br>2850.9                               | 9 35<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28<br>6 27<br>0 27<br>7 28<br>7 28                 | 64.45<br>53.15<br>96.82<br>22.35<br>91.67<br>80.00<br>36.62<br>20.14<br>19.57<br>94.73                            | 4861.91<br>3740.86<br>3664.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84<br>3555.38<br>3693.52<br>3672.91<br>3461.02            | 4409<br>3454<br>3385<br>3538<br>3271<br>3485<br>3313<br>3293<br>3414<br>3395                         | 51 29<br>57 29<br>17 29<br>12 29<br>57 29<br>57 29<br>64 29<br>95 29<br>93 29<br>94 29<br>95 20<br>95 20<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95                                                                                                       | D4 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16<br>55 15<br>64 15<br>67 16<br>67 16                                                                                                                                         | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>7.21<br>8.63<br>7.76<br>3.48<br>2.98                   | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>664.1<br>600.0<br>927.2<br>783.7<br>874.5                   | 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | 5.78<br>5.78<br>5.62<br>1.21<br>5.05<br>1.00<br>5.14<br>8.42<br>5.12<br>12.41                        | N <sub>2</sub><br>2948.6<br>3011.6<br>3233.3<br>3478.3<br>2658.6<br>3047.4<br>2862.4<br>2862.6<br>3329.1<br>3630.6                               | 3 -23<br>7 -33<br>1 -35<br>3 -37<br>7 -31<br>9 -33<br>1 -33<br>0 -30<br>2 -43<br>0 -38<br>2 -38          | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03<br>8.62<br>2.60<br>4.59                         | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8<br>1609.3<br>1600.1<br>1617.3<br>1611.6           | 5<br>1<br>0<br>8<br>4<br>7<br>1<br>1<br>5<br>6<br>6<br>6   | 126.35<br>123.86<br>123.68<br>124.08<br>123.38<br>123.94<br>123.49<br>123.44<br>123.75<br>123.70<br>123.22                     | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5099<br>4804<br>6290<br>5621<br>6140         | 92<br>02<br>88<br>10<br>00<br>00<br>00<br>95<br>34<br>46<br>46 | 0.00<br>1457.08<br>1095.09<br>1149.04<br>1057.02<br>1039.41<br>983.50<br>931.57<br>1243.00<br>1087.04<br>1177.68            | 0 -96 -60 -69 -72 -65 -64 -63 -75 -75 -47                    | 0<br>150<br>112<br>121<br>113<br>110<br>104<br>29<br>133                 | 00<br>5.40<br>6.35<br>8.04<br>9.67<br>9.42<br>17.25<br>4.08<br>9.61<br>12.08                | 0<br>406<br>281<br>275<br>330<br>284<br>285<br>292<br>268<br>275<br>263        | 54<br>12<br>54<br>59<br>48<br>52<br>25<br>87<br>59             | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-75<br>-75<br>-47 | 0.00<br>-0.43<br>-0.88<br>-0.41<br>-0.32<br>-0.00<br>-0.29<br>-0.74<br>-0.10<br>-0.68    | 10<br>43<br>18<br>11<br>132<br>10<br>10<br>10<br>29<br>14<br>10<br>10      |
| Time 0 10 20 30 40 50 60 70 80                             | Remainin 2.46 2.27 2.04 1.80 1.40 1.22 1.00 0.80 0.55 0.44                       | mg (kg) CO) 5 00 7 00 8 00 8 00 8 00 0 00 0 00 0 00 0                                                                              | 00 4<br>00 3<br>01 2<br>00 2<br>00 3<br>00 3<br>00 3<br>00 3<br>00 3<br>00 3 | O <sub>2</sub> [d] A<br>4.13 3<br>3.18 5<br>2.89 5<br>3.41 4<br>3.16 5<br>3.41 4<br>2.45 7<br>2.82 6<br>2.42 7<br>3.11 5 | Air EA<br>379,4%<br>528,1%<br>528,1%<br>528,7%<br>603,5%<br>603,5%<br>603,5%<br>603,5%<br>601,3%<br>706,6%<br>601,3%<br>706,6%<br>536,5% | 20.76                                                                                                                              | alc. % D <sub>2</sub> (ed) 16.57 17.58 17.58 17.97 17.34 17.59 17.50 17.50 18.35 17.95 18.37 17.65                              | Fibe (PC) 147.3 119.9 118.3 122.3 114.8 121.1 115.6 118.1 118.6 118.1 113.2 117.2                                           | 20.9<br>20.9<br>20.7<br>20.7<br>20.7<br>20.8<br>21.0<br>20.4<br>20.5<br>20.5<br>21.0<br>20.5<br>21.0<br>20.5                                                                                                                                                                               | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101. |                                                                                        | % 2.4% 2.3% 0.59% 9.3% 4.6% 2.1% 3.1% 4.6% 7.0% 0.4% 8.3% 2.4%                                                                                                                                                                                                                                                                                                                               | %<br>73.2%<br>73.6%<br>71.9%<br>73.6%<br>73.5%<br>74.4%<br>73.6%<br>63.4%<br>71.7%<br>63.1%<br>73.7%          | Ra 229 33 34 42 43 35 36 46 43 35 36 46 43 36 36 46 43 36 36 36 36 46 43 36 46 43 36 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 43 46 40 40 40 40 40 40 40 40 40 40 40 40 40 | tio 1 5 2 5 2 2 2 2 2 4 1 1 8 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Nt<br>45<br>45<br>27<br>04<br>86<br>63<br>40<br>22<br>20<br>00<br>82<br>41<br>18 | x<br>0.00<br>7.16<br>16.57<br>23.96<br>42.72<br>50.06<br>59.20<br>66.63<br>76.09<br>83.16<br>92.48          | 23<br>21<br>12<br>1.7<br>1.5<br>1.3<br>1.1<br>0.9<br>0.7<br>0.5<br>0.3        |     | y 0.00<br>7.16<br>16.57<br>23.36<br>33.35<br>42.72<br>50.06<br>59.20<br>66.63<br>76.02<br>83.16<br>92.48 | 100 00 00 00 00 00 00 00 00 00 00 00 00                                   | put P<br>222<br>09<br>03<br>56<br>56<br>58<br>55<br>56<br>56<br>56<br>56<br>56 | 12= [a] 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17                                                 | /4= p 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.                          | [b]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 766 (c)<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.6 | Validation 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 19881 1 | 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00                      | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49 | 79.3<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2 | h) 30 2 24 2 22 2 25 2 26 2 24 2 26 2 26 2 26 2 27 2 28 2 20 2 20 2 21 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 20 2                                  | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02          | [w] 0.59<br>0.75<br>0.69<br>0.67<br>0.61<br>0.75<br>0.76<br>0.82<br>0.58<br>0.67<br>0.58 | 23<br>22<br>27<br>25<br>25<br>27<br>25<br>27<br>29<br>22<br>27<br>29<br>22<br>27<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                               | BQ 0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03   | Nk<br>0.10<br>0.05<br>0.07<br>0.05<br>0.07<br>0.05<br>0.05<br>0.05<br>0.0  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10 <sub>2</sub> (1) 1.12 160 1.12 160 1.31 230 1.11 260 1.22 260 1.28 215 1.25 233 1.25 233 1.27 215 1.23 310 1.32 260 1.81 311 1.26 233 | 2 10 0<br>16 4<br>96 0<br>94 0<br>32 4<br>95 0<br>65 0<br>57 0<br>77 0<br>74 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>02<br>06<br>16<br>07<br>05<br>00<br>00<br>00<br>00<br>00<br>13<br>02<br>50       | HC 0.27 0.38 0.39 0.42 0.35 0.37 0.37 0.35 0.48 0.43 0.43                           | N <sub>2</sub> 909.07 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H <sub>2</sub> O<br>33.70<br>33.93<br>33.95<br>34.00<br>33.87<br>33.91<br>33.91<br>33.86<br>34.13<br>34.03<br>34.03<br>34.03 | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61       | 42<br>39<br>39<br>39<br>39<br>39<br>39<br>39<br>39                                                                   | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77<br>18.28<br>11.73<br>11.23<br>16.37<br>10.35          | 50<br>39<br>38<br>40<br>37<br>37<br>37<br>38<br>38<br>38<br>38             | CO <sub>2</sub><br>41.86<br>119.16<br>40.50<br>116.80<br>106.34<br>67.61<br>34.71<br>31.71<br>71.62<br>50.74<br>34.61<br>118.50 | 0;<br>3790.<br>2964.<br>2905.<br>3036.<br>2806.<br>2802.<br>2842.<br>2825.<br>2913.<br>2752.<br>2889.          | 55<br>04<br>35<br>25<br>08<br>13<br>43<br>26<br>98<br>49<br>72       | 2685.0<br>2685.8<br>2628.9<br>2905.8<br>2732.8<br>2913.0<br>2768.1<br>2751.5<br>2851.9<br>2680.9<br>2680.9<br>2813.9           | 9 36<br>9 28<br>5 27<br>0 29<br>0 28<br>6 27<br>7 28<br>7 28<br>4 26<br>8 27                 | 44.45<br>53.15<br>56.82<br>22.35<br>51.67<br>80.00<br>36.62<br>20.14<br>19.57<br>04.73<br>90.34<br>81.96          | 4861.91<br>3740.86<br>3664.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84<br>3555.36<br>3693.52<br>3640.81                       | 4409<br>3454<br>3385<br>3538<br>3271<br>3486<br>3313<br>3293<br>3414<br>3395<br>3209<br>3368         | 51 29<br>57 29<br>67 29<br>12 29<br>57 29<br>57 29<br>64 29<br>65 29<br>63 29<br>64 20<br>64 20 | D4 21<br>79 16<br>12 16<br>85 16<br>94 15<br>10 16<br>55 15<br>64 15<br>67 16<br>67 16<br>14 15                                                                                                                                | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>7.21<br>8.63<br>7.76<br>3.48<br>2.98<br>11.97<br>11.36 | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>664.1<br>600.0<br>927.2<br>783.7<br>874.5<br>692.7          | 1 2 3                                       | 500<br>1.49<br>5.78<br>5.62<br>1.21<br>5.05<br>1.00<br>1.00<br>5.14<br>8.42<br>5.12<br>12.41<br>1.00 | N <sub>2</sub><br>2948.6<br>3011.6<br>3233.3<br>3478.3<br>2658.6<br>3047.4<br>2852.4<br>2846.7<br>3852.6<br>3329.1<br>3630.0<br>2994.2           | 3 -23<br>7 -33<br>1 -35<br>9 -37<br>7 -31<br>9 -33<br>1 -33<br>1 -33<br>2 -43<br>2 -43<br>2 -38<br>1 -34 | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03<br>8.62<br>2.60<br>4.59<br>7.22<br>0.70         | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1509.8<br>1609.3<br>1600.1<br>1617.3<br>1611.6<br>1606.0 | 6 11 00 88 44 77 11 65 65 65 65 65 65 65 65 65 65 65 65 65 | 126.35<br>123.86<br>123.68<br>124.08<br>123.38<br>123.94<br>123.49<br>123.49<br>123.47<br>123.75<br>123.70<br>123.22<br>123.63 | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5099<br>4804<br>6290<br>5620<br>5140<br>5237 | 92<br>02<br>88<br>10<br>00<br>00<br>95<br>34<br>46<br>46<br>44 | 0.00<br>1457.08<br>1095.69<br>1149.04<br>1057.02<br>1039.41<br>983.50<br>931.57<br>1243.00<br>1087.04<br>1177.68<br>1492.87 | 0 -96 -69 -72 -65 -64 -63 -75 -75 -47 -97                    | 150<br>115<br>115<br>121<br>116<br>116<br>104<br>29<br>136<br>116<br>125 | 00<br>6 40<br>6 38<br>8 50<br>8 67<br>8 67<br>8 42<br>77 28<br>4 06<br>9 61<br>9 60<br>9 50 | 0<br>406<br>281<br>275<br>330<br>284<br>285<br>292<br>268<br>275<br>263<br>417 | 54<br>12<br>54<br>59<br>48<br>52<br>25<br>87<br>59<br>36<br>76 | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-75               | 0.00<br>-0.43<br>0.88<br>0.41<br>-0.32<br>0.00<br>-0.29<br>0.74<br>-0.10<br>2.68<br>0.00 | 10<br>43<br>15<br>11<br>32<br>10<br>10<br>10<br>29<br>14<br>10<br>10<br>10 |
| Time 0 10 20 30 40 50 60 70 80 80                          | Remainin 2.40 2.20 2.04 1.60 1.60 1.40 1.20 0.60 0.55 0.41                       | mg (kg) CO) 5 00 7 00 8 00 8 00 8 00 0 00 0 00 0 00 0                                                                              | 00 4<br>00 3<br>01 2<br>00 2<br>00 3<br>00 3<br>00 3<br>00 3<br>00 3<br>00 3 | O <sub>2</sub> [d] A<br>4.13 3<br>3.18 5<br>2.89 5<br>3.41 4<br>3.16 5<br>3.41 4<br>2.45 7<br>2.82 6<br>2.42 7<br>3.11 5 | Air EA<br>379.4%<br>524.1%<br>583.7%<br>603.5%<br>482.3%<br>523.0%<br>475.8%<br>700.6%<br>700.5%                                         |                                                                                                                                    | alc. % Dy [el] 0 16.57 17.58 17.88 17.97 17.34 17.58 17.58 17.50 17.58 17.70 18.35 17.95 18.37 17.65                            | Place (**C)   147.3   119.9   118.3   122.3   114.8   121.1   115.6   116.1   116.5   116.1   117.2   117.6   117.6   117.6 | 20 8<br>20 8<br>21 0<br>20 7<br>20 8<br>21 0<br>20 4<br>20 5<br>20 5<br>20 5<br>20 6<br>20 7<br>20 8<br>21 0<br>20 8<br>20 8<br>20 8<br>20 8<br>20 8<br>20 8<br>20 8<br>20 | 101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101.<br>101. |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                              | %<br>73.2%<br>73.6%<br>71.9%<br>73.6%<br>73.5%<br>74.4%<br>73.6%<br>63.4%<br>71.7%<br>62.1%<br>73.7%<br>72.9% | Ra 29 38 42 43 35 38 35 36 49 43 40 40 40 40 40 40 40 40 40 40 40 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tio 1 5 2 5 2 2 2 2 2 4 1 1 8 1 1 4 1 1 5 1 1 9 0 0 3 0 0 0 0 3 0 0 9 0                                                                                                                                                                                                                                                                                               | Nt<br>45<br>27<br>04<br>86<br>63<br>40<br>22<br>20<br>00<br>82<br>41<br>18<br>00 | x<br>0.00<br>7.16<br>16.57<br>23.96<br>33.35<br>42.72<br>50.06<br>59.20<br>66.63<br>76.09<br>63.16<br>92.48 | 23<br>21<br>19<br>17<br>15<br>13<br>13<br>10<br>9<br>9,7<br>9,5<br>0,3<br>0,1 |     | 9 0.00 7.16 16.57 23.96 33.35 42.72 50.06 53.76 09 83.16 92.48 100.00                                    | 300<br>300<br>300<br>300<br>430<br>330<br>330<br>330<br>330<br>330        | Pput P<br>1 222 09 003 003 003 003 003 003 003 003 003                         | 12= [a] 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17                                                 | /1= p<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60<br>6.60<br>6.6 | [b]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 716= [c]<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2.68<br>2. | Vali<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831<br>19831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00                      | 4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49<br>4.49 | 79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2<br>79.2         | h) 30 2 24 2 22 2 25 2 26 2 24 2 26 2 26 2 26 2 27 2 28 2 29 2 20 2 20 2 21 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 20 2 20 2 20 2 20 2 20 2 20 2 20 | [u]<br>21.03<br>21.02<br>21.01<br>21.01<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.02<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00 | [w] 0.99 0.75 0.89 0.57 0.81 0.76 0.82 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.74 0.71      | 25<br>25<br>27<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                         | I I I I I I I I I I I I I I I I I I I                               | BQ 0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03   | Nk<br>0.10<br>0.05<br>0.07<br>0.05<br>0.07<br>0.05<br>0.05<br>0.05<br>0.0  | 4 4 4 4 4 4 4 4 4                       | 200, 101, 112, 110, 111, 111, 111, 111,                                                                                                  | 2 10 0 116 4 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 126 0 | 00<br>02<br>06<br>16<br>07<br>05<br>00<br>00<br>00<br>00<br>00<br>13<br>02<br>50<br>00 | HC 0.27 0.38 0.39 0.42 0.35 0.37 0.37 0.35 0.48 0.43 0.43 0.43 0.43                 | N <sub>2</sub> 909.07 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08 909.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H <sub>2</sub> O<br>23.70<br>23.93<br>23.95<br>34.00<br>23.87<br>23.91<br>23.86<br>34.13<br>34.03<br>24.03<br>23.93<br>23.97 | 2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61       | 42 39 39 39 39 39 39 39 39 39 39 39 39 39                                                                            | K<br>10.40<br>13.02<br>11.40<br>15.45<br>17.94<br>14.24<br>18.77<br>18.28<br>11.73<br>11.23<br>16.37<br>10.35<br>10.78 | 50<br>39<br>38<br>40<br>37<br>37<br>37<br>37<br>38<br>38<br>38<br>38<br>38 | CO <sub>2</sub><br>41.86<br>19.16<br>40.50<br>16.80<br>56.34<br>57.61<br>54.71<br>71.62<br>50.74<br>54.61<br>118.50<br>50.59    | 0;<br>3790.<br>2964.<br>2905.<br>3036.<br>2806.<br>2802.<br>2842.<br>2825.<br>2913.<br>2752.<br>2889.<br>2896. | 55<br>04<br>35<br>25<br>08<br>13<br>43<br>26<br>98<br>49<br>59<br>72 | 2685.0<br>2685.8<br>2628.9<br>2905.8<br>2732.8<br>2913.0<br>2768.1<br>2751.5<br>2851.9<br>2630.9<br>2680.9<br>2813.9<br>2822.4 | 9 35<br>9 28<br>5 27<br>0 29<br>3 27<br>0 28<br>6 27<br>7 28<br>7 28<br>4 26<br>8 27<br>3 27 | 44.45<br>53.15<br>56.62<br>22.35<br>51.67<br>80.00<br>36.62<br>20.14<br>19.57<br>04.73<br>50.34<br>81.96<br>90.34 | 4861.91<br>3740.86<br>3664.00<br>3837.62<br>3531.15<br>3779.73<br>3577.84<br>3555.38<br>3653.52<br>3672.91<br>3461.02<br>3640.81 | 4409<br>3454<br>3386<br>3538<br>3271<br>3486<br>3313<br>3293<br>3414<br>3396<br>3209<br>3368<br>3378 | 51 29<br>57 29<br>67 29<br>12 29<br>57 29<br>67 29<br>67 29<br>68 20<br>68 20 | D4 21 779 16 779 16 779 16 855 16 855 16 954 15 955 15 854 15 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 857 16 | 2.38<br>5.83<br>11.72<br>9.59<br>6.70<br>7.21<br>8.63<br>7.76<br>3.48<br>2.98<br>11.97<br>11.36 | 640.9<br>694.0<br>758.1<br>819.5<br>604.2<br>702.9<br>654.1<br>600.0<br>927.2<br>783.7<br>874.5<br>692.7<br>728.5 | 1 5 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 50<br>5.78<br>5.62<br>1.21<br>5.05<br>1.00<br>1.00<br>5.14<br>8.42<br>5.12<br>12.41<br>1.00<br>1.00  | N <sub>2</sub><br>2948.6<br>3011.6<br>3233.3<br>3478.3<br>2658.6<br>3347.4<br>2852.4<br>2646.7<br>3652.6<br>3329.1<br>3630.6<br>2994.2<br>3125.7 | 3 -23<br>7 -33<br>1 -35<br>9 -37<br>7 -31<br>9 -33<br>1 -33<br>0 -30<br>0 -38<br>2 -43<br>2 -38<br>1 -34 | 8.17<br>9.92<br>0.32<br>4.14<br>2.74<br>3.94<br>2.03<br>8.62<br>2.80<br>4.59<br>7.22<br>0.70<br>7.21 | 1630.2<br>1608.9<br>1607.7<br>1615.3<br>1599.8<br>1609.3<br>1600.1<br>1617.3<br>1611.6           | 6 11 00 88 44 77 11 65 65 65 65 65 65 65 65 65 65 65 65 65 | 126.35<br>123.86<br>123.68<br>124.08<br>123.38<br>123.94<br>123.49<br>123.44<br>123.75<br>123.70<br>123.22                     | 5325<br>5248<br>5579<br>5854<br>4815<br>5317<br>5099<br>4804<br>6290<br>5621<br>6140         | 92<br>02<br>88<br>10<br>00<br>00<br>95<br>34<br>46<br>46<br>44 | 0.00<br>1457.08<br>1095.09<br>1149.04<br>1057.02<br>1039.41<br>983.50<br>931.57<br>1243.00<br>1087.04<br>1177.68            | 0 -96 -69 -72 -65 -64 -63 -75 -47 -97 -31                    | 150<br>115<br>115<br>121<br>116<br>116<br>104<br>29<br>136<br>116<br>125 | 00<br>5.40<br>6.35<br>8.04<br>9.67<br>9.42<br>17.25<br>4.08<br>9.61<br>12.08                | 0<br>406<br>281<br>275<br>330<br>284<br>285<br>292<br>268<br>275<br>263        | 54<br>12<br>54<br>59<br>48<br>52<br>25<br>87<br>59<br>36<br>76 | 0<br>-95<br>-60<br>-69<br>-72<br>-65<br>-64<br>-63<br>-75<br>-75<br>-47 | 0.00<br>-0.43<br>-0.88<br>-0.41<br>-0.32<br>-0.00<br>-0.29<br>-0.74<br>-0.10<br>-0.68    | 10<br>43<br>15<br>11<br>32<br>10<br>10<br>10<br>29<br>14<br>10<br>10<br>10 |



All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | _            |    |
| Control #:    | G102366578 |              |    |

Test Duration: 120
Output Category: ledium Burn Rate

#### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 69.7%     | 75.2%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 70%       | 75.6%     |

| Output Rate (kJ/h) | 15,471 | 14,676 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 1.17   | 2.58   | (lb/h)  |
| Input (kJ/h)       | 22,192 | 21,051 | (Btu/h) |

| 2.34 | 5.16                      | dry lb                    |
|------|---------------------------|---------------------------|
| 4.49 |                           |                           |
| 4.70 |                           |                           |
| 6.71 |                           |                           |
| 3    |                           |                           |
| 2.00 |                           |                           |
|      | 4.49<br>4.70<br>6.71<br>3 | 4.49<br>4.70<br>6.71<br>3 |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.22        | 0.11 |
| g/kg Dry Fuel    | 2.87        | 1.42 |
| g/h              | 3.36        | 1.67 |
| lb/MM Btu Output | 0.50        | 0.25 |

| Air/Fuel Ratio (A/F) | 39.80 |
|----------------------|-------|
|----------------------|-------|

| VERSION:                                 | 2.2                                                                                     | 12/14/2009                                                                                   |                                                                                |                                                                                          |                                                                                                                        |                                                                      |                   |
|------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|
| Manufacturer:                            | Ardisam                                                                                 |                                                                                              | Applia                                                                         | nce Type:                                                                                | Pellet                                                                                                                 | (Cat, Non-                                                           | Cat, Pellet)      |
| Model:                                   | Serenity                                                                                |                                                                                              |                                                                                |                                                                                          |                                                                                                                        |                                                                      |                   |
| Date:                                    | 12/7/2015                                                                               |                                                                                              | Te                                                                             | mp. Units                                                                                | F                                                                                                                      | (F or C)                                                             | Default           |
| Run:                                     | 1                                                                                       |                                                                                              | We                                                                             | ight Units                                                                               | lb                                                                                                                     | (kg or lb)                                                           |                   |
| Control #:                               | G102366578                                                                              |                                                                                              |                                                                                |                                                                                          |                                                                                                                        |                                                                      | HHV (kJ/kg)       |
| <b>Test Duration:</b>                    | 120                                                                                     |                                                                                              |                                                                                |                                                                                          |                                                                                                                        |                                                                      | %C                |
| <b>Output Category:</b>                  | Medium Burn Rate                                                                        |                                                                                              |                                                                                | Fuel [                                                                                   | Data                                                                                                                   |                                                                      | %H                |
|                                          |                                                                                         |                                                                                              |                                                                                |                                                                                          | Marth                                                                                                                  |                                                                      | %O                |
| Wood                                     | Moisture (% wet):                                                                       | 4.49                                                                                         |                                                                                | HHV                                                                                      | 18,967                                                                                                                 | kJ/kg                                                                | %Ash              |
| Loa                                      | d Weight (lb wet):                                                                      | 5.40                                                                                         |                                                                                | %С                                                                                       | 46.87                                                                                                                  | Ū                                                                    |                   |
|                                          | rn Rate (dry kg/h):                                                                     | 1.17                                                                                         |                                                                                | %Н                                                                                       | 6.41                                                                                                                   |                                                                      | _                 |
| Total Parti                              | culate Emissions:                                                                       | 6.71 g                                                                                       |                                                                                | %O                                                                                       | 46.62                                                                                                                  |                                                                      | 1                 |
|                                          |                                                                                         | J                                                                                            |                                                                                | %Ash                                                                                     | 0.1                                                                                                                    |                                                                      | f                 |
|                                          |                                                                                         |                                                                                              |                                                                                |                                                                                          |                                                                                                                        |                                                                      | S                 |
|                                          | Averages                                                                                | 0.00                                                                                         | 3.08                                                                           | 17.43                                                                                    | 247.86                                                                                                                 | 69.23                                                                | _                 |
|                                          |                                                                                         |                                                                                              | 0.00                                                                           |                                                                                          |                                                                                                                        | UUU                                                                  |                   |
|                                          | 3.1                                                                                     |                                                                                              | 0.00                                                                           |                                                                                          | Temp                                                                                                                   |                                                                      | Г                 |
| Elapsed                                  | Fuel Weight                                                                             |                                                                                              |                                                                                |                                                                                          |                                                                                                                        |                                                                      | 1                 |
| Elapsed<br>Time (min)                    |                                                                                         |                                                                                              | CO <sub>2</sub>                                                                |                                                                                          | Temp                                                                                                                   | o. (°F)                                                              | F                 |
| •                                        | Fuel Weight<br>Remaining (lb)                                                           | Flue Gas                                                                                     | s Compositi                                                                    | ion (%)                                                                                  | Temp<br>Flue                                                                                                           | o. (°F)<br>Room                                                      | F<br>i            |
| Time (min)                               | Fuel Weight<br>Remaining (lb)                                                           | Flue Gas                                                                                     | CO <sub>2</sub>                                                                | ion (%)<br>O <sub>2</sub>                                                                | Temp<br>Flue<br>Gas                                                                                                    | o. (°F)<br>Room<br>Temp                                              | F<br>i<br>C       |
| Time (min)                               | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01                                           | Flue Gas                                                                                     | CO <sub>2</sub>                                                                | ion (%)<br>O <sub>2</sub>                                                                | Temp<br>Flue<br>Gas<br>297.1                                                                                           | o. (°F) Room Temp 69.6                                               | F<br>i            |
| Time (min)                               | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01<br>4.50                                   | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01                                                       | CO <sub>2</sub> 4.13 3.18                                                      | ion (%) O <sub>2</sub> 16.36 17.34                                                       | Temp<br>Flue<br>Gas<br>297.1<br>247.8                                                                                  | 0. (°F) Room Temp 69.6 69.2                                          | F<br>i<br>C       |
| Time (min)  0 10 20                      | Fuel Weight<br>Remaining (lb)<br>5.40<br>5.01<br>4.50<br>4.11                           | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01                                                       | 5 Compositi<br>CO <sub>2</sub><br>4.13<br>3.18<br>2.89                         | ion (%) O <sub>2</sub> 16.36 17.34 17.65                                                 | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9                                                                         | 0. (°F)<br>Room<br>Temp<br>69.6<br>69.2<br>69.8                      | F<br>i<br>C       |
| Time (min)  0 10 20 30                   | Fuel Weight<br>Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09                            | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00                               | S Compositi<br>CO <sub>2</sub><br>4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16 | ion (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34                               | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0                                              | 0. (°F)<br>Room<br>Temp<br>69.6<br>69.2<br>69.8<br>69.3              | F<br>i<br>C       |
| Time (min)  0 10 20 30 40 50             | Fuel Weight<br>Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70                       | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00                       | CO <sub>2</sub> 4.13 3.18 2.89 2.81 3.41 3.16 3.18                             | ion (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32                         | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1                                     | 69.6<br>69.8<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7                 | F<br>i<br>C       |
| Time (min)  0 10 20 30 40 50 60          | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20                     | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00                       | CO <sub>2</sub> 4.13 3.18 2.89 2.81 3.41 3.16 3.18 3.44                        | 16.36<br>17.34<br>17.65<br>17.71<br>17.07<br>17.34<br>17.32<br>17.05                     | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2                            | 69.6<br>69.8<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7                 | F<br>i<br>C       |
| Time (min)  0 10 20 30 40 50 60 70       | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20 1.80                | Flue Gas<br>CO<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                | \$ Composition CO <sub>2</sub> 4.13 3.18 2.89 2.81 3.41 3.16 3.18 3.44 2.45    | 16.36<br>17.34<br>17.65<br>17.71<br>17.07<br>17.34<br>17.32<br>17.05<br>18.10            | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2<br>245.5                   | 69.6<br>69.2<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9         | F<br>i<br>C       |
| Time (min)  0 10 20 30 40 50 60 70 80    | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20 1.80 1.29           | Flue Gas<br>CO  0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.                                        | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18<br>3.44<br>2.45<br>2.82   | ion (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32 17.05 18.10 17.69       | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2<br>245.5<br>244.5          | 69.6<br>69.2<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9<br>68.9 | F<br>i<br>C       |
| Time (min)  0 10 20 30 40 50 60 70 80 90 | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20 1.80 1.29 0.91      | Flue Gas<br>CO  0.00  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.00  0.01 | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18<br>3.44<br>2.45<br>2.82   | ion (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32 17.05 18.10 17.69 18.12 | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2<br>245.5<br>244.5<br>235.8 | 69.6<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9<br>68.9<br>69.8 | F<br>i<br>C       |
| Time (min)  0 10 20 30 40 50 60 70 80    | Fuel Weight Remaining (lb)  5.40 5.01 4.50 4.11 3.60 3.09 2.70 2.20 1.80 1.29 0.91 0.41 | Flue Gas<br>CO  0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.                                        | 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18<br>3.44<br>2.45<br>2.82   | ion (%) O <sub>2</sub> 16.36 17.34 17.65 17.71 17.07 17.34 17.32 17.05 18.10 17.69       | Temp<br>Flue<br>Gas<br>297.1<br>247.8<br>244.9<br>252.1<br>238.6<br>250.0<br>240.1<br>239.2<br>245.5<br>244.5          | 69.6<br>69.2<br>69.8<br>69.3<br>69.4<br>69.7<br>68.7<br>68.9<br>68.9 | F<br>ii<br>C<br>V |

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

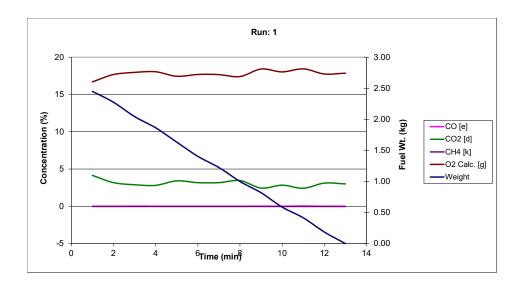
50

6.6 42.9

0.5

**Default Fuel Values** D. Fir

19,810


48.73

6.87

43.9 0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

| Manufacturer                                      |                                                                              |                                                                                                                    |                                                                      |                                                                                                                    |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|---------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|
| Model                                             |                                                                              |                                                                                                                    |                                                                      |                                                                                                                    |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         | el Ratio (                                                                        |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              | Moi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ture Con                                                                                                | tent Mo                                                                                                           |                                                         | .49  |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
| Date                                              |                                                                              | 7/15                                                                                                               |                                                                      |                                                                                                                    |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           | rall Heating                                                                                                         |                                                                                                                            |                                                                                                                            |                                                                                           | Dry M                                                                                                 |                                                                                         |                                                                                   |                                                | 29.20                                                                                                    |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
| Run                                               |                                                                              |                                                                                                                    |                                                                      |                                                                                                                    | Note: In th                                                                                                                    | e Trout data",<br>", and "Mass B                                                                                                    | Date: % O <sub>2</sub> *, *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fuel                                                                                    |                                                                                                           | Combustion                                                                                                           |                                                                                                                            |                                                                                                                            | 99.50%                                                                                    | Dry Mo                                                                                                |                                                                                         |                                                                                   | N.):                                           | 1380.44                                                                                                  | 56                                                                  | HC                                         |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comb                                                                       | uation E  | ficiency:                                                                                     |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            | <ul><li>ii): 4.</li></ul>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | Dry kg                                                                                                            |                                                         | 34   |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | G10236                                                                       | 00578                                                                                                              |                                                                      |                                                                                                                    | Properties                                                                                                                     | r, and Mass B                                                                                                                       | lance" colum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns, [e], [d], [c                                                                        | al- H                                                                                                     | ot Transfe                                                                                                           | Efficienc                                                                                                                  | y:                                                                                                                         | 70.06%                                                                                    | Air                                                                                                   | Fuel Re                                                                                 | io (AIF)                                                                          |                                                | 39.80                                                                                                    | 0                                                                   | 8                                          |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | Total In  |                                                                                               |                                                                             |                                            | 2,095 (                                                                                          |                                                                                                                                   |                                         |                                                              |                                                                                                    | nitial Dry                                                        | Weight                                                                                      | Wt <sub>de</sub> (k                                                                        | g): 2.5                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | c                                                                                                                 | 4                                                       | .87  |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
| Test Duration                                     | 120                                                                          | min                                                                                                                | in                                                                   |                                                                                                                    | [8]. [D], [C],                                                                                                                 | (h), [u], [w], [j],<br>variables in Cl                                                                                              | reser 13.7.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o mer                                                                                   |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | Total Out |                                                                                               |                                                                             |                                            | 9.345 (                                                                                          | (Bbu)                                                                                                                             |                                         |                                                              |                                                                                                    | Mol                                                               | sture Co                                                                                    | ontent D                                                                                   | ry 43                                                                           | ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | H                                                                                                                 | 9                                                       | .41  |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   |                                                                              |                                                                                                                    |                                                                      | LHV                                                                                                                |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           | leat Output                                                                                                          |                                                                                                                            |                                                                                                                            |                                                                                           | 15.471                                                                                                |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           | ficiency:                                                                                     |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | 0                                                                                                                 | 4                                                       | 1.62 |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Eff                                                                          |                                                                                                                    |                                                                      | 75.19%                                                                                                             |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           | Heat Input                                                                                                           | 21.05                                                                                                                      | 51 Blub                                                                                                                    |                                                                                           | 22.192                                                                                                | kJh                                                                                     |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | Total     | CO (a):                                                                                       | 2                                                                           | 1.33                                       |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Comb                                                                         | D Eff 99                                                                                                           | 99.50%                                                               | 39.50%                                                                                                             |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ruste CO <sub>2</sub>                                                                   |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | HTE                                                                          | E# 70                                                                                                              | 70.06%                                                               | 75.57%                                                                                                             |                                                                                                                                |                                                                                                                                     | CO <sub>2ut</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.36                                                                                   | Br                                                                                                        | m Duration                                                                                                           | 2.0                                                                                                                        | 0                                                                                                                          | h                                                                                         |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Outp                                                                         | out 1                                                                                                              | 15.471                                                               | kath                                                                                                               |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F <sub>0</sub>                                                                          |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  | Load W                                                                                                                            | Velaht (                                | ka):                                                         | 2.45                                                                                               |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Burn R                                                                       |                                                                                                                    | 1.17                                                                 | kah                                                                                                                |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.015                                                                                   |                                                                                                           | Burn Rate                                                                                                            | 2.5                                                                                                                        | 8                                                                                                                          | lb/b                                                                                      | 1.170                                                                                                 | kah                                                                                     |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  | Fuel He                                                                                                                           | eating                                  |                                                              | HHV                                                                                                | LH                                                                | ,                                                                                           |                                                                                            | HP                                                                              | W L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Grams                                                                        |                                                                                                                    | 3                                                                    |                                                                                                                    |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  | Value in                                                                                                                          | n kJiko                                 | - CV:                                                        | 18.957                                                                                             | 17.5                                                              | 15                                                                                          | Blu                                                                                        | /ib 815                                                                         | 9.8 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.2                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Inpu                                                                         |                                                                                                                    |                                                                      | kJ/h                                                                                                               |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           | Rack Temp                                                                                                            | 243.1                                                                                                                      | 8 Deg.                                                                                                                     | r                                                                                         | 117.6                                                                                                 | Deg. C                                                                                  |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | MCw                                                                          |                                                                                                                    | 4.49                                                                 |                                                                                                                    |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           | JMS                                                                                                |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      | AVERAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GE                                                                               |                                                                                                                         |     |       |                                                                                   | SUMS                                                      |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   | Averag                                                                       |                                                                                                                    | 0.00                                                                 | 3.08                                                                                                               | 5.73                                                                                                                           | 20.85                                                                                                                               | 17.78 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.92                                                                                   | 20.68                                                                                                     | 101.5%                                                                                                               | 71.75                                                                                                                      | 6 73                                                                                                                       | 2.9%                                                                                      | 37.68                                                                                                 | 1.22                                                                                    | 50.1                                                                              | 1                                              | 1.17                                                                                                     | 50                                                                  | .11                                        | 46052                                                                                                      | 3.9                                                                          | 1 0                                                                                                   | 5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9                                                                        |           | 1967.00                                                                                       | 4.4                                                                         | 9                                          | 9.15                                                                                             | 20.99                                                                                                                             |                                         |                                                              | 2.56                                                                                               | -0.0                                                              |                                                                                             | 0.05                                                                                       | 39.                                                                             | 40 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .68                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.35                                                                                                   | 1032                                                                                                              | 3 32                                                    | 78   | 2.61                                                                   | 393.                                                                                   | 07                                                               | 3921.1                                                                                                                        |                                                                                  | 2965.03                                                                                                                                            | 28                                                                                             |                                                                                                                | 2854.0                                                                                                                                  |                                                                                                  |                                                                                                           | 3455.54                                                                                                                                   |                                                                                                                   | 3 20                                                                                 | 38.15                                                                                           | 8902                                                                                                               | 77                                                            | 188.50                                                                                                   | 380                                                                       | 74.12                                                                                              | -4052                                                                                                             | 27 :                                          | 0208.99                                                                                                    | 161                                                                                                          | 10.18                                                                                | 5149.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  | 12483.93                                                                                                                | -73 | 36.27 | 1322                                                                              | 1.2                                                       | 33568.0                                                                           | -736                                            | .6.3                                                                        | 3.3                                                                                      |          |
| Elepsed                                           |                                                                              | UT DATA                                                                                                            |                                                                      |                                                                                                                    | Oxygo                                                                                                                          |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input Da                                                                                | rica .                                                                                                    | Combust                                                                                                              | Heat                                                                                                                       |                                                                                                                            | Net                                                                                       | Air                                                                                                   | Wet W                                                                                   | 5. W                                                                              | et .                                           | Dry Wt.                                                                                                  | % !                                                                 | Dry                                        |                                                                                                            |                                                                              |                                                                                                       | Fuel F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ropert                                                                     | 03        |                                                                                               | 100                                                                         | ٧                                          |                                                                                                  |                                                                                                                                   |                                         | Balane                                                       | ce<br>r finn on                                                                                    |                                                                   |                                                                                             | Wood                                                                                       |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      |                                                                        | Sta                                                                                    |                                                                  | ,                                                                                                                             | teat Cor                                                                         |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         | ck Tem                                                                                           | peratu                                                                                                    | ne                                                                                                                                        | Roo                                                                                                               |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    | f Dry Pu                                                                                                          | el)                                           |                                                                                                            |                                                                                                              |                                                                                      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
|                                                   |                                                                              |                                                                                                                    |                                                                      |                                                                                                                    |                                                                                                                                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                           |                                                                                                                      |                                                                                                                            |                                                                                                                            |                                                                                           |                                                                                                       |                                                                                         |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   |                                                                                             |                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                   |                                                         |      | loisture                                                               |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                | las Con                                                                                                        |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           | Tem                                                                                                               |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          | lue Gas                                                                   |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      | Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          | ma Produ |
|                                                   | Welc                                                                         | ioht                                                                                                               | *                                                                    | *                                                                                                                  | Excess                                                                                                                         | Total                                                                                                                               | Salc. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flue                                                                                    | Room                                                                                                      | Eff                                                                                                                  | Transf                                                                                                                     | rer                                                                                                                        | EIT                                                                                       | - 301                                                                                                 | HOW                                                                                     |                                                                                   |                                                |                                                                                                          |                                                                     |                                            |                                                                                                            |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                               |                                                                             |                                            |                                                                                                  |                                                                                                                                   |                                         |                                                              |                                                                                                    |                                                                   | - 100                                                                                       | mole                                                                                       | dfa                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mole                                         | per ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Dry V                                                                                                |                                                                                                                   |                                                         |      |                                                                        |                                                                                        |                                                                  |                                                                                                                               |                                                                                  |                                                                                                                                                    |                                                                                                |                                                                                                                |                                                                                                                                         |                                                                                                  |                                                                                                           |                                                                                                                                           |                                                                                                                   |                                                                                      |                                                                                                 |                                                                                                                    |                                                               |                                                                                                          |                                                                           |                                                                                                    |                                                                                                                   |                                               |                                                                                                            |                                                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                         |     |       |                                                                                   |                                                           |                                                                                   |                                                 |                                                                             |                                                                                          |          |
| Time                                              | Remainin                                                                     | ing (kg) C                                                                                                         | CO [e]                                                               | CO <sup>1</sup> [4]                                                                                                | Air EA                                                                                                                         | Total<br>O <sub>2</sub>                                                                                                             | Calc. %<br>O <sub>2</sub> (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flue<br>as (°C) T                                                                       | Room<br>temp (°C)                                                                                         | %                                                                                                                    | Transf                                                                                                                     | er .                                                                                                                       | %                                                                                         | Ratio                                                                                                 | Wt                                                                                      | ×                                                                                 |                                                | Wt <sub>de</sub>                                                                                         | 1                                                                   | ,                                          | Input                                                                                                      | /12=                                                                         | [4] /1                                                                                                | = [b]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /16=                                                                       | [c]       | Value                                                                                         | Fuel 5                                                                      | lumt                                       | [10]                                                                                             | [u]                                                                                                                               |                                         | [w]                                                          | 01                                                                                                 | Del                                                               |                                                                                             | Nk                                                                                         | Ci                                                                              | ) <sub>2</sub> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mole                                         | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HC HC                                                                                                   | N <sub>2</sub>                                                                                                    | H                                                       |      | resent                                                                 | К                                                                                      |                                                                  | CO2                                                                                                                           |                                                                                  | 0,                                                                                                                                                 | -                                                                                              | со                                                                                                             | N <sub>2</sub>                                                                                                                          | С                                                                                                | H <sub>4</sub>                                                                                            | H <sub>2</sub> O                                                                                                                          | K                                                                                                                 | -                                                                                    | 102                                                                                             | 0,                                                                                                                 |                                                               | co                                                                                                       |                                                                           | 42                                                                                                 | CH,                                                                                                               | H                                             |                                                                                                            | b H <sub>0</sub> OF                                                                                          |                                                                                      | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  | Loss                                                                                                                    | Le  | oss 1 | Latent                                                                            | Loss                                                      | Output                                                                            |                                                 | 188 2                                                                       | co                                                                                       |          |
|                                                   | Remainir<br>2.45                                                             | ieht<br>ing (kg) C                                                                                                 | CO [e]                                                               | CO <sub>2</sub> [d]                                                                                                | Air EA<br>393.0%                                                                                                               | Total<br>O <sub>2</sub><br>20.82                                                                                                    | O <sub>2</sub> (g) G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flue<br>es (°C) T<br>147.3                                                              | Room<br>temp (°C)<br>20.9                                                                                 | %<br>101.1%                                                                                                          | 72.69                                                                                                                      | N 7.                                                                                                                       | %                                                                                         | Ratio<br>27.5                                                                                         | Wt 2.45                                                                                 | ×                                                                                 |                                                | Wt <sub>dn</sub><br>2.34                                                                                 | 0.0                                                                 | F<br>00                                    | Input<br>0                                                                                                 | 3.9                                                                          | [a] /1<br>0                                                                                           | - [b]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /16=<br>2.9                                                                | [c]       | Value<br>967.00                                                                               | Fuel E                                                                      | lumt<br>9 1                                | [h]<br>9.15                                                                                      | [u]<br>21.00                                                                                                                      |                                         | (w)<br>.05                                                   | 00<br>3.42                                                                                         | -0.0                                                              | 3                                                                                           | Nk<br>0.10                                                                                 | dfa Ct                                                                          | 32 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Micie<br>00                                  | CO<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HC<br>-0.24                                                                                             | N <sub>2</sub><br>754.0                                                                                           | H <sub>2</sub>                                          |      | resent<br>2.61                                                         | 420.                                                                                   | 40                                                               | CO <sub>2</sub><br>5041.8                                                                                                     | 6 3                                                                              | O <sub>3</sub><br>3790.55                                                                                                                          | 36                                                                                             | CO<br>85.09                                                                                                    | N <sub>2</sub><br>3544.45                                                                                                               | 486                                                                                              | H <sub>4</sub>                                                                                            | H <sub>2</sub> O<br>4409.51                                                                                                               | 294.0                                                                                                             | 4 19                                                                                 | 8.25                                                                                            | O <sub>2</sub>                                                                                                     | 9                                                             | CO<br>5.13                                                                                               | 274                                                                       | 4 <sub>3</sub><br>8.25                                                                             | -215.3                                                                                                            | is H                                          | O Comb                                                                                                     |                                                                                                              | Fuel MC<br>6.35                                                                      | Rate 5040.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                         | Le  |       | 0.0                                                                               |                                                           | Outpu                                                                             |                                                 | 0                                                                           | 0.00                                                                                     |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | CO [e]                                                               | %<br>CO <sub>2</sub> [d]<br>4.13<br>3.18                                                                           | Air EA<br>393.0%<br>541.8%                                                                                                     | O <sub>2</sub><br>20.82<br>20.85                                                                                                    | Calc. %<br>O <sub>2</sub> (g) G<br>16.69<br>17.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plac<br>es (°C) T<br>147.3<br>119.9                                                     | Room<br>lemp (°C)<br>20.9<br>20.6                                                                         | %<br>101.1%<br>101.7%                                                                                                | 72.65<br>72.65                                                                                                             | N 7.                                                                                                                       | %<br>3.4%<br>3.8%                                                                         | Ratio<br>27.5<br>35.9                                                                                 | Wt 2.45<br>2.27                                                                         | 0.0<br>7.1                                                                        |                                                | Wt <sub>de</sub><br>2.34<br>2.17                                                                         | 0.0                                                                 | F<br>00<br>16                              | 0<br>5266                                                                                                  | 3.9                                                                          | [a] /1<br>0                                                                                           | i- [b]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.9<br>2.9                                                                 | [c]       | Value<br>1967.00<br>1967.00                                                                   | Fuel E<br>4.4<br>4.4                                                        | lumt<br>9 1                                | [h]<br>9.18<br>9.15                                                                              | [u]<br>21.00<br>21.00                                                                                                             | 1 1                                     | (w)<br>.05<br>.81                                            | 3.42<br>2.64                                                                                       | -0.0<br>-0.0                                                      | 3                                                                                           | Nk<br>0.10<br>0.05                                                                         | 39<br>39                                                                        | 0 <sub>2</sub> 6<br>32 156<br>49 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00<br>.71                                    | CO<br>0.02<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HC<br>-0.24<br>-0.34                                                                                    | N <sub>2</sub><br>754.0<br>983.8                                                                                  | H <sub>1</sub>                                          |      | 2.61<br>2.61                                                           | 420.<br>393.                                                                           | 40                                                               | 5041.8<br>3919.1                                                                                                              | 6 3                                                                              | O <sub>2</sub><br>3790.55<br>2964.04                                                                                                               | 361                                                                                            | CO<br>85.09<br>85.89                                                                                           | N <sub>2</sub><br>3644.45<br>2853.15                                                                                                    | 486<br>3740                                                                                      | 1.91<br>0.86                                                                                              | H <sub>2</sub> O<br>4409.51<br>3454.57                                                                                                    | 294.0<br>293.1                                                                                                    | 4 19                                                                                 | 0;<br>8.25<br>4.78                                                                              | 0 <sub>2</sub><br>602.6<br>651.2                                                                                   | 9 2                                                           | 5.13<br>-14.73                                                                                           | 274                                                                       | 6 <sub>2</sub><br>8.25<br>7.14                                                                     | -215.2<br>-306.6                                                                                                  | 6<br>6                                        |                                                                                                            |                                                                                                              |                                                                                      | S040.60<br>4909.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                               | 0.00<br>1379.78                                                                                                         | Le  |       | 1468                                                                              | 61                                                        | 0 3886                                                                            | t Los                                           | 0<br>89                                                                     | 0.00                                                                                     |          |
|                                                   | Remainin<br>2.45<br>2.27<br>2.04                                             | ing (kg) C                                                                                                         | %<br>CO[e]<br>0.00<br>0.00<br>0.01                                   | %<br>CO <sub>2</sub> [d]<br>4.13<br>3.18<br>2.89                                                                   | Excess<br>Air EA<br>393.0%<br>541.8%<br>603.1%                                                                                 | O <sub>2</sub><br>20.82<br>20.85<br>20.85                                                                                           | Calc. %<br>O <sub>2</sub> (g) G<br>16.69<br>17.68<br>17.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Place<br>es (°C) T<br>147.3<br>119.9<br>118.3                                           | 20.9<br>20.6<br>21.0                                                                                      | %<br>101.1%<br>101.7%<br>101.4%                                                                                      | 72.69<br>72.69<br>71.19                                                                                                    | % 7.<br>% 7.                                                                                                               | %<br>3.4%<br>3.8%<br>2.2%                                                                 | Ratio<br>27.5<br>35.9<br>39.3                                                                         | Wt 2.45 2.27 2.04                                                                       | 7.19<br>16.5                                                                      | 7                                              | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95                                                                 | 0.0<br>7.1<br>16.                                                   | F<br>00<br>16<br>57                        | 0<br>5266<br>3728                                                                                          | 39<br>39<br>39                                                               | (a) /1<br>0                                                                                           | - [b]<br>1.41<br>1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9<br>2.9<br>2.9                                                          | [c]       | Value<br>1967.00<br>1967.00                                                                   | 4.4<br>4.4<br>4.4                                                           | lumt 9 7                                   | [h]<br>9.15<br>9.15<br>9.14                                                                      | [u]<br>21.00<br>21.00<br>20.99                                                                                                    | 1 1                                     | w]<br>.05<br>.81<br>.73                                      | 01<br>3.42<br>2.64<br>2.41                                                                         | 00<br>00<br>00                                                    | 3                                                                                           | Nk<br>0.10<br>0.05<br>0.07                                                                 | 30<br>30<br>30<br>30                                                            | 0 <sub>2</sub> 0<br>32 150<br>49 211<br>30 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>72                                     | 00<br>0.02<br>0.05<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HC<br>-0.24<br>-0.34<br>-0.35                                                                           | N <sub>2</sub><br>754.0<br>983.8                                                                                  | 32<br>32<br># 32                                        |      | 2.61<br>2.61<br>2.61<br>2.61                                           | 420-<br>393/<br>391-                                                                   | 40<br>02<br>40                                                   | 5041.8<br>3919.1<br>3840.5                                                                                                    | 6 3<br>6 2<br>0 2                                                                | O <sub>3</sub><br>3790.55<br>2964.04<br>2905.35                                                                                                    | 361<br>281<br>281                                                                              | CO<br>85.09<br>85.89<br>28.95                                                                                  | N <sub>2</sub><br>3544.45<br>2853.15<br>2796.83                                                                                         | 486<br>3740<br>386-                                                                              | 0.86<br>4.00                                                                                              | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3385.47                                                                                         | 294.0<br>293.0<br>294.0                                                                                           | 4 19<br>9 15<br>2 15                                                                 | 8.25<br>4.78<br>0.94                                                                            | 602.6<br>651.2<br>710.5                                                                                            | 9<br>2<br>9                                                   | 5.13<br>-14.73<br>42.57                                                                                  | 274<br>280<br>301                                                         | 4 <sub>2</sub><br>8.25<br>7.14<br>4.60                                                             | -215.2<br>-306.6<br>-315.5                                                                                        | 8<br>8                                        |                                                                                                            | 121<br>121<br>121                                                                                            | 5.35<br>3.86<br>3.68                                                                 | S040.00<br>4909.50<br>5279.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                               | 0.00<br>1379.78<br>1037.66                                                                                              | Le  |       | 0.0<br>1468<br>1091                                                               | 61                                                        | 0<br>3886<br>2690                                                                 | t Los                                           | 0<br>89<br>54                                                               | 0.00<br>-0.40<br>0.82                                                                    |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | %<br>CO [e]<br>0.00<br>0.00<br>0.01<br>0.00                          | %<br>CO <sub>2</sub> [d]<br>4.13<br>3.18<br>2.80<br>2.81                                                           | Air EA<br>393.0%<br>541.8%<br>603.1%                                                                                           | O <sub>2</sub><br>20.82<br>20.85                                                                                                    | Calc. %<br>O <sub>2</sub> (gd G<br>16.69<br>17.68<br>17.97<br>18.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Plue<br>es (°C) T<br>147.3<br>119.9<br>118.3<br>122.3                                   | 20.9<br>20.6<br>21.0<br>20.7                                                                              | %<br>101.1%<br>101.7%<br>101.4%<br>101.7%                                                                            | 72.69<br>72.69<br>71.19<br>60.69                                                                                           | % 7.<br>% 7.<br>% 7.                                                                                                       | %<br>3.4%<br>3.8%<br>2.2%<br>0.8%                                                         | Ratio<br>27.5<br>35.9<br>39.3<br>40.5                                                                 | 2.45<br>2.27<br>2.04<br>1.85                                                            | 7.10<br>16.5<br>23.5                                                              | 7                                              | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78                                                         | 0.0<br>7.1<br>16.<br>23.                                            | 50<br>16<br>57<br>96                       | 0<br>5266<br>3728<br>3723                                                                                  | 39<br>39<br>39<br>39                                                         | [a] /1<br>0<br>0                                                                                      | (41<br>(41<br>(41<br>(41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9<br>2.9<br>2.9<br>2.9                                                   | [c]       | Value<br>1967.00<br>1967.00<br>1967.00                                                        | 4.4<br>4.4<br>4.4<br>4.4                                                    | lumt<br>9 7<br>9 7<br>9 7                  | [N]<br>9.18<br>9.15<br>9.14<br>9.14                                                              | [u]<br>21.00<br>21.00<br>20.99<br>20.99                                                                                           | 0 0                                     | w <br>05<br>81<br>73<br>71                                   | 01<br>3.42<br>2.64<br>2.41<br>2.34                                                                 | -0.0<br>-0.0<br>-0.0                                              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk<br>0.10<br>0.08<br>0.07<br>0.07                                                         | 39<br>39<br>39<br>39<br>39                                                      | 0 <sub>2</sub> 6<br>32 156<br>49 211<br>30 244<br>41 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71 - 72 - 09                                 | CO<br>1.02<br>1.05<br>1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HC<br>-0.24<br>-0.34<br>-0.35<br>-0.38                                                                  | N <sub>2</sub><br>754.0<br>983.8<br>assess                                                                        | H<br>32<br>32<br>8 32<br>8 32                           |      | 2.61<br>2.61<br>2.61<br>2.61<br>2.61                                   | 420-<br>393/<br>391-<br>395-                                                           | 40<br>02<br>40<br>45                                             | 5041.8<br>3919.1<br>3840.5<br>4016.8                                                                                          | 6 3<br>6 2<br>0 2<br>0 3                                                         | O <sub>2</sub><br>3790.55<br>2964.04<br>2905.35<br>3036.25                                                                                         | 361<br>281<br>281<br>281                                                                       | CO<br>85.09<br>85.89<br>28.95<br>55.80                                                                         | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.83<br>2922.35                                                                              | 486<br>3740<br>385<br>383                                                                        | 1.91<br>0.86<br>4.00<br>7.62                                                                              | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12                                                                              | 294.0<br>293.1<br>294.1<br>293.1                                                                                  | 4 19<br>9 15<br>2 15<br>5 15                                                         | 8.25<br>4.78<br>0.94<br>8.28                                                                    | 602.6<br>651.2<br>710.5<br>768.4                                                                                   | 9<br>2<br>9<br>5                                              | 5.13<br>-14.73<br>42.57<br>19.80                                                                         | 274<br>280<br>301<br>324                                                  | 4 <sub>2</sub><br>8.25<br>7.14<br>4.60<br>3.12                                                     | -215.2<br>-306.6<br>-315.5<br>-337.2                                                                              | 6<br>6<br>9                                   |                                                                                                            | 121<br>121<br>121                                                                                            |                                                                                      | Rate<br>5040.66<br>4989.56<br>5279.54<br>5536.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16<br>19<br>14                                                                   | 0.00<br>1379.78<br>1037.66<br>1086.67                                                                                   | Le  |       | 0.0<br>1468<br>1091<br>1148                                                       | 61<br>23<br>76                                            | 0<br>3886<br>2690<br>2636                                                         | t Los                                           | 0 89 54 62                                                                  | 0.00<br>-0.40<br>0.82<br>0.38                                                            |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | % CO [e] 0.00<br>0.00<br>0.01<br>0.00<br>0.00                        | %<br>CO <sub>2</sub> [d]<br>4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16                                           | Air EA<br>393.0%<br>541.8%<br>603.1%<br>623.4%<br>498.8%                                                                       | O <sub>2</sub><br>20.82<br>20.85<br>20.85                                                                                           | Calc. %<br>O <sub>2</sub> (gd) G<br>16.69<br>17.68<br>17.97<br>18.05<br>17.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flor<br>es (°C) T<br>147.3<br>119.9<br>118.3<br>122.3<br>114.8                          | 20.9<br>20.5<br>21.0<br>20.7<br>20.8                                                                      | 101.1%<br>101.7%<br>101.4%<br>101.7%<br>101.6%                                                                       | 72.69<br>72.69<br>71.19<br>69.69<br>74.89                                                                                  | N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.                                                                                  | %<br>3.4%<br>3.8%<br>2.2%<br>0.8%<br>5.9%                                                 | 27.5<br>35.9<br>39.3<br>40.5<br>33.5                                                                  | 2.45<br>2.27<br>2.04<br>1.85<br>1.63                                                    | 7.10<br>16.5<br>23.5<br>33.2                                                      | 1<br>1<br>7<br>8<br>5                          | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78<br>1.56<br>1.34                                         | 7.1<br>16.<br>23.<br>33.                                            | 96<br>35                                   | 0<br>5268<br>3728<br>3723<br>4164<br>3708                                                                  | 72°<br>29'<br>29'<br>29'<br>29'<br>29'                                       | 0 0                                                                                                   | - [b]<br>(41<br>(41<br>(41<br>(41<br>(41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29<br>29<br>29<br>29<br>29<br>29                                           | [c] 5     | Value<br>1967.00<br>1967.00<br>1967.00<br>1967.00                                             | 4.4<br>4.4<br>4.4<br>4.4<br>4.4                                             | lumt<br>9 1<br>9 1<br>9 1<br>9 1           | [N]<br>9.15<br>9.15<br>9.14<br>9.14<br>9.16<br>9.15                                              | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99                                                                         | 0 0                                     | (w)<br>05<br>81<br>73<br>71<br>86                            | 01<br>3.42<br>2.64<br>2.41<br>2.34<br>2.82<br>2.63                                                 | 40<br>40<br>40<br>40<br>40                                        | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.09                                                 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                              | 0 <sub>2</sub> 6<br>32 150<br>49 211<br>30 24-<br>41 25:<br>46 20:<br>43 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00<br>71<br>72<br>09                         | 0.02<br>0.05<br>0.07<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HC<br>-0.24<br>-0.34<br>-0.35<br>-0.38<br>-0.32                                                         | N <sub>2</sub><br>754.0<br>983.8<br>server<br>917.3<br>995.5                                                      | 32<br>32<br>32<br>32<br>32<br>32                        |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61                 | 420-<br>393-<br>391-<br>395-<br>387-<br>394                                            | 40<br>02<br>40<br>45<br>04                                       | 5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3                                                                                | 6 3<br>6 2<br>0 2<br>0 3<br>4 2                                                  | O <sub>2</sub><br>3790.55<br>2964.04<br>2905.35<br>3036.25<br>2806.08                                                                              | 361<br>281<br>281<br>292<br>273<br>293                                                         | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>32.83                                                                | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.80<br>2922.35<br>2701.67<br>2880.00                                                        | 486<br>3740<br>385<br>383<br>353                                                                 | 11.91<br>0.86<br>4.00<br>7.62<br>11.15                                                                    | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12<br>3271.57                                                                   | 294.1<br>293.1<br>294.1<br>293.1<br>293.1                                                                         | 4 19<br>9 15<br>2 15<br>5 15<br>4 14                                                 | 825<br>4.78<br>0.94<br>8.28<br>6.26<br>6.07                                                     | 002.6<br>651.2<br>710.5<br>768.4<br>567.1                                                                          | 9<br>2<br>9<br>5<br>8                                         | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05                                                               | 274<br>280<br>301<br>324<br>247<br>284                                    | 6<br>8.25<br>7.14<br>4.60<br>3.12<br>8.47                                                          | -215.3<br>-306.6<br>-315.5<br>-337.3<br>-282.2                                                                    | 8<br>8<br>9<br>17                             | 1575.36<br>1553.98<br>1552.74<br>1559.98<br>1545.42                                                        | 121<br>123<br>123<br>124<br>124                                                                              | 5.35<br>3.86<br>3.68<br>4.08<br>3.38                                                 | Rate<br>5040.60<br>4989.50<br>5279.54<br>5036.30<br>4564.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16<br>19<br>14<br>15                                                             | 0.00<br>1379.78<br>1037.66                                                                                              | Le  |       | 0.0<br>1468<br>1091<br>1148<br>1066                                               | 61<br>23<br>76<br>78                                      | 0<br>3886<br>2690<br>2636<br>3162                                                 | t Los<br>0<br>-85<br>-54<br>-65                 | 0 89 54 62 65                                                               | 0.00<br>-0.40<br>0.82<br>0.38<br>-0.30                                                   |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | % CO [e] 0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00                | %<br>CO <sub>2</sub> [d]<br>4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18                                   | Air EA<br>393.0%<br>541.8%<br>603.1%                                                                                           | O <sub>2</sub><br>20.82<br>20.85<br>20.86<br>20.86<br>20.86                                                                         | Tale: %<br>O <sub>2</sub> (gd) G<br>16.69<br>17.68<br>17.97<br>18.05<br>17.44<br>17.69<br>17.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Place es (°C) T<br>147.3<br>119.9<br>118.3<br>122.3<br>114.8<br>121.1                   | Room<br>lemp (°C)<br>20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4                                 | 101.1%<br>101.7%<br>101.4%<br>101.6%<br>101.6%<br>101.6%                                                             | 72.69<br>72.69<br>71.19<br>60.69<br>74.89<br>72.39                                                                         | % 7.<br>% 7.<br>% 7.<br>% 7.<br>% 7.                                                                                       | %<br>3.4%<br>3.8%<br>2.2%<br>0.8%<br>5.9%<br>3.5%                                         | Ratio<br>27.5<br>35.9<br>39.3<br>40.5<br>33.5<br>36.0<br>35.8                                         | 2.45<br>2.27<br>2.04<br>1.85<br>1.63<br>1.40                                            | 7.11<br>16.5<br>23.5<br>42.7<br>50.0                                              | 1<br>7<br>6<br>5<br>2                          | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78<br>1.56<br>1.34<br>1.17                                 | 0.0<br>7.1<br>16.<br>23.<br>33.<br>42.                              | 96<br>35<br>72<br>06                       | 0<br>5266<br>3728<br>3723<br>4164<br>3708<br>3658                                                          | 72°<br>29'<br>29'<br>29'<br>29'<br>29'<br>29'                                | 0 0                                                                                                   | (41)<br>(41)<br>(41)<br>(41)<br>(41)<br>(41)<br>(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75°<br>29<br>29<br>29<br>29<br>29<br>29<br>29                              | [c] 5     | Value<br>1967.00<br>1967.00<br>1967.00<br>1967.00<br>1967.00                                  | 4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4                               | lumt 9 1 9 1 9 1 9 1 9 1                   | (N)<br>9.18<br>9.15<br>9.14<br>9.14<br>9.16<br>9.15<br>9.15                                      | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99<br>20.99                                                                | 0 0                                     | (w)<br>.05<br>.81<br>.73<br>.71<br>.86<br>.80                | 01<br>3.42<br>2.64<br>2.41<br>2.34<br>2.82<br>2.63<br>2.64                                         | 00<br>-00<br>-00<br>-00<br>-00<br>-00                             | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.07<br>0.09<br>0.08                                 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                        | 0 <sub>2</sub> 6<br>32 150<br>49 211<br>30 244<br>41 253<br>46 203<br>43 221<br>43 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>71<br>72<br>09<br>13<br>44             | 0.02<br>0.05<br>0.05<br>0.05<br>0.07<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HC<br>-0.24<br>-0.34<br>-0.35<br>-0.38<br>-0.32<br>-0.34<br>-0.34                                       | N <sub>2</sub><br>754.0<br>983.8<br>88988<br>917.3<br>986.5<br>981.9                                              | H<br>32<br>32<br>8 32<br>8 32<br>32<br>32<br>32         |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61         | 420-<br>393-<br>391-<br>395-<br>387-<br>394-<br>388-                                   | 40<br>02<br>40<br>45<br>04<br>24                                 | 5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3<br>3957.6<br>3754.7                                                            | 6 3<br>6 2<br>0 2<br>0 3<br>4 2<br>1 2                                           | O <sub>2</sub><br>3790.55<br>2964.04<br>2905.35<br>3036.25<br>2806.08<br>2992.13<br>2842.43                                                        | 361<br>281<br>282<br>292<br>277<br>299<br>277                                                  | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>52.83<br>13.00<br>68.16                                              | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.80<br>2922.35<br>2701.67<br>2880.00<br>2736.60                                             | 486<br>3746<br>366<br>383<br>353<br>3577<br>3577                                                 | 0.86<br>4.00<br>7.62<br>11.15<br>9.73<br>7.84                                                             | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12<br>3271.57<br>3486.94<br>3313.85                                             | 294.1<br>293.1<br>294.2<br>293.1<br>293.1<br>294.2                                                                | 4 19<br>9 15<br>2 15<br>5 15<br>4 14<br>0 15<br>5 14                                 | 825<br>478<br>094<br>828<br>626<br>607<br>8.06                                                  | 002.6<br>651.2<br>710.5<br>768.4<br>567.1<br>659.5                                                                 | 9<br>2<br>9<br>5<br>5<br>8<br>9<br>7                          | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05<br>0.00<br>0.00                                               | 274<br>280<br>301<br>324<br>247<br>284<br>268                             | 6<br>8.25<br>7.14<br>4.60<br>3.12<br>8.47<br>1.12<br>7.21                                          | CH <sub>4</sub><br>-215.3<br>-306.6<br>-315.5<br>-337.3<br>-282.2<br>-301.2                                       | 8<br>8<br>9                                   |                                                                                                            | 121<br>121<br>121<br>124<br>125<br>121                                                                       | 5.35<br>3.86<br>3.68                                                                 | Rate<br>5040.66<br>4989.56<br>5279.54<br>5536.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16<br>19<br>14<br>15<br>19                                                       | 0.00<br>1379.78<br>1037.86<br>1086.67<br>1002.00                                                                        | Le  |       | 0.0<br>1468<br>1091<br>1148                                                       | 61<br>23<br>76<br>78                                      | 0<br>3886<br>2690<br>2636                                                         | t Los<br>0<br>-85<br>-65<br>-65                 | 0 89 54 62 65 59                                                            | 0.00<br>-0.40<br>0.82<br>0.38                                                            |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | % CO (e) 000 000 000 000 000 000 000 000 000 0                       | % CO <sub>2</sub> [d] 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.16<br>3.16<br>3.16                         | Air EA<br>393.0%<br>541.8%<br>603.1%<br>623.4%<br>498.8%                                                                       | O <sub>2</sub><br>20.82<br>20.85<br>20.86<br>20.86<br>20.86                                                                         | Tale: %<br>O <sub>2</sub> (ed) G<br>16.69<br>17.68<br>17.97<br>18.05<br>17.44<br>17.69<br>17.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Place as (°C) T 147.3 119.9 118.3 122.3 114.8 121.1 115.6 115.1                         | Room<br>lemp (°C)<br>20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4<br>20.4                         | 101.1%<br>101.7%<br>101.7%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%                                         | 72.69<br>72.69<br>71.19<br>60.69<br>74.89<br>72.39<br>73.49                                                                | N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.                                                                | 58%<br>3.8%<br>2.2%<br>0.8%<br>5.9%<br>3.5%<br>4.5%                                       | Ratio<br>27.5<br>35.9<br>39.3<br>40.5<br>33.5<br>36.0<br>35.8<br>33.1                                 | 2.45<br>2.27<br>2.04<br>1.85<br>1.63<br>1.40<br>1.22                                    | 7.11<br>16.5<br>23.5<br>33.3<br>42.7<br>50.0                                      | 1<br>1<br>7<br>8<br>5<br>5<br>2<br>6           | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78<br>1.56<br>1.34<br>1.17<br>0.95                         | 0.0<br>7.1<br>16.<br>23.<br>33.<br>42.<br>50.                       | 96<br>35<br>72<br>06<br>20                 | 0<br>5266<br>3728<br>3723<br>4164<br>3708<br>3658<br>3678                                                  | 72°<br>29'<br>29'<br>29'<br>29'<br>29'<br>29'<br>29'                         | 0 0                                                                                                   | = [b]<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 716-<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9                      | [c] 5     | Value<br>1957.00<br>1957.00<br>1957.00<br>1957.00<br>1957.00<br>1957.00                       | 4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4                        | Sumt 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 | (N)<br>9.18<br>9.15<br>9.14<br>9.14<br>9.16<br>9.15<br>9.15<br>9.15                              | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99<br>20.99<br>21.00                                                       | 0 0                                     | (w)<br>.05<br>.81<br>.73<br>.71<br>.86<br>.80<br>.81         | 01<br>3.42<br>2.64<br>2.41<br>2.34<br>2.82<br>2.63<br>2.64<br>2.85                                 | 00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.09<br>0.08<br>0.08                                 | 30<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32                              | 0 <sub>2</sub> 6<br>32 150<br>49 211<br>30 24-<br>41 253<br>46 203<br>43 221<br>46 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>71<br>72<br>09<br>13<br>44<br>24       | 0.02<br>0.05<br>0.05<br>0.05<br>0.07<br>0.05<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HC -0.24 -0.34 -0.35 -0.32 -0.34 -0.34 -0.31                                                            | N <sub>2</sub><br>754.0<br>983.8<br>88888<br>917.3<br>986.5<br>981.9<br>907.0                                     | H<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32       |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61 | 420-<br>393-<br>391-<br>395-<br>387-<br>394-<br>388-<br>388-                           | 40<br>02<br>40<br>45<br>04<br>24<br>77                           | 5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3<br>3957.6<br>3754.7                                                            | 6 3<br>6 2<br>0 2<br>0 3<br>4 2<br>1 2<br>1 2                                    | O <sub>2</sub><br>3790.55<br>2964.04<br>2906.35<br>3036.25<br>2806.08<br>2962.13<br>2842.43<br>2825.26                                             | 361<br>281<br>281<br>291<br>271<br>29<br>271<br>271                                            | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>32.83<br>13.00<br>68.16                                              | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.80<br>2922.35<br>2701.67<br>2880.00<br>2736.60<br>2736.60                                  | 486<br>374<br>385<br>383<br>353<br>357<br>357<br>357                                             | 0.86<br>4.00<br>7.62<br>11.15<br>9.73<br>7.84<br>5.38                                                     | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12<br>3271.57<br>3486.94<br>3313.85<br>3293.93                                  | 294.1<br>293.1<br>294.2<br>293.1<br>294.2<br>293.1<br>294.2                                                       | 4 19<br>9 15<br>2 15<br>5 15<br>4 14<br>0 15<br>5 14<br>4 14                         | 10 <sub>2</sub><br>8.25<br>4.78<br>0.94<br>8.28<br>6.26<br>6.07<br>8.06<br>7.25                 | 002.6<br>651.2<br>710.5<br>768.4<br>567.1<br>659.5<br>623.1                                                        | 9<br>2<br>9<br>5<br>8<br>9<br>7                               | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05<br>0.00<br>0.00                                               | 274<br>280<br>301<br>324<br>247<br>284<br>268<br>246                      | 6,<br>8.25<br>7.14<br>4.60<br>3.12<br>8.47<br>1.12<br>7.21<br>7.28                                 | CH <sub>4</sub><br>-215.3<br>-306.6<br>-315.5<br>-337.3<br>-282.2<br>-301.2<br>-299.5<br>-278.5                   | 8<br>8<br>9                                   | 1575.36<br>1553.98<br>1552.74<br>1559.98<br>1545.42<br>1554.47                                             | 121<br>121<br>121<br>124<br>125<br>121                                                                       | 6.35<br>3.86<br>3.68<br>4.08<br>3.38<br>3.94                                         | Rate<br>5040.66<br>4909.56<br>5279.54<br>5536.35<br>4564.36<br>5033.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16<br>19<br>14<br>15<br>19<br>19                                                 | 0.00<br>1379.78<br>1037.66<br>1086.67<br>1002.00<br>984.06                                                              | Le  |       | 0.0<br>1468<br>1091<br>1148<br>1066                                               | 0<br>61<br>23<br>76<br>78<br>71                           | 0<br>3886<br>2690<br>2636<br>3162<br>2724                                         | t Los<br>0 -81<br>-54<br>-62<br>-63<br>-63      | 0 89 54 62 65 59 58                                                         | 0.00<br>-0.40<br>0.82<br>0.38<br>-0.30<br>0.00                                           |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | % CO (e) 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | % CO <sub>2</sub> [d] 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.18<br>3.18<br>3.14<br>3.16<br>3.18                 | Air EA<br>393.0%<br>541.8%<br>603.1%<br>623.4%<br>498.8%                                                                       | O <sub>2</sub><br>20.82<br>20.85<br>20.86<br>20.86<br>20.86                                                                         | Calc. %<br>O <sub>2</sub> (a) G<br>16.69<br>17.68<br>17.97<br>18.05<br>17.44<br>17.69<br>17.67<br>17.67<br>17.40<br>18.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Place as (°C) T 147.3 119.9 118.3 122.3 114.8 121.1 115.5 115.1 116.6                   | Reom<br>(emp (°C)<br>20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4<br>20.4<br>20.5<br>20.5         | 101.1%<br>101.7%<br>101.7%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%                                         | 72.65<br>72.65<br>72.65<br>71.15<br>60.65<br>74.85<br>72.35<br>73.45<br>74.85<br>67.45                                     | % 7. % 7. % 7. % 7. % 7. % 7. % 7. % 7.                                                                                    | 58%<br>3.8%<br>2.2%<br>0.8%<br>5.9%<br>3.5%<br>4.5%<br>6.0%                               | Ratio<br>27.5<br>35.9<br>39.3<br>40.5<br>33.5<br>36.0<br>35.8<br>33.1<br>46.5                         | 2.45<br>2.27<br>2.04<br>1.85<br>1.63<br>1.40<br>1.22<br>1.00<br>0.82                    | 7.11<br>16.5<br>23.5<br>33.2<br>42.7<br>50.0<br>59.2                              | 1<br>1<br>7<br>8<br>5<br>5<br>2<br>8<br>0      | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78<br>1.56<br>1.34<br>1.17<br>0.95<br>0.78                 | 0.0<br>7.1<br>16.<br>23.<br>33.<br>42.<br>50.<br>59.                | 96<br>57<br>96<br>35<br>72<br>06<br>20     | 0<br>5266<br>3728<br>3723<br>4164<br>3708<br>3658<br>3678<br>3748                                          | 72°<br>29'<br>29'<br>29'<br>29'<br>29'<br>29'<br>29'<br>29'                  | 0 0                                                                                                   | = [b]<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 716-<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9               | [c] 5     | Value<br>1957.00<br>1957.00<br>1957.00<br>1957.00<br>1957.00<br>1957.00                       | 4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4                        | Sumt                                       | (N)<br>9.18<br>9.15<br>9.14<br>9.14<br>9.16<br>9.15<br>9.15<br>9.15<br>9.15                      | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99                                     | 0 0 0                                   | W  05 81 73 71 86 80 81 87 62                                | BI<br>3.42<br>2.64<br>2.41<br>2.34<br>2.82<br>2.63<br>2.64<br>2.85<br>2.05                         | 00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk<br>0.10<br>0.08<br>0.07<br>0.07<br>0.09<br>0.08<br>0.08<br>0.08                         | 30<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32                        | 0 <sub>2</sub> 6<br>32 150<br>49 211<br>30 24-<br>41 250<br>46 200<br>43 221<br>43 211<br>46 190<br>41 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00<br>71<br>72<br>09<br>13<br>44<br>24<br>39 | 0.02<br>0.02<br>0.05<br>0.05<br>0.07<br>0.05<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HC -0.24 -0.34 -0.35 -0.32 -0.34 -0.34 -0.34 -0.34 -0.31 -0.44                                          | N <sub>2</sub><br>754.0<br>983.8<br>88888<br>917.3<br>986.5<br>981.9<br>907.0                                     | H<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61 | 420-<br>393-<br>391-<br>395-<br>387-<br>394-<br>388-<br>388-<br>388-<br>391-           | 40<br>02<br>40<br>45<br>04<br>24<br>77<br>28                     | 5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3<br>3957.6<br>3754.7<br>3731.7                                                  | 6 3<br>6 2<br>0 2<br>0 3<br>4 2<br>1 2<br>1 2<br>1 2                             | O <sub>2</sub><br>3790.55<br>2964.04<br>2905.35<br>3036.25<br>2806.08<br>2992.13<br>2842.43<br>2825.26<br>2928.98                                  | 364<br>285<br>285<br>297<br>277<br>29<br>277<br>277<br>287                                     | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>32.83<br>13.00<br>68.16<br>51.50                                     | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.80<br>2922.35<br>2701.67<br>2880.00<br>2736.60<br>2736.60<br>2720.14<br>2819.57            | 486<br>374<br>385<br>383<br>353<br>357<br>357<br>357<br>357<br>356<br>366                        | 0.86<br>4.00<br>7.62<br>11.15<br>9.73<br>7.84<br>5.38<br>6.52                                             | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12<br>3271.57<br>3486.94<br>3313.85<br>3293.93<br>3414.04                       | 294.1<br>293.1<br>294.1<br>293.1<br>293.1<br>294.1<br>293.1<br>293.1                                              | 4 19<br>9 15<br>2 15<br>5 15<br>4 14<br>0 15<br>5 14<br>4 14<br>7 15                 | 10 <sub>2</sub><br>8.25<br>4.78<br>0.94<br>8.28<br>6.26<br>6.07<br>8.06<br>7.25<br>2.57         | 002.6<br>651.2<br>710.5<br>768.4<br>567.1<br>659.5<br>623.1<br>563.3                                               | 9<br>2<br>9<br>5<br>8<br>9<br>7<br>3                          | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05<br>0.00<br>0.00<br>-14.13<br>35.86                            | 274<br>280<br>301<br>324<br>247<br>284<br>268<br>246<br>355               | 4,<br>8.25<br>7.14<br>4.60<br>3.12<br>8.47<br>1.12<br>7.21<br>7.21<br>7.28<br>2.49                 | CH,<br>-215.3<br>-306.6<br>-315.5<br>-337.3<br>-282.2<br>-301.2<br>-299.5<br>-278.5<br>-389.6                     | 8<br>8<br>9                                   | 1575.36<br>1553.98<br>1552.74<br>1559.98<br>1545.42<br>1554.47                                             | 121<br>121<br>121<br>124<br>125<br>121                                                                       | 6.35<br>3.86<br>3.68<br>4.08<br>3.38<br>3.94                                         | Rate<br>5040.66<br>4989.56<br>5279.54<br>5636.36<br>4964.36<br>5033.86<br>4830.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16<br>19<br>14<br>15<br>19<br>19<br>19                                           | 0.00<br>1379.78<br>1037.66<br>1086.67<br>1002.00<br>984.06<br>931.63                                                    | Le  |       | 0.0<br>1468<br>1091<br>1148<br>1095<br>1042<br>989                                | 61<br>23<br>76<br>78<br>71                                | 0<br>3886<br>2690<br>2636<br>3162<br>2724<br>2726                                 | t Los 0 -65 -65 -65 -65 -65 -65 -65 -65 -65 -65 | 0 89 54 62 65 59 58 57                                                      | 0.00<br>-0.40<br>0.82<br>0.38<br>-0.30<br>0.00                                           |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C                                                                                                         | % CO [e] 000 000 000 000 000 000 000 000 000 0                       | % CO <sub>2</sub> [d] 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.16<br>3.18<br>3.42<br>2.45<br>2.45                 | Air EA<br>303.0%<br>541.8%<br>603.1%<br>623.4%<br>498.8%<br>543.0%<br>543.0%<br>540.7%<br>492.1%<br>729.5%<br>621.2%           | O <sub>2</sub><br>20.82<br>20.85<br>20.86<br>20.86<br>20.86                                                                         | Calc. %<br>O <sub>3</sub> (a)<br>16.69<br>17.68<br>17.97<br>18.05<br>17.44<br>17.69<br>17.67<br>17.40<br>18.42<br>18.42<br>18.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Place as (°C) T 147.3 119.9 118.3 122.3 114.8 121.1 115.1 118.5 118.1                   | Room<br>(emp (°C)<br>20.9<br>20.6<br>21.0<br>20.7<br>20.8<br>21.0<br>20.4<br>20.4<br>20.5<br>20.5<br>20.5 | 101.1%<br>101.7%<br>101.7%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%                               | 72.65<br>72.65<br>71.15<br>69.65<br>74.85<br>72.35<br>73.45<br>74.85<br>67.45                                              | N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.<br>N. 7.                                                       | 55<br>3.4%<br>3.8%<br>2.2%<br>0.8%<br>5.9%<br>3.5%<br>4.5%<br>6.0%<br>8.7%                | Ratio<br>27.5<br>35.9<br>39.3<br>40.5<br>33.5<br>36.0<br>35.8<br>33.1<br>46.5<br>40.4                 | Wt 2.45<br>2.27<br>2.04<br>1.85<br>1.63<br>1.40<br>1.22<br>1.00<br>0.82<br>0.59         | 23.5<br>23.5<br>23.5<br>42.7<br>50.0<br>59.2<br>66.6                              | 7<br>6<br>5<br>2<br>8<br>0<br>3                | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78<br>1.56<br>1.34<br>1.17<br>0.95<br>0.78                 | 0.0<br>7.1<br>16.<br>23.<br>33.<br>42.<br>50.<br>50.<br>50.         | F 50 16 57 96 35 72 06 20 63 09            | 9266<br>3728<br>3723<br>4164<br>3708<br>3658<br>3658<br>3678<br>3748                                       | 72°<br>29°<br>29°<br>29°<br>29°<br>29°<br>29°<br>29°<br>29°<br>29°           | 0 0                                                                                                   | = [b]<br>  5.41<br>  5.41<br>  5.41<br>  5.41<br>  5.41<br>  5.41<br>  5.41<br>  5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /16=<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9 | [c]       | Value<br>1967-00<br>1967-00<br>1967-00<br>1967-00<br>1967-00<br>1967-00<br>1967-00            | Fuel E<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4       | lumt                                       | [N]<br>9.18<br>9.15<br>9.15<br>9.14<br>9.16<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15              | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99                                     | 0 0 0                                   | w  05   81   73   71   86   80   81   87   82   72           | BI<br>3.42<br>2.64<br>2.41<br>2.34<br>2.82<br>2.63<br>2.64<br>2.85<br>2.05<br>2.36                 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk 0.10 0.05 0.07 0.02 0.05 0.05 0.05 0.05 0.07                                            | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>3 | 0 <sub>2</sub> 4<br>32 158<br>49 211<br>30 24-<br>41 253<br>46 203<br>43 221<br>43 211<br>46 198<br>41 298<br>50 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 71 72 09 13 -44 24 39 60 20               | CO<br>1.02<br>1.05<br>1.07<br>1.07<br>1.07<br>1.05<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HC<br>-0.24<br>-0.34<br>-0.35<br>-0.38<br>-0.32<br>-0.34<br>-0.34<br>-0.31<br>-0.44                     | N <sub>2</sub><br>754.0<br>983.8<br>987.0<br>917.3<br>986.5<br>981.9<br>907.0                                     | H <sub>1</sub> 32 32 32 32 32 32 32 32 32 32 32         |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61 | 420-<br>393-<br>391-<br>395-<br>387-<br>394-<br>388-<br>388-<br>388-<br>391-           | 40<br>02<br>40<br>45<br>04<br>24<br>77<br>28<br>73               | CO <sub>2</sub><br>5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3<br>3957.6<br>3754.7<br>3871.6                               | 6 3<br>6 2<br>0 2<br>0 3<br>4 2<br>1 2<br>1 2<br>1 2<br>2 2                      | O <sub>2</sub><br>3790.55<br>2964.04<br>2905.35<br>3036.25<br>2806.08<br>2992.13<br>2842.43<br>2825.26<br>2928.98                                  | 363<br>283<br>285<br>295<br>277<br>29<br>277<br>277<br>285<br>285<br>285                       | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>32.83<br>13.00<br>68.16<br>51.50<br>51.97                            | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.80<br>2922.36<br>2701.67<br>2880.00<br>2736.60<br>2736.60<br>2720.14<br>2819.57<br>2804.72 | 486<br>3746<br>386<br>383<br>353<br>357<br>357<br>357<br>357<br>357                              | H <sub>4</sub><br>11.91<br>0.86<br>4.00<br>7.62<br>11.15<br>9.73<br>7.84<br>6.38<br>0.52<br>2.91          | H <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12<br>3271.57<br>3486.94<br>3313.85<br>3293.93<br>3414.04<br>3396.11            | 294.1<br>293.1<br>294.1<br>293.1<br>293.1<br>293.1<br>293.1<br>293.1<br>293.1                                     | 4 19<br>9 15<br>2 15<br>5 15<br>4 14<br>0 15<br>5 14<br>4 14<br>7 15<br>7 15         | 50 <sub>2</sub><br>8.25<br>4.78<br>0.94<br>8.28<br>6.26<br>6.07<br>8.06<br>7.25<br>2.57<br>2.11 | 602.6<br>651.2<br>710.5<br>768.4<br>567.1<br>659.5<br>623.1<br>563.3<br>868.1                                      | 9<br>2<br>9<br>5<br>8<br>9<br>7<br>3<br>3                     | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05<br>0.00<br>0.00<br>-14.13<br>35.86<br>-4.78                   | 274<br>280<br>301<br>324<br>247<br>284<br>268<br>246<br>350               | 4 <sub>5</sub><br>8.25<br>7.14<br>4.60<br>3.12<br>8.47<br>1.12<br>7.21<br>7.25<br>2.49<br>3.86     | 215.3<br>-306.6<br>-315.5<br>-337.3<br>-282.2<br>-301.2<br>-299.5<br>-278.5<br>-389.6<br>-346.7                   | 8<br>8<br>9                                   | 1575.36<br>1553.98<br>1552.74<br>1559.98<br>1545.42<br>1554.47                                             | 121<br>121<br>121<br>124<br>125<br>121                                                                       | 6.35<br>3.86<br>3.68<br>4.08<br>3.38<br>3.94                                         | Rate 5040.00 4009.00 5279.54 5030.30 4064.30 5033.80 4030.91 4054.30 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105<br>109<br>144<br>155<br>109<br>107<br>177                                    | Loss<br>0.00<br>1379.78<br>1037.66<br>1085.67<br>1002.00<br>984.06<br>931.63<br>883.10                                  | Le  |       | 0.0<br>1468<br>1091<br>1148<br>1066<br>1042<br>989<br>939<br>1244                 | 0<br>61<br>23<br>76<br>78<br>71<br>17<br>17               | 0<br>3886<br>2690<br>2636<br>3162<br>2724<br>2726<br>2726<br>2573<br>2639         | t Los                                           | 188 2<br>89<br>89<br>62<br>65<br>59<br>58<br>57<br>70<br>68                 | 0.00<br>-0.40<br>0.82<br>0.38<br>-0.30<br>0.00<br>0.00<br>-0.27<br>0.69<br>-0.09         |          |
| 0<br>10<br>20<br>30<br>40<br>50<br>70<br>80<br>90 | 2.40<br>2.27<br>2.04<br>1.85<br>1.63<br>1.40<br>1.22<br>1.00<br>0.85<br>0.41 | ing (kg) C<br>45 1<br>27 04 1<br>86 1<br>63 4<br>40 1<br>22 1<br>00 1<br>10 1<br>10 1<br>10 1<br>10 1<br>10 1<br>1 | % CO [e] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       | % CO <sub>2</sub> [d] 4.13<br>3.18<br>2.80<br>2.81<br>3.41<br>3.16<br>3.16<br>3.18<br>3.44<br>2.45<br>2.82<br>2.42 | Air EA<br>303.0%<br>541.8%<br>603.1%<br>623.4%<br>498.8%<br>543.6%<br>543.6%<br>540.7%<br>492.1%<br>729.5%<br>621.2%<br>732.5% | O <sub>2</sub><br>20.82<br>20.85<br>20.85<br>20.86<br>20.86<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85 | Date: %<br>Option<br>16.69<br>17.68<br>17.68<br>17.97<br>18.05<br>17.44<br>17.69<br>17.67<br>17.40<br>18.42<br>18.04<br>18.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Place es (°C) T 147.3 119.9 118.3 122.3 114.8 121.1 115.6 116.5 118.1 118.2             | Reem (*C) 20.9 20.6 21.0 20.7 20.8 21.0 20.4 20.5 20.5 20.5 20.5 20.5                                     | 101.1%<br>101.1%<br>101.7%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.5%<br>101.5%<br>101.5%<br>101.5% | 72.69<br>72.69<br>71.19<br>60.69<br>74.89<br>72.39<br>73.49<br>67.49<br>67.49<br>67.49                                     | N. 7.<br>N. 7. | 56<br>3.4%<br>3.8%<br>2.2%<br>0.8%<br>5.9%<br>3.5%<br>4.5%<br>6.0%<br>8.7%<br>2.0%        | Ratio<br>27.5<br>35.9<br>39.3<br>40.5<br>33.5<br>36.0<br>35.8<br>33.1<br>46.5<br>40.4<br>46.6         | Wt 2.45<br>2.27<br>2.04<br>1.86<br>1.63<br>1.40<br>1.22<br>1.00<br>0.82<br>0.59<br>0.41 | 23.5<br>23.5<br>23.5<br>42.7<br>50.0<br>59.2<br>68.6<br>78.0                      | 7<br>6<br>5<br>5<br>2<br>6<br>0<br>3<br>9      | Wt <sub>de</sub><br>2.34<br>2.17<br>1.95<br>1.78<br>1.56<br>1.34<br>1.17<br>0.95<br>0.78<br>0.56<br>0.39 | 10.0<br>7.1<br>16.<br>23.<br>33.<br>42.<br>50.<br>50.<br>66.<br>76. | F 00 16 57 96 35 72 06 20 63 09 16         | 9 1266<br>3728<br>3728<br>3723<br>4164<br>3708<br>3658<br>3678<br>3748<br>3668<br>3638                     | 79<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29                           | [a] /1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | (**E)  | 76-<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9  |           | Value<br>1967.00<br>1967.00<br>1967.00<br>1967.00<br>1967.00<br>1967.00<br>1967.00<br>1967.00 | Fuel E<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4       | lumt                                       | [N]<br>9.18<br>9.15<br>9.15<br>9.14<br>9.16<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15      | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99<br>20.99<br>20.99                   | 0 0 0                                   | w  05   81   73   71   86   80   81   87   62   72   62      | 3.42<br>2.64<br>2.41<br>2.34<br>2.62<br>2.63<br>2.64<br>2.85<br>2.05<br>2.05<br>2.05               | 00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                     | Nk<br>0.10<br>0.05<br>0.07<br>0.07<br>0.09<br>0.08<br>0.08<br>0.09<br>0.05<br>0.07<br>0.05 | 30.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32        | 0 <sub>3</sub> 4<br>32 158<br>49 211<br>30 244<br>41 253<br>46 203<br>43 221<br>46 198<br>41 298<br>50 253<br>62 290<br>63 203<br>64 198<br>64 198 | 00 71 72 09 13 44 24 39 60 20 67             | CO<br>1.02<br>1.05<br>1.07<br>1.07<br>1.07<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1. | 0.24<br>-0.24<br>-0.35<br>-0.35<br>-0.38<br>-0.32<br>-0.34<br>-0.34<br>-0.31<br>-0.44<br>-0.39<br>-0.39 | N <sub>2</sub><br>754.0<br>983.8<br>88988<br>917.3<br>985.5<br>981.9<br>907.0<br>88988<br>88988                   | H <sub>1</sub> 32 32 32 32 32 32 32 32 32 32 32 32 32   |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61 | 420,<br>393,<br>391,<br>395,<br>394,<br>388,<br>388,<br>391,<br>391,                   | 40<br>02<br>40<br>45<br>14<br>24<br>77<br>28<br>73<br>23         | CO <sub>2</sub><br>5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3<br>3957.6<br>3754.7<br>3871.6<br>3850.7<br>3634.6           | 6 3<br>6 2<br>0 2<br>0 3<br>4 2<br>1 2<br>1 2<br>2 2<br>4 2<br>1 2<br>2 2        | O <sub>2</sub><br>3790.55<br>2964.04<br>2905.35<br>3036.25<br>2806.08<br>2902.13<br>2842.43<br>2825.26<br>2928.98<br>2913.49<br>2752.59            | 363<br>283<br>285<br>295<br>277<br>29<br>277<br>277<br>285<br>285<br>285<br>265                | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>32.83<br>13.00<br>68.16<br>51.50<br>51.97<br>36.97<br>80.94          | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.85<br>2922.35<br>2701.67<br>2880.00<br>2736.65<br>2720.14<br>2819.57<br>2804.77<br>2804.77 | 2 486<br>3744<br>386<br>383<br>353<br>357<br>357<br>357<br>357<br>357<br>357<br>357<br>357<br>35 | H <sub>4</sub><br>11.91<br>0.86<br>4.00<br>7.62<br>11.15<br>9.73<br>7.84<br>5.38<br>0.52<br>2.91<br>11.02 | N <sub>2</sub> O<br>4409.51<br>3454.57<br>3386.47<br>3538.12<br>3271.57<br>3486.94<br>3313.85<br>3293.93<br>3414.04<br>3396.11<br>3209.52 | 294.1<br>290.1<br>290.1<br>290.1<br>290.1<br>290.1<br>290.1<br>290.1<br>290.1<br>290.1                            | 4 19<br>9 15<br>2 15<br>5 15<br>4 14<br>0 15<br>5 14<br>4 14<br>7 15<br>7 15<br>4 14 | 8.25<br>4.78<br>0.94<br>8.28<br>6.26<br>6.07<br>8.06<br>7.25<br>2.57<br>2.11                    | 02.6<br>602.6<br>651.2<br>710.5<br>768.4<br>567.1<br>659.5<br>623.1<br>563.2<br>868.1<br>734.8                     | 9<br>2<br>9<br>5<br>5<br>8<br>9<br>7<br>3<br>3<br>0           | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05<br>0.00<br>0.00<br>-14.13<br>35.86<br>-4.78<br>132.92         | 274<br>280<br>301<br>324<br>267<br>284<br>268<br>359<br>310<br>338        | 45<br>8.25<br>7.14<br>4.60<br>3.12<br>8.47<br>1.12<br>7.21<br>7.25<br>2.49<br>3.88<br>4.91         | 215.3<br>-306.6<br>-315.5<br>-337.3<br>-282.2<br>-301.2<br>-299.5<br>-278.5<br>-389.6<br>-346.7<br>-349.1         | 8 8 7 7 7 8 8 8 8 8 8 1 1 1 3 8 8 1 1 1 3 0 0 | 1575.36<br>1553.98<br>1552.74<br>1559.98<br>1545.42<br>1554.47<br>1548.63<br>1545.76<br>1561.47<br>1556.32 | 121<br>122<br>123<br>124<br>124<br>125<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127 | 5.35<br>3.86<br>3.68<br>4.06<br>3.38<br>3.94<br>3.49<br>3.44<br>3.75<br>3.70<br>3.22 | Rate 5040.00 4909.00 5279.54 5036.30 4054.30 5033.80 4054.30 5033.80 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5033.50 5 | 105<br>109<br>144<br>155<br>159<br>159<br>177<br>177<br>179<br>189               | Loss<br>0.00<br>1379.78<br>1037.65<br>1086.67<br>1002.00<br>954.06<br>931.63<br>883.10<br>1174.75<br>1028.61<br>1113.06 | Le  |       | 0.0<br>1468<br>1091<br>1148<br>1086<br>1042<br>989<br>939<br>1244<br>1096<br>1154 | 0<br>61<br>23<br>76<br>78<br>71<br>17<br>11<br>44<br>30   | 0<br>3886<br>2690<br>2636<br>3162<br>2724<br>2726<br>2726<br>2573<br>2639<br>2525 | t Los                                           | 188 2<br>0<br>0<br>54<br>62<br>65<br>59<br>58<br>57<br>70<br>68             | 0.00<br>-0.40<br>0.82<br>0.38<br>-0.30<br>0.00<br>0.00<br>-0.27<br>0.69<br>-0.09<br>2.50 |          |
|                                                   | Remainin<br>2.45<br>2.23                                                     | ing (kg) C<br>45 1<br>27 1<br>04 86 1<br>83 1<br>40 1<br>22 2<br>00 82 1<br>83 1<br>14 1<br>15 1                   | % CO [e] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                       | % CO <sub>2</sub> [d] 4.13<br>3.18<br>2.89<br>2.81<br>3.41<br>3.18<br>3.18<br>3.44<br>2.45<br>2.82<br>2.42<br>3.11 | Air EA<br>303.0%<br>541.8%<br>603.1%<br>623.4%<br>498.8%<br>543.0%<br>543.0%<br>540.7%<br>492.1%<br>729.5%<br>621.2%           | O <sub>2</sub> 20.82 20.85 20.86 20.86 20.84 20.85 20.85 20.85 20.85 20.85                                                          | Tale: % O <sub>2</sub> led O <sub>3</sub> led O <sub>4</sub> led O <sub>7</sub> | Place es (°C) T 147.3 119.9 118.3 122.3 114.8 115.1 115.6 115.1 118.5 118.1 113.2 117.2 | Reem (*C) 20.9 20.9 20.8 21.0 20.7 20.8 21.0 20.4 20.5 20.5 20.5 20.5 20.6                                | 101.1%<br>101.1%<br>101.7%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6%<br>101.6% | 72.69<br>72.69<br>72.69<br>72.19<br>72.19<br>74.89<br>72.39<br>73.49<br>74.89<br>67.49<br>70.79<br>68.69<br>72.79<br>71.99 |                                                                                                                            | %<br>3.4%<br>3.8%<br>2.2%<br>0.8%<br>5.5%<br>4.5%<br>6.0%<br>8.7%<br>2.0%<br>9.4%<br>3.5% | Ratio<br>27.5<br>35.9<br>39.3<br>40.5<br>33.5<br>35.0<br>35.8<br>35.8<br>46.5<br>46.5<br>46.6<br>35.6 | Wt 2.45 2.27 2.04 1.85 1.63 1.40 1.22 1.00 0.82 0.59 0.41 0.18                          | x<br>0.00<br>7.11<br>16.5<br>23.5<br>42.7<br>50.0<br>50.0<br>66.6<br>76.0<br>83.1 | 7<br>6<br>5<br>5<br>2<br>6<br>0<br>3<br>9<br>8 | Wt <sub>m</sub> 2.34 2.17 1.95 1.78 1.56 1.34 1.17 0.95 0.78 0.56 0.39 0.18                              | 10.0<br>7.1<br>16.<br>23.<br>33.<br>42.<br>50.<br>59.<br>66.<br>76. | 7 00 116 57 96 335 72 06 20 63 63 69 16 48 | Input<br>0<br>5266<br>3728<br>3723<br>4164<br>3708<br>3658<br>3678<br>3746<br>3668<br>3658<br>5406<br>1669 | 192-<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 |                                                                                                       | (* [b] (* | /16-<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9<br>2.9 | - 1       | Value<br>1967-00<br>1967-00<br>1967-00<br>1967-00<br>1967-00<br>1967-00<br>1967-00            | Fuel E<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4.4<br>4. |                                            | [h] 9.18<br>9.15<br>9.15<br>9.14<br>9.14<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15 | [u]<br>21.00<br>21.00<br>20.99<br>20.99<br>21.00<br>20.99<br>21.00<br>20.99<br>20.99<br>20.99<br>20.99<br>20.99<br>20.99<br>20.99 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | w  05   81   73   71   86   80   81   87   82   72   62   79 | 01<br>3.42<br>2.64<br>2.41<br>2.34<br>2.63<br>2.63<br>2.64<br>2.85<br>2.05<br>2.05<br>2.04<br>2.58 | 00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00<br>-00 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.10<br>0.05<br>0.07<br>0.07<br>0.09<br>0.08<br>0.08<br>0.09<br>0.05<br>0.09               | 302<br>302<br>302<br>302<br>302<br>302<br>302<br>302<br>302<br>302              | D <sub>2</sub> (1) 332 15832 15849 211 330 24441 253 343 211 446 253 443 221 446 198 441 2580 255 02 290 444 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 772 09 13 44 24 39 60 20 67 52               | CO<br>1.02<br>1.05<br>1.15<br>1.07<br>1.00<br>1.00<br>1.00<br>1.00<br>1.13<br>1.13<br>1.13<br>1.02<br>1.14<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HC -0.24 -0.34 -0.35 -0.34 -0.34 -0.34 -0.34 -0.39 -0.39 -0.39 -0.34                                    | N <sub>2</sub><br>754.0<br>983.8<br>88888<br>917.3<br>985.5<br>981.9<br>907.0<br>88888<br>88888<br>88888<br>88888 | H 32 32 32 32 32 32 32 32 32 32 32 32 32                |      | resent<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61<br>2.61 | 80<br>420<br>393<br>391<br>395<br>387<br>394<br>398<br>398<br>391<br>391<br>391<br>390 | 40<br>102<br>40<br>45<br>104<br>24<br>77<br>28<br>73<br>23<br>37 | CO <sub>2</sub><br>5041.8<br>3919.1<br>3840.5<br>4016.8<br>3706.3<br>3557.6<br>3754.7<br>3871.6<br>3850.7<br>3634.6<br>3818.5 | 6 3<br>6 2<br>0 2<br>0 3<br>4 2<br>1 2<br>1 2<br>2 2<br>4 2<br>1 2<br>2 2<br>2 2 | O <sub>2</sub><br>3790.55<br>2964.04<br>2965.35<br>3036.25<br>2866.08<br>2992.13<br>2842.43<br>2825.26<br>2903.98<br>2713.59<br>2713.59<br>2713.59 | 363<br>283<br>285<br>295<br>277<br>277<br>277<br>285<br>285<br>285<br>285<br>285<br>285<br>285 | CO<br>85.09<br>85.89<br>28.95<br>55.80<br>32.83<br>13.00<br>68.16<br>51.50<br>51.97<br>36.97<br>80.94<br>13.98 | N <sub>2</sub><br>3644.45<br>2853.15<br>2796.85<br>2791.67<br>2880.00<br>2736.65<br>2720.14<br>2819.57<br>2804.75<br>2804.75<br>2804.75 | 2 486<br>3746<br>385<br>385<br>357<br>357<br>357<br>357<br>357<br>357<br>357<br>357<br>357<br>35 | 11.91<br>0.86<br>4.00<br>7.62<br>11.15<br>9.73<br>7.84<br>8.38<br>3.52<br>2.91<br>11.02<br>0.81           | NyO<br>4402.51<br>3454.57<br>3385.47<br>3538.12<br>3271.57<br>3485.94<br>3313.85<br>3293.93<br>3414.04<br>3395.11<br>3209.52<br>3368.63   | 294.1<br>293.1<br>294.1<br>293.1<br>293.1<br>294.1<br>293.1<br>293.1<br>293.1<br>293.1<br>293.1<br>293.1<br>293.1 | 4 199 155 2 155 155 145 144 144 144 144 144 144 144                                  | 8.25<br>4.78<br>0.94<br>8.28<br>6.26<br>6.07<br>8.06<br>7.25<br>2.57<br>2.11<br>1.83<br>0.61    | O <sub>2</sub><br>602.6<br>651.2<br>7103.7<br>768.4<br>567.1<br>659.5<br>623.1<br>868.1<br>734.8<br>819.1<br>649.5 | 9<br>2<br>9<br>5<br>5<br>8<br>9<br>7<br>3<br>3<br>0<br>5<br>5 | 5.13<br>-14.73<br>42.57<br>19.80<br>-14.05<br>0.00<br>0.00<br>-14.13<br>35.86<br>-4.78<br>132.92<br>0.00 | 274<br>286<br>301<br>324<br>267<br>268<br>268<br>355<br>310<br>338<br>275 | 45<br>8.25<br>7.14<br>4.60<br>3.12<br>8.47<br>1.12<br>7.21<br>7.25<br>2.49<br>3.88<br>4.91<br>1.48 | CH,<br>-215.2<br>-306.8<br>-315.5<br>-337.2<br>-301.2<br>-299.5<br>-278.5<br>-346.2<br>-346.2<br>-346.2<br>-307.2 | 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7       | 1575.36<br>1553.98<br>1552.74<br>1559.98<br>1545.42<br>1554.47<br>1548.63<br>1545.76<br>1561.47            | 128<br>127<br>129<br>129<br>120<br>121<br>121<br>121<br>121<br>121<br>121<br>121<br>121<br>121               | 6.35<br>3.86<br>3.68<br>4.08<br>3.38<br>3.94                                         | Rate 5040.00 4909.50 5279.54 5033.80 4030.91 4054.30 5345.00 5319.30 5319.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>16<br>19<br>14<br>15<br>15<br>17<br>17<br>15<br>17<br>17<br>10<br>18<br>15 | Loss<br>0.00<br>1379.78<br>1037.65<br>1036.67<br>1002.00<br>984.06<br>931.63<br>883.10<br>1174.75<br>1028.61            | Le  |       | 0.0<br>1468<br>1091<br>1148<br>1066<br>1042<br>989<br>939<br>1244                 | 61<br>223<br>76<br>78<br>71<br>17<br>11<br>44<br>30<br>50 | 0<br>3886<br>2690<br>2636<br>3162<br>2724<br>2726<br>2726<br>2573<br>2639         | t Los 0                                         | 188 2<br>0<br>0<br>54<br>62<br>65<br>59<br>58<br>57<br>70<br>68<br>41<br>87 | 0.00<br>-0.40<br>0.82<br>0.38<br>-0.30<br>0.00<br>0.00<br>-0.27<br>0.69<br>-0.09         |          |



All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

| Manufacturer:         | Ardisam    | Technicians: | KS |
|-----------------------|------------|--------------|----|
| Model:                | Serenity   |              |    |
| Date:                 | 12/07/15   |              |    |
| Run:                  | 1          | •            |    |
| Control #:            | G102366578 |              |    |
| <b>Test Duration:</b> | 180        | •            |    |

#### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 67.3%     | 72.5%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 68%       | 72.9%     |

Output Category: Low Burn Rate

| Output Rate (kJ/h) | 10,094 | 9,575  | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 0.75   | 1.66   | (lb/h)  |
| Input (kJ/h)       | 14,997 | 14,226 | (Btu/h) |

| Test Load Weight (dry kg) | 2.26 | 4.99 | dry lb |
|---------------------------|------|------|--------|
| MC wet (%)                | 4.49 |      | -      |
| MC dry (%)                | 4.70 |      |        |
| Particulate (g )          | 6.71 |      |        |
| CO (g)                    | 24   |      |        |
| Test Duration (h)         | 3.00 |      |        |

| Emissions        | Particulate | CO    |
|------------------|-------------|-------|
| g/MJ Output      | 0.22        | 0.79  |
| g/kg Dry Fuel    | 2.97        | 10.61 |
| g/h              | 2.24        | 8.00  |
| lb/MM Btu Output | 0.51        | 1.84  |

| Air/Fuel Ratio (A/F) | 62.00 |
|----------------------|-------|
|----------------------|-------|

|                                                                                       | 2.2                                                                                                                          | 12/14/2009                                                                                                           |                                                                                                              |                                                                                                                                     |                                                                                                                                     |                                                                                                                              |               |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------|
| Manufacturer:                                                                         | Ardisam                                                                                                                      |                                                                                                                      | Applia                                                                                                       | nce Type:                                                                                                                           | Pellet                                                                                                                              | (Cat, Non-                                                                                                                   | -Cat, Pellet) |
|                                                                                       | Serenity                                                                                                                     |                                                                                                                      |                                                                                                              |                                                                                                                                     |                                                                                                                                     |                                                                                                                              |               |
|                                                                                       | 12/7/2015                                                                                                                    |                                                                                                                      |                                                                                                              | mp. Units                                                                                                                           | F                                                                                                                                   | (F or C)                                                                                                                     | Default       |
| Run:                                                                                  | 1                                                                                                                            |                                                                                                                      | We                                                                                                           | ight Units                                                                                                                          | lb                                                                                                                                  | (kg or lb)                                                                                                                   |               |
| Control #:                                                                            | G102366578                                                                                                                   |                                                                                                                      |                                                                                                              |                                                                                                                                     |                                                                                                                                     |                                                                                                                              | HHV (kJ/kg)   |
| Test Duration:                                                                        | 180                                                                                                                          |                                                                                                                      |                                                                                                              |                                                                                                                                     |                                                                                                                                     |                                                                                                                              | %C            |
| Output Category:                                                                      | Low Burn Rate                                                                                                                |                                                                                                                      |                                                                                                              | Fuel I                                                                                                                              | Data                                                                                                                                |                                                                                                                              | %Н            |
|                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                              |                                                                                                                                     | D. Fir                                                                                                                              |                                                                                                                              | %O            |
| Wood                                                                                  | Moisture (% wet):                                                                                                            | 4.49                                                                                                                 |                                                                                                              | HHV                                                                                                                                 | 19,887                                                                                                                              | kJ/kg                                                                                                                        | %Ash          |
| Load                                                                                  | d Weight (lb wet):                                                                                                           | 5.22                                                                                                                 |                                                                                                              | %C                                                                                                                                  | 50                                                                                                                                  |                                                                                                                              |               |
| Bur                                                                                   | n Rate (dry kg/h):                                                                                                           | 0.75                                                                                                                 |                                                                                                              | %Н                                                                                                                                  | 6.6                                                                                                                                 |                                                                                                                              | T.            |
| Total Partic                                                                          | culate Emissions:                                                                                                            | 6.71 g                                                                                                               | 1                                                                                                            | <b>%O</b>                                                                                                                           | 42.9                                                                                                                                |                                                                                                                              | n<br>f        |
|                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                              | %Ash                                                                                                                                | 0.5                                                                                                                                 |                                                                                                                              |               |
|                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                              |                                                                                                                                     |                                                                                                                                     |                                                                                                                              |               |
|                                                                                       | Averages                                                                                                                     | 0.01                                                                                                                 | 1.96                                                                                                         | 18.58                                                                                                                               | 195.75                                                                                                                              | 69.05                                                                                                                        |               |
|                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                              |                                                                                                                                     | Temp                                                                                                                                | ). (°F)                                                                                                                      | ١             |
| Elapsed                                                                               | Fuel Weight                                                                                                                  | Flue Gas                                                                                                             | s Composit                                                                                                   | ion (%)                                                                                                                             | Flue                                                                                                                                | Room                                                                                                                         | <br> F        |
| Time (min)                                                                            | Remaining (lb)                                                                                                               | CO                                                                                                                   | $CO_2$                                                                                                       | $O_2$                                                                                                                               | Gas                                                                                                                                 | Temp                                                                                                                         | i.            |
|                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                              |                                                                                                                                     |                                                                                                                                     |                                                                                                                              |               |
| 0                                                                                     | 5.22                                                                                                                         | 0.00                                                                                                                 | 2.99                                                                                                         | 17.49                                                                                                                               | 243.7                                                                                                                               | 69.0                                                                                                                         | c             |
| 10                                                                                    | 4.93                                                                                                                         | 0.00                                                                                                                 | 2.99<br>1.74                                                                                                 | 17.49<br>18.82                                                                                                                      | 243.7<br>203.8                                                                                                                      |                                                                                                                              | C             |
| 10<br>20                                                                              | 4.93<br>4.62                                                                                                                 | 0.01                                                                                                                 |                                                                                                              | 18.82<br>18.52                                                                                                                      |                                                                                                                                     | 69.0<br>68.4                                                                                                                 | \<br>\<br>a   |
| 10<br>20<br>30                                                                        | 4.93<br>4.62<br>4.32                                                                                                         | 0.01<br>0.00<br>0.02                                                                                                 | 1.74<br>2.02<br>1.90                                                                                         | 18.82<br>18.52<br>18.67                                                                                                             | 203.8<br>203.9<br>201.4                                                                                                             | 69.0<br>68.4<br>69.0                                                                                                         | C             |
| 10<br>20<br>30<br>40                                                                  | 4.93<br>4.62<br>4.32<br>4.01                                                                                                 | 0.01<br>0.00<br>0.02<br>0.03                                                                                         | 1.74<br>2.02<br>1.90<br>1.73                                                                                 | 18.82<br>18.52<br>18.67<br>18.82                                                                                                    | 203.8<br>203.9<br>201.4<br>186.4                                                                                                    | 69.0<br>68.4<br>69.0<br>68.6                                                                                                 | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50                                                            | 4.93<br>4.62<br>4.32<br>4.01<br>3.72                                                                                         | 0.01<br>0.00<br>0.02<br>0.03<br>0.02                                                                                 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68                                                                         | 18.82<br>18.52<br>18.67<br>18.82<br>18.87                                                                                           | 203.8<br>203.9<br>201.4<br>186.4<br>189.1                                                                                           | 69.0<br>68.4<br>69.0<br>68.6<br>69.7                                                                                         | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50                                                            | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51                                                                                 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03                                                                         | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65                                                                 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91                                                                                  | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3                                                                                  | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1                                                                                 | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60                                                      | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22                                                                         | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00                                                                 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11                                                         | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40                                                                         | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5                                                                         | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7                                                                         | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70                                                | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92                                                                 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00                                                         | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08                                                 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45                                                                | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5                                                                         | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8                                                                 | c<br>v<br>e   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80                                          | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62                                                         | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00                                                         | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56                                         | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95                                                       | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8                                                                | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9                                                         | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90                                    | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31                                                 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00                                         | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79                                 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76                                              | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3                                              | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9                                                         | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                             | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02                                         | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.03                                 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16                         | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36                                     | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4                                     | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0                                                 | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110                      | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02                                         | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00                 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96                 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57                            | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4<br>187.3                            | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0                                                 | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120               | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71                                 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.03<br>0.00<br>0.01<br>0.03                 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96<br>1.69         | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57<br>18.88                   | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6                            | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4                                 | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130        | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51                         | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.03<br>0.00                 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96<br>1.69         | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57<br>18.88                   | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0                   | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>69.0<br>69.8<br>69.4<br>69.4                                 | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51<br>1.21                 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.01<br>0.03<br>0.00<br>0.01<br>0.03         | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96<br>1.99<br>1.99 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57<br>18.88<br>18.55<br>18.57 | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0                   | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>69.0<br>69.8<br>69.4<br>69.4<br>69.4                         | \<br>\<br>a   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51<br>1.21<br>0.92<br>0.60 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.01<br>0.03<br>0.00<br>0.01<br>0.03<br>0.00 | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96<br>1.99<br>1.99 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57<br>18.88<br>18.55<br>18.57 | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0<br>198.5 | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>69.9<br>69.0<br>69.8<br>69.4<br>69.4<br>69.4<br>69.3<br>68.3 | c<br>v<br>e   |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51<br>1.21                 | 0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.01<br>0.03<br>0.00<br>0.01<br>0.03         | 1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96<br>1.99<br>1.99 | 18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57<br>18.88<br>18.55<br>18.57 | 203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0                   | 69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4<br>69.4<br>69.4<br>69.3<br>68.3 | c<br>v<br>e   |

12/14/2009

VERSION: 2.2

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

50

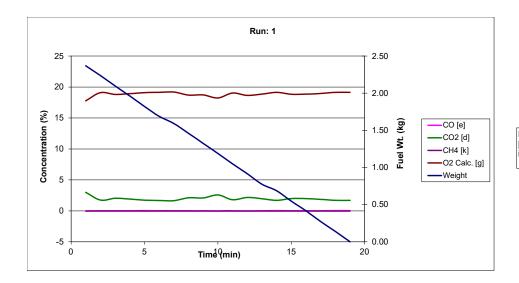
6.6 42.9

0.5

**Default Fuel Values** D. Fir

19,810

48.73


6.87

43.9

0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

| Manufacturer:  | Ardso    | m           |          |     |                                       |                                     |                   |                      |           |                |             |        |           |               |                          |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|----------------|----------|-------------|----------|-----|---------------------------------------|-------------------------------------|-------------------|----------------------|-----------|----------------|-------------|--------|-----------|---------------|--------------------------|--------|------------------|----------|------------|-----------------------|-----------------|------------|-------------|-----------------|------------------------|---------------|-----------------------------|------------|-----------|---------------|---------------------------|---------|-----------------|---------|---------|---------|-----------------------------|----------------------------|--------------|------------------|---------|----------|---------|--------------|-----------|------------|-------------|------------------|----------|----------|------------------|---------|------------|--------|------------|
| Model:         | Seren    | by          |          |     |                                       |                                     |                   |                      |           |                |             |        |           | Air Fuel Rat  | tio (AF)                 |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           | Moisture Cr   | ontent M <sub>Cet</sub> : | 4.49    |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
| Date:          | 12/07/   | 15          |          |     |                                       |                                     |                   |                      | Ove       | rall Heating I | Efficiency: | 67.30% | Dry Moles | cular Weigh   | t(M.) 2                  | 9.07   |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
| Run:           |          |             |          | N   | lote: In the 'In                      | put data", "Ca                      | k. % 0,1, 7       | 'uel                 |           | Combustion I   | Efficiency: | 99.50% | Dry Moles | Exhaust Go    | m (N <sub>i</sub> ): 21: | 50.45  | NHC              |          |            | Combusti              | on Efficiency:  | 99.50%     |             |                 | Mo                     | isture of Woo | ood (wet basis)             | 4.49       |           |               | Dry kg:                   | 2.26    |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
| Control #:     | G102366  | 1578        |          | P   | roperties", an                        | d 'Mass Balar<br>[u], [w], [j], an  | ce" columns       | s, [e], [d], [g]     | 6 н       | eat Transfer I | Efficiency: | 67.64% | At Fu     | sel Ratio (Al | n s                      | 2.00   | 0.8              |          |            | To                    | tal Input (kJ): | 44.992     | 42.672 (Bt) | a)              |                        | nitial Dry We | eight Wt <sub>ex</sub> (kg) | 2.25       |           |               | CA                        | 50      |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
| Test Duration: | 180      | min         |          |     | aj. (oj. (cj. (nj.<br>estractiva vado | (U), (W), (I), am<br>ables in Claus | es 13.7.3 to      | 13.7.5               |           |                |             |        |           |               |                          |        |                  |          |            | Tota                  |                 | 30.282     | 28.721 (Bb) | ú               |                        | Moisture      | re Content Dry              | 4.70       |           |               | HY:                       | 6.6     |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                |          | HHN         | V LHV    | /   | ,                                     |                                     |                   |                      | _ +       | feat Output:   | 9.575       | that   | 10.094 k  | 10h           |                          |        |                  |          |            |                       | Efficiency:     | 67.30%     |             |                 |                        |               |                             |            |           |               | COX:                      | 42.9    |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | Eff      |             |          |     |                                       |                                     |                   |                      | _         | Heat Input:    | 14.226      | thath  | 14.997 k  | 10h           |                          |        |                  |          |            |                       | Fotal CO (a):   | 24.01      |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | Comb     |             |          |     |                                       |                                     |                   | rute CO <sub>2</sub> |           |                |             |        |           |               |                          |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | HTD      | E7.64       | 72.86    | 86  |                                       |                                     | 00 <sub>2m8</sub> | 19.80                | Bu        | m Duration:    | 3.00        | h      |           |               |                          |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | Outpo    | £ 10,00     |          | 1   |                                       |                                     |                   | Fo.                  |           |                |             |        |           |               |                          |        |                  |          |            |                       |                 |            |             | d Weight (kg)   |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | Burn R   | ate 0.75    |          | 1   |                                       |                                     |                   | 1.037                |           | Burn Rate:     | 1.66        | bh     | 0.754 ks  | ah            |                          |        |                  |          |            |                       |                 |            | Fue         | (Heating        | HHV                    | LHV           |                             | HHV        | LHV       |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | Grams    |             |          |     |                                       |                                     |                   |                      |           |                |             |        |           |               |                          |        |                  |          |            |                       |                 |            | Vali        | ae in kälko - C | OV: 19.887             | 18.464        | Bluft                       | b 8555.6 T | 943.4     |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | Inpu     |             |          | 1   |                                       |                                     |                   |                      |           | Stack Temp:    | 193.1       | Deg. F | 89.5 D    | Deg. C        |                          |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |
|                | MCw      |             |          |     |                                       |                                     |                   |                      |           |                |             |        |           |               |                          |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         | SUMS         |           |            |             | AVERAGE          |          |          |                  | SUMS    |            |        |            |
|                | Averac   | es 0.01     | 1 1.96   |     |                                       | 20.83 ·                             | 8.86              | 90.97                | 20.58     | 102.2%         | Meat        | 71.2%  | 63.42     |               | 49.89 1<br>6 Wet Dr      |        | 49.89 4<br>% Dry | 321 4.   | 17 6.60    | 2.68<br>el Properties | 19887.00        | 4.49<br>Nw | 79.17 2     | Mana B          |                        |               | 0.05<br>ke Wood pe          |            | 15.00 0.3 | 36 -0.61      | 1738.04                   | 34.38 2 | 2.61 364<br>Stu |         | 751.58  | 2093.86 | 2041.80 20<br>e - Ambient t | 017.98 2590                | 8.25 2445.1  | 4 293.73<br>Boom | 2202.73 | 16349.59 | 1935.18 | 66058.36     | -10318.81 | 30320.43   |             | 5728.98<br>Total | 13440.33 | -1044.85 | 14485.2          | 32880   | 1044.9     | 9 24.0 | -23.1      |
| Elegand        | Weigi    |             |          | -   |                                       | Total C                             |                   | Ehre.                | Boom      | Combust        | mean        | Net    | Air W     | wet wit 17    | wet De                   | y wt.  | s ury            |          | , ru       | er Osymen             |                 | Moisture   |             |                 | aunce<br>a dev flue es |               | 100 mole d                  |            |           | er ke of Dry  |                           | 1.00    | pisture Ter     | BCK     | neat Co |         | Gas Constit                 |                            | perature     | Temp             |         |          |         | e Gas Corat  |           |            |             | Loss             | Total    | Chemical | Sensible and     | nd Tota | tal Chem   |        | a Produced |
| Time           | Welci    |             | e1 CO, 1 |     | ir FA                                 | O C                                 | BC. 76            | PROFES T             | Room (CC) | E              | Frantater   | EH.    | Petio     | NOW COS       | naumeo A                 | NOW CO | maumed           | otal Car | DON HVOTOG | er Uzvosn             | Calerine        | MOCREUM    | (mc         | ees/100 mos     | e cry tue ga           | (1)           | 100 mole di                 | - 00       | Moies p   | ser ag or ury |                           |         | nannt b         | mo .    | 00      | 0       | GES CONSUI                  | N. C                       | H. H-O       | Iemo             | co      | 0        |         | ie Gas Corat | CH        | H-O Comb H | O Free I MC | Date             | Loss     | Loss 1   | Latert Loss      |         |            |        | HC HC      |
| lime           | Remainin | g (High CO) | ej coj j | - A | IP EA                                 | 01 0                                | -2 EMB            |                      |           | 76             | 74          | 76     | RESO      | wt            |                          |        | y 1              | iput nz  | ial viele  | 1 1164 [C]            | Value           | Fuel Burns | [n]         | ol (w)          | - 111                  | [K]           | PER.                        | 1001       | 03 00     | O NC          | 10000000                  | MO MA   | esent P         |         | 001     | 0,      | CO                          | H) U                       | ng ngo       | R.               |         |          |         | 740          | conq      | ngo como n |             | 5390.83          | LOSS     | LOSS 1   | 0.00             | , outp  | AUT LOSS / | 0.00   | 0.00       |
|                | 23/      | 0.00        | 0 250    | 36  | 02.2%                                 | 20.77                               | 17.76             | 117.6                | 20.6      | 101.6%         | 71.0%       | 72.37% | 40.9      | 2.37          | 0.00 2                   | 220    | 0.00             | 0 4.     | 0.00       | 2.00                  | 19667.00        | 4.49       | 79.23 21    | .02 0.71        | 2.40                   | -0.03         | 0.07                        | 42.20 2    | 51.35 0.0 | 0.40          | *******                   | 33.97 2 | 2.61 390        | 176 36. | 30.59   | 2896.50 | 2022.43 27                  | 90.34 3653                 | 3.15 33/6./. | 2 293.72         | 101.94  | 728.54   | 0.00    | 3125.73      | -307.21   | 1000.17    |             | 6497.16          | 1247.80  |          | 1347.00          | 2572    | 77 .99     | 1.83   | -2.11      |
| 20             | 2.10     | 0.00        | 0 200    | 10. | 80.4%                                 | 20.89                               | 8.81              | 95.5                 | 20.2      | 102.0%         | 60.0%       | 70 9%  | 50.5      | 210 1         | 11.42 2                  | 2.00   | 11.42            | 511 4    | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.15 21    | 00 0.48         | 1.64                   | -0.03         | 0.04                        | 42.46 3    | 55.67 0.0 | 4 -0.62       | ******                    | 34.41 2 | 2.61 366        | 62 29   | M5 74   | 2220.59 | 21/2./4 21                  | 158 44 2785                | 2001.0       | 293.89           | 125.07  | 886.26   | 11.63   | 3595.76      | -514.50   | 1603.07    |             | 5785.95          | 750 70   | -30      | 831.11           | 1851    |            | 0.15   | -131       |
| 30             | 1.96     | 0.00        | 2 1.90   | 92  | 34.4%                                 | 20.83                               | 8.92              | 94.1                 | 20.6      | 102.2%         | 68.2%       | 69.7%  | 64.1      | 1.95 1        | 17.16 1                  | 1.87   | 17.16            | 527 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.16 21    | .00 0.45        | 1.55                   | -0.03         | 0.05                        | 42.12 4    | 20.03 0.3 | 7 -0.61       | ARVARAV                   | 34.39 2 | 2.61 367        | 29 28   | 78.75   | 2189.46 | 2134.74 21                  | 109.89 2720                | 0.87 2556.3  | 5 293.71         | 121.24  | 919.65   | 105.48  | 3707.18      | -548.27   | 1600.19    | 121.51      | 6027.98          | 796.21   | -58      | 854.45           | 1831    |            | 1.38   | -1.30      |
| 40             | 1.82     | 0.00        | 3 1.73   | 10. | 22.7%                                 | 20.84                               | 2.09              | 85.8                 | 20.3      | 101.7%         | 68.9%       | 70.1%  | 69.6      | 1.82 2        | 23.10 1                  | 1.74   | 23.10 2          | 500 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.15 20    | 99 0.42         | 1.43                   | -0.03         | 0.04                        | 41.73 4    | 59.96 0.7 | 7 -0.62       | ATTOREY                   | 34.41 2 | 2.61 358        | 91 255  | 51.71   | 1944.40 | 1896.70 18                  | 74.44 2400                 | 3.73 2271.5  | 5 293.48         | 106.47  | 894.39   | 219.43  | 3574.45      | -553.75   | 1590.98    | 120.77      | 5952.75          | 775.27   | -44      | 815.50           | 1811    | 15 -44     | 2.81   | -1.29      |
| 50             | 1.69     | 0.00        | 2 1.68   |     |                                       | 20.84                               | 12.15             | 87.3                 | 20.9      | 102.4%         | 67.9%       | 69.5%  | 72.3      | 1.09 2        | 18.68                    | 1.61   | 28.68 2          | 175 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.15 20    | 199 0.40        | 1.38                   | -0.03         | 0.04                        | 42.06 4    | 79.73 0.5 | 0.69          | ARVANAV                   | 34.55 2 | 2.61 360        | 40 25   | 588.21  | 1971.30 | 1922.72 19                  | 000.20 2440                | 0.10 2302.6  | 5 294.09         | 108.87  | 945.69   | 143.65  | 3767.01      | -616.01   | 1598.51    |             | 6068.56          | 663.70   | -52      | 715.28           | 1511    |            | 1.54   | -1.21      |
| 60             | 1.59     | 0.03        | 3 1.65   | 10  | 182.4%                                | 20.84                               | 12.18             | 85.8                 | 20.6      | 102.1%         | 67.5%       | 68.9%  | 73.4      | 1.59 2        | 2.77 1                   | 1.52   | 32.77 2          | 170 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.14 20    | 199 0.40        | 1.36                   | -0.03         | 0.04                        | 41.90 4    | 87.41 0.6 | 55 -0.68      | ARVANAV                   | 34.53 2 | 2.61 359        | 199 258 | 883.31  | 1967.89 | 1919.46 18                  | 196.96 2434                | 8.80 2298.8  | 293.78           | 108.24  | 959.16   | 187.55  | 3814.82      | -607.09   | 1597.45    | 120.84      | 6180.98          | 674.36   | -46      | 720.09           | 1495    | .6 -46     | 2.01   | -1.19      |
| 70             | 1.46     | 0.00        | 0 2.11   | 83  | 38.5%                                 | 20.82                               | 8.71              | 90.3                 | 20.4      | 102.6%         | 71.6%       | 73.4%  | 58.2      | 1.46 2        | 8.32 1                   | 1.40   | 38.32            | 543 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.18 21    | .00 0.50        | 1.71                   | -0.03         | 0.05                        | 42.43 3    | 76.58 0.0 | 4 -0.50       | ARVANEE                   | 34.35 2 | 2.61 363        | 42 27   | 30.46   | 2078.52 | 2027.02 20                  | 103.33 2576                | 5.68 2427.5  | 293.53           | 115.86  | 782.73   | 10.84   | 3192.70      | -529.64   | 1593.83    | 121.18      | 5287.50          | 676.06   | -66      | 742.20           | 1867    | 67 -65     | 0.14   | -1.21      |
| 80             | 1.32     | 0.00        | 0 2.08   | 84  | 49.5%                                 | 20.82                               | 8.74              | 90.4                 | 20.4      | 102.5%         | 71.3%       | 73.0%  | 58.8      | 1.32 4        | 14.07 1                  | 27     | 44.07            | 574 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.18 21    | .00 0.49        | 1.62                   | -0.03         | 0.05                        | 42.37 3    | 81.53 0.9 | 0 -0.50       | ANYONNY                   | 34.35 2 | 2.61 363        | 59 27   | 735.44  | 2082.22 | 2030.61 20                  | 06.89 2581                 | 1.59 2431.7  | 9 293.57         | 115.89  | 794.44   | 28.66   | 3235.60      | -528.63   | 1593.87    |             | 5361.01          | 693.95   | -65      | 758.50<br>680.67 | 1880    |            | 0.36   | -1.23      |
| 90             | 1.19     | 0.00        | 0 256    | 67  | 73.3%                                 | 20.79                               | 8.23              | 92.1                 | 20.5      | 102.1%         | 74.6%       | 76.2%  | 47.8      | 1.19 4        | 9.77                     | .14    | 49.77            | 527 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.21 21    | .01 0.61        | 2.06                   | -0.03         | 0.05                        | 42.36 3    | 01.55 0.0 | 0 -0.48       | ARTONAN                   | 34.12 2 | 2.61 365        | 21 27   | 97.46   | 2128.63 | 2075.67 20                  | 151.46 2641                | 1.87 2485.0  | 293.66           | 118.49  | 641.90   | 0.00    | 2687.55      | -428.07   | 1585.26    |             | 6145.40          | 824.30   | -56      | 850.67           | 2000    |            |        | -1.01      |
| 100            | 0.00     | 0.00        | 3 1.79   | 90  |                                       | 20.89                               | 203               | 91.3                 | 20.6      | 101.9%         | D7.0%       | 76 76  | 67.5      | 0.03 6        | 10.74                    | 1.00   | 00.74            | 100 4    | 7 6.60     | 2.66                  | 19887.00        | 4.49       | 79.10 21    | .00 0.43        | 1.47                   | -0.03         | 0.04                        | 41.07 4    | 44.50 0.6 | 0.60          | *******                   | 34.40 2 | 2.01 304        | 045 276 | D4.03   | 2104.13 | 2001.07 20                  | 127.52 2010<br>187.86 2422 | 1.54 2407.2  | 1 293.71         | 110.77  | 335.46   | 177.00  | 3749.93      | -001.10   | 1097.09    |             | 4927.08          | 647.99   | -49      | 715.29           | 1790    |            | -0.30  |            |
| 170            | 0.70     | 0.00        | 1 100    | 0.0 | no est                                | 20.02                               | 0.00              | 86.7                 | 20.0      | 102.074        | 71.69       | 73.16  | 62.0      | 0.72 6        | 77.30 0                  | 774    | 07.30            | 180 4    | 7 6.60     | 2.00                  | 10007.00        | 4.40       | 70.17 21    | 00 0.57         | 1.00                   | 0.03          | 0.05                        | 42.33 3    | 01.57 0.3 | 0.60          | ********                  | 34.37 2 | 2.01 300        | 41 25   | W 7 71  | 1000.40 | 1910.24 10                  | TE 43 3400                 | . 63 2227.T  | 200.10           | 107.70  | 717.30   | 95.00   | 2150.69      | 536.64    | 1000.20    |             | 5341.93          | 585.64   | 40       | 634.84           | 1106    |            | 0.93   | -1.05      |
| 130            | 0.50     | 0.00        | 1 160    | 10  | M7 8%                                 | 20.84                               | 19.13             | 85.9                 | 20.8      | 101.8%         | 68 5%       | 89.8%  | 712       | 0.69 7        | m 99 0                   | 166    | 70 99 3          | 150 4    | 7 5.50     | 2.68                  | 19887.00        | 4.49       | 79 14 20    | 99 0.41         | 1.60                   | -0.03         | 0.04                        | 4175 4     | 71.45 0.7 | 7 -0.64       | ARROSAN                   | 34.44 2 | 2.61 359        | 03 25   | 338.54  | 1934 12 | 1886 61 18                  | 164 AT 2301                | 87 2259.4    | 5 293.95         | 105.98  | 911.85   | 215.00  | 3536.30      | -570.67   | 1502.32    |             | 6014 62          | 653.03   | -38      | 691.31           | 1506    |            | 2.33   | -1.11      |
| 140            | 0.55     | 0.00        | 0 1.99   | 85  | 93.8%                                 | 20.83                               | 8.84              | 85.5                 | 20.8      | 102.6%         | 72.0%       | 73.9%  | 61.6      | 0.55 7        | 16.88 0                  | 1.52   | 76.88            | 564 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.17 21    | .00 0.47        | 1.61                   | -0.03         | 0.05                        | 42.39 4    | 01.74 0.1 | 1 -0.62       | ******                    | 34.41 2 | 2.61 358        | 68 25   | 25.50   | 1924.34 | 1877.11 18                  | 55.08 2379                 | 2248.1       | 293.93           | 107.07  | 773.08   | 30.08   | 3132.57      | -556.54   | 1599.47    | 120.71      | 5197.42          | 670.03   | -68      | 737.73           | 1894    | 94 -65     | 0.38   | -1.29      |
| 150            | 0.42     | 0.00        | 2 1.97   |     |                                       |                                     | 8.84              | 92.5                 | 20.7      | 102.1%         | 69.6%       | 71.1%  | 61.7      | 0.42 8        | 2.39 0                   | 2.40   | 82.39            | 506 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.17 21    | .00 0.47        | 1.61                   | -0.03         | 0.05                        | 42.10 4    | 02.21 0.3 | 6 -0.59       | ANYONNY                   | 34.34 2 | 2.61 365        | .66 280 | 107.35  | 2135.84 | 2082.63 20                  | 58.35 2651                 | 1.90 2494.0  | 293.87           | 118.20  | 859.06   | 103.04  | 3477.96      | -524.47   | 1595.57    |             | 5750.70          | 753.51   | -55      | 808.62           | 1852    |            | 1.33   |            |
| 160<br>170     | 0.27     |             | 1 1.86   |     |                                       |                                     |                   | 85.8                 | 20.1      | 102.6%         | 70.4%       | 72.2%  | 65.7      | 0.27 8        | 88.46 0                  |        |                  | 532 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.15 21    | .00 0.44        | 1.52                   | -0.03         | 0.04                        | 42.28 4    | 31.31 0.2 | 5 -0.65       | ARVANAV                   | 34.47 2 | 2.61 358        |         | 58.96   | 1950.00 | 1902.18 18                  | 79.85 2410                 | 0.38 2278.1  | 5 293.30         | 108.19  | 841.05   | 70.37   | 3383.86      | -580.34   | 1593.95    |             | 5537.89          | 732.94   | -67      | 800.29           | 1899    | 99 -67     |        | -1.38      |
| 170            | 0.14     |             |          |     |                                       |                                     |                   | 91.4                 | 20.6      | 101.7%         | 66.4%       | 67.5%  |           |               | 94.09 0                  | 0.13   | 94.09            | 124 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.14 20    | 199 0.41        | 1.39                   | -0.03         | 0.04                        | 41.73 4    | 73.53 0.7 | 8 -0.64       | ARVANAV                   | 34.45 2 | 2.61 354        |         | 167.03  | 2105.78 | 2053.46 20                  | 129.49 2512                | 2.48 2459.1  | 2 293.71         | 115.47  | 997.15   | 223.45  | 3974.07      | -571.34   | 1599.25    |             | 6459.34          | 1274.65  | -60      | 1343.29          | 2650    |            |        |            |
| 180            | 0.00     | 0.04        | 4 1.60   | 10  | 45.1%                                 | 20.84                               | 2.13              | 87.7                 | 20.6      | 101.6%         | 67.8%       | 68.8%  | 71.0      | 0.00 1        | 00.00                    | 0.00   | 100.00           | 329 4.   | 7 6.60     | 2.68                  | 19887.00        | 4.49       | 79.14 20    | 99 0.41         | 1.40                   | -0.03         | 0.04                        | 41.64 4    | 70.56 0.8 | 5 -0.62       | ARVANAV                   | 34.41 2 | 2.61 360        | 86 26   | 20.28   | 1995.69 | 1946.50 19                  | 23.70 2470                 | 2.44 2331.1  | 5 293.73         | 109.10  | 939.10   | 245.76  | 3744.85      | -556.94   | 1593.36    | 120.92      | 6195.15          | 414.12   | -21      | 434.93           | 915     | 3 -21      | 1.61   | -0.67      |
|                |          |             |          |     |                                       |                                     |                   |                      |           |                |             |        |           |               |                          |        |                  |          |            |                       |                 |            |             |                 |                        |               |                             |            |           |               |                           |         |                 |         |         |         |                             |                            |              |                  |         |          |         |              |           |            |             |                  |          |          |                  |         |            |        |            |



All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

| Manufacturer: | Ardisam    | Technicians: | KS |
|---------------|------------|--------------|----|
| Model:        | Serenity   |              |    |
| Date:         | 12/07/15   |              |    |
| Run:          | 1          | _            |    |
| Control #     | G102366578 |              |    |

Control #: G102366578
Test Duration: 180
Output Category: Low Burn Rate

### Test Results in Accordance with CSA B415.1-09

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 67.7%     | 73.0%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 68%       | 73.4%     |

| Output Rate (kJ/h) | 9,681  | 9,183  | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 0.75   | 1.66   | (lb/h)  |
| Input (kJ/h)       | 14,303 | 13,568 | (Btu/h) |

| Test Load Weight (dry kg) | 2.26 | 4.99 | dry lb |
|---------------------------|------|------|--------|
| MC wet (%)                | 4.49 |      |        |
| MC dry (%)                | 4.70 |      |        |
| Particulate (g )          | 6.71 |      |        |
| CO (g)                    | 22   |      |        |
| Test Duration (h)         | 3.00 |      |        |
|                           |      |      |        |

| Emissions        | Particulate | CO   |
|------------------|-------------|------|
| g/MJ Output      | 0.23        | 0.77 |
| g/kg Dry Fuel    | 2.97        | 9.90 |
| g/h              | 2.24        | 7.47 |
| lb/MM Btu Output | 0.54        | 1.79 |

| Air/Fuel Ratio (A/F) | 62.00 |
|----------------------|-------|
|----------------------|-------|

| VERSION:                                                                                   |                                                                                                                                      | 12/14/2009                                                                                                   |                                                                                                      |                                                                                                                            |                                                                                                                                              |                                                                                                                                      |                                              |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Manufacturer:                                                                              |                                                                                                                                      |                                                                                                              | Applia                                                                                               | nce Type:                                                                                                                  | Pellet                                                                                                                                       | (Cat, Non                                                                                                                            | -Cat, Pellet)                                |
|                                                                                            | Serenity                                                                                                                             |                                                                                                              |                                                                                                      |                                                                                                                            |                                                                                                                                              |                                                                                                                                      |                                              |
| Date:                                                                                      | 12/7/2015                                                                                                                            |                                                                                                              |                                                                                                      | emp. Units                                                                                                                 | F                                                                                                                                            | (F or C)                                                                                                                             | Default                                      |
| Run:                                                                                       | •                                                                                                                                    |                                                                                                              | We                                                                                                   | ight Units                                                                                                                 | lb                                                                                                                                           | (kg or lb)                                                                                                                           |                                              |
|                                                                                            | G102366578                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                                            |                                                                                                                                              |                                                                                                                                      | HHV (kJ/kg)                                  |
| Test Duration:                                                                             |                                                                                                                                      |                                                                                                              |                                                                                                      |                                                                                                                            |                                                                                                                                              |                                                                                                                                      | %C                                           |
| Output Category:                                                                           | Low Burn Rate                                                                                                                        |                                                                                                              |                                                                                                      | Fuel                                                                                                                       | Data                                                                                                                                         |                                                                                                                                      | %H                                           |
|                                                                                            |                                                                                                                                      |                                                                                                              |                                                                                                      |                                                                                                                            | Marth                                                                                                                                        |                                                                                                                                      | %O                                           |
|                                                                                            | Moisture (% wet):                                                                                                                    | 4.49                                                                                                         |                                                                                                      | HHV                                                                                                                        | ,                                                                                                                                            | kJ/kg                                                                                                                                | %Ash                                         |
| Loa                                                                                        | d Weight (Ib wet):                                                                                                                   | 5.22                                                                                                         |                                                                                                      | %C                                                                                                                         | 46.87                                                                                                                                        |                                                                                                                                      |                                              |
| Bui                                                                                        | rn Rate (dry kg/h):                                                                                                                  | 0.75                                                                                                         |                                                                                                      | %Н                                                                                                                         | 6.41                                                                                                                                         |                                                                                                                                      |                                              |
| Total Parti                                                                                | culate Emissions:                                                                                                                    | 6.71                                                                                                         | )                                                                                                    | <b>%O</b>                                                                                                                  | 46.62                                                                                                                                        |                                                                                                                                      | <u>                                     </u> |
|                                                                                            |                                                                                                                                      |                                                                                                              |                                                                                                      | %Ash                                                                                                                       | 0.1                                                                                                                                          |                                                                                                                                      | f                                            |
|                                                                                            |                                                                                                                                      |                                                                                                              |                                                                                                      |                                                                                                                            |                                                                                                                                              |                                                                                                                                      | S                                            |
|                                                                                            | Averages                                                                                                                             | 0.01                                                                                                         | 1.96                                                                                                 | 18.58                                                                                                                      | 195.75                                                                                                                                       | 69.05                                                                                                                                |                                              |
|                                                                                            |                                                                                                                                      |                                                                                                              |                                                                                                      |                                                                                                                            | -                                                                                                                                            | o. (°F)                                                                                                                              | 1                                            |
| Elapsed                                                                                    | Fuel Weight                                                                                                                          |                                                                                                              | s Composit                                                                                           |                                                                                                                            | Flue                                                                                                                                         | Room                                                                                                                                 | F                                            |
| Time (min)                                                                                 | Remaining (lb)                                                                                                                       | CO                                                                                                           | CO <sub>2</sub>                                                                                      | $O_2$                                                                                                                      | Gas                                                                                                                                          | Temp                                                                                                                                 | i i                                          |
|                                                                                            | (,                                                                                                                                   |                                                                                                              | 2                                                                                                    | • 2                                                                                                                        | Ous                                                                                                                                          | Tomp                                                                                                                                 |                                              |
| 0                                                                                          | 5.22                                                                                                                                 | 0.00                                                                                                         | 2.99                                                                                                 | 17.49                                                                                                                      | 243.7                                                                                                                                        | 69.0                                                                                                                                 | c                                            |
| 0 10                                                                                       | 5.22<br>4.93                                                                                                                         | 0.00                                                                                                         | 2.99<br>1.74                                                                                         | 17.49<br>18.82                                                                                                             | 243.7<br>203.8                                                                                                                               | 69.0<br>69.0                                                                                                                         | C<br>V                                       |
| 0<br>10<br>20                                                                              | 5.22<br>4.93<br>4.62                                                                                                                 | 0.00<br>0.01<br>0.00                                                                                         | 2.99<br>1.74<br>2.02                                                                                 | 17.49<br>18.82<br>18.52                                                                                                    | 243.7<br>203.8<br>203.9                                                                                                                      | 69.0<br>69.0<br>68.4                                                                                                                 | c                                            |
| 0<br>10<br>20<br>30                                                                        | 5.22<br>4.93<br>4.62<br>4.32                                                                                                         | 0.00<br>0.01<br>0.00<br>0.02                                                                                 | 2.99<br>1.74<br>2.02<br>1.90                                                                         | 17.49<br>18.82<br>18.52<br>18.67                                                                                           | 243.7<br>203.8<br>203.9<br>201.4                                                                                                             | 69.0<br>69.0<br>68.4<br>69.0                                                                                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40                                                                  | 5.22<br>4.93<br>4.62<br>4.32<br>4.01                                                                                                 | 0.00<br>0.01<br>0.00<br>0.02<br>0.03                                                                         | 2.99<br>1.74<br>2.02<br>1.90<br>1.73                                                                 | 17.49<br>18.82<br>18.52<br>18.67<br>18.82                                                                                  | 243.7<br>203.8<br>203.9<br>201.4<br>186.4                                                                                                    | 69.0<br>69.0<br>68.4<br>69.0<br>68.6                                                                                                 | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40                                                                  | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72                                                                                         | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02                                                                 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68                                                         | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87                                                                         | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1                                                                                           | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7                                                                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50                                                            | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51                                                                                 | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03                                                         | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65                                                 | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91                                                                | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3                                                                                  | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1                                                                                 | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60                                                      | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22                                                                         | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00                                                 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11                                         | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40                                                       | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5                                                                         | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7                                                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70                                                | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92                                                                 | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00                                         | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08                                 | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45                                              | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5                                                                         | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8                                                                 | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80                                          | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62                                                         | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00                                 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56                         | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95                                     | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8                                                                | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9                                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90                                    | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31                                                 | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00                                 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79                 | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95                                     | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3                                              | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9                                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90                                    | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02                                         | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.03                 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16         | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76                            | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4                                     | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110                      | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02                                         | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.03                 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96 | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57          | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4<br>187.3                            | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8                                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120               | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71                                 | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.03 | 2.99<br>1.74<br>2.02<br>1.90<br>1.73<br>1.68<br>1.65<br>2.11<br>2.08<br>2.56<br>1.79<br>2.16<br>1.96 | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57          | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>197.7<br>196.3<br>188.4<br>187.3                                     | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4                                 | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130        | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51                         | 0.00<br>0.01<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.03<br>0.00 | 2.99 1.74 2.02 1.90 1.73 1.68 1.65 2.11 2.08 2.56 1.79 2.16 1.96 1.99                                | 17.49<br>18.82<br>18.52<br>18.67<br>18.82<br>18.87<br>18.91<br>18.40<br>18.45<br>17.95<br>18.76<br>18.36<br>18.57<br>18.88 | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6                            | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4<br>69.4                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51<br>1.21                 | 0.00 0.01 0.00 0.02 0.03 0.02 0.03 0.00 0.00 0.00                                                            | 2.99 1.74 2.02 1.90 1.73 1.68 1.65 2.11 2.08 2.56 1.79 2.16 1.96 1.99 1.97                           | 17.49 18.82 18.52 18.67 18.82 18.87 18.91 18.40 18.45 17.95 18.76 18.36 18.57 18.88 18.55                                  | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0          | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4<br>69.4                         | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51<br>1.21<br>0.92         | 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00                                                            | 2.99 1.74 2.02 1.90 1.73 1.68 1.65 2.11 2.08 2.56 1.79 2.16 1.96 1.99 1.97 1.86                      | 17.49 18.82 18.52 18.67 18.82 18.87 18.91 18.40 18.45 17.95 18.76 18.36 18.57 18.88 18.55 18.57                            | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0<br>198.5 | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4<br>69.4<br>69.4<br>69.3<br>68.3 | C<br>V                                       |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 5.22<br>4.93<br>4.62<br>4.32<br>4.01<br>3.72<br>3.51<br>3.22<br>2.92<br>2.62<br>2.31<br>2.02<br>1.71<br>1.51<br>1.21<br>0.92<br>0.60 | 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00                                                            | 2.99 1.74 2.02 1.90 1.73 1.68 1.65 2.11 2.08 2.56 1.79 2.16 1.96 1.99 1.97                           | 17.49 18.82 18.52 18.67 18.82 18.87 18.91 18.40 18.45 17.95 18.76 18.36 18.57 18.88 18.55                                  | 243.7<br>203.8<br>203.9<br>201.4<br>186.4<br>189.1<br>188.3<br>194.5<br>194.8<br>197.7<br>196.3<br>188.4<br>187.3<br>186.6<br>186.0          | 69.0<br>69.0<br>68.4<br>69.0<br>68.6<br>69.7<br>69.1<br>68.7<br>68.8<br>68.9<br>69.0<br>69.8<br>69.4<br>69.4<br>69.4<br>69.3<br>68.3 | C<br>V                                       |

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

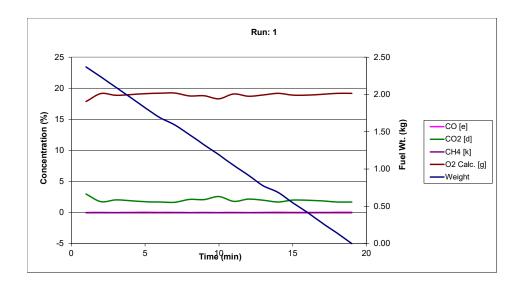
50 6.6

42.9

0.5

**Default Fuel Values** D. Fir

19,810


48.73

6.87

43.9 0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

| Manufacturer:    | Ardisam       |        |                     |                |                                           |                            |                   |          |                |           |          |                |              |                  |          |         |             |                 |                  |            |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|------------------|---------------|--------|---------------------|----------------|-------------------------------------------|----------------------------|-------------------|----------|----------------|-----------|----------|----------------|--------------|------------------|----------|---------|-------------|-----------------|------------------|------------|-------------|----------------|---------------|----------------|--------------|----------|---------------|----------------------------|-----------------------|----------|-----------------|---------|---------------|----------------|----------------------------------|-----------|---------|----------|-----------|----------------|------------------|-----------------------|--------------------------|--------------------|------------------|----------|------------------|---------|--------------|---------------|-------------|
| Model:           | Serenity      |        |                     |                |                                           |                            |                   |          |                |           |          | Air Fue        | (Ratio (AF)  |                  |          |         |             |                 |                  |            |             |                |               |                |              |          | Moisture      | Content M <sub>Cab</sub> : | 4.49                  |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
| Date:            | 12/07/15      |        |                     |                |                                           |                            |                   |          | eating Efficie |           | .68% Dry |                |              | 29.07            |          |         |             |                 |                  |            |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
| Run:             | 1             |        |                     | Note: In th    | e "Input data", "I                        | alc. % O <sub>2</sub> *, * | Fuel              | Comb     | uation Efficie | ncy: 99   | 150% Dry | Moles Estrau   | at Gas (N.): | 2150.45          | SHC      |         |             | Combus          | tion Efficiency. | 99.50%     |             |                | Moisture      | of Wood (wet   | thusis): 4.4 | 9        |               | Dry kg:                    | 2.26                  |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
| Control #:       | G102366578    |        |                     | Properties     | , and 'Mass Ba                            | ance" column               | n, [e], [d], [g], | Heat To  | anafer Efficie | nov: 68   | 102%     | Air Fuel Ratio | (A/F)        | 62.00            | 0.8      |         |             |                 | otal Input (kJ): | 42.910     | 40,096 (5t) | 0              | Initial       | Dry Weight W   | L (kg): 2.26 |          |               | CA:                        | 45.87                 |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
| Test Duration: 1 | 90            | min    |                     | [a]. [b], [c], | (h), (u), (w), (i), a<br>variables in Cla | and [k] refer to           | their             | 1        |                | ,         |          |                |              |                  |          |         |             | To              | tel Output (kJ): | 29.042     | 27.545 (Bt) | i .            |               | Moisture Contr | ent Dry 4.7  |          |               | HY:                        | 6.41                  |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  |               | HHV    | LHV                 | respective     | THE LABORATOR CO.                         | 2002 137.30                | 2133.3            | Heat C   | Output: 9      | 183 Blub  | 2.5      | 681 kJh        |              |                  |          |         |             |                 | Efficiency       | 67.68%     |             |                |               |                |              |          |               | COX:                       | 45.62                 |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | Eff           | 67.68% | 73,00%              |                |                                           |                            |                   | Heat     | hout: 13       | 568 Blub  | 14.2     | 303 kJh        |              |                  |          |         |             |                 | Total CO (g):    | 22.40      |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | Comb Eff      | 99,50% | 99,50%              |                |                                           | Utte                       | rate CO-          |          |                |           |          |                |              |                  |          |         |             |                 |                  |            |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | HTER          | 68.02% | 73.37%              |                |                                           | CO <sub>2ut</sub> :        | 20.36             | Burn Du  | ration 7       | 100       | h        |                |              |                  |          |         |             |                 |                  |            |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | Output        | 2,531  | kāh                 |                |                                           |                            | E.                |          |                |           |          |                |              |                  |          |         |             |                 |                  |            |             | d Weight (kg): | 2.37          |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | Burn Rate     | 0.75   | knh                 |                |                                           |                            | 1.008             | B.com    | Rate: 1        | 66        | bh or    | as bed         |              |                  |          |         |             |                 |                  |            |             | Heating        |               | LHV            | NA.          | / LHV    |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | Grams CO      | 22     |                     |                |                                           |                            | 1,000             | Dun      | PLANE.         |           | DII 0.7. | J- Ram         |              |                  |          |         |             |                 |                  |            | Ven         | e in kilke - C | /: 18.967 1   | 7.585          | Stuffb 8155  | 8 7565.2 |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | Input         | 14,303 | kāh                 |                |                                           |                            |                   | Stack 1  | Temp: 15       | 3.1 Deg.F | 89       | 9.5 Dec. C     |              |                  |          |         |             |                 |                  |            | -           |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               |             |
|                  | MC wet        | 4.42   |                     |                |                                           |                            |                   |          |                |           |          |                |              |                  |          |         |             |                 |                  |            |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           | SUMS           |                  |                       |                          | AVERAGE            |                  |          | 5                | SUMS    |              |               |             |
|                  | Averages      | 0.01   | 1.96                | 9.52           | 20.88                                     | 18.92 1                    | 0.97 2            | 0.58 102 | 1% 70.         | 0% 71.4   | N 59.1   | 14 1.19        | 49.89        | 1.13             | 49.89    | 44178   | 3.91 6.     | 41 2.91         | 18967.00         | 4.49       | 79.11 21    | 28 0.50        | 1.65          | 0.03 0         | 1.05 39.3    | 1 388.41 | 0.33 -0.      | 55 1620.72                 | 33.18 2.6             | 364.12   | 2751.58         |         | 6 2041.80     | 2017.98 2      | 598.25 2445                      | 14 293.73 | 2055.53 | 15302.86 | 1805.80   | 61538.95       | -9289.39         | 29257.72              | 2303.20                  | 5422.88            | 12721.53         | -932.54  | 13654.1          | 31456   | 156.4 -932.5 | 5 22.4        | -20.8       |
|                  | INPUT DATA    |        |                     | Охуд           | on Calculation                            |                            | Input Data        | Com      | bust Me        | at Ne     | t Air    | r Wet Wt       | % Wet        | Dry Wt.          | % Dry    |         |             | Fuel Properties |                  | Mw         |             | Mass Ba        | lance         | kg W           | ood per      |          |               |                            |                       | Stack    | H               |         | Change - Ambi |                | mperature                        | Room      |         |          | Energy Lo | sses (kJ/kg c  | Dry Fuel)        |                       |                          | Total              |                  |          |                  |         |              |               |             |
| Elegand          | Weight        | %      | %                   | Excess         | Total 6                                   | atc. %                     | Flue R            | loom E   | of Tran        | afer Ef   | f Fue    | el Now         | Consumed     | Now              | Comsumed | Total C | Carbon Hydr | rozer Oxyge     | 1 Calorific      | Moisture   | (mo         | les/100 mole   | dry flue gas) | 100 m          | note dfa     | Mok      | s per kg of D | ry Wood                    | Mois                  | are Temp |                 |         | Flue Gas Co   | atituent       |                                  | Temp      |         |          | Flu       | Gas Constit    | ent              |                       |                          | Loss               | Total            | Chemical | Sensible and     | nd Tota | otal Chem    |               | ms Produces |
| Time 5           | emaining (kg) | CO [e] | CO <sub>2</sub> [d] | Air EA         | 0,                                        | O <sub>2</sub> [q]         | es (°C) Ten       | mp (°C)  | K 1            | 4 %       | Rati     | io Wt          | ×            | Wt <sub>de</sub> | y        | Input P | 12- [a] /1- | [b] /16= [c     | Value            | Fuel Burnt | [h] [       | u] [w]         | 01            | [k] 1          | Nk CO        | 0,       | CO H          | IC N <sub>2</sub>          | H <sub>2</sub> O Pres | int K    | CO <sub>2</sub> | 0,      | co            | N <sub>2</sub> | CH <sub>4</sub> H <sub>2</sub> C | K         | co,     | 0,       | co        | N <sub>2</sub> | CH4              | H <sub>2</sub> O Comb | H <sub>0</sub> O Fuel MC | Rate               | Loss             | Loss 1   | Latent Loss      | a Outpo | utput Loss:  | 2 CO          | HC          |
| 0                | 2.37          | 0.00   | 2.99                | 581.0%         | 20.86                                     | 17.87                      | 17.6              | 20.6 101 | 7% 71.         | 9% 73.1   | 1% 38.1  | 1 2.37         | 0.00         | 2.26             | 0.00     | 0       | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.14 20    | 99 0.76        | 2.49          | 0.03 0         | 05 39.4      | 6 235.75 | 0.00 -0.3     | 36 ARVANAV                 | 32.80 2.6             | 390.78   | 3830.59         | 2898.50 | 2822.43       | 2790.34 3      | 653.15 3378.                     | 2 293.72  | 151.15  | 683.32   | 0.00      | 2914.18        | -322.17          | 1553.15               | 123.66                   | 5103.28            | 0.00             |          | 0.00             | 0       | 3 0          | 0.00          |             |
| 10               | 2.24          | 0.01   | 1.74                | 1051.8%        | 20.89                                     | 12.14                      | 95.4              | 20.5 102 | 4% 66.         | 0% 67.6   | 2% 65.4  | 4 2.24         | 5.56         | 2.14             | 5.56     | 3643    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.10 20    | 98 0.44        | 1.47          | 0.03 0         | 04 39.4      | 0 433.78 | 0.32 -0.6     | 52 ARVANAV                 | 33.32 2.6             | 358.57   | 2931.02         | 2228.59 | 2172.74       | 2147.49 2      | 771.64 2601.                     | 11 293.69 | 115.48  | 966.71   | 90.36     | 3848.95        | -553.01          | 1551.77               | 121.63                   | 6141.89            | 1179.57          | -89      | 1268.22          | 246"    | r63 -89      | 1.70          | -1.90       |
| 20               | 2.10          | 0.00   | 2.02                | 908.2%         | 20.88                                     | 18.86                      | 95.5              | 20.2 102 | .6% 69.        | 3% 71.1   | 1% 56.7  | 7 2.10         | 11.42        | 2.00             | 11.42    | 2490    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.12 20    | 99 0.51        | 1.69          | 0.03 0         | 05 39.6      | 2 370.38 | 0.04 -0.5     | SS ARVANEY                 | 33.20 2.6             | 358.62   | 2945.74         | 2239.93 | 2183.83       | 2158.44 2      | 785.26 2615.                     | 0 293.36  | 116.71  | 829.63   | 10.85     | 3352.90        | -500.96          | 1545.78               | 121.67                   | 5477.59            | 719.17           | -64      | 783.32           | 1771    |              |               |             |
| 30               | 1.96          | 0.02   | 1.90                | 963.8%         | 20.89                                     | 18.98                      | 94.1              | 20.6 102 | .1% 68.        | 5% 69.5   | 2% 59.8  | 8 1.95         | 17.16        | 1.87             | 17.16    | 2505    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.11 20    | 98 0.48        | 1.60          | 0.03 0         | 05 39.3      | 0 393.12 | 0.35 -0.5     | 55 ARVANAY                 | 33.19 2.6             | 357.29   | 2878.75         | 2189.46 | 2134.74       | 2109.89 2      | 720.87 2556.                     | 6 293.71  | 113.14  | 850.71   | 99.36     | 3456.97        | -493.56          | 1544.07               | 121.51                   | 5702.20            | 753.18           | -52      | 805.15           | 1752    |              | 1.29          |             |
| 40               | 1.82          | 0.03   | 1.73                | 1054.6%        | 20.89                                     | 19.14                      | 85.8              | 20.3 101 | 5% 60.         | 2% 70.3   | 5% 64.5  | 9 1.82         | 23.10        | 1.74             | 23.10    | 2470    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.09 20    | 98 0.45        | 1.48          | 0.02 0         | 04 38.9      | 4 430.39 | 0.72 -0.5     | SS ARVANAV                 | 33.20 2.6             | 358.91   | 2551.71         | 1944.40 | 1896.70       | 1874.44 2      | 403.73 2271.                     | 8 293.48  | 99.35   | 836.85   | 204.76    | 3323.36        | -498.47          | 1535.14               | 120.77                   | 5631.77            | 733.46           | -38      | 771.72           | 1737    |              | 2.62          | -1.3        |
| 50               | 1.69          | 0.02   | 1.68                | 1098.3%        | 20.89                                     | 19.20                      | 87.3              | 20.9 102 | 2% 68.         | 2% 69.7   | 1% 67.5  | 5 1.09         | 28.68        | 1.61             | 28.68    | 2074    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.10 20    | 98 0.43        | 1.43          | 0.03 0         | .04 39.2     | 5 448.79 | 0.47 -0.0     | 52 ARVANAV                 | 33.32 2.6             | 350.40   | 2588.21         | 1971.30 | 1922.72       | 1900.20 2      | 440.10 2302                      | 8 294.09  | 101.58  | 884.71   | 134.04    | 3512.79        | -554.31          | 1541.95               | 120.85                   | 5741.62            | 627.94           | -46      | 673.84           | 1446    |              |               |             |
| 80               | 1.50          | 0.03   | 1.65                | 1115.9%        | 20.89                                     | 19.23                      | 85.8              | 20.6 102 | 1.0% 67        | 8% 69.2   | 2% 65.4  | 4 1.59         | 32.77        | 1.52             | 32.77    | 2069    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.09 20    | 98 0.42        | 1.40          | 0.03 0         | .04 39.1     | 0 455.96 | 0.61 -0.6     | S1 ARVANAV                 | 33.31 2.6             | 359.99   | 2583.31         | 1967.89 | 1919.46       | 1896.96 2      | 434.80 2298.                     | 0 293.78  | 100.99  | 897.28   | 175.02    | 3557.43        | -546.31          | 1541.00               | 120.84                   | 5845.25            | 637.84           | -40      | 678.32           | 1432    |              | 1.88          | -1.0        |
| 70               | 1.46          | 0.00   | 2.11                | 865.1%         | 20.88                                     | 18.77                      | 90.3              | 20.4 102 | 5% 71.         | 8% 73.6   | 5% 54.2  | 2 1.46         | 38.32        | 1.40             | 38.32    | 2425    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.12 20    | 99 0.53        | 1.76          | 0.03 0         | 05 39.6      | 0 352.57 | 0.04 -0.5     | 53 ARVANAV                 | 33.15 2.6             | 363.42   | 2730.46         | 2078.52 | 2 2027.02     | 2003.33 2      | 576.68 2427.                     | 0 293.53  | 108.12  | 732.83   | 10.12     | 2977.05        | -476.85          | 1538.06               | 121.18                   | 5010.50            | 640.64<br>657.46 | -60      | 700.15           | 1784    |              | 0.13          | -1.0        |
| 80               | 1.32          | 0.00   | 2.08                | 876.4%         | 20.88                                     | 18.80                      | 90.4              | 20.4 102 | 1.4% 71.       | 5% 73.2   | 2% 54.5  | 9 1.32         | 44.07        | 1.27             | 44.07    | 2455    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.12 20    | 99 0.53        | 1.74          | 0.03 0         | 05 39.5      | 4 357.20 | 0.09 -0.5     | 53 ARVANAV                 | 33.15 2.6             | 353.59   | 2735.44         | 2082.22 | 2030.61       | 2006.89 2      | 581.59 2431.                     | 9 293.57  | 108.15  | 743.76   | 26.74     | 3017.08        | -475.95          | 1538.11               | 121.19                   | 5079.09            |                  | -58      | 715.45           | 1798    | 98 -58       | 0.34          | -1.1        |
| 90               | 1.19          | 0.00   | 2.56                | 695.2%         | 20.87                                     | 18.31                      | 92.1              | 20.5 102 | 1.0% 74.       | 8% 76.4   | 1% 44.6  | 6 1.19         | 49.77        | 1.14             | 49.77    | 2505    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.13 20    | 99 0.65        | 2.13          | 0.03 0         | 05 39.5      | 3 282.59 | 0.00 -0.4     | 43 ARVANEY                 | 32.95 2.6             | 365.21   | 2797.46         | 2128.63 | 2075.67       | 2051.46 2      | 541.87 2485                      | 9 293.66  | 110.58  | 601.52   | 0.00      | 2505.87        | -385.74          | 1530.51               | 121.33                   | 4484.07<br>5811.72 | 592.28<br>758.43 | -51      | 643.08           | 1917    | .13 -51      | 0.00          | -0.9        |
| 100              | 1.05          | 0.03   | 1.79                | 1019.6%        | 20.89                                     | 19.08                      | 91.3              | 20.6 101 | 7% 68          | 2% 69.4   | 1% 62.5  | 9 1.05         | 55.74        | 1.00             | 55.74    | 2475    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.10 20    | 98 0.46        | 1.52          | 0.03 0         | 05 39.0      | 7 416.02 | 0.58 -0.5     | SS ARVANAV                 | 33.19 2.6             | 354.45   | 2764.83         | 2104.13 | 2051.87       | 2027.92 2      | 610.34 2467.                     | 1 293.71  | 108.03  | 875.37   | 165.24    | 3496.94        | -496.17          | 1541.05               | 121.25                   | 5811.72<br>4674.05 | 758.43           | -43      | 801.59<br>675.16 | 1717    | 717 -43      | 2.12<br>-0.28 |             |
| 110              | 0.92          | 0.00   | 2.10                | 044.1%         | 20.00                                     | 10.72                      | 80.9              | 21.0 102 | 1.0% /3.       | 4% /54    | 176 53.1 | 1 0.92         | 61.30        | 0.86             | 61.30    | 24/5    | 2.91 6.4    | 41 2.91         | 10967.00         | 4.49       | 79.12 25    | 99 0.54        | 1.80          | 0.03 0         | 105 39.7     | 1 343.99 | -0.06 -0.5    | 54 88890089                | 33.16 2.6             | 300.04   | 25/1.21         | 1900.40 | 1910.24       | 1007.00 2      | 423.80 2207.                     | 4 234.10  | 102.11  | 673.70   | -22.02    | 2744.80        | -479.00          | 1533.00               | 120.61                   | 46/4.05            | 554.87           | -60      | 598.86           | 1525    | 40 -60       |               |             |
| 120              | 0.78          | 0.01   | 1.96                | 1080.4%        | 20.88                                     | 18.91                      | 86.3              | 20.8 102 | .1% 71         | 8% 73.2   | 57.8     | 8 0.78         | 67.28        | 0.74             | 67.28    | 2079    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.11 20    | 98 0.50        | 1.66          | 0.03 0         | 05 39.3      | 6 378.79 | 0.28 -0.5     | 54 ARVANAU                 | 33.16 2.6             | 359.41   | 2583.71         | 1945.51 | 1897.68       | 1875.43 2      | 406.53 2272                      | 3 293.95  | 100.50  | 736.94   | 80.14     | 2971.56        | -482.14          | 1533.49               | 120.77                   | 5001.27            | 554.87           | -44      | 598.86           | 1525    |              | 0.85          | -0.9        |
| 130              | 0.69          | 0.00   | 1.00                | 1000.4%        | 20.89                                     | 19.10                      | 85.9              | 20.8 101 | 576 ED.        | 376 701   | 7% 55.4  | 4 0.69         | 70.99        | 0.00             | 70.52    | 2000    | 3.91 6.4    | 41 2.91         | 18967.00         | 4.49       | 79.09 25    | 20 0.44        | 1.40          | 0.03 0         | 05 30.5      | 6 441.00 | 0.71 -0.5     | SC ARROSSE                 | 33.23 2.6             | 359.03   | 2538.54         | 1934.12 | 1877.11       | 1866.47 2      | 391.67 2259.                     | 1 200.00  | 98.90   | 733.63   | 203.43    | 3391.11        | -513.64          | 1030.31               | 120.74                   | 4925.98            | 635.17           | -34      | 695.98           | 1810    |              | 0.35          |             |
| 140              | 0.43          | 0.00   | 1.07                | 022.0%         | 20.00                                     | 18.00                      | 00.0              | 20.7     | 10% ED         | AN 74.5   | 7/4 S7/5 | 0.00           | FO.00        | 0.32             | 97.70    | 2440    | 201 64      | 41 2.91         | 18067.00         | 4.49       | 70.11 2     | 0.50           | 1.07          | 0.03           | 05 30.5      | 0 378.09 | 0.74 0.1      | 53 ANNOONE                 | 22.14 2.6             | 350.00   | 2505.50         | 2126.54 | 2092.02       | 2255 25 2      | SEL DO 2504                      | 220.93    | 110.70  | 904.13   | 20.07     | 2742.00        | 473.33           | 1630.78               | 121.25                   | FA47.70            | 713.15           | -01      | 762.33           | 1772    |              | 1.34          | -1.1        |
| 160              | 0.42          | 0.02   | 1.00                | 968.9%         | 20.80                                     | 19.02                      | 85.8              | 102      | 450 70         | en 71.2   | M 87.5   | 3 0.37         | 50.39        | 0.40             | 99.00    | 2510    | 201 64      | 41 2.91         | 18067.00         | 4.49       | 70.11 2     | 0.50           | 1.00          | 0.03           | 05 30.2      | 5 ACC 42 | 0.33 0.1      | TO ARROSSE                 | 22.75 2.6             | 355.00   | 2507.30         | 2130.04 | 2,002,03      | 1970 86 2      | 410.39 2778                      | # 200.07  | 100.00  | 787.07   | 65.67     | 3155.41        | #22.22<br>#22.22 | 1637.93               | 120.70                   | 5245.41            | 694.23           | -40      | 754.54           | 1816    |              |               |             |
| 170              | 0.14          | 0.03   | 1.00                | 1085.1%        |                                           |                            |                   | 20.6 101 | 5% 55          | 7% 87.8   | 1% 65.5  | 6 014          | 94.09        | 0.13             | 94.09    | 3743    | 391 54      | 41 2.91         | 18967.00         | 4.49       | 79.09 20    | 98 0.43        | 1.64          | 0.02 0         | 04 38.9      | 4 443.03 | 0.73 -05      | 53 assesses                | 33.23 2.6             | 354.51   | 2757 03         | 2105.78 | 2053.46       | 2029.49 2      | 512.48 2459                      | 2 293.71  | 107.75  | 932.92   | 205.54    | 3706.02        | -514.25          | 1543.00               | 121.76                   | 6105.23            | 1204.78          | -60      | 1265.11          | 2538    | 538 -60      | 4.04          |             |
|                  |               |        |                     | 1023.1%        |                                           |                            |                   |          |                |           |          |                |              |                  |          | 1268    |             | 41 2.01         |                  |            | 79.09 20    | 98 0.44        |               | 0.02 0         |              | 5 440.27 |               |                            |                       | 350.86   | 2620.28         |         | 1945 50       | 1923 70 2      |                                  | 5 293.73  | 101.53  | 878.63   | 220.34    | 3492.30        | -501.34          | 1537.41               |                          | 5859.07            | 301.50           |          | 409.78           |         |              |               |             |
| 180              |               |        |                     |                | 20.89                                     |                            |                   |          | 4% 68.         |           |          |                |              |                  |          |         |             |                 |                  |            |             |                |               |                |              |          |               |                            |                       |          |                 |         |               |                |                                  |           |         |          |           |                |                  |                       |                          |                    |                  |          |                  |         |              |               | -0.60       |



All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO<sub>2</sub>, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

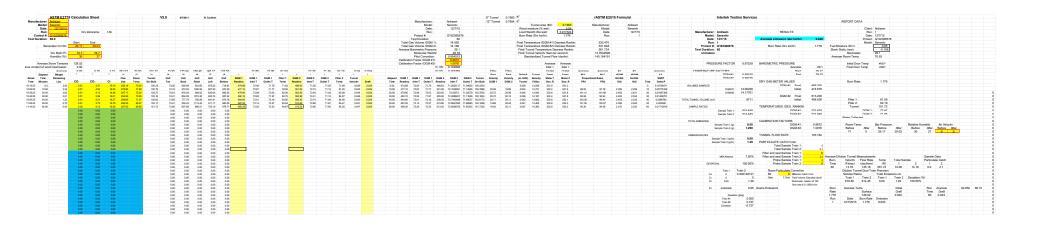
The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6

Tel: 416-747-4035 Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca


Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

|       | Room Tem        | ηp            | Bar Pressur | е          | Relative Hu  | midity      | Air Velo | city  |
|-------|-----------------|---------------|-------------|------------|--------------|-------------|----------|-------|
|       | Before          | After         | Before      | After      | Before       | After       | Before   | After |
|       | 71              | 0             | 29.17       | 29.03      | 30.0         | 27.0        | 0        | 0     |
|       |                 |               |             |            |              |             |          |       |
|       |                 |               |             |            | <u> </u>     |             |          |       |
|       | lution Tunnel M |               |             |            |              | Sample Da   |          |       |
| Burn  | Velocity        | Flow Rate     |             | Total Samp |              | Particulate | ,        |       |
| Time  | (Ft/sec)        | (dscf/min)    | (R)         | 1          | 2            | 1           | 2        |       |
| 60    | 13.76           | 145.18        | 561.72      | 14.06      | 14.18        | 0.00        | 2.10     |       |
|       |                 |               |             |            |              |             |          |       |
|       | Dilution Tunn   | el Dual Train | Precision   |            |              |             |          |       |
|       | Sample Rati     | os            | Total Emis  | sions (g)  |              |             |          |       |
|       | Train 1         | Train 2       | Train 1     | Train 2    | Deviation (% | <b>%</b> )  |          |       |
|       | 619.46          | 614.45        | 0.00        | 1.29       | 100.00%      |             |          |       |
|       |                 | <u> </u>      |             |            |              |             |          |       |
| Burn  |                 |               |             | Initial    |              | Run         | Average  |       |
| Rate  |                 | Surface       |             | Draft      |              | Time        | Draft    |       |
| 1.776 |                 | 128.524       |             | 0.024      |              | 60.000      | 0.024    |       |
|       |                 |               |             |            |              | ļ           |          |       |
| Run   | Date            | Burn Rate     | Emission    |            |              | 1           | <u> </u> |       |
| 1     | 12/7/2015       | 1.776         | 0.645       |            |              |             |          |       |

| Burn Rates (kg/hr) |         |         |  |  |  |  |  |
|--------------------|---------|---------|--|--|--|--|--|
| High               | Medium  | Minimum |  |  |  |  |  |
| 1.78               | #VALUE! | #VALUE! |  |  |  |  |  |

| Fuel consumed (lbs) |         |  |  |  |  |  |  |
|---------------------|---------|--|--|--|--|--|--|
| 3.92                | High    |  |  |  |  |  |  |
| #VALUE!             | Medium  |  |  |  |  |  |  |
| #VALUE!             | Minimum |  |  |  |  |  |  |

Fuel Moisture (% Wet) 0.04494



|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | 21.015535          | 21.0   | 0.00 | 0.00 |
|------|--------|----------|--------|-------|--------|---------|--------|----------|-------|--------|----------|-------|--------|----------|--------|------|------|-------|-------|--------------------|--------|------|------|
| Time | Flue   | Room     | Tunnel | Unit  | Unit   | Unit    | Unit   | Unit     | DGM 1 | DGM 1  | Filter 1 | DGM 2 | DGM 2  | Filter 2 | Tunnel | CO   | CO2  | O2    | scale | Corrected Calculat | ed     |      |      |
| 10.0 | Temp 1 | Temp 2 D |        |       | Back 5 | Right 6 | Left 7 | Bottom 8 | In 17 | Out 18 | 19       | In 20 | Out 21 | 22       |        | %    | %    | %     | Lbs   | Scale Tunne        |        |      |      |
| 0.0  | 292.19 | 70.93    | 100.23 | 73.05 | 605.48 |         | 879.32 |          | 72.09 | 71.79  | 71.92    |       |        | 71.69    | 1.16   | 0.01 | 4.37 | 16.10 | 24.93 |                    |        |      |      |
| 10.0 | 279.82 | 71.80    | 100.79 | 74.16 | 573.02 |         |        |          | 72.67 | 71.77  | 78.95    |       |        |          | 1.17   | 0.01 | 4.23 | 16.25 | 24.33 |                    |        |      |      |
| 20.0 | 297.17 | 72.22    | 102.37 | 74.61 | 879.24 |         | 620.04 |          | 73.08 | 72.03  | 82.26    |       |        |          | 1.18   | 0.01 | 4.13 | 16.36 | 23.64 |                    |        |      |      |
| 30.0 | 294.95 | 70.95    | 102.16 | 74.41 | 804.09 |         | 600.74 |          | 72.92 | 71.97  | 82.75    |       | 71.12  | 84.07    | 1.18   | 0.01 | 3.99 | 16.51 | 23.02 |                    |        |      |      |
| 40.0 | 299.69 | 71.07    | 102.62 | 73.60 | 777.79 |         | 841.61 |          | 73.01 | 72.16  | 83.95    |       |        |          | 1.17   | 0.01 | 4.21 | 16.27 | 22.32 |                    |        |      |      |
| 50.0 | 280.50 | 69.91    | 102.17 | 73.47 | 552.24 |         | 911.17 |          | 73.14 | 72.37  | 82.94    |       |        | 85.47    | 1.16   | 0.01 | 3.72 | 16.79 | 21.72 |                    |        |      |      |
| 60.0 | 297.05 | 69.60    | 101.73 | 72.80 | 837.88 | 666.51  | 750.10 | 978.71   | 73.26 | 72.33  | 84.87    | 72.66 | 71.65  | 85.26    | 1.19   | 0.00 | 4.13 | 16.36 | 21.02 |                    | 15 0.0 |      |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02<br>-21.02   |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             | _      | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             | _      | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             | _      | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 |      |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        | 0.00 | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02<br>-21.02   |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |
|      |        |          |        |       |        |         |        |          |       |        |          |       |        |          |        |      |      |       |       | -21.02             |        |      | 0.00 |



### E&E Boiler Tunnel Traverse Worksheet

Static Pressure: 0.168
Barometer: 29.17

|          | TUNNEL<br>VELOCITY | TUNNEL<br>TEMP | SQUARE<br>ROOT |           |        |
|----------|--------------------|----------------|----------------|-----------|--------|
| A CENTER | 0.048              |                | 0.2191         |           |        |
| B CENTER | 0.049              |                | 0.2214         |           |        |
| A1       | 0.041              |                | 0.2025         | PITOT     |        |
| A2       | 0.047              |                | 0.2168         | CONSTANT= | 0.9545 |
| A3       | 0.047              |                | 0.2168         |           |        |
| A4       | 0.035              |                | 0.1871         |           |        |
| B1       | 0.044              |                | 0.2098         |           |        |
| B2       | 0.048              |                | 0.2191         |           |        |
| В3       | 0.045              |                | 0.2121         |           |        |
| B4       | 0.039              |                | 0.1975         |           |        |
| AVERAGE  |                    | #DIV/0!        | 0.2102         |           |        |

### **E&E PELLET FUEL DATA SHEET**

Brand of pellets used:

Moisture Content: Wet: 4.49% Dry: 4.71%

Weight used during Test: 3.92 Lbs (wet) 1.78 kg (dry)

Burn Rate: 1.776088

Moisture Calculation:

0.89 Before weight of pellets - Wet
0.85 After weight of pellets - dry
Weight of moisture removed from oven

Weight added to Scale: 25.00

|         | Room Ten         | ηp                  | Bar Pressur | е          | Relative Hu  | midity      | Air Velo | city  |
|---------|------------------|---------------------|-------------|------------|--------------|-------------|----------|-------|
|         | Before           | After               | Before      | After      | Before       | After       | Before   | After |
|         | 71               | 69                  | 29.17       | 29.03      | 30.0         | 27.0        | 0        | 0     |
|         |                  |                     |             |            |              |             |          |       |
| Average | ilution Tunnal M | lo o o uromo o o to |             |            |              | Comple De   | ļ        |       |
|         | ilution Tunnel M |                     |             |            |              | Sample Da   |          |       |
| Burn    | Velocity         | Flow Rate           |             | Total Samp |              | Particulate |          |       |
| Time    | (Ft/sec)         | (dscf/min)          | (R)         | 1          | 2            | 1           | 2        |       |
| 360     | 13.55            | 145.82              | 550.60      | 83.34      | 84.10        | 11.80       | 9.60     |       |
|         |                  |                     |             |            |              |             |          |       |
|         | Dilution Tunn    | el Dual Train       | Precision   |            |              |             |          |       |
|         | Sample Rati      | os                  | Total Emis  | sions (g)  |              |             |          |       |
|         | Train 1          | Train 2             | Train 1     | Train 2    | Deviation (% | 6)          |          |       |
|         | 629.93           | 624.20              | 7.43        | 5.99       | 10.73%       |             |          |       |
|         | <br>             | <u> </u>            |             |            |              |             |          |       |
| Burn    |                  |                     |             | Initial    |              | Run         | Average  |       |
| Rate    |                  | Surface             |             | Draft      |              | Time        | Draft    |       |
| 1.099   |                  | 570.204             |             | 0.024      |              | 360.000     | 0.021    |       |
|         |                  |                     |             |            |              | ļ           | ļ        |       |
| Run     | Date             | Burn Rate           | Emission    |            |              | ļ           | ļļ       |       |
| 1       | 12/7/2015        | 1.099               | 1.119       |            |              | İ           | <u> </u> |       |

| E    | Burn Rates (kg/hr | ·)      |
|------|-------------------|---------|
| High | Medium            | Minimum |
| 1.78 | 1.22              | 0.79    |

| Fuel consur |         |
|-------------|---------|
|             | High    |
|             | Medium  |
| 5.22        | Minimum |

Fuel Moisture (% Wet)
0.04494

| ASTM E2779 Ca                | alculation Sh | eet        |              |          | /3.0  | 97(2011       | R. Curkeet |           |              |             |        |              |             |        |              |               |                     |                |                      | 6" Tunnel           |                        |                     |                  |            | (ASTM E2515 F   | ormula)       |                | Int                       | tertek Testina S  | Bervices  |                                   |         |                           |                                 |              |                  |              |        |
|------------------------------|---------------|------------|--------------|----------|-------|---------------|------------|-----------|--------------|-------------|--------|--------------|-------------|--------|--------------|---------------|---------------------|----------------|----------------------|---------------------|------------------------|---------------------|------------------|------------|-----------------|---------------|----------------|---------------------------|-------------------|-----------|-----------------------------------|---------|---------------------------|---------------------------------|--------------|------------------|--------------|--------|
| Ardisam                      |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Manufacturer:       | Ardisar        |                      | 12" Tunnel          | 0.7854 ft <sup>2</sup> |                     |                  |            |                 |               |                |                           |                   |           |                                   |         | REPORT DATA               |                                 |              |                  |              |        |
| Serenity                     |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Model:              | Serenit        | by .                 |                     |                        | Turnel area (\$2    | 21: 0.1963       | M M        | tanufacturer:   | Ardsam        |                |                           |                   |           |                                   |         |                           |                                 |              |                  |              |        |
| 12/7/2015                    |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Date:               | 12/7           | 715                  |                     |                        | moisture (% seet):  | 0.04             |            | Model:<br>Date: | Serenity      |                |                           |                   |           |                                   |         |                           | ent: Ardisam                    |              |                  |              |        |
| 12/7/2015<br>1<br>G102366578 | Dry kilogra   | ETTE: 6.59 |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Run:                |                | . 1                  |                     |                        | Veight (lbs wet):   | 0.04<br>14.53787 | 1          | Date:           | 12/7/15       |                | Manufacturer: Arc         |                   |           | RESULTS                           |         |                           | ban: 1                          |              |                  |              |        |
| G102365578                   |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Protect #:          | G1023          |                      |                     | Burn R                 | tate (Drv ko/hr):   | 1.099            |            | Run:            |               |                | Model: Ser                | renity            |           |                                   |         |                           | ote: 12/7/15                    |              |                  |              |        |
| 360.0                        |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Test Duration:      |                | 360                  |                     |                        |                     |                  |            |                 |               |                | Date: 12/                 | 7/15              |           | (refroit other molestime economic | 1.112   | Pro                       | lect: G102366578                | 8            |                  |              |        |
| 8                            | Start End     |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Gas Volume (DGM 1   |                |                      |                     |                        | mperature (DGM #    |                  |            | 532.939         |               |                | Run: 1                    |                   |           |                                   |         | Mo                        | del: Serenity<br>0.05<br>-0.158 |              |                  |              |        |
| meter (in.Hg):               | 29.17 2       | 2.03       |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Sas Volume (DGM 2   | 1: 84.0        | 62                   |                     |                        | mperature (DGM #    |                  |            | 532.507         |               |                | Project #: G1             |                   |           | Burn Rate (Drv kolhr):            |         | el Moisture (Drv):        | 0.05                            |              |                  |              |        |
|                              |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              | Average       | Barometric Pressure | e: 2           | 9.1                  |                     | Final To               | unnel Temperature   | e Decrees Ranki  | n:         | 550.595         |               |                | Test Duration: 360        | 0                 |           |                                   |         | ack Static (neo't         | -0.158                          |              |                  |              |        |
| Dry Bulb (F):                | 72.7          | 78.7       |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Molecular Weigh     | d: 28          | 178                  |                     | Final To               | unnel Velocity (fee | et per secondi:  |            | 13.5509518      |               |                | (minutes)                 |                   |           |                                   |         | Barometer:                | 29.1                            |              |                  |              |        |
| Humidity (%):                | 30            | 27         |              |          |       |               |            |           |              |             |        |              |             |        |              |               | Pitot Correction:   |                | 515                  |                     | Sta                    | indurdized Tunnel   | i Flow (dacfm):  |            | 145.823144      |               |                |                           |                   |           |                                   | A       | versoe Room Temo:         | 69.45                           |              |                  |              |        |
|                              |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               | on Factor (DGM #1)  |                | 72                   |                     |                        |                     |                  |            |                 |               |                |                           |                   |           |                                   |         |                           |                                 |              |                  |              |        |
| Stove Tempera 5              |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              | Calibrat      | on Factor (DGM #2)  |                | OTE .                |                     |                        | Aver                | race Average     |            |                 |               |                | PRESSUR                   | E FACTOR 0.       | 97259 B   | AROMETRIC PRESSURE                |         | Initial Door Temp         | REP                             |              |                  |              |        |
| d (wet basis):               |               |            |              |          |       |               |            |           |              |             |        |              |             |        |              |               |                     | (1) VS: 0.0177 |                      |                     |                        | Inle                |                  |            |                 |               |                |                           |                   |           | Average:                          | 29.1    | Final Door Temp           | PREFI                           |              |                  |              |        |
| Accesses                     | 0.01          | 267 1785 2 | 28 17 RG 44  | 90.60    | 71 70 | 170 74 800 7  | 72 841 76  | 008 50    | 73           | מיד כיד מחו | 78 F.4 | 77           | 77 77 78    |        | 0.04 0.001   |               |                     | 75 VR- 0.0174  | WY                   | Filter              | Filter                 | 04                  |                  | Lourana    | Asserters 6     | 1 42          | Lorens         | TEMPERATURE FAC           |                   |           | Share                             | 29 17   |                           |                                 |              |                  |              |        |
| Weight                       |               |            | 4 4          | -1       | -4    | 46 46         | -9         | -4        |              |             |        |              |             |        |              |               |                     |                |                      | Ewa                 | Ewa Rolls.0            | Tropped Yes         | mn Tamo          | 99.0       | 664 40          |               | 6.9            |                           |                   | 99073     | Fine                              | 20.03   |                           |                                 |              |                  |              |        |
| Remaining                    |               |            | Flue Room    | Tunnel   | Unit  | Unit Unit     | Unit       | Unit D    | GM 1 DGM     | A1 DGM1     | Fiber1 | DGM 2 DG     | M2 DSM2     |        | annel        | Elapsed DSM 1 | DSM 1 DSM 1         | DGM 2 DGM      | 2 DGM 2 Tunn         | nel Velocity V      | felocity (in H2O)      | Welocity Man        | mer 1 Meter 2    | Preportion |                 | Sed. Vol.Sed. | SORT           |                           | DGM#2- D          |           |                                   |         |                           |                                 |              |                  |              |        |
| Lbs. C                       | co co         |            | Gas Temp     | Dry Bulb | Too   | Back Right    | Left       | Bottom Re | rading Inlet | T Outlet T  | Temp   | Reading Inte | eT Outlet T | Temp V | locity Draft | Time Reading  | Inlet T Outlet T    | Reading Inlet  | T Outlet T Drv B     | Bulb DSM 1          | DGM 2 Tunnel           | FtSec Dec           | s.R Dec.R        | PR1        | PR2 n           | d) (fd)       | Time Delta-P   |                           |                   | D         | RY GAS METER VALUES               |         | Burn Rate:                | 1.099                           |              |                  |              |        |
|                              |               |            | 292.19 70.90 | 100.23   | 73.05 | 605.48 523.6  | 65 879.32  | 718.81    | 474.60 73    | 2.09 71.79  | 71.92  | 499.63       | 11.26 71.00 | 71.69  | 0.039 0.024  | 0.00 474.60   | 72.09 71.79         | 498.63 71.2635 | 0117 71.04025 100.2  | 2054                | 0.039                  | 13.039 531          | 1.9 531.2        |            |                 |               | 0 0.19738471   | VOLUMES SAMPLED           |                   |           | DOM #1 Final                      | 561 407 |                           |                                 |              |                  |              |        |
| 13.94                        |               | 4.23 16.25 | 279.82 71.80 | 100.79   | 74.16 | 573.02 1300.5 | 99 827.53  | 972.29    | 477.90 73    | 2.67 71.77  | 78.95  | 501.00       | 2.15 71.15  |        | 0.043 0.024  | 10.00 477.10  | 72.67 71.77         | 501.00 72.1526 | 0091 71.14565 100.70 | 7886 20.08          | 19.89 0.043            | 13.721 532          | 2.2 521.6        | 101.29     |                 | 29 2,308      | 10 0.20775198  |                           | DGM#1: 83.        |           | Initial                           | 474.678 |                           |                                 |              |                  |              |        |
| 13.24                        |               |            | 297.17 72.22 | 102.37   | 74.01 | 879.24 966.0  | 05 620.04  | 963.02    | 479.00 73    |             |        |              | 244 71.20   |        | 0.044 0.024  | 2000 479.60   | 73.00 72.03         | 503.50 72.430  | 73 71.25579 102.3    |                     | 20.96 0.044            | 13.943 532          |                  | 103.11     | 103.43 2.4      |               | 20 0.21067306  |                           | DGM #2: 84.       | 10180     |                                   |         |                           |                                 |              |                  |              |        |
| 12.63                        |               |            | 294.95 70.90 | 102.16   | 74.41 | 804.09 1013.3 | 30 600.74  | 957.42    |              | 2.92 71.97  |        | 505.90       | 241 71.12   |        | 0.046 0.024  | 30.00 482.10  | 72.92 71.97         | 505.90 72.4080 | 227 71.11906 102.9   | 1004 20.72          | 20.12 0.046            | 14.197 532          | 2.4 521.8        | 101.35     | 97.59 2.4       |               | 30 0.21436751  |                           |                   |           | DGM #2 Final:                     | 585.180 |                           |                                 |              |                  |              |        |
| 11.92                        | 0.01          | 421 1627   | 299.69 71.00 | 102.62   | 73.60 | 777.79 706.5  | 58 941.61  | 974.70    | 494.60 73    | 3.01 72.10  |        |              | 274 71.66   |        | 0.043 0.024  | 40.00 484.60  | 73.01 72.16         | 508:30 72.7440 | 3948 71.46037 102.6  | 0172 20.71          | 20.11 0.043            | 13.692 532          | 2.6 532.1        | 105.12     | 101.14 2.4      |               | 40 0.2006792   | TOTAL TUNNEL VOLUME (scfr |                   | 52495     | Initial                           | 495.625 | Filter 1:                 | 78.64                           |              |                  |              |        |
| 11.32                        | 0.01          |            | 290.50 69.91 | 102.17   | 72.47 | 552.24 1113.4 | 43 911.17  | 965.45    |              | 2.14 72.37  |        |              | 2.86 71.67  | 85.47  | 0.041 0.024  | 50.00 487.00  | 73.14 72.37         | 510.00 72.0047 | 1965 71.66985 102.9  | 19.00               | 2034 0.041             | 13.406 532          | 2.8 532.3        | 102.85     | 107.38 2.3      | 06 2.429      | 50 0.202582    |                           |                   |           |                                   |         | Filter 2:                 | 80.45                           |              |                  |              |        |
| 10.62                        | 0.00          | 4.13 16.36 | 297.05 69.00 | 101.73   | 72:80 | 937.99 666.5  | 51 750.10  | 979.71    | 489.30 73    | 3.26 72.33  | 94.97  | 513.20       | 2.66 71.60  | 85.26  | 0.047 0.024  | 60.00 489.30  | 73.26 72.33         | 513.20 72.6596 | PS6 71.65335 101.73  | 7336 19.05          | 20.11 0.047            | 14.363 532          | 2.8 532.2        | 91.91      | 96.18 23        | 10 2.333      | 60 0.21712819  | SAMPLE RATIOS             |                   |           | EMPERATURES (DEG. RANKIN)         |         | Tunnet                    | 90.60                           |              |                  |              |        |
| 10.22                        | 0.00          | 2.18 17.24 | 247.76 69.10 | 95.59    | 71.65 | 220.37 1105.6 | 81 896.00  | 972.62    | 491.80 73    | 290 72.21   | 77.76  | 515.60       | 264 7184    | 84.17  | 0.043 0.024  | 70.00 491.00  | 72.90 72.21         | 515.60 72.6383 | 1133 71.83621 96.58  | 883 20.71           | 20.11 0.043            | 13.650 532          | 2.6 532.2        | 104.06     | 100.06 2.4      | 69 2,332      | 70 0.20748772  | Sa                        |                   | 770 00    | DCM #1:                           | 532 030 | no                        |                                 |              |                  |              |        |
| 9.73                         | 0.01          | 2.89 17.65 | 244.85 69.70 | 94.26    | 72.41 | 208.05 1045.5 | 55 898.76  | 972.58    | 494.20 73    | 2.11 72.41  | 78.57  | 518.00       | 2.98 72.01  | 89.17  | 0.045 0.023  | 80.00 494.20  | 73.11 72.41         | 518.00 72.9766 | 072 72.0/057 94.20   | 9201 19.00<br>19.00 | 20.10 0.045            | 13.897 532          | 2.8 532.5        | 97.82      | 97.95 2.3       | 06 2331       | 80 0.21149611  | Sa                        | ample Train 2 KC  | 24 200    | DCM 42                            | 532 507 | no                        | M 2- 72.51                      |              |                  |              |        |
| 9.22                         | 0.00          | 281 17.71  | 252.14 69.20 | 93.39    | 70.66 | 529.52 624.0  | 08 674.54  | 992.36    | 496.60 73    | 292 72.48   | 79.12  | 520.40       | 261 7171    | 82.43  | 0.045 0.023  | 90.00 496.60  | 72.92 72.48         | 520.40 72.6115 | 0006 71.70525 99.38  | 8506 19.88          | 20.11 0.045            | 13.870 532          | 2.7 532.2        | 97.87      | 99.11 23        | 06 2,333      | 90 0.21126545  |                           |                   |           |                                   |         | Water Collected:          |                                 |              |                  |              |        |
| 8.82                         | 0.00          | 241 17.07  | 228.62 69.42 | 92.79    | 72.41 | 270.03 1169.5 | 94 564.36  | 946.34    | 499.00 73    | 293 72.59   | 79.19  | 522.90       | 2.80 72.09  | 82.33  | 0.044 0.023  | 100.00 499.00 | 72.90 72.59         | 522.80 72.8002 | 014 72.08514 92.78   | 19.00               | 20.10 0.044            | 13.697 532          | 2.8 532.4        | 99.05      | 99.21 23        | 06 2331       | 100 0.20858655 | TOTAL EMISSIONS           |                   | C         | ALIBRATION FACTORS                |         |                           |                                 |              |                  |              |        |
| 831                          | -0.01         | 3.10 17.34 | 249.96 69.71 | 92.88    | 72.68 | 200.09 626.1  | 12 745.00  | 962.65    |              | 3.04 72.62  | 79.36  | 525.20       | 2.66 72.11  | 82.16  | 0.038 0.023  | 110.00 501.40 | 73.04 72.62         | 525.20 72.660  | 202 72.10545 92.88   | 8121 19.00          | 20.10 0.038            | 12.798 532          | 2.8 532.4        | 105.92     |                 | 06 2.332      | 110 0.19501557 |                           | sia Train 1 (g):  | 7.43      | DGM #1:                           | 0.9972  | Room Temp                 | Bar Pressure                    |              | elative Humidity | Air Velocity |        |
| 7.92                         | -0.01         | 3.18 17.32 | 243.12 69.73 | 92.75    | 7121  | 166.78 1667.4 | 42 850.19  | 942.57    |              | 3.08 72.81  | 79.45  | 527.60       | 2.67 72.26  | 81.50  | 0.043 0.023  | 120.00 503.80 | 73.08 72.81         | 527.60 72.8726 | 027 72.27722 92.74   | 478 19.97           | 20.09 0.043            | 13.544 532          | 2.9 532.6        | 100.02     | 100.20 2.3      | 05 2.331      | 120 0.2064052  | Sampl                     | sia Train 2 (g):  | 5.99      | DGM #2:                           | 1.0076  | Before Ab                 |                                 |              | Before After     |              |        |
| 7.42                         | 0.00          | 2.44 17.05 | 229.24 68.86 | 92.71    | 72.03 | 169.08 1190.2 | 23 769.28  | 920.99    | 506.20 73    |             | 79.50  | 530.00       | 2.50 72.00  | 82.05  | 0.044 0.023  | 130.00 506.20 | 72.75 72.57         | 530.00 72.5049 | 0057 72.00428 92.7%  | 1038 19.88          | 20.11 0.044            | 13.765 532          | 2.7 532.3        | 98.37      | 98.56 2.3       | 06 2.332      | 130 0.21009631 |                           |                   |           |                                   |         | 71 69                     | 29.17                           | 29.03        | 30 27            | 0 0          |        |
| 7.02                         | 0.01          |            | 245.45 60.50 | 92.87    | 71.27 | 264.31 935.0  | 02 474.71  | 935.99    |              | 2.07 72.85  |        |              | 2.88 72.20  |        | 0.046 0.023  | 140.00 508.60 | 73.07 72.65         | 532.40 72.8753 | 518 72.24667 92.87   | 7184 19.97          | 20.09 0.046            | 14.117 533          | 1.0 532.6        | 95.98      | 96.16 2.3       |               | 140 0.21511844 | EMSSIONRATES              |                   | T         | JINNEL FLOW RATE:                 | 145.823 |                           |                                 |              |                  |              |        |
| 6.51                         | 0.00          | 2.82 17.69 |              | 92.60    | 71.15 | 217.28 727.1  | 11 839.35  | 994.70    | \$11.00 73   |             | 79.70  | 534.90       | 2.82 72.33  |        | 0.040 0.023  | 150.00 511.00 | 73.09 72.76         | 534.80 72.8242 | 722 72.32507 92.59   | 19.97               | 20.09 0.040            | 13.064 532          | 2.9 532.6        | 103.67     |                 | 05 2.331      | 150 0.19912965 |                           |                   | 1.24      |                                   |         |                           |                                 |              |                  |              |        |
| 6.13                         |               | 242 1812   |              | 91.98    | 71.28 | 258.34 1012.0 | 01 484.14  |           |              | 3.20 72.80  |        |              | 3.12 72.36  |        | 0.046 0.023  | 160.00 513.40 | 73.28 72.86         | 537.20 73.1241 | 1074 72.3636 91.96   | 19.97               | 20.09 0.046            | 14.121 533          | 3.1 532.8        | 95.75      | 95.91 23        |               | 160 0.21535217 | Sample 1                  | Train 2 (g/hr):   | 1.00 P    | ARTICULATE CATCH (mg)             |         |                           |                                 |              |                  |              |        |
| 5.63                         |               | 2.11 17.38 |              | 92.33    | 71.20 | 200.04 949.3  | 25 466.54  |           | \$15.80 73   | 3.18 72.77  | 79.05  | 539.60       | 2.83 72.15  |        | 0.042 0.023  | 170.00 515.00 | 73.18 72.77         | 539.60 72.8347 | 1321 72.14927 92.33  | 1997                | 20.10 0.042            | 13.436 533          | 1.0 532.5        | 100.74     | 100.96 2.3      |               | 170 0.20494133 |                           |                   |           | Total Sample Train 1:             | 11.8    |                           |                                 |              |                  |              |        |
| 5.22                         | -0.01         | 299 17.49  | 243.74 69.00 | 92.47    | 71.62 | 294.46 873.3  | 27 468.15  | 901.06    | \$18.20      | 3.25 72.77  | 80.12  | 542.00       | 2.89 72.41  | 81.94  | 0039 0023    | 180.00 518.20 | 73.25 72.77         | 542:00 72:8866 | 024 72.41299 92.49   | 19.97               | 20.09 0.039            | 13.027 530          | 1.0 532.6        | 103.91     | 104.10 2.3      | GS 2,330      | 180 0.1965779  |                           |                   |           | Total Sample Train 2:             | 9.6     |                           |                                 |              |                  |              |        |
| 4.92                         | 0.01          | 174 1892   | 203.76 68.96 | 97.41    | 69.98 | 201.07 1185.5 | 55 597.84  | 897.08    | 520.60 73    | 3.27 72.86  | 79.18  | 544.40       | 2.86 72.23  | 80.58  | 0.043 0.021  | 190.00 520.60 | 73.27 72.65         | 544.40 72.8636 | 956 72,22783 87.49   | 1035 19.97          | 2009 0.043             | 13.474 530          | 0.1 532.5        | 99.53      | 99.76 2.3       | 05 2,331      | 190 0.2963387  |                           |                   |           | Filter and seal Sample Train 1:   | 11.8    |                           |                                 |              |                  |              |        |
| 4.62                         | 0.00          | 202 1852   |              | 85.77    | 69.97 | 267.24 564.6  | 61 650.92  | 932.04    | 523.00 73    |             | 78.50  | 545.90       | 279 7240    |        | 0.044 0.020  | 200.00 523.00 | 72.96 72.81         | 546.00 72.7001 | 1241 72.45261 85.775 | 7277 19.97          | 20.09 0.044            | 13.723 532          | 2.9 532.6        | 97.42      | 97.56 2.3       |               | 200 0.21062241 |                           | MAX Allowed       | 7.50%     | Filter and seal Sample Train 2:   |         | e Dilution Tunnel Measure |                                 |              | Sample           |              |        |
| 432                          | 0.02          | 190 1867   |              | 85.66    | 71.04 | 211.77 695.3  | 26 803.20  | 912.25    | 525.40 73    |             | 79.29  | 549.20       | 278 7247    | 79.52  | 0.041 0.020  | 210.00 525.40 | 73.16 73.03         | 549:20 72.7815 | MS7 72.47009 MS.66   |                     | 20.09 0.041            | 13.158 533          | 3.1 532.6        | 101.58     |                 | 05 2.331      | 210 0.20182834 |                           |                   |           | Probe Sample Train 1:             | 0 Bu    |                           |                                 | Total Sample |                  |              |        |
| 4.01                         | 0.00          | 173 1882   |              | 84.59    | 70.78 | 198.61 1171.6 | 89 576.97  | 879.96    | 527.80 73    |             |        | 551.60       | 2.86 72.54  |        | 0.043 0.020  | 220.00 527.80 | 73.22 72.93         | 551.60 72.8591 | 1156 72.54003 84.58  |                     | 20.09 0.043            | 13.570 530          | 3.1 532.7        | 99.31      | 98.49 2.3       |               | 220 0.20834531 | DEVATION                  |                   | 10.73%    | Probe Sample Train 2:             | O Tin   | ne (Filmec) (dact)        | min) (Rt)                       |              | 2 1              |              |        |
| 372                          | 0.02          | 1.69 18.97 |              | 85.27    | 71.57 | 151.53 1154.0 | 02 690.67  | 870.12    |              | 3.15 73.26  | 77.64  | 554.00       | 13.15 72.76 |        | 0044 0019    | 230.00 530.20 | 73.15 73.26         | 554.00 73.1667 | N38 72.79009 85.20   | 0514 19.00          | 20.08 0.044            | 13.600 533          | 12 533.0         | 98.16      |                 | 04 2.329      | 230 0.20868155 |                           |                   |           |                                   | 36      | 13.55 145.                | 82 550.60                       | 83.34        | 84.10 11.8       | 9.6          |        |
| 351                          | 0.00          | 1.65 18.91 |              | 94.77    | 71.35 | 249.04 1059.6 | 61 475.95  | 879.13    | 532.60 73    | 3.26 73.16  | 77.64  | 550.40       | 13.02 72.56 |        | 0040 0019    | 260.00 532.60 | 73.26 73.16         | 556.40 73.0197 | 749 72.58891 84.77   | 7388 19.86          | 20.08 0.040            | 13.054 530          | 1.2 532.8        | 102.18     |                 | 04 2.330      | 240 0.20038852 |                           | Train 1 Train 2   |           | Room Particulate Correction       |         | Dilution Tunnel Dua       | Train Precision                 |              |                  |              |        |
| 3.22                         | 0.00          | 2.11 18.40 |              | 93.88    | 7092  | 215.20 583.1  | 15 515.30  | 896.25    | \$35.00 73   | 2.01 72.09  | 77.08  | 559.90       | 2.81 72.66  | 79.33  | 0040 0019    | 250.00 535.00 | 73.01 73.09         | 558.00 72.0001 | 523 72.65682 83.879  | 7697 19.97          | 20.09 0.040            | 12 966 530          | 1.0 532.7        | 102.76     |                 | GS 2.330      | 250 0.19921381 |                           | 0.000141585 0.000 | 114147    | Mr O Miligram Cato                |         | Sample Ratios             | Total Emiss                     |              |                  |              |        |
| 292                          | 0.00          | 200 1845   |              | 94.04    | 7196  | 277.05 554.5  | 56 581.10  | 901.65    |              | 3.52 73.20  | 77.15  | 561.20       | 2.06 72.84  |        | 0019         | 260.00 537.40 | 73.52 73.28         | 561.20 73.0556 | 243 72.83565 84.03   |                     | 20.08 0.044            | 13.591 530          | 3.4 532.9        | 98.00      | 99.21 2.3       |               | 260 0.20963041 | Cr                        |                   |           | Viter 46.5364 Total Volume        |         | Train 1 Trail             | 12 Train 1                      | Train 2 De   | eviation (%)     |              |        |
| 2.62                         | -0.01         | 2.56 17.95 |              | 94.29    | 71.03 | 206.96 556.9  | 96 540.99  | 900.51    | 539.80       |             | 76.79  | 563.60       | 2.79 72.56  | 79.35  | 0042 0019    | 270.00 539.00 | 73.33 73.15         | 563.60 72.7922 | 058 72.58571 84.29   | 19.00               | 20.09 0.042            | 13.202 533          | 12 532.7         | 100.32     |                 | 04 2.330      | 270 0.20399391 |                           | 7.43              | 5.99      | Rotometer (s                      |         | 629.93 624                | 20 7.43                         | 5.99 1       | 10.73%           |              |        |
| 231                          | 0.00          | 129 1876   |              | 84.11    | 71.66 | 228.82 571.4  | 40 682.36  | 892.31    |              | 2.08 72.18  | 7691   | 566.00       | 2.04 72.00  | 78.11  | 0040 0019    | 290.00 542.30 | 73.00 73.10         | 566.00 73.0426 | 22.8664 84.10        | 0534 20.69          | 20.08 0.040            | 13.095 530          | 3.1 533.0        | 106.00     | 101.87 2.4      |               | 290 0.20114758 |                           |                   |           | flow rate is 0.                   |         |                           |                                 |              |                  |              |        |
| 2.02                         | 0.00          | 2.16 18.36 |              | 85.12    | 72.42 | 199.80 1114.9 | 99 467.33  | 858.90    | 544.60 73    | 3.09 72.99  | 76.06  | 568.40       | 2.01 72.63  | 78.11  | 0042 0019    | 290.00 544.60 | 73.09 72.93         | 568.40 73.0072 | 2174 72.60142 85.11  | 152 19.04           | 20.08 0.042            | 13.399 533          | 3.0 532.8        | 96.53      | 99.79 23        |               | 290 0.20562945 |                           | AVERAGE           | 6.71 Gran | ris Emissions                     | Bu      |                           |                                 | hitial       | Run              | Average      | 62.852 |
| 171                          | 0.01          | 196 1857   |              | 83.90    | 71.17 | 147.49 1137.6 | 89 667.90  | 844.86    | 547.00 73    | 3.13 73.22  | 76.98  | 570.80       | 2.94 72.62  | 78.14  | 0043 0019    | 300.00 547.00 | 73.13 73.22         | 570.00 72.9079 | 662 72.61784 83.89   | 19.00               | 20.09 0.043            | 13.551 530          | 3.2 532.8        | 90.20      |                 | 04 2.330      | 300 0.2001917  |                           |                   |           |                                   | Ra      | te Surfi                  | 908                             | Draft        | Time             | Draft        |        |
| 1.51                         | 0.00          | 1.00 10.00 |              | 83.99    | 71.16 | 235.64 926.9  | 91 291.66  | 862.57    | 549.40 73    |             | 76.69  | 573.20       | 2.77 72.76  |        | 0049 0019    | 310.00 549.40 | 73.18 73.17         | 573.20 72.7749 | 9039 72.75858 83.93  |                     | 20.09 0.049            | 14.435 533          | 3.2 532.8        | 92.27      | 92.45 2.3       |               | 310 0.22176726 |                           | Deviation (g/kg)  |           |                                   | 1.0     | 9 570.                    | 20                              | 0.024        | 360              | 0.021        |        |
| 121                          | 0.00          | 199 1855   |              | 83.79    | 7161  | 145.99 948.0  | 07 769.41  | 860.25    |              | 2.02 72.10  | 76.60  | 575.60       | 2.77 72.94  |        | 0038 0019    | 22000 551.80  | 73.03 73.10         | 575.60 72.7743 | 1078 72.90542 83.775 |                     | 20.08 0.038            | 12:095 530          | 3.1 532.9        | 104.93     | 105.06 2.3      |               | 220 0.19506248 |                           |                   | 1.128     |                                   | Pa Pa   |                           | tate Emission                   |              |                  |              |        |
| 0.92                         | 0.02          | 197 1857   |              | 94.19    | 7094  | 299.31 \$10.6 | 85 522.52  | 995-00    |              | 3.26 73.55  | 7647   | 579.00       | 2.91 72.80  | 79.04  | 0043 0019    | 230.00 554.20 | 73.26 73.55         | 578.00 72.9136 | 1718 72.86172 84.175 |                     | 20.08 0.043            | 13.471 533          | 2.4 532.9        | 98.83      |                 | GS 2,329      | 200 0.2009067  |                           |                   | 0.909     |                                   |         | 12/7/2015 1.00            | 1.119                           |              |                  |              |        |
| 0.60                         | 0.01          | 1.86 18.69 |              | 83.80    | 69.67 | 171.47 1121.3 |            |           |              | 2.16 73.55  |        |              | 2.96 72.79  |        | 0043 0019    | 34000 556.50  |                     | 580.40 72.9615 | 707 72.74834 83.80   |                     | 2008 0.043             | 13.565 533          |                  | 94.01      | 98.32 2.3       |               | 340 0.20942576 |                           | Daviation         | 0.219     |                                   |         |                           |                                 |              |                  |              |        |
| 0.31                         |               | 1.09 18.00 |              | 84.31    | 70.55 | 295.54 703.0  |            |           | 558.90 73    | 2.44 73.30  |        |              | 2.96 72.74  |        | 0044 0019    | 35000 SSE90   |                     | 582.70 72.9606 |                      |                     | 1925 0.046             | 13.589 533          |                  | 98.01      | 96.15 2.3       |               | 350 0.20968983 |                           |                   |           |                                   |         |                           |                                 |              |                  |              |        |
|                              |               | 1.09 18.00 | 189.68 69.00 | 94.59    | 70.74 | 149.01 1125.2 |            | 824.22    | 591.41 73    | 3.30 73.49  | 76.53  | 585.18       | 2.90 72.70  | 79.00  |              |               | 73.30 73.49         |                |                      |                     | 20.75 0.045            | 13.824 530          | 2.4 532.8        | 100.68     | 99.94 2.4       | 06 2.407      | 300 0.21225855 |                           |                   |           |                                   |         |                           |                                 |              |                  |              |        |

|                |                  |                |                |                |                  |                  |                  |                  |                |                |                |                |                |                |              |              |              |                |                | 10.394991                      | 21.02 | 15.62 | 10.39        |
|----------------|------------------|----------------|----------------|----------------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|--------------|--------------|----------------|----------------|--------------------------------|-------|-------|--------------|
| Time           | Flue             | Room           | Tunnel         | Unit           | Unit             | Unit             | Unit             | Unit             | DGM 1          | DGM 1          | Filter 1       | DGM 2          | DGM 2          | Filter 2       | Tunnel       | CO           | CO2          | O2             | scale          | Corrected Calculated           |       |       |              |
| 10.0           | Temp 1           | Temp 2         | Dry Bulb 3     | Top 4          | Back 5           | Right 6          | Left 7           | Bottom 8         | In 17          | Out 18         | 19             | In 20          | Out 21         | 22             |              | %            | %            | %              | Lbs            | Scale Tunnel                   |       |       |              |
| 0.0            | 292.19           | 70.93          |                | 73.05          | 605.48           | 523.65           | 879.32           | 718.81           | 72.09          | 71.79          | 71.92          | 71.26          | 71.05          | 71.69          | 1.16         | 0.01         | 4.37         | 16.10          | 24.93          |                                | 3.92  |       |              |
| 10.0           | 279.82           | 71.80          |                | 74.16          | 573.02           | 1300.59          | 827.53           | 972.29           | 72.67          | 71.77          | 78.95          | 72.15          | 71.15          | 81.20          | 1.17         | 0.01         | 4.23         | 16.25          | 24.33          | 13.94 0.043161                 | 3.32  |       |              |
| 20.0           | 297.17           | 72.22          | 102.37         | 74.61          | 879.24           | 946.05           | 620.04           | 963.02           | 73.08          | 72.03          | 82.26          | 72.44          | 71.26          | 83.08          | 1.18         | 0.01         | 4.13         | 16.36          | 23.64          |                                | 2.62  |       |              |
| 30.0           | 294.95           | 70.95          | 102.16         | 74.41          | 804.09           | 1013.30          | 600.74           | 957.42           | 72.92          | 71.97          | 82.75          | 72.41          | 71.12          | 84.07          | 1.18         | 0.01         | 3.99         | 16.51          | 23.02          |                                | 2.01  |       |              |
| 40.0           | 299.69           | 71.07          | 102.62         | 73.60          | 777.79           | 706.58           | 841.61           | 974.78           | 73.01          | 72.16          | 83.95          | 72.74          | 71.46          | 84.56          | 1.17         | 0.01         | 4.21         | 16.27          | 22.32          | 11.92 0.042716                 | 1.30  |       |              |
| 50.0           | 280.50           | 69.91          | 102.17         | 73.47          | 552.24           | 1113.43          | 911.17           | 965.45           | 73.14          | 72.37          | 82.94          | 72.86          | 71.67          | 85.47          | 1.16         | 0.01         | 3.72         | 16.79          | 21.72          |                                | 0.70  |       |              |
| 60.0           | 297.05           | 69.60          | 101.73         | 72.80          | 837.88           | 666.51           | 750.10           | 978.71           | 73.26          | 72.33          | 84.87          | 72.66          | 71.65          | 85.26          | 1.19         | 0.00         | 4.13         | 16.36          | 21.02          |                                | 0.00  | 5.40  |              |
| 70.0           | 247.76           | 69.16          | 95.59          | 71.65          | 220.37           | 1105.81          | 896.00           | 972.63           | 72.93          | 72.21          | 77.76          | 72.64          | 71.84          | 84.17          | 1.17         | 0.00         | 3.18         | 17.34          | 20.63          | 10.23 0.043051                 |       | 5.01  |              |
| 80.0           | 244.85           | 69.75          | 94.26          | 72.41          | 208.05           | 1045.55          | 898.76           | 972.58           | 73.11          | 72.41          | 78.57          | 72.98          | 72.01          | 83.17          | 1.18         | 0.01         | 2.89         | 17.65          | 20.12          | 9.73 0.044731                  |       | 4.50  |              |
| 90.0           | 252.14           | 69.25          | 93.39          | 70.66          | 528.52           | 624.08           | 674.54           | 992.36           | 72.92          | 72.48          | 79.12          | 72.61          | 71.71          | 82.43          | 1.18         | 0.00         | 2.81         | 17.71          | 19.72          | 9.33 0.044633                  |       | 4.11  |              |
| 100.0          | 238.63           | 69.42          | 92.78          | 72.41          | 270.03           | 1169.94          | 564.36           | 946.34           | 72.93          | 72.59          | 79.19          | 72.80          | 72.09          | 82.33          | 1.17         | 0.00         | 3.41         | 17.07          | 19.21          | 8.82 0.043508                  |       | 3.60  |              |
| 110.0          | 249.96           | 69.71          | 92.88          | 72.68          | 280.89           | 626.12           | 745.00           | 962.65           | 73.04          | 72.62          | 79.36          | 72.66          | 72.11          | 82.16          | 1.15         | -0.01        | 3.16         | 17.34          | 18.71          | 8.31 0.038031                  |       | 3.09  |              |
| 120.0          | 240.12           | 68.73          | 92.75          | 71.21          | 166.78           | 1047.42          | 850.19           | 942.57           | 73.08          | 72.81          | 79.45          | 72.87          | 72.28          | 81.98          | 1.17         | -0.01        | 3.18         | 17.32          | 18.31          | 7.92 0.042603                  |       | 2.70  |              |
| 130.0          | 239.24           | 68.88          | 92.71          | 72.03          | 169.08           | 1190.23          | 769.28           | 920.99           | 72.75          | 72.57          | 79.58          | 72.50          | 72.00          | 82.05          | 1.18         | 0.00         | 3.44         | 17.05          | 17.82          |                                |       | 2.20  |              |
| 140.0          | 245.45           | 68.93          | 92.87          | 71.37          | 264.31           | 935.02           | 474.71           | 935.99           | 73.07          | 72.85          | 79.95          | 72.88          | 72.25          | 81.89          | 1.19         | 0.01         | 2.45         | 18.10          | 17.42          |                                |       | 1.80  |              |
| 150.0          | 244.55           | 68.94          | 92.60          | 71.15          | 217.28           | 727.11           | 839.35           | 934.70           | 73.09          | 72.76          | 79.70          | 72.82          | 72.33          | 81.85          | 1.16         | 0.00         | 2.82         | 17.69          | 16.91          | 6.51 0.039653                  |       | 1.29  |              |
| 160.0          | 235.80           | 69.78          | 91.98          | 71.28          | 258.34           | 1012.01          | 484.14           | 915.13           | 73.28          | 72.86          | 79.65          | 73.12          | 72.38          | 81.85          | 1.19         | 0.03         | 2.42         | 18.12          | 16.53          |                                |       | 0.91  |              |
| 170.0          | 242.95           | 68.75          | 92.33          | 71.20          | 250.04           | 949.25           | 466.54           | 906.98           | 73.18          | 72.77          | 79.85          | 72.83          | 72.15          | 81.63          | 1.17         | -0.01        | 3.11         | 17.38          | 16.02          |                                |       | 0.41  | 5.00         |
| 180.0          | 243.74           | 69.03          | 92.47          | 71.62          | 284.46           | 873.27           | 468.15           | 901.06           | 73.25          | 72.77          | 80.12          | 72.89          | 72.41          | 81.94          | 1.16         | -0.01        | 2.99         | 17.49          | 15.62          |                                |       | 0.00  | 5.22         |
| 190.0          | 203.76           | 68.98          | 87.41          | 69.98          | 201.07           | 1185.55          | 597.84           | 887.08           | 73.27          | 72.85          | 79.18          | 72.86          | 72.23          | 80.58          | 1.17         | 0.01         | 1.74         | 18.82          | 15.33          | 4.93 0.042576                  |       |       | 4.93         |
| 200.0          | 203.85           | 68.38          | 85.77          | 69.87          | 287.24           | 564.61<br>695.26 | 650.92<br>803.20 | 932.04<br>912.25 | 72.96          | 72.81<br>73.03 | 78.59<br>78.29 | 72.79<br>72.78 | 72.45<br>72.47 | 79.96          | 1.18<br>1.16 | 0.00         | 2.02         | 18.52<br>18.67 | 15.02          | 4.62 0.044362<br>4.32 0.040735 |       |       | 4.62<br>4.32 |
| 210.0          | 201.44           | 69.00          | 85.66          | 71.04<br>70.78 | 211.77           | 1171.89          |                  | 912.25<br>878.96 | 73.16<br>73.22 | 73.03          | 77.67          | 72.76          |                | 79.52          | 1.10         | 0.02         | 1.90         | 18.82          | 14.72          |                                |       |       | 4.01         |
| 220.0<br>230.0 | 186.37<br>189.05 | 68.60<br>69.69 | 84.59<br>85.27 | 70.78          | 198.61<br>151.53 | 1171.69          | 576.97<br>690.67 | 870.12           | 73.22          | 73.26          | 77.44          | 73.15          | 72.54<br>72.79 | 78.96<br>78.93 | 1.17         | 0.03<br>0.02 | 1.73<br>1.68 | 18.87          | 14.41<br>14.12 | 4.01 0.043408<br>3.72 0.043548 |       |       | 3.72         |
| 240.0          | 188.30           | 69.13          | 84.77          | 71.37          | 249.04           | 1059.61          | 475.95           | 879.13           | 73.15          | 73.26          | 77.44          | 73.13          | 72.79          | 78.77          | 1.17         | 0.02         | 1.65         | 18.91          | 13.91          | 3.51 0.040156                  |       |       | 3.72         |
| 250.0          | 194.49           | 68.68          | 83.88          | 70.92          | 316.20           | 583.15           | 515.30           | 896.25           | 73.20          | 73.10          | 77.44          | 72.81          | 72.59          | 78.33          | 1.16         | 0.03         | 2.11         | 18.40          | 13.61          | 3.22 0.039686                  |       |       | 3.22         |
| 260.0          | 194.49           | 68.76          | 84.04          | 70.92          | 277.05           | 554.56           | 581.10           | 901.65           | 73.52          | 73.09          | 77.15          | 73.06          | 72.84          | 78.26          | 1.17         | 0.00         | 2.11         | 18.45          | 13.31          | 2.92 0.043527                  |       |       | 2.92         |
| 270.0          | 197.72           | 68.91          | 84.29          | 71.03          | 286.96           | 556.96           | 540.99           | 900.51           | 73.33          | 73.15          | 76.79          | 72.79          | 72.59          | 78.35          | 1.17         | -0.01        | 2.56         | 17.95          | 13.02          | 2.62 0.041609                  |       |       | 2.62         |
| 280.0          | 196.34           | 69.00          | 84.11          | 71.44          | 228.82           | 571.40           | 682.36           | 892.31           | 73.08          | 73.18          | 76.73          | 73.04          | 72.86          | 78.11          | 1.16         | 0.03         | 1.79         | 18.76          | 12.71          | 2.31 0.04046                   |       |       | 2.31         |
| 290.0          | 188.41           | 69.82          | 85.12          | 72.42          | 199.80           | 1114.99          | 487.33           | 858.99           | 73.00          | 72.93          | 76.86          | 73.04          | 72.63          | 78.11          | 1.17         | 0.03         | 2.16         | 18.36          | 12.71          | 2.02 0.042283                  |       |       | 2.02         |
| 300.0          | 187.27           | 69.45          | 83.90          | 71.17          | 147.49           | 1137.89          | 667.90           | 844.86           | 73.13          | 73.22          | 76.98          | 72.94          | 72.62          | 78.14          | 1.17         | 0.00         | 1.96         | 18.57          | 12.10          | 1.71 0.043344                  |       |       | 1.71         |
| 310.0          | 186.58           | 69.44          | 83.93          | 71.16          | 235.64           | 926.91           | 291.66           | 862.57           | 73.18          | 73.17          | 76.69          | 72.77          | 72.76          | 77.89          | 1.20         | 0.03         | 1.69         | 18.88          | 11.91          | 1.51 0.049181                  |       |       | 1.51         |
| 320.0          | 185.95           | 69.40          | 83.78          | 71.10          | 145.99           | 948.07           | 769.41           | 860.25           | 73.03          | 73.10          | 76.68          | 72.77          | 72.70          | 77.96          | 1.15         | 0.00         | 1.99         | 18.55          | 11.60          | 1.21 0.038049                  |       |       | 1.21         |
| 330.0          | 198.53           | 69.30          | 84.18          | 70.94          | 299.31           | 510.85           | 522.52           | 895.00           | 73.26          | 73.55          | 76.47          | 72.91          | 72.86          | 78.04          | 1.17         | 0.00         | 1.97         | 18.57          | 11.31          | 0.92 0.04281                   |       |       | 0.92         |
| 340.0          | 186.38           | 68.26          | 83.80          | 69.67          | 171.47           | 1131.38          | 508.01           | 835.42           | 73.16          | 73.55          | 76.50          | 72.96          | 72.75          | 77.90          | 1.17         | 0.01         | 1.86         | 18.69          | 11.00          |                                |       |       | 0.60         |
| 350.0          | 196.44           | 69.01          | 84.31          | 70.55          | 295.54           | 703.00           | 293.93           | 851.78           | 73.44          | 73.30          | 76.38          | 72.96          | 72.74          | 77.94          | 1.17         | 0.01         | 1.69         | 18.88          | 10.70          | 0.31 0.043551                  |       |       | 0.31         |
| 360.0          | 189.88           | 69.04          | 84.56          | 70.74          | 149.01           | 1125.21          | 527.60           | 824.22           | 73.30          | 73.49          | 76.53          | 72.93          | 72.76          | 78.00          | 1.18         | 0.04         | 1.69         | 18.88          | 10.39          | 0.00 0.045054                  |       |       | 0.00         |
| 550.0          | 100.00           | 33.04          | 04.00          | 10.14          | 140.01           | 1120.21          | 027.00           | 024.22           | 70.00          | 70.40          | , 0.00         | 72.00          | 72.70          | 70.00          | 1.10         | 0.04         | 1.00         | 10.00          | 10.00          | 0.00                           |       |       | 0.00         |



### E&E Boiler Tunnel Traverse Worksheet

Static Pressure: 0.168
Barometer: 29.17

|          | TUNNEL<br>VELOCITY | TUNNEL<br>TEMP | SQUARE<br>ROOT |           |        |
|----------|--------------------|----------------|----------------|-----------|--------|
| A CENTER | 0.048              |                | 0.2191         |           |        |
| B CENTER | 0.049              |                | 0.2214         |           |        |
| A1       | 0.041              |                | 0.2025         | PITOT     |        |
| A2       | 0.047              |                | 0.2168         | CONSTANT= | 0.9545 |
| A3       | 0.047              |                | 0.2168         |           |        |
| A4       | 0.035              |                | 0.1871         |           |        |
| B1       | 0.044              |                | 0.2098         |           |        |
| B2       | 0.048              |                | 0.2191         |           |        |
| В3       | 0.045              |                | 0.2121         |           |        |
| B4       | 0.039              |                | 0.1975         |           |        |
| AVERAGE  |                    | #DIV/0!        | 0.2102         |           |        |

# **E&E PELLET FUEL DATA SHEET**

Weight added to Scale:

25.00

| 1        | 2        | 3          | 5        | 6        | 7        | 8        | 9        | 17       | 18       | 19       | 20       | 21       | 22       | 24       | 25       | 26              | 27    | 28       |            |
|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|-------|----------|------------|
| Flue     | Room     | Tunnel     | Unit     | Unit     | Unit     | Unit     | Unit     | DGM 1    | DGM 1    | Filter 1 | DGM 2    | DGM 2    | Filter 2 |          |          |                 |       | Scale    | Calculated |
| Gas      | Temp     | Dry Bulb   | Тор      | Back     | R.Side   | L.Side   | Bottom   | Inlet T  | Outlet T | Temp     | Inlet T  | Outlet T | Temp     | Tunnel   | CO       | CO <sub>2</sub> | $O_2$ | weight   | Tunnel     |
| 74.03684 | 66.74779 | 67.8808899 | 67.7247  | 589.7516 | 1031.277 | 706.0099 | 1065.979 | 70.64012 | 70.01096 | 69.5223  | 69.36166 | 69.49284 | 70.40315 | 1.169837 | 0.539594 | 1.636116        | 20.0  | 55.80667 | 0.042459   |
| 204.7263 | 68.08664 | 82.7009048 | 69.55827 | 638.2023 | 1422.385 | 608.534  | 826.5056 | 70.77903 | 70.48453 | 69.59428 | 69.64114 | 69.67745 | 70.78856 | 1.150647 | 0.150441 | 0.640401        | 20.0  | 55.20925 | 0.037662   |
| 250.1481 | 70.39545 | 92.2732773 | 71.33369 | 552.8004 | 1133.127 | 880.674  | 996.4724 | 70.8304  | 70.44219 | 69.0901  | 69.95354 | 69.99662 | 70.88016 | 1.166911 | 0.029054 | 3.300853        | 17.2  | 54.60939 | 0.041728   |
| 271.3455 | 71.04037 | 94.7462769 | 72.15862 | 771.7469 | 766.2589 | 891.705  | 1007.354 | 71.05681 | 70.63513 | 70.99654 | 70.07285 | 69.97416 | 70.7707  | 1.181773 | 0.028969 | 3.196243        | 17.3  | 54.01196 | 0.045443   |
| 280.0952 | 70.93591 | 97.5048904 | 72.64976 | 691.2613 | 1008.468 | 948.2971 | 1009.657 | 71.33707 | 70.82169 | 70.02513 | 70.23263 | 69.99472 | 70.74442 | 1.175348 | 0.013985 | 4.031294        | 16.4  | 53.39626 | 0.043837   |
| 273.3494 | 70.19016 | 98.2673416 | 72.74184 | 609.9943 | 1113.745 | 934.2366 | 996.6512 | 71.19115 | 70.80295 | 69.076   | 69.96622 | 70.14262 | 70.6112  | 1.160132 | 0.03198  | 3.398879        | 17.1  | 52.79883 | 0.040033   |
| 278.8978 | 69.24943 | 98.4326401 | 72.56275 | 795.9756 | 1171.318 | 630.6667 | 995.1905 | 71.18712 | 70.75874 | 69.50033 | 70.15629 | 70.10258 | 70.89244 | 1.175043 | 0.007949 | 4.181808        | 16.3  | 32.62664 | 0.043761   |
|          |          |            |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |       |          | -0.25      |

-0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25



| Manufacturer_Ardisam | Model Castle Screwing | Page of Date 12-7-15 |
|----------------------|-----------------------|----------------------|
| Job #G102366578      | Run                   | TechKS               |

| COMMENTS                            |
|-------------------------------------|
| 9:20 Am 1 Ho POTES STARTED          |
|                                     |
| 10:10 Am - TEST STARTED             |
| 11:20 Am - Unit ABJUSTED TO Level 3 |
| 1'20 pm - UNIT ADJUSTED TO Level 1  |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |



Manufacturer: ARDISAM Job# C102366578

|      | Model: Screwit. |  |
|------|-----------------|--|
|      | Wiodei. =       |  |
| ≀un_ |                 |  |

# DILUTION TUNNEL PARTICULATE SAMPLER DATA FILTER TYPE: Gelman 47mm A/E

|                              |       | 5                            | SYSTEM 1                              | /STEM 1                              |                              | SYSTEM 2                              | 2                                    |                              | SYSTEM                                |                                      |      |          |
|------------------------------|-------|------------------------------|---------------------------------------|--------------------------------------|------------------------------|---------------------------------------|--------------------------------------|------------------------------|---------------------------------------|--------------------------------------|------|----------|
| Pre-test<br>Weight<br>Record |       | Probe &<br>Housing<br>Number | Front<br>Filter +<br>gasket<br>Number | Back<br>Filter +<br>gasket<br>Number | Probe &<br>Housing<br>Number | Front<br>Filter +<br>gasket<br>Number | Back<br>Filter +<br>gasket<br>Number | Probe &<br>Housing<br>Number | Front<br>Filter +<br>gasket<br>Number | Back<br>Filter +<br>gasket<br>Number | Temp | Humidity |
| Date                         | Time  | C                            | 27                                    | 28                                   | D                            | 29                                    | 30                                   | 6                            | 31                                    | 32                                   | °F   | %        |
| 12/4/15                      | 8'30A | 90,<br>8894                  | 3.3082                                | 3,2970                               | 0234                         | 1.8422                                | 3.2981                               | 92,                          | 3,3054                                | 3,2987                               | 71   | 31       |
| R/7/15                       | 850A  | 90.<br>8892                  |                                       | 3.2967                               | 91.                          | 1.8418                                | 3. 2979                              | 5976                         | 3.3052                                | 3.2983                               | B    | 30       |
|                              |       |                              |                                       |                                      |                              |                                       |                                      |                              |                                       |                                      |      |          |
|                              |       | Total:                       | 1 1                                   | 046                                  | Total:                       | 61                                    | 3 G 7                                | Total:                       | 11                                    | 035                                  |      |          |

|                               |       | SYS                          | TEM 1                               | SYS                          | TEM 2                               | SYS                          | STEM 3                              |      |          |
|-------------------------------|-------|------------------------------|-------------------------------------|------------------------------|-------------------------------------|------------------------------|-------------------------------------|------|----------|
| Post-test<br>Weight<br>Record |       | Probe &<br>Housing<br>Number | Combined<br>Filter/gasket<br>Number | Probe &<br>Housing<br>Number | Combined<br>Filter/gasket<br>Number | Probe &<br>Housing<br>Number | Combined<br>Filter/gasket<br>Number | Temp | Humidity |
| Date                          | Time  | (.                           | 27+28                               | 5                            | 29130                               | 16                           | 31+32                               | °F   | %        |
| 12/7                          | 4:309 | 8906                         | 6.6174                              | 91.                          | 5.1431                              | 5474                         | 6.4119                              | 79   | 27       |
| 12/8                          | 8:30A | 8892                         | 6.6164                              | 91.                          | 5.1418                              |                              | 4.6110                              | 69   | 32       |
| 12/11                         | 8:40A | _                            | 6,6164                              | _                            | 5,1418                              | _                            | 6,6110                              | 68   | 25       |
| 1                             |       |                              |                                     |                              |                                     |                              |                                     |      |          |
|                               |       |                              |                                     |                              |                                     |                              |                                     |      |          |

Dry Down Weight

|       |      |     |      | Diy Dollin 1 |     | T  |     | 0.4            |
|-------|------|-----|------|--------------|-----|----|-----|----------------|
| Date  | Time | P1  | F1   | P2           | F2  | P3 | F3  | Gr/hr Lb/MMbtu |
| 12/7  |      | 1.4 | 12.8 | 1.1          | 3.4 | 0  | 8.4 | 1,343          |
| 12/8  |      | 8   | 11.8 | 0            | 2.1 | D. | 7.5 | 1.119          |
| 12/11 |      | 0   | 11,8 | 0            | 2.1 | 0  | 7.5 |                |
|       |      |     |      |              |     |    |     |                |
|       |      |     |      |              |     |    |     |                |
|       |      |     |      |              |     |    |     |                |



| Manufacturer_Ardisam Job #G102366578                                                                                  | Model_CastleSerenty                     | Page          |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|
| PRETEST DILUTION TUNNEL TRAVE Barometric pressure (P <sub>bar</sub> ) 29.17 (inches Inside diameter: Port A in Port B | Hg.) Static pressure $(P_q)$ $\iota(Q)$ | (inches w.c.) |

| Traverse<br>Point | Position (inches) | Velocity Head $\Delta_{ m p}$ (inches ${ m H_2O}$ ) | Tunnel<br>Temperature<br>(°F) | ١ |
|-------------------|-------------------|-----------------------------------------------------|-------------------------------|---|
| A-Centroid        | 3.00              | ,048                                                |                               |   |
| B-Centroid        | 3.00              | 1049                                                |                               |   |
| A-1               | 0.50              | .041                                                |                               |   |
| A-2               | 1.50              | ,047                                                |                               |   |
| A-3               | 4.50              | ,047                                                |                               |   |
| A-4               | 5.50              | 50035                                               |                               |   |
| B-1               | 0.50              | ,044                                                |                               |   |
| B-2               | 1.50              | ,048                                                |                               |   |
| B-3               | 4.50              | ,045                                                |                               |   |
| B-4               | 5.50              | ,039                                                |                               |   |
|                   |                   | AVERAGE                                             |                               |   |

| Adjustment | faatar |      | liontion |
|------------|--------|------|----------|
| Aduistment | ractor | app. | ucation  |

| Pitot correction |  |
|------------------|--|
|                  |  |

| u  | /he | re  |
|----|-----|-----|
| 71 | 110 | 4 - |

 $C_p$  = Pitot tube coefficient = 0.99 for standard pitot  $\Delta_p$  = manometer reading (inches H<sub>2</sub>O)  $T_s$  = average absolute dilution tunnel temperature (°F + 460)

Ps = absolute dilution tunnel gas pressure or Pbar + Pg

$$P_2$$
 = static pressure inchesH<sub>2</sub>O

 $\frac{13.6}{M_s} = 28.56$ , wet molecular weight of stack gas (alternatively, it may be measured)

Adjustment factor for alternative Pitot tube placement:

$$V_{s} = K_{p}C_{p}F_{p}\left(\sqrt{\Delta_{p}}\right)AVG\sqrt{\frac{T_{s}}{P_{s}M_{s}}} \qquad V_{s} = K_{p}C_{p}\left(\sqrt{\Delta_{p}}\right)avg.\sqrt{\frac{T_{s}}{P_{s}M_{s}}}$$

$$V_{s} = K_{p}C_{p}F_{p}\left(\sqrt{\Delta_{p}}\right)avg.\sqrt{\frac{T_{s}}{P_{s}M_{s}}}$$

$$F_p = \frac{\left(\sqrt{\Delta_p}\right)avg}{\left(\sqrt{\Delta_p}\right)centroid}$$

 $K_p = 85.49$  Pitot tube constant, (conversion factor for English units)

$$(\sqrt{\Delta_p})$$
 avg. = Average of the square roots of the velocity heads  $()_p$ ) measured at each traverse point.  $(\sqrt{\Delta_p})$  centroid = Average of the square roots of the velocity heads measured at the tunnel centroid (inches of  $H_2O$ )



Manufacturer\_Ardisam\_\_\_

Job #\_ G102366578

mn

| Pre/Post Checks                |          |                          |
|--------------------------------|----------|--------------------------|
|                                | Pre-Test | Post-Test                |
| Facility Conditions:           |          |                          |
| Air Velocity                   |          | fpm                      |
| Smoke Capture Check.           |          |                          |
| Wood Heater Conditions:        |          |                          |
| Date Wood Heater Stack Cleaned | 12-4-15  |                          |
| Date Dilution Tunnel Cleaned   | 12-4-15  |                          |
| Induced Draft Check            |          |                          |
| Tunnel Velocity                | 0        | 0                        |
| Pitot Leak Check:              |          |                          |
| Side A                         |          |                          |
| Side B                         |          |                          |
| Temperature System:            |          |                          |
| Ambient (65°- 90°F)            |          | °F                       |
| Proportional Checks:           |          |                          |
| CO Analyzer Drift Check        |          |                          |
| CO <sub>2</sub> Analyzer Check |          | 1/                       |
| O <sub>2</sub> Analyzer Check  | <u> </u> | <del></del>              |
| Thermocouple check             |          |                          |
| Sampling Train ID Numbers:     | Train I  | Train 2                  |
| Probe                          | C        | $\overline{\mathcal{D}}$ |
| Filter Front                   | 27       | 29                       |
| Filter Back                    | 28       | 30                       |
| Filter Thermocouple            | 19       | 22                       |
| Filter 5G-3 (<90°F)            |          |                          |

Model \_Castle\_\_



| Manufacturer_Ardisam | Model Castle Scralty Run | Page <u>Jof</u> /<br>Date <u>/ 2 - )</u> - /_S<br>TechKS |
|----------------------|--------------------------|----------------------------------------------------------|
| 300 // G102300370    | Kuii                     | reenRS                                                   |

# **Pre-Test Scale Audit**

| Scale Type | Audit Weight       | Measured Weight |  |
|------------|--------------------|-----------------|--|
| Platform   | 25.0 lbs., Class F | 25.0 lbs.       |  |
| Wood       | O. O lbs., Class F | (0 ° ibs.       |  |
| Analytical | /OO O mg, Class S  | (OO . O mg.     |  |

### LIMITS OF WEIGHT RANGES

| ANALYTICAL SCALE: | 50%-150% of dry filter weight, $\pm 0.1 \text{ mg}$ |
|-------------------|-----------------------------------------------------|
| PLATFORM SCALE    |                                                     |
| WOOD SCALE        |                                                     |



| Manufacturer_Ardisam<br>Job #G102366578 | Model_Castle_ScreaTy Run / | Page 6 of 1 Date 12 - 7 - 15 Tech KS |
|-----------------------------------------|----------------------------|--------------------------------------|
|                                         |                            | 10011                                |

# **CONTINUOUS ANALYZERS**

Pre-Test (Adjust and Record)

|                 | ZF     | ERO       | SP.    | AN        | CAL. (Re | cord Only) |
|-----------------|--------|-----------|--------|-----------|----------|------------|
| CO <sub>2</sub> | Ø      | 8         | 24.55  | 24.55     | 4.90     | 5,00       |
| СО              | 8      | 0         | 9.20   | 9.195     | 1.00     | 0.998      |
| $O_2$           | D      | B         | 22,00  | 22-00     | 4.97     | 5.00       |
|                 | Actual | Should Be | Actual | Should Be | Actual   | Should Be  |

### Post Test (Record Only)

|        | Zero | Span  | Cal. | Zero<br>Drift | Span<br>Drift | Cal.<br>Drift | OK? | Not<br>OK* |
|--------|------|-------|------|---------------|---------------|---------------|-----|------------|
| $CO_2$ | 0    | 24.54 | 4.87 | 0             | ,01           | .03           | /   |            |
| СО     | 01   | 9.19  | 0.99 | .6/           | ,0/           | .01           |     |            |
| $O_2$  | ,04  | 22.02 | 5.00 | .04           | ,02           | ,03           |     |            |

<sup>\*</sup> Greater than  $\pm$  5% of the range used.



| Manufacturer_Ardisam | Date 12-7-15 Tech_KS |  |
|----------------------|----------------------|--|
|----------------------|----------------------|--|

# SAMPLING EQUIPMENT CHECK OUT

### Leakage Checks Tunnel Samplers

|                                               | SAMPLE 1 |           | SAMPLE 2 |           |
|-----------------------------------------------|----------|-----------|----------|-----------|
| Unplugged Flow Rate = .25cfm                  | Pre-Test | Post-Test | Pre-Test | Post-Test |
| Vacuum (inches Hg.)                           | 10"      | 101       | 10"      | 10"       |
| Final 1 minute DGM (ft³)                      | 414.678  | 561.425   | 498628   | 585.196   |
| Initial 1 minute DGM (ft <sup>3</sup> )       | 474.678  | 561.425   | 498.628  | 585.196   |
| Change (C) (ft³)                              | 0        | Ø         | 6        | 0         |
| Allowable leakage .04 x Sample rate or .02cfm | 0.0100   | 0.0100    | 0.0100   | 0.0100    |
| Check OK                                      |          |           |          |           |

### Leakage Checks Flue Gas Sampler

| Plugged Probe                 | Pre Test | Post Test |
|-------------------------------|----------|-----------|
| Vacuum (inches Hg.)           | (0"      | 10"       |
| Rotometer Reading (mm)        | 0        | 0         |
| Flow Rate (CFM)               | 0        | 0         |
| Allowable (.04 x Sample Rate) |          |           |
| Check OK                      |          |           |



| Manufacturer_Ardisam | Model Castle Seren 174 | Page 0 of 7 Date /2-7-/- |
|----------------------|------------------------|--------------------------|
| Job #G102366578      | Run                    | TechKS                   |

### **TEST DATA LOG**

#### **RAW DRY GAS METER READINGS**

|                            | System 1 | System 2 |
|----------------------------|----------|----------|
| Final (ft <sup>3</sup> )   | 561.407  | 585.180  |
| Initial (ft <sup>3</sup> ) | 474.678  | 498,628  |

### AMBIENT CONDITIONS

|                        | Start | End   |
|------------------------|-------|-------|
| Barometer. (inches Hg) | 29.17 | 29.03 |
| Temperature (°F)       | 72.7  | 78.7  |
| Humidity (%)           | 30%   | 27    |



### 

# Timber Products Inspection, Inc.

# CERTIFICATE OF QUALIFICATION

This is to signify that

# MARTH WOOD SHAVING SUPPLY, INC.

6752 State Highway 107 North Marathon, WI 54448

> Is hereby qualified as registration #16006 May 30, 2014

Marth Wood Shaving Supply, Inc. is compliant with the PFI Standards Program as audited by Timber Products Inspection and accredited by the American Lumber Standards Committee. In order to maintain compliance, the producer agrees to:

- ♦ Maintain complete and up to date Densified Fuel production records
- ♦ Produce and market quality products, which conform to PFI & ALSC program documents
- ♦ Apply the quality mark only to products which have been proven through applicable monitoring

IP

Chris Wiberg, Densified Fuel Program Manager

Chis Wilberg

Timber Products Inspection, Inc.

1641 Sigman Road, Conyers GA 30012 770.922.8000



**Intertek Pharmaceutical Services** 

P.O. Box 470 Salem Industrial Park Bldg. #5 Whitehouse, NJ 08888 Phone 908.534.4445 Fax 908.534.1054

# **Analytical Report**

Report Number: 186096 Report Status: *Interim* 

Brian Ziegler Intertek 8431 Murphy Dr. Middleton, WI 53562

Sample: Marth wood pellets

|   | С       | н      | N      | 0          |
|---|---------|--------|--------|------------|
| - | 46.87 % | 6.41 % | 0.06 % | To Follow. |
|   | ROI     | LOD    |        |            |
| - | < 0.1 % | 4.32 % |        |            |



**Intertek Pharmaceutical Services** 

P.O. Box 470 Salem Industrial Park Bldg. #5 Whitehouse, NJ 08888 Phone 908.534.4445 Fax 908.534.1054

### **Analytical Report**

Report Number: 186096 Report Status: *Interim* 

Brian Ziegler Intertek 8431 Murphy Dr. Middleton, WI 53562

### non-GMP Statement

All experimental work at Intertek Whitehouse is conducted under the auspices of a rigorous Quality Management System; however, the data presented in this report was generated using procedures that have not been validated in accordance with 21 CFR, parts 210 and 211.

Intertek makes no claims to the applicability of the data and the Client is solely responsible for determining whether the information provided in this report is suitable for the intended application.

From: John Zrucky < <a href="mailto:Zrucky@marthwood.com">Zrucky@marthwood.com</a> Sent: Thursday, October 7, 2021 11:02 AM

**To:** Andrew Reinemann <areinemann@marthwood.com>

Subject: RE: Marth pellet analysis

Andrew,

Yes, we are PFI Certified, our certification numbers are 16005 for Peshtigo and 16006 for Marathon. For cost reduction in printing of the bags, either facility can use either of the certification numbers. To differentiate, you need to look at the code dates stamped on the bag.

Stats for Marathon facility:
YTD average on BTU is 8160.
YTD average on ash is 56.3%.
We do not test for carbon, hydrogen or oxygen. This is not required by PFI or any other standard.

Thank you.

John Zrucky Marth Wood Shavings 715-842-9200 x-10708 Zrucky@Marthwood.com



# Appendix C Calibration Documents

# **CALIBRATION SERVICE** RECORD



☐ 16725 W. Victor Road New Berlin, Wisconsin 53151-4132 262-785-1733 • 800-236-1733 FAX 262-785-9754

☐ 1322 Russett Court Green Bay, Wisconsin 54313-8999 920-434-2737 • 800-236-2737 FAX 920-434-9605

| recalibration, and measurement assu<br>and Technology (NIST) or the Nation | rance. United Scale<br>al Research Counc                | comparison, realization of SI units, measureme<br>e documents the traceability of measurements to<br>il of Canada (NRC), or other recognized nationa<br>atory, or accepted fundamental and/or natural ph | the SI units through the measurement institute | he National Institute of Standards<br>es (NMI's) or international standard | McFarland, Wisconsin 53558-8701<br>608-838-8058 • 800-747-4474<br>FAX 608-838-9098 |  |
|----------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Page of                                                                    |                                                         |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
| MODEL NO.                                                                  | 0                                                       | SERIAL NO.                                                                                                                                                                                               | 10172                                          |                                                                            | DEVICE<br>ISO CODE: AND                                                            |  |
| CAL DATE:                                                                  | MANUFAC                                                 | TURER: (38E                                                                                                                                                                                              | 101700                                         | TOLERANCE:                                                                 | CAL LOCATION: Customer Other                                                       |  |
| NEXT DUE                                                                   | CAPACITY                                                | X RESOLUTION:                                                                                                                                                                                            |                                                | CUSTOME                                                                    | R:                                                                                 |  |
| FREQ. 2/2016                                                               |                                                         | 100 LG X.                                                                                                                                                                                                | <u> </u>                                       | CERT/SO NBR.:                                                              | DIENTEL                                                                            |  |
| (omo                                                                       | CALIBRATION REASON: Scheduled Demand Other DESCRIPTION: |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
| LOCATION:                                                                  | R                                                       | ANT                                                                                                                                                                                                      | DESCRIP                                        | BENCH S                                                                    | SCALE                                                                              |  |
| Parameter T                                                                | ested                                                   | Actual as Foun                                                                                                                                                                                           | d                                              | Deviation                                                                  | Final Reading                                                                      |  |
| 126                                                                        |                                                         | 1-00                                                                                                                                                                                                     |                                                | 0                                                                          | 1-00                                                                               |  |
| 5                                                                          |                                                         | 5.00                                                                                                                                                                                                     |                                                | 0                                                                          | 5.00                                                                               |  |
| 10                                                                         |                                                         | 10-00                                                                                                                                                                                                    |                                                | Ü                                                                          | 1000                                                                               |  |
| 50                                                                         |                                                         | 149.90                                                                                                                                                                                                   |                                                | -:02                                                                       | 50.00                                                                              |  |
| 100                                                                        | <b>\</b>                                                | 99.96                                                                                                                                                                                                    |                                                | 09                                                                         | 100.00                                                                             |  |
|                                                                            |                                                         |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
|                                                                            |                                                         |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
|                                                                            |                                                         | 0                                                                                                                                                                                                        |                                                |                                                                            |                                                                                    |  |
|                                                                            |                                                         |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
|                                                                            |                                                         | Mark Comment                                                                                                                                                                                             |                                                |                                                                            |                                                                                    |  |
|                                                                            |                                                         |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
|                                                                            |                                                         |                                                                                                                                                                                                          | Earl No.                                       |                                                                            |                                                                                    |  |
| CORNER                                                                     | Shift Test                                              | ERROR FINAL READING                                                                                                                                                                                      |                                                |                                                                            | Vere actual values within olerance? Yes □ No                                       |  |
| 1 2                                                                        | 311                                                     | 491 2501                                                                                                                                                                                                 | 2                                              |                                                                            |                                                                                    |  |
| 2                                                                          | 3                                                       | -01 3499                                                                                                                                                                                                 |                                                | V                                                                          | /as device adjusted? Yes No                                                        |  |
| 3 3                                                                        | 3                                                       | -01 24.99                                                                                                                                                                                                |                                                | 77                                                                         | /ere final values within                                                           |  |
| 4 25                                                                       | 5                                                       | 4.02 25.02                                                                                                                                                                                               | U                                              | 3                                                                          | olerance? Yes No                                                                   |  |
|                                                                            |                                                         |                                                                                                                                                                                                          |                                                |                                                                            | 946                                                                                |  |
| LABEL USED:                                                                | Calibration /                                           | Tested                                                                                                                                                                                                   | ion DON                                        | OT USE - Out of Calib                                                      | ration Leveled Yes No                                                              |  |
| United Scale's Operation                                                   | ns Procedure P                                          | 1511 is followed for device calibration                                                                                                                                                                  | . TEST WEIGHT                                  | STANDARDS USED (Test weigh                                                 | nts calibrated per NIST HANDBOOK 105-1):                                           |  |
|                                                                            | ms                                                      | C WSY DY Co                                                                                                                                                                                              | 1,40                                           |                                                                            |                                                                                    |  |
| UNCERTAINTY ME                                                             | ASUREME                                                 | NT: 1006 L.                                                                                                                                                                                              |                                                |                                                                            |                                                                                    |  |
| COMMENTS:                                                                  |                                                         |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |
| TESTED BY: (Tech                                                           | TESTED BY: (Technician):                                |                                                                                                                                                                                                          |                                                |                                                                            |                                                                                    |  |

This calibration is accredited and meets the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board / ACLASS. Refer to certificate and scope to accreditation AC-1148. This certificate may not be reproduced except in full, without the written approval of Transcat, Inc.

### Intertek Testing Services NA Inc.

Middleton, Wisconsin

Calibration Date:

9/1/2015

Next calibration due:

2/1/2016

Calibrated by: KS

SERIAL NUMBER: NA USE PROCEDURE: MID-OE-LAB-027

Calibration Date of Asset # 713:

DESRIPTION:

**Audit weights** 

Model:Ainsworth

SERIAL #: 39392

WHI#: 029

| Weight (G) | Scale reading | Deviation G | <b>Deviation %</b> |
|------------|---------------|-------------|--------------------|
| 0.003      | 0.003         | 0.0000      | 0.00%              |
| 0.01       | 0.0099        | -0.0001     | -1.00%             |
| 0.02       | 0.02          | 0.0000      | 0.00%              |
| 0.03       | 0.03          | 0.0001      | 0.33%              |
| 0.05       | 0.0501        | 0.0001      | 0.20%              |
| 0.1        | 0.1001        | 0.0001      | 0.10%              |
| 0.2        | 0.1999        | -0.0001     | -0.05%             |
| 0.3        | 0.2999        | -0.0001     | -0.03%             |
| 0.5        | 0.5           | 0.0000      | 0.00%              |
| 1          | 1.0001        | 0.0001      | 0.01%              |
| 2          | 2.0001        | 0.0001      | 0.01%              |
| 3          | 3.0003        | 0.0003      | 0.01%              |
| 5          | 5.0003        | 0.0003      | 0.01%              |
| 10         | 10.0003       | 0.0003      | 0.00%              |
| 20         | 20.0001       | 0.0001      | 0.00%              |
| 30         | 30.0004       | 0.0004      | 0.00%              |
| 50         | 50.0002       | 0.0002      | 0.00%              |
| 100        | 99.9997       | -0.0003     | 0.00%              |

Average Deviation: 0.0000833

Standard Deviation: 0.000175734

Scale accuracy

**Total Uncertainty:** 

Reviewed by

0.0001 0.000437387

Date:

Measurement Uncertainty is calculated using the following formula:

O.M.U. =  $k*sqrt ((A.D.)^2 + (S.D.)^2 + (R.M.U./2)^2)$ 

O.M.U. = Overall Measurement Uncertainty

A.D. = Average Deviation of the difference of all measured results compared to the reference value.

S.D. = Standard Deviation of the difference of all measured results compared to the reference value.

k = Confidence Factor (2 for 95% confidence)

R.M.U. = Standard Measurement Uncertainty of Reference Measurement Equipment. R.M.U. is considered as the measurement uncertainty as stated on calibration certificates of equipment, or the tolerance listed in the calibration standard of the test equipment.

# Intertek Testing Services NA Inc.

Middleton, Wisconsin

Calibration Date:

9/2/2015

Next calibration due:

2/2/2016

Calibrated by:

KS

USING: #008 Platform scale and procedures located:

USE PROCEDURE: MID-OE-LAB-027

Calibration Date of Asset #008

**DESRIPTION:** 

**Audit weights** 

Model:Rice Lake

SERIAL #:n/a

WHI#: 160

| Weight designation |       | Scale reading | Deviation |
|--------------------|-------|---------------|-----------|
| A                  | 5.00  | 5.00          | 0.00      |
| В                  | 10.00 | 10.00         | 0.00      |
| С                  | 10.00 | 10.00         | 0.00      |
| D                  | 25.00 | 25.00         | 0.00      |
| F                  | 25.00 | 25.00         | 0.00      |

25.00

Average Deviation: 0.0000000
Standard Deviation: 0

25.00

Scale accuracy

Total Uncertainty:

Date:

0.01 0.01

Reviewed by

Measurement Uncertainty is calculated using the following formula:

O.M.U. =  $k*sqrt ((A.D.)^2 + (S.D.)^2 + (R.M.U./2)^2)$ 

O.M.U. = Overall Measurement Uncertainty

A.D. = Average Deviation of the difference of all measured results compared to the reference value.

S.D. = Standard Deviation of the difference of all measured results compared to the reference value.

k = Confidence Factor (2 for 95% confidence)

R.M.U. = Standard Measurement Uncertainty of Reference Measurement Equipment. R.M.U. is considered as the measurement uncertainty as stated on calibration certificates of equipment, or the tolerance listed in the calibration standard of the test equipment.

### Intertek Testing Services NA Inc.

Middleton, Wisconsin

Calibration Date: 10 - 29 - 15

**Next Calibration Due:** 

4-29-16

Calibrated by:

USING: Ice bath and boiling water in beakers

USE PROCEDURE: MID-OE-LAB-019

**DESRIPTION:** E&E Thermocouple System Asset #: 500

| Room Temperature 71.7           | 28.38         |          |
|---------------------------------|---------------|----------|
| Today's boiling point of water: | 209.41        | F°       |
| Thermocouple # and location     | Boiling Water | Ice Bath |
| 1) Flue Gas                     | 211.6         | 30.4     |
| Room Temperature                | 212.3         | 31.2     |
| 3) Dry Bulb (Tunnel)            | 212.5         | 30.9     |
| 4) Unused                       | 211.9         | 30.8     |
| 5) Unit Top                     | 212.3         | 30.6     |
| 6) Unit Back                    | 212.8         | 30.7     |
| 7) Unit Right Side              | 212.5         | 30.9     |
| 8) Unit Left Side               | 212.1         | 31.0     |
| 9) Unit Bottom                  | 212.0         | 30.5     |
| 10) Catalyst Downstream         | 212.9         | 30.5     |
| 11) Catalyst Center             | 213.5         | 31.5     |
| 12) aux                         | 213.3         | 31.7     |
| 13) aux                         | 213.4         | 31.7     |
| 14) aux                         | 213.1         | 31.8     |
| 15) aux                         | 212.9         | 31.9     |
| 16) aux                         | 211.9         | 31.2     |
| 17) DGM (in train 1)            | 212.2         | 32.1     |
| 18) DGM (out train 1)           | 213.4         | 31.8     |
| 19) Filter (train 1)            | 213.1         | 31.9     |
| 20) Filter (train 2)            | 212.4         | 32.1     |
| 21) DGM (in train 2)            | 213.5         | 31.9     |
| 22) DGM (out train 2)           | 212.7         | 31.7     |
| Average Deviation:              | 3.24          | -0.69    |

Standard Deviation:

Overall MU at 95% CL:

0.5773

0.5796

1.28

0.58

Measurement Uncertainty is calculated using the following formula:

O.M.U. =  $k*sqrt((A.D.)^2 + (S.D.)^2 + (R.M.U./2)^2)$ 

O.M.U. = Overall Measurement Uncertainty

Reviewed by C

A.D. = Average Deviation of the difference of all measured results compared to the reference value.

S.D. = Standard Deviation of the difference of all measured results compared to the reference value.

k = Confidence Factor (2 for 95% confidence)

R.M.U. = Standard Measurement Uncertainty of Reference Measurement Equipment. R.M.U. is considered as the measurement uncertainty as stated on calibration certificates of equipment, or the tolerance listed in the calibration standard of the test equipment.

Method required by The Environmental Protection Agency (Federal Registry method 5G3 and Method 28A)

# **CALIBRATION SERVICE** RECORD



☐ 16725 W. Victor Road New Berlin, Wisconsin 53151-4132 262-785-1733 • 800-236-1733 FAX 262-785-9754

☐ 1322 Russett Court Green Bay, Wisconsin 54313-8999 920-434-2737 • 800-236-2737 FAX 920-434-9605

| recalibration, and measurement assurance. United sand Technology (NIST) or the National Research Co | ain of comparison, realization of SI units, measurement unc<br>Scale documents the traceability of measurements to the S<br>ouncil of Canada (NRC), or other recognized national meas<br>aboratory, or accepted fundamental and/or natural physical | I units through the National Institute of Standards surement institutes (NMI's) or international standard | 4123 Terminal Drive, Suite 230<br>McFarland, Wisconsin 53558-8701<br>608-838-8058 • 800-747-4474<br>FAX 608-838-9098 |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| MODEL NO. 212140                                                                                    | SERIAL NO.                                                                                                                                                                                                                                          | 258010639                                                                                                 | DEVICE<br>ISO CODE: 7/3                                                                                              |
| CAL DATE: MANUE                                                                                     | FACTURER:                                                                                                                                                                                                                                           | TOLERANCE:                                                                                                | CAL LOCATION: Customer Other                                                                                         |
| NEXT DUE: CAPAC                                                                                     | CITY X RESOLUTION:                                                                                                                                                                                                                                  | CUSTOME                                                                                                   | RELIGIONER                                                                                                           |
| FREQ.                                                                                               | RATION REASON: Scheduled Demand                                                                                                                                                                                                                     | CERT/SO NBR.:                                                                                             | SOK                                                                                                                  |
| LOCATION:                                                                                           | A . D                                                                                                                                                                                                                                               | DESCRIPTION:                                                                                              |                                                                                                                      |
| MANT                                                                                                | upper Lever                                                                                                                                                                                                                                         | BALANCE                                                                                                   |                                                                                                                      |
| Parameter Tested                                                                                    | Actual as Found                                                                                                                                                                                                                                     | Deviation                                                                                                 | Final Reading                                                                                                        |
| 101006                                                                                              | .0100                                                                                                                                                                                                                                               | 6                                                                                                         | 10100                                                                                                                |
| 1.0000                                                                                              | 1.000                                                                                                                                                                                                                                               | 0                                                                                                         | 1,0000                                                                                                               |
| 10.1888                                                                                             | 10.0000                                                                                                                                                                                                                                             | 6                                                                                                         | 10.000                                                                                                               |
| 100.000                                                                                             | 99.9997                                                                                                                                                                                                                                             | -,008                                                                                                     | 99.9997                                                                                                              |
| 200,0000                                                                                            | 200.000)                                                                                                                                                                                                                                            | +.001                                                                                                     | 200:001                                                                                                              |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
|                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
| 01.16.7                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
| Shift T                                                                                             | ERROR FINAL READING                                                                                                                                                                                                                                 |                                                                                                           | Vere actual values within olerance? Yes □ No                                                                         |
| 1 506                                                                                               | 0 50.000                                                                                                                                                                                                                                            | V                                                                                                         | Vas device adjusted? ☐ Yes ☐ No                                                                                      |
| 3 50                                                                                                | -,001 499999                                                                                                                                                                                                                                        |                                                                                                           | Vere final values within                                                                                             |
| 4 50                                                                                                | 0 300000                                                                                                                                                                                                                                            | <del> </del>   3   1                                                                                      | olerance? Yes 🗆 No                                                                                                   |
| LAREL LISED: Calibratio                                                                             | on / Tested  □ Limited Calibration                                                                                                                                                                                                                  | □ DO NOT USE – Out of Calib                                                                               | ration Laveled Van D No                                                                                              |
| LABEL USED: Calibration                                                                             |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
| United Scale's Operations Procedur                                                                  | re P1511 is followed for device calibration. TE                                                                                                                                                                                                     | ST WEIGHT STANDARDS USED (Test weigh                                                                      | its camprated per NIST MANDBOOK 105-1):                                                                              |
|                                                                                                     | 104/                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                                      |
| UNCERTAINTY MEASUREM                                                                                | MENT: JOMOJ                                                                                                                                                                                                                                         |                                                                                                           |                                                                                                                      |
| COMMENTS:                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                      |
| TESTED BY: (Technician):                                                                            | 11/1                                                                                                                                                                                                                                                | 7                                                                                                         | Date: o/n/                                                                                                           |

This calibration is accredited and meets the requirements of ISO/IEC /7025 as verified by ANSI-ASQ National Accreditation Board / ACLASS. Refer to certificate and scope to accreditation AC-1148. This certificate may not be reproduced except in full, without the written approval of Transcat, Inc.



Calibration Date:

10/14/2015 Calibration By: BZ

Calibration Due:

Using: Omega - Model CL23A Calibrator #1240

Use Procedure: WI-L-AMER-Cali-1257

Description: Omega (Data acquisition system) Model: 2289 Serial: E10706227003 986 Asset #:

All measurements are in °F

| Calibrator | Computer | Deviation | Calibrator | Computer         | Deviation |
|------------|----------|-----------|------------|------------------|-----------|
| 50         | 49.1     | 0.94      | 350        | 350.5            | 0.51      |
| 75         | 74.6     | 0.41      | 375        | 375.5            | 0.49      |
| 100        | 99.6     | 0.43      | 400        | 400.7            | 0.72      |
| 125        | 125.3    | 0.31      | 500        | 500.3            | 0.31      |
| 150        | 150.6    | 0.62      | 600        | 600.3            | 0.29      |
| 175        | 174.6    | 0.35      | 700.0      | 700.4            | 0.45      |
| 200        | 199.7    | 0.29      | 800.0      | 800.3            | 0.32      |
| 225        | 225.2    | 0.17      | 900.0      | 900.5            | 0.52      |
| 250        | 249.6    | 0.45      | 1000.0     | 1000.7           | 0.75      |
| 275        | 275.2    | 0.16      | 1100.0     | 1100.9           | 0.90      |
| 300        | 300.1    | 0.15      | 1200.0     | 1201.2           | 1.23      |
| 325        | 325.5    | 0.51      | 1300       | 1301.4           | 1.39      |
|            |          |           | Ave        | erage Deviation: | 0.53      |
|            |          |           | Star       | dard Deviation:  | 0.3212    |

Uncertainty of Readings of #1240 at 95% CL **Total Uncertainty:** 1.24

Reviewed by: K5

Date:

10/14/2015

Measurement Uncertainty is calculated using the following formula:

O.M.U. =  $k*sqrt ((A.D.)^2 + (S.D.)^2 + (R.M.U./2)^2)$ 

O.M.U. = Overall Measurement Uncertainty

A.D. = Average Deviation of the difference of all measured results compared to the reference value.

S.D. = Standard Deviation of the difference of all measured results compared to the reference value.

k = Confidence Factor (2 for 95% confidence)

R.M.U. = Standard Measurement Uncertainty of Reference Measurement Equipment. R.M.U. is considered as the measurement uncertainty as stated on calibration certificates of equipment, or the tolerance listed in the calibration standard of the test equipment.

Gae Analyzers

| Channel           | Analyzer                                                                                                       | South tipes | Zero Gas | Span Gas | Cal Gas |
|-------------------|----------------------------------------------------------------------------------------------------------------|-------------|----------|----------|---------|
|                   |                                                                                                                | DAS         | 0.01     | 9.18     | 1       |
| 26                | co                                                                                                             | Meter       | 0        | 9.15     | 1       |
|                   | Deviation                                                                                                      | -0.10%      | -0.28%   | 0.00%    |         |
|                   |                                                                                                                | DAS         | 0.01     | 24.57    | 4.91    |
| 27                | CO <sub>2</sub>                                                                                                | Meter       | 0.02     | 24.55    | 4.91    |
|                   | manatan manatan bahasa manatan | Deviation   | 0.10%    | -0.08%   | 0.00%   |
|                   |                                                                                                                | DAS         | -0.01    | 22.07    | 5.03    |
| 28 O <sub>2</sub> | 02                                                                                                             | Meter       | -0.01    | 22.06    | 5.02    |
|                   |                                                                                                                | Deviation   | 0.00%    | -0.05%   | -0.20%  |

CO Stdev

0.001431773

CO<sub>2</sub> Stdev

0.000908908

O<sub>2</sub> Stdev

0.001044138

CO

CO<sub>2</sub>

02

# **CALIBRATION** SERVICE RECORD



☐ 16725 W. Victor Road New Berlin, Wisconsin 53151-4132 262-785-1733 • 800-236-1733 FAX 262-785-9754

☐ 1322 Russett Court Green Bay, Wisconsin 54313-8999 920-434-2737 • 800-236-2737 FAX 920-434-9605

Date:

| and Technology (NIST) o | rement assurance. United Sca<br>or the National Research Coun-<br>conditions created in our labor<br>is standards. | le documents the tracea<br>cil of Canada (NRC), or | other recognized national r | he SI units through | entation, competence, periodic<br>the National Institute of Standards<br>tles (NMI's) or international standard<br>o type of calibration, or by | 4123 Terminal Drive, Suite 230<br>McFarland, Wisconsin 53558-8701<br>608-838-8058 • 800-747-4474<br>FAX 608-838-9098 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| MODEL NO.               | / 3 -                                                                                                              |                                                    | SERIAL NO.                  | 10.11               | 20.1                                                                                                                                            | DEVICE                                                                                                               |
| CAL DATE:               | MANUFAC                                                                                                            | CTURED:                                            | 12                          | 19460               | TOLERANCE:                                                                                                                                      | ISO CODE: 1/34                                                                                                       |
| 2/19                    | 115                                                                                                                | R/C                                                | & LAXS                      |                     | TOLERANCE.                                                                                                                                      | CAL LOCATION Customer DOther                                                                                         |
| NEXT DUE:               | CAPACIT                                                                                                            | Y X RESOLUTION                                     | DIA 16                      | . 1                 | CUSTOME                                                                                                                                         | RELATIV                                                                                                              |
| FREQ.                   | )/6                                                                                                                |                                                    | 3(X) LY)                    | X . !-              | CERT/SO NBR.:                                                                                                                                   | 1) reser rex                                                                                                         |
| LOCATION                | no CALIBRA                                                                                                         | HON REASON:                                        | Scheduled Demai             |                     | C750                                                                                                                                            | K                                                                                                                    |
| LOCATION:               | LANT LY                                                                                                            | Sper La                                            | full _                      | DESCRIP             | FLOOR                                                                                                                                           | SCACE                                                                                                                |
| Parame                  | eter Tested                                                                                                        | Actu                                               | al as Found                 |                     | Deviation                                                                                                                                       | Final Reading                                                                                                        |
|                         | 1 26                                                                                                               |                                                    | 1.0                         |                     | 0                                                                                                                                               | 1.0                                                                                                                  |
|                         | 10                                                                                                                 |                                                    | 10.0                        |                     | 0                                                                                                                                               | 10.0                                                                                                                 |
| 5                       | 0                                                                                                                  |                                                    | 50.0                        |                     | 0                                                                                                                                               | 36.0                                                                                                                 |
| 5                       | TO .                                                                                                               | 1 4                                                | 198.6                       |                     | -14                                                                                                                                             | 500.0                                                                                                                |
| 100                     | 0 - 0                                                                                                              | 9                                                  | 47.2                        |                     | -2.8                                                                                                                                            | 1000                                                                                                                 |
|                         |                                                                                                                    |                                                    |                             |                     |                                                                                                                                                 |                                                                                                                      |
|                         |                                                                                                                    |                                                    |                             |                     |                                                                                                                                                 |                                                                                                                      |
|                         |                                                                                                                    | 3350                                               |                             |                     |                                                                                                                                                 |                                                                                                                      |
|                         |                                                                                                                    |                                                    |                             |                     |                                                                                                                                                 |                                                                                                                      |
|                         |                                                                                                                    |                                                    |                             |                     |                                                                                                                                                 |                                                                                                                      |
|                         |                                                                                                                    |                                                    |                             |                     |                                                                                                                                                 |                                                                                                                      |
|                         |                                                                                                                    |                                                    |                             |                     |                                                                                                                                                 |                                                                                                                      |
| COPNED                  | Shift Test                                                                                                         |                                                    | THE PERSON OF               | /                   |                                                                                                                                                 | ere actual values within                                                                                             |
| CORNER 1                | LOAD                                                                                                               | 0 1                                                | INAL READING                |                     |                                                                                                                                                 | lerance?   Yes No                                                                                                    |
| 2                       | 2000                                                                                                               |                                                    | 000                         |                     | W                                                                                                                                               | as device adjusted? Yes No                                                                                           |
| 3                       | 300                                                                                                                | 13                                                 |                             |                     | W                                                                                                                                               | ere final values within                                                                                              |
| 4                       | 5(7)                                                                                                               | V 5                                                | CO.0                        | 4                   | to                                                                                                                                              | lerance? Yes No                                                                                                      |
|                         |                                                                                                                    | 0 7                                                |                             |                     |                                                                                                                                                 |                                                                                                                      |
| LABEL USED              | D: d Calibration /                                                                                                 | Tested   L                                         | imited Calibratio           | n 🗆 DO N            | OT USE - Out of Calibra                                                                                                                         | ation Leveled:   Yes No                                                                                              |
| United Scale's (        | Operations Procedure P                                                                                             | 1511 is followed for                               | device calibration.         | TEST WEIGHT S       | STANDARDS USED (Test weight                                                                                                                     | s calibrated per NIST HANDBOOK 105-1):                                                                               |
|                         |                                                                                                                    | M                                                  | SC B5                       | 78                  |                                                                                                                                                 |                                                                                                                      |
| UNCERTAIN               | TY MEASUREME                                                                                                       | NT: , )/                                           | 16                          |                     |                                                                                                                                                 |                                                                                                                      |
| COMMENTS                |                                                                                                                    | , 00                                               |                             |                     |                                                                                                                                                 |                                                                                                                      |

This calibration is accredited and meets the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board / ACLASS. Refer to certificate and scope to accreditation AC-1148. This certificate may not be reproduced except in full, without the written approval of Transcat, Inc.

TESTED BY: (Technician):





### Certificate of Calibration

Architectural Testing 130 Derry Court York, PA 17406



Certificate Number: 00121205192015

MANUFACTURER: Cole Parmer MODEL: 94440-10 DESCRIPTION: Timer SERIAL NUMBER: 101587800

ASSET NUMBER: 001212 PROCEDURE NAME: Timer, 2 Timers

PROCEDURE REV.: 1.0

Christine Schultze

CUSTOMER: Intertek LOCATION:

8431 Murphy Drive Middleton, WI 53562 TEST RESULT:

CALIBRATED BY:

PERFORMED ON: DUE DATE:

05/19/2015 5/19/2016 Ed Sullivan AS-FOUND

PASS

DATA TYPE: TEMPERATURE: 72.30 F HUMIDITY:

36 %

This calibration certificate has been approved by

Matt Rosario

Senior Calibration Technician

Architectural Testing certifies that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure unless otherwise noted). It has been calibrated using measurement standards traceable to the National Institute of Standards and Technology (NIST), or to NIST accepted intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. This calibration complies with MIL-STD-45662A. Architectural Testing's Calibration Laboratory is accredited by the International Accreditation Service, Inc. (IAS) to ANS/ISO/IEC 17025:2005.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the calibration organization issuing this report.

Note: Any Test Uncertainty Ratio (TUR) that is less than four to one will appear under the "TUR" heading on the data record. If the TUR meets or exceeds four to one, the field is left blank.

#### Remarks:

#### Standards Used

| Asset # | <u>Description</u>                                  | Cal Date  | Due Date  |
|---------|-----------------------------------------------------|-----------|-----------|
| 1185004 | Fluke 5520A Multi-Product Calibrator                | 4/14/2015 | 4/14/2016 |
| 62320   | Unknown Thermo-Hygrometer Pen-Type Temp. / Humidity | 7/24/2014 | 7/24/2015 |
| 63254   | Hewlett Packard 53131A Universal Counter            | 7/17/2014 | 7/17/2015 |

| Test Results     |                     |                       |             |             |              |        |     |
|------------------|---------------------|-----------------------|-------------|-------------|--------------|--------|-----|
| Test Description | Test Value          | Test Result           | Lower limit | Upper limit | Units        | Result | TUR |
| Visual           | U                   | UT Operates; No Damag | e           |             |              |        | 33  |
| Visual           | U                   | UT Operates; No Damag | е           |             |              |        |     |
| Timer 1          |                     |                       |             |             |              |        |     |
| 0.30 Min         | 30000 milli<br>sec  | 29672                 | 29000       | 31000       | milli        | Pass   |     |
| 0.30 Min         | 30000 milli<br>sec  | 29672                 | 29000       | 31000       | milli<br>sec | Pass   |     |
| 1.00 Min         | 60000 milli<br>sec  | 59734                 | 59000       | 61000       | milli<br>sec | Pass   |     |
| 1.00 Min         | 60000 milli<br>sec  | 59734                 | 59000       | 61000       | milli<br>sec | Pass   |     |
| 2.00 Min         | 120000 milli<br>sec | 120239                | 119000      | 121000      | milli<br>sec | Pass   |     |
| 2.00 Min         | 120000 milli<br>sec | 120239                | 119000      | 121000      | milli<br>sec | Pass   |     |
| 3.00 Min         | 180000 milli<br>sec | 180022                | 179000      | 181000      | milli<br>sec | Pass   |     |
| 3.00 Min         | 180000 milli<br>sec | 180022                | 179000      | 181000      | milli<br>sec | Pass   |     |
| 5.00 Min         | 300000 milli<br>sec | 300033                | 299000      | 301000      | milli<br>sec | Pass   |     |
| 5.00 Min         | 300000 milli        | 300033                | 299000      | 301000      | milli        | Pass   |     |

sec

| Test Results     |                   |             |             | ·                  |              |        |     |
|------------------|-------------------|-------------|-------------|--------------------|--------------|--------|-----|
| Test Description | <u>Test Value</u> | Test Result | Lower limit | <u>Upper limit</u> | <u>Units</u> | Result | TUR |
| Timer 2          |                   |             |             |                    |              |        |     |
| 0.30 Min         | 30000 milli       | 29630       | 29000       | 31000              | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| 0.30 Min         | 30000 milli       | 29630       | 29000       | 31000              | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| 1.00 Min         | 60000 milli       | 60269       | 59000       | 61000              | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| l.00 Min         | 60000 milli       | 60269       | 59000       | 61000              | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| 0.30 Min         | 120000 milli      | 119582      | 119000      | 121000             | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| ).30 Min         | 120000 milli      | 119582      | 119000      | 121000             | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| 0.30 Min         | 180000 milli      | 180081      | 179000      | 181000             | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| 0.30 Min         | 180000 milli      | 180081      | 179000      | 181000             | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| 0.30 Min         | 300000 milli      | 299745      | 299000      | 301000             | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |
| ).30 Min         | 300000 milli      | 299745      | 299000      | 301000             | milli        | Pass   |     |
|                  | sec               |             |             |                    | sec          |        |     |

\*\*\*\*\* End of Certificate \*\*\*\*\*

Date Printed: May 19, 2015 Page 2 of 2





### Certificate of Calibration

Architectural Testing 130 Derry Court York, PA 17406



Certificate Number:

00121305192015

MANUFACTURER: Cole Parmer MODEL: 94440-10 **DESCRIPTION:** Timer

SERIAL NUMBER: 101587793 ASSET NUMBER: 001213 PROCEDURE NAME: Timer, 2 Timers

PROCEDURE REV.: 1.0

Christine Schultze

CUSTOMER: Intertek LOCATION:

8431 Murphy Drive Middleton, WI 53562 TEST RESULT:

DATA TYPE:

PERFORMED ON: DUE DATE: CALIBRATED BY:

5/19/2016 Ed Sullivan AS-FOUND

05/19/2015

PASS

TEMPERATURE: 72.50 F HUMIDITY: 36 %

This calibration certificate has been approved by

Matt Rosario

Senior Calibration Technician

Architectural Testing certifies that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure unless otherwise noted). It has been calibrated using measurement standards traceable to the National Institute of Standards and Technology (NIST), or to NIST accepted intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. This calibration complies with MIL-STD-45662A. Architectural Testing's Calibration Laboratory is accredited by the International Accreditation Service, Inc. (IAS) to ANS/ISO/IEC 17025:2005.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the calibration organization issuing this report.

Note: Any Test Uncertainty Ratio (TUR) that is less than four to one will appear under the "TUR" heading on the data record. If the TUR meets or exceeds four to one, the field is left blank.

#### Remarks:

#### Standards Used

| Asset # | <b>Description</b>                                  | Cal Date  | Due Date  |
|---------|-----------------------------------------------------|-----------|-----------|
| 1185004 | Fluke 5520A Multi-Product Calibrator                | 4/14/2015 | 4/14/2016 |
| 62320   | Unknown Thermo-Hygrometer Pen-Type Temp. / Humidity | 7/24/2014 | 7/24/2015 |
| 63254   | Hewlett Packard 53131A Universal Counter            | 7/17/2014 | 7/17/2015 |

#### **Test Results**

| Test Description Test Value | Test Result             | Lower limit | Upper limit | Units        | Result | TUR |
|-----------------------------|-------------------------|-------------|-------------|--------------|--------|-----|
| Visual                      | UUT Operates; No Damage | 9           |             | 3            |        |     |
| Visual                      | UUT Operates; No Damage | )           |             |              |        |     |
| Timer 1                     |                         |             |             |              |        |     |
| 0.30 Min 30000 mill se      |                         | 29000       | 31000       | milli<br>sec | Pass   |     |
| 0.30 Min 30000 mill se      | i 30484                 | 29000       | 31000       | milli<br>sec | Pass   |     |
| 1.00 Min 60000 mill se      |                         | 59000       | 61000       | milli<br>sec | Pass   |     |
| 1.00 Min 60000 mill se      |                         | 59000       | 61000       | milli<br>sec | Pass   |     |
| 2.00 Min 120000 mill se     |                         | 119000      | 121000      | milli<br>sec | Pass   |     |
| 2.00 Min 120000 mill se     |                         | 119000      | 121000      | milli<br>sec | Pass   |     |
| 3.00 Min 180000 mill se     |                         | 179000      | 181000      | milli<br>sec | Pass   |     |
| 3.00 Min 180000 mill se     |                         | 179000      | 181000      | milli<br>sec | Pass   |     |
| 5.00 Min 300000 mill se     |                         | 299000      | 301000      | milli<br>sec | Pass   |     |
| 5.00 Min 300000 mill se     |                         | 299000      | 301000      | milli<br>sec | Pass   |     |

| Test Results     |                     |             |             |                    |              |        |     |
|------------------|---------------------|-------------|-------------|--------------------|--------------|--------|-----|
| Test Description | <u>Test Value</u>   | Test Result | Lower limit | <u>Upper limit</u> | <u>Units</u> | Result | TUR |
| Timer 2          |                     |             |             |                    |              |        |     |
| 0.30 Min         | 30000 milli<br>sec  | 30266       | 29000       | 31000              | milli<br>sec | Pass   |     |
| 0.30 Min         | 30000 milli<br>sec  | 30266       | 29000       | 31000              | milli<br>sec | Pass   |     |
| 1.00 Min         | 60000 milli<br>sec  | 59813       | 59000       | 61000              | milli<br>sec | Pass   |     |
| 1.00 Min         | 60000 milli<br>sec  | 59813       | 59000       | 61000              | milli<br>sec | Pass   |     |
| 0.30 Min         | 120000 milli<br>sec | 119734      | 119000      | 121000             | milli<br>sec | Pass   |     |
| 0.30 Min         | 120000 milli<br>sec | 119734      | 119000      | 121000             | milli<br>sec | Pass   |     |
| 0.30 Min         | 180000 milli<br>sec | 180583      | 179000      | 181000             | milli<br>sec | Pass   |     |
| 0.30 Min         | 180000 milli<br>sec | 180583      | 179000      | 181000             | milli<br>sec | Pass   |     |
| 0.30 Min         | 300000 milli<br>sec | 300719      | 299000      | 301000             | milli<br>sec | Pass   |     |
| 0.30 Min         | 300000 milli<br>sec | 300719      | 299000      | 301000             | milli<br>sec | Pass   |     |

\*\*\*\*\* End of Certificate \*\*\*\*\*

Date Printed: May 19, 2015 Page 2 of 2

Certificate Number A1992943 Issue Date: 09/21/15

# Certificate of Calibration

Page 1 of 2

Customer: INTERTEK MIDDLETON

8431 MURPHY DR.

MIDDLETON, WI, 53562

608-824-7422

P.O. Number:

ID Number: 1340

Description:

PRECISION PSYCHROMETER

Calibration Date:

09/21/2015

Manufacturer: EXTECH

Calibration Due:

09/21/2016

Model Number: RH390

TMI-M-HYGROTHERMOGRAPHS

Procedure:

Rev: 2/22/2011

Serial Number: 13018340

Temperature:

67 F

Technician:

RICHARD PANKEY

Humidity:

35 % RH

On-Site Calibration:

As Found Condition: IN TOLERANCE

Calibration Results: IN TOLERANCE

Comments: Salts were useed as an intrinsic standard

#### Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

ANTHONY ROGERS, BRANCH MANAGER

atteny of they

JACK SHULER, QUALITY MANAGER

Jack Shules

#### Calibration Standards

Asset Number Manufacturer Model Number Date Calibrated Cal Due Y3530060/Y4030007 VAISALA HMP46/HMI41 9/4/2014 10/11/2015 RKFD100 **FLUKE** 9103 6/26/2015 2/26/2017



Technical Maintenance, Inc.

Certificate Number A1992943 Issue Date: 09/21/15

# **Certificate of Calibration**

Page 2 of 2

# **Data Sheet**

| <u>Parameter</u>                     | Nominal | Minimum | Maximum | As Found | As Left | Unit ADJ/FAIL |
|--------------------------------------|---------|---------|---------|----------|---------|---------------|
| Temperature Accuracy, °F             | 80.0    | 78.2    | 81.8    | 79.8     | 79.8    | °F            |
| Temperature Accuracy, °F             | 70.0    | 68.2    | 71.8    | 69.7     | 69.7    | °F            |
| Temperature Accuracy, °F             | 60.0    | 58.2    | 61.8    | 59.6     | 59.6    | °F            |
| Humidity Accuracy, (10-90% RH range) | 11.0    | 9.0     | 13.0    | 11.6     | 11.6    | %RH           |
| Humidity Accuracy, (10-90% RH range) | 33.0    | 31.0    | 35.0    | 33.3     | 33.3    | %RH           |
| Humidity Accuracy, (10-90% RH range) | 75.0    | 73.0    | 77.0    | 75.8     | 75.8    | %RH           |



Technical Maintenance, Inc.

# Appendix D

# Unit Installation Manual



**Operator's Manual** 

# Serenity **Pellet Stove**



# **A** CAUTION

**DO NOT DISCARD MANUAL! IMPORTANT OPERATING AND MAINTENANCE INSTRUCTIONS** INCLUDED.

**SAVE THESE INSTRUCTIONS AND LEAVE THIS MANUAL WITH ANY** PERSON RESPONSIBLE FOR USE AND OPERATION.



### **ATTENTION** NE PAS JETER!

**IMPORTANTES INSTRUCTIONS D'UTILISATION ET D'ENTRETIEN INCLUSES. CONSERVEZ CES INSTRUCTIONS** ET LAISSEZ CE MANUEL À TOUTE PERSONNE RESPONSABLE **DE L'UTILISATION ET DU** FONCTIONNEMENT.



### WARNING

**PLEASE READ THIS ENTIRE** MANUAL BEFORE INSTALLATION AND USE OF THIS PELLET **FUEL-BURNING ROOM HEATER. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT** IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.



### **AVERTISSEMENT**

**VEUILLEZ LIRE CE MANUEL EN ENTIER AVANT D'INSTALLER** ET D'UTILISER CET APPAREIL **DE CHAUFFAGE AUTONOME À GRANULES, AFIN D'ÉCARTER LES** RISQUES DE DÉGÂTS MATÉRIELS, DE BLESSURES CORPORELLES, **VOIRE DE MORT.** 







### CAUTION

**CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS** AND INSTALLATION INSPECTION REQUIREMENTS FOR YOUR AREA.



#### **ATTENTION**

CONSULTER LES SERVICES DU BÂTIMENT OU D'INCENDIE LOCAUX CONCERNANT LES RESTRICTIONS ET LES EXIGENCES D'INSPECTION D'INSTALLATION EN VIGUEUR.

P/N: 22020

ECN: 10766 REV5: 02/23/2015

© 2015 Ardisam Inc.

All Rights Reserved.

Get parts online at www.CastleStoves.com



#### WARNINGS AND SAFETY PRECAUTIONS

Owner's Responsibility

- Accurate assembly and safe and effective use of the stove is the owner's responsibility.
- Read and follow all safety instructions.
- Carefully follow all assembly instructions.
- Maintain the stove according to directions and schedule included in this Castle operator's manual.
- Ensure that anyone who uses the stove is familiar with all controls and safety precautions.

#### **Special Messages**

Your manual contains special messages to bring attention to potential safety concerns, stove damage as well as helpful operating and servicing information. Please read all the information carefully to avoid injury and stove damage.

NOTE: General information is given throughout the manual that may help the operator in the operation or service of the stove.

#### **IMPORTANT SAFETY PRECAUTIONS**

<u>Please read this section carefully.</u> Operate the stove according to the safety instructions and recommendations outlined here and inserted throughout the text. Anyone who uses this stove must read the instructions and be familiar with the controls.



THIS SYMBOL POINTS OUT IMPORTANT SAFETY INSTRUCTIONS WHICH IF NOT FOLLOWED COULD ENDANGER YOUR PERSONAL SAFETY. READ AND FOLLOW ALL INSTRUCTIONS IN THIS MANUAL BEFORE ATTEMPTING TO OPERATE THIS EQUIPMENT.



#### **DANGER**

DANGER INDICATES A SERIOUS INJURY OR FATALITY WILL RESULT IF THE SAFETY INSTRUCTIONS THAT FOLLOW THIS SIGNAL WORD ARE NOT OBEYED.



#### **WARNING**

WARNING INDICATES A SERIOUS INJURY OR FATALITY COULD RESULT IF THE SAFETY INSTRUCTIONS THAT FOLLOW THIS SIGNAL WORD ARE NOT OBEYED.



#### **CAUTION**

CAUTION INDICATES YOU CAN OR YOUR EQUIPMENT CAN BE HURT IF THE SAFETY INSTRUCTIONS THAT FOLLOW THIS SIGNAL WORD ARE NOT OBEYED.



#### **IMPORTANT**

IMPORTANT INDICATES HELPFUL INFORMATION FOR PROPER ASSEMBLY, OPERATION, OR MAINTENANCE OF YOUR EQUIPMENT.



#### **WARNING**

YOU MUST READ, UNDERSTAND AND COMPLY WITH ALL SAFETY AND OPERATING INSTRUCTIONS IN THIS MANUAL BEFORE ATTEMPTING TO SETUP AND OPERATE YOUR STOVE.

FAILURE TO COMPLY WITH ALL SAFETY AND OPERATING INSTRUCTIONS CAN RESULT IN SERIOUS PERSONAL INJURY TO YOU AND/OR BYSTANDERS, AND RISK OF EQUIPMENT AND PROPERTY DAMAGE. THE TRIANGLE IN THE TEXT SIGNIFIES IMPORTANT CAUTIONS OR WARNINGS WHICH MUST BE FOLLOWED.





#### **WARNING**





PLEASE READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS PELLET FUEL-BURNING ROOM HEATER. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

DO NOT STORE OR USE GASOLINE OR OTHER FLAMMABLE VAPORS AND LIQUIDS IN THE VICINITY OF THIS OR ANY OTHER APPLIANCE.

DO NOT OVERFIRE - IF ANY EXTERNAL PART STARTS TO GLOW, YOU ARE OVERFIRING. REDUCE FEED RATE. OVERFIRING WILL VOID THE WARRANTY.

COMPLY WITH ALL MINIMUM CLEARANCES TO COMBUSTIBLES AS SPECIFIED. FAILURE TO COMPLY MAY CAUSE A HOUSE FIRE.



#### WARNING





HOT SURFACE! DO NOT TOUCH! SEVERE BURNS MAY RESULT. CLOTHING IGNITION MAY RESULT. GLASS AND OTHER SURFACES ARE HOT DURING OPERATION AND COOL DOWN.

**KEEP CHILDREN AWAY.** 

CAREFULLY SUPERVISE CHILDREN IN SAME ROOM AS APPLIANCE.

DO NOT OPERATE WITH PROTECTIVE BARRIERS OPEN OR REMOVED.

KEEP CLOTHING, FURNITURE, DRAPERIES AND OTHER COMBUSTIBLES AWAY.



#### **CAUTION**

CHECKBUILDING CODES PRIOR TO INSTALLATION.
CONTACT THE REGULATING AUTHORITY PRIOR
TO INSTALLATION TO DETERMINE THE NEED FOR
A PERMIT.

INSTALLATION MUST COMPLY WITH LOCAL, REGIONAL, STATE AND NATIONAL CODES AND REGULATIONS

CONSULT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN YOUR AREA.

TESTED AND APPROVED FOR PELLET FUEL. BURNING ANY OTHER TYPE OF FUEL VOIDS WARRANTY.



#### **CAUTION**



#### **DO NOT DISCARD**

IMPORTANT OPERATING AND MAINTENANCE INSTRUCTIONS INCLUDED.

READ, UNDERSTAND AND FOLLOW THESE INSTRUCTIONS FOR SAFE INSTALLATION AND OPERATION.

LEAVE THIS MANUAL WITH PARTY RESPONSIBLE FOR USE AND OPERATION.





#### WARNING

WARNING INDICATES A SERIOUS INJURY OR FATALITY COULD RESULT IF THE SAFETY INSTRUCTIONS THAT FOLLOW THIS SIGNAL WORD ARE NOT OBEYED.

READ THIS ENTIRE MANUAL BEFORE YOU INSTALL AND USE YOUR NEW PELLET STOVE. FAILURE TO FOLLOW INSTRUCTIONS MAY RESULT IN PROPERTY DAMAGE, BODILY INJURY, OR EVEN DEATH.

CHILDREN AND ADULTS SHOULD BE ALERTED TO THE HAZARDS OF HIGH SURFACE TEMPERATURES AND SHOULD STAY AWAY TO AVOID CONTACT TO SKIN AND/OR CLOTHING.

YOUNG CHILDREN SHOULD BE CAREFULLY SUPERVISED WHEN THEY ARE IN THE SAME ROOM AS THE STOVE.

CLOTHING AND OTHER FLAMMABLE MATERIALS SHOULD NOT BE PLACED ON OR NEAR THIS UNIT.

FLAMMABLE OR EXPLOSIVE LIQUIDS SUCH AS GASOLINE, NAPHTHA, ALCOHOL, OR ENGINE OIL MUST NEVER BE USED IN OR AROUND STOVE. THESE LIQUIDS MUST BE STORED IN A SEPARATE ROOM AS THE OPEN FLAME IN THE FIRE BOX COULD IGNITE THE FUMES OF SUCH LIQUIDS.

DO NOT BURN GARBAGE IN THIS UNIT. THE BURNING OF OTHER SOLID FUELS SUCH AS CORD WOOD OR WOOD CHIPS IN THIS STOVE IS NOT PERMITTED. ANY FUELS NOT CERTIFIED BY CASTLE PELLET STOVES WHICH ARE BURNED IN THIS STOVE WILL VOID THE WARRANTY.

DO NOT ROUTE POWER CORD IN HIGH TRAFFIC AREAS. A POWER SURGE PROTECTOR PLUGGED INTO A GROUNDED 120 VOLT POWER SOURCE IS REQUIRED.



#### WARNING

DO NOT INSTALL A FLUE DAMPER IN THE EXHAUST VENTING SYSTEM OF THIS UNIT.

DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVICING ANOTHER APPLIANCE.

DO NOT INSTALL IN A SLEEPING ROOM.

DO NOT CONNECT TO ANY AIR DISTRIBUTION DUCT OR SYSTEM.

- DO NOT CONNECT DIRECTLY TO A MASONRY CHIMNEY.
- DO NOT TERMINATE VENT IN ANY ENCLOSED OR SEMI-ENCLOSED AREA, SUCH AS; CARPORTS, GARAGE, ATTIC, CRAWL SPACE, UNDER A SUN DECK OR PORCH, NARROW WALKWAY OR CLOSED AREA, OR ANY LOCATION THAT CAN BUILD UP A CONCENTRATION OF FUMES SUCH AS A STAIRWELL, COVERED BREEZEWAY ETC.
- NEVER TOUCH DOOR LATCHES WHILE STOVE IS IN OPERATION; THEY GET EXTREMELY HOT.

PROPER INSTALLATION OF THIS STOVE IS NECESSARY FOR SAFE AND EFFICIENT OPERATION. INSTALLING THIS PRODUCT IMPROPERLY MAY RESULT IN A HOUSE FIRE AND PERSONAL INJURY.

ALL APPLICABLE BUILDING CODES FOR YOUR LOCATION MUST BE FOLLOWED. IN AREAS WHERE BUILDING CODES REQUIRE ADDITIONAL STEPS TO THE INSTALLATION OF THIS PRODUCT NOT INCLUDED IN THIS MANUAL, THE BUILDING CODES WILL TAKE PRECEDENT AND MUST BE FOLLOWED. CONTACT YOUR LOCAL BUILDING INSPECTOR TO OBTAIN ANY NECESSARY PERMITS OR INSPECTION GUIDELINES BEFORE INSTALLING THE PRODUCT.





#### **CAUTION**

ALL APPLICABLE BUILDING CODES FOR YOUR LOCATION MUST BE FOLLOWED. IN AREAS WHERE BUILDING CODES REQUIRE ADDITIONAL STEPS TO THE INSTALLATION OF THIS PRODUCT NOT INCLUDED IN THIS MANUAL, THE BUILDING CODES WILL TAKE PRECEDENT AND MUST BE FOLLOWED. CONTACT YOUR LOCAL BUILDING INSPECTION OBTAIN ANY NECESSARY PERMITS OR INSPECTION GUIDELINES BEFORE INSTALLING THE PRODUCT.

CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN YOUR AREA.

CONTACT YOUR LOCAL AUTHORITY (SUCH AS MUNICIPAL BUILDING DEPARTMENT, FIRE DEPARTMENT, FIRE PREVENTION BUREAU, ETC.) TO DETERMINE THE NEED FOR A PERMIT.

THE CASTLE PELLET STOVES PELLET STOVE IS DESIGNED TO BURN PELLET FUEL ONLY.

A WORKING SMOKE DETECTOR IS REQUIRED AND MUST BE INSTALLED IN THE SAME ROOM AS THE STOVE.

THIS STOVE IS NOT INTENDED FOR USE IN COMMERCIAL APPLICATIONS.

DOOR AND ASH PAN MUST BE CLOSED AND LATCHED DURING OPERATION.

NOTIFY YOUR INSURANCE COMPANY OF PELLET STOVE INSTALLATION.

THIS INSTALLATION MUST CONFORM WITH LOCAL CODES. IN THE ABSENCE OF LOCAL CODES YOU MUST COMPLY WITH ASTM E1509, (UM) 84-HUD, ULC/ORDC-1482, AND UCL S627-2000.

THE STRUCTURAL INTEGRITY OF THE MANUFACTURED HOME FLOOR, WALL, AND CEILING/ROOF MUST BE MAINTAINED.

KEEP COMBUSTIBLE MATERIALS (SUCH AS GRASS, LEAVES, ETC.) AT LEAST THREE FEET AWAY FROM THE FLUE OUTLET ON THE OUTSIDE OF THE BUILDING.

THIS STOVE SHOULD NOT BE USED AS THE ONLY SOURCE OF HEAT IN THE HOUSE. POWER OUTAGES AND PERIODIC MAINTENANCE WILL RESULT IN A TOTAL LOSS OF HEAT.

DO NOT LEAVE HOPPER DOOR OPEN.



#### **CAUTION**

INSTALLATION AND REPAIR OF THIS PELLET STOVE SHOULD BE DONE BY A QUALIFIED SERVICE PERSON. THE APPLIANCE SHOULD BE INSPECTED BEFORE USE AND AT LEAST ONCE A YEAR BY A QUALIFIED SERVICE PERSON. IT IS IMPERATIVE THAT THE CONTROL COMPARTMENTS, FIRE BOX, AND THE CIRCULATING AIR PASSAGEWAYS OF THE STOVE BE KEPT CLEAN.

THE OPERATION OF EXHAUST FANS SUCH AS BATHROOM FANS, ATTIC FANS, ETC. MIGHT STARVE THE PELLET STOVE OF COMBUSTIBLE AIR CREATING A NEGATIVE PRESSURE IN THE ROOM. PROVIDE ADEQUATE VENTILATION OF THE ROOM ACCOMPANYING THE PELLET STOVE. IF NOT, THE PRESSURE SWITCH MAY SHUT OFF OPERATION OF THE PELLET STOVE.

THE MOVING PARTS OF THIS STOVE ARE PROPELLED BY HIGH TORQUE ELECTRIC MOTORS. THESE PARTS CAN CAUSE SEVERE DAMAGE TO BODY PARTS THAT GET NEAR THEM. KEEP ALL BODY PARTS AWAY FROM AUGER AND FANS WHILE THE STOVE IS PLUGGED INTO AN ELECTRICAL OUTLET. THESE MOVING PARTS MAY BEGIN TO MOVE AT ANY TIME THE STOVE IS PLUGGED IN.

THE VENT SURFACES CAN GET HOT ENOUGH TO CAUSE BURNS IF TOUCHED. NONCOMBUSTIBLE SHIELDING OR GUARDS MAY BE REQUIRED.

INSTALL VENT AT CLEARANCES SPECIFIED BY THE VENT MANUFACTURER.

ALL VENTING JOINTS, WHETHER VERTICAL OR HORIZONTAL, SHOULD BE MADE GAS-TIGHT WITH RECOMMENDED SEALANTS SPECIFIED BY VENT MANUFACTURER.

ACCORDING TO HUD (HOUSING & URBAN DEVELOPMENT) REQUIREMENTS, WHEN INSTALLED IN A MOBILE HOME, THIS STOVE MUST BE GROUNDED DIRECTLY TO THE STEEL CHASSIS OF THE MOBILE HOME AND BOLTED TO THE FLOOR. DIRECT AIR ACCESS MUST BE PROVIDED, USE A FRESH AIR KIT.

FOR USE IN THE UNITED STATES AND CANADA. APPROVED FOR INSTALLATION IN MOBILE HOMES.

CASTLE PELLET STOVES, PRODUCER OF THIS APPLIANCE, RESERVES THE RIGHT TO ALTER ITS PRODUCTS, SPECIFICATIONS AND/OR PRICE WITHOUT NOTICE.



#### TABLE OF CONTENTS

| WARNINGS AND SAFETY PRECAUTIONS              | 2-5   |
|----------------------------------------------|-------|
| Table of Contents                            |       |
| REGISTRATION, SERVICE AND MAINTENANCE LOG    | 7     |
| INTRODUCTION                                 | 8     |
| Burning Pellet Fuel                          | 8     |
| Automatic Safety Features                    | 8     |
| SPECIFICATIONS                               | 9     |
| Unpacking                                    | 9     |
| INSTALLATION                                 | 10    |
| Stove Placement                              | 10    |
| Floor Protection Requirements                | 10    |
| Clearance to Combustibles                    | 11    |
| Venting                                      | 12    |
| Type of Vent                                 | 12    |
| Pellet Vent Installation                     | 12    |
| Preferred Pellet Vent Termination Clearances | 12-14 |
| Outside Air Connection                       | 15    |
| Mobile Home                                  | 15    |
| Venting Installation Examples                |       |
| UNDERSTANDING YOUR STOVE                     | 22    |
| BECOMING FAMILIAR WITH YOUR CONTROLLER       | 22    |
| MAIN OPERATION CONTROLLER SCREEN DISPALY     | 23    |
| PRE-OPERATION                                | 24    |
| Mounting Your Controller                     | 24    |
| Prior to Starting                            | 24    |
| OPERATION                                    | 25    |
| Start-up                                     | 25    |
| Working in Different Operation Modes         | 25    |
| Setting Other Data On Your Controller        | 26-28 |
| DIAGNOSTICS                                  | 29    |
| SHUT DOWN PROCEDURE                          | 29    |
| MAINTENANCE                                  | 30    |
| Normal Care and Maintenance                  | 30    |
| Daily Maintenance Tasks                      | 31    |
| Weekly, Monthly, and Bi-Monthly Tasks        | 31-33 |
| TROUBLESHOOTING AND REPAIR                   | 33    |
| ORDERING REPLACEMENT PARTS                   | 33    |
| TROUBLESHOOTING GUIDE                        | 34-35 |
| ILLUSTRATED PARTS BREAKDOWN                  | 36-41 |
| WIRING DIAGRAM                               | 42    |
| EFFICIENCY                                   | 43    |
| FIRE SAFETY                                  | 43    |
| WARRANTY                                     | 44    |



#### **REGISTRATION, SERVICE AND MAINTENANCE LOG**

Record the model number and serial number in the space provided for easy reference. Fill out and mail the registration card located in the parts packet or register online at www.castlepelletstoves.com. Warranty is valid only if the completed registration is received by Castle within 30 days of purchase.

| OWNERSHIP RECORDS |                 |             |                    |                       |  |
|-------------------|-----------------|-------------|--------------------|-----------------------|--|
| Dealer's Name:    |                 |             |                    |                       |  |
| Dealer's Address: |                 |             |                    |                       |  |
| City:             |                 | State/Provi | ince:              | Zip Code/Postal Code: |  |
| Model Number:     |                 | Serial Num  | ber:               |                       |  |
| Date of Purchase: |                 |             |                    |                       |  |
| Notes:            |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
| SERVICE DATE      | SERVICE TECHNIC | IAN         | SERVICE DESCRIPTIO | N                     |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |
|                   |                 |             |                    |                       |  |



#### **INTRODUCTION**

Congratulations on your investment in quality. Thank you for your purchase on a Castle Pellet Stove. We have worked to ensure that this pellet stove meets the highest standards for usability and durability. With proper care, your stove will provide many years of dependable service. Please read entire manual before installation and use.

#### **Burning Pellet Fuel**

Ashes need to be removed from the stove periodically. See "Normal Care and Maintenance" section for cleaning procedure. Due to the nature of pellet fuels, this stove will require attention periodically. Regular cleaning is an important part of burning pellet fuel.

#### **Pellets**

- This pellet stove is designed and approved to burn wood pellets, that comply with pellet fuels industry standards. Minimum of 40 lbs. density per cubic feet, 1/4" to 5/16" in diameter, with a maximum length of 1-1/2", and less than 1% ash.
- The performance of your pellet stove is greatly affected by the type and quality of wood pellets. As the heat output of various quality wood pellets differ, so will the performance and heat output of the pellet stove.
- Wood pellets are generally produced out of wood waste such as sawdust and shavings. The raw material is dried, mechanically fractioned to size and extruded into pellets under high pressure. Wood pellets need to be protected from direct exposure to water. Water from sources such as condensation and humidity causes pellets to expand and break down into unusable fuel. Keep fuel dry.
- It is important to select and use only pellets that are dry and free from dirt and debris. Dirty fuel will adversely affect the operation and performance of the unit and will void the warranty. The Pellet Fuel Institute (PFI) has established standards for wood pellet manufacturers. Only use pellets that meet or exceed PFI standards for premium fuel pellets. Pellets that contain colored paper, cardboard, solvents, trash, garbage, or other non-woody waste material should be avoided.

Do Not Burn: Garbage; Lawn clippings or yard waste; materials containing rubber, including tires; materials containing plastic; waste petroleum products, paints or paint thinners, or asphalt products; materials containing asbestos; construction or demolition debris; railroad ties or pressure-treated wood; manure or animal remains; paper products, cardboard, plywood, or particleboard.

#### Clinkers

 Impurities, such as silica (clinkers), will need to be regularly cleaned and removed from the pellet stove. Clinkers will form a hard mass and block airflow through the pot liner. High quality fuels will result in fewer clinkers.

#### **Automatic Safety Features**

#### **Power Outage**

During a power outage, the stove will shutdown safely. Do not open the main door or ash door. During a power failure the exhaust fan will not run. Keeping the doors sealed will allow the exhaust vent to draft out naturally. When the power is restored, the stove will not restart. If the exhaust temperature is still 120 degrees Fahrenheit when power is restored, the exhaust and room fans will continue to run until the stove cools. See "Operation" section for instructions on restarting the stove.

#### Overheating

Over Fire Protection: If the stove is being over fired or burning too hot, the high limit switches will automatically shut down the stove to avoid damage to components. The exhaust fan will continue to run until the proof of fire switch cools. Allow stove to cool before attempting to re-ignite. See the "Operation" section for more information.



#### WARNING

IF THE ELECTRICAL POWER FAILS ANY TIME WHEN THE STOVE IS HOT, KEEP ALL STOVE DOORS CLOSED.

THE AUTOMATIC SAFETY FEATURES MUST NOT BE BYPASSED.



#### **CAUTION**

BURNING WOOD PELLETS ACCORDING TO RECOMMENDATIONS WILL ASSURE LONGER STOVE LIFE AND LESS FUEL RELATED PROBLEMS.

THE USE OF GRATES OR OTHER METHODS OF SUPPORTING THE FUEL IN THIS STOVE IS PROHIBITED AND WILL VOID ALL WARRANTIES.



#### **SPECIFICATIONS**

| Model Number          | Serenity                                 |
|-----------------------|------------------------------------------|
| BTU/hour input (1)    | 4.0 lbs/hr                               |
| Heating Capacity (2)  | 1,500 sq. ft.                            |
| Electrical Rating (3) | 120 Volts, 60 Hz                         |
| Power Consumption     | 402 Watts ignition<br>77 Watts operating |
| Fuel Storage Capacity | 40 lb                                    |
| Flue Size (4)         | 3 in.                                    |
| Width                 | 18.25 in.                                |
| Height                | 34 in.                                   |
| Depth                 | 23.75 in.                                |
| Weight                | 186 lb                                   |

- Heat output will vary, depending on the brand, type and quality of fuel and the moisture content. Consult your dealer for best results.
- (2) Based on post 1982 home construction, requiring 35 BTU/Hr. per Sq. Ft.
- (3) Install per NFPA 70 and follow all state and local codes, contact licensed electrical contractor for assistance.
- (4) Install per NFPA 211 and follow all state and local codes, contact licensed installers for assistance.

Listing label:



Tested to the following standards: UL1482, ASTM E1509, ULC/ ORD-C1482-M1990, UCL S627-2000, and E2779

#### **Glass Specifications:**

This stove is equipped with 5 mm ceramic glass. Replace glass only with Castle Pellet Stoves ceramic glass. Call your servicing dealer or Castle at 1-800-345-6007 for replacement parts.



#### **CAUTION**

THIS INSTALLATION MUST CONFORM WITH LOCAL CODES. IN THE ABSENCE OF LOCAL CODES YOU MUST COMPLY WITH ASTM E1509, (UM) 84-HUD, ULC/ORD-C-1482 AND AND UCL S627-2000.

CASTLE PELLET STOVES, MANUFACTURER OF THIS APPLIANCE, RESERVES THE RIGHT TO ALTER ITS PRODUCTS AND/OR THEIR SPECIFICATIONS WITHOUT NOTICE.

MAKE SURE THE HOPPER IS FREE OF ALL FOREIGN MATTER BEFORE FILLING WITH FUEL. FOREIGN MATERIAL WILL CAUSE AUGER JAMS AND WILL VOID STOVE WARRANTY.

#### **COMPLIANCE NOTE**

The Serenity pellet heater, by Castle, meets the U.S. Environmental Protection Agency's emission limits for pellet heaters sold after May 15, 2015, as well as those for pellet heaters sold after May 15, 2020.

This wood heater needs periodic inspection and repair for proper operation. It is against federal regulations to operate this wood heater in a manner inconsistent with operating instructions in this manual. This wood heater has a manufacturer-set minimum low burn rate that must not be altered. It is against federal regulations to alter this setting or otherwise operate this wood heater in a manner inconsistent with operating instructions in this manual.

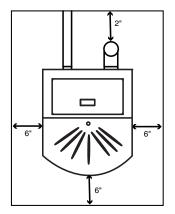
#### **UNPACKING**

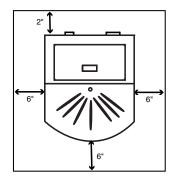
Your Castle Serenity will come fully assembled. Remove all packing material and tape from the inside of the firebox. Remove any tape on the outside of the glass. Open the hopper, remove all packing material and power cord.



#### **INSTALLATION**

It is recommended the stove be installed and serviced by authorized professionals who are certified by the National Fireplace Institute (NFI) as NFI Pellet Specialists.


Proper installation of this stove is necessary for safe and efficient operation. Installing this product improperly may result in a house fire and personal injury. All applicable building codes for your location must be followed. In areas where building codes require additional steps to the installation of this product not included in this manual, the building codes will take precedent and must be followed. Contact your local building inspector to obtain any necessary permits or inspection guidelines before installing the product.


#### **Stove Placement**

Sketch out a plan for installing the stove including dimensions before permanent placement. When determining the location for the stove, wall stud location is critical. You may need to adjust the location of the stove to avoid trying to vent through a wall stud. Before placing the pellet stove, connect the vent and allow for minimum clearance to combustible walls.

#### **Floor Protection Requirements**

The stove must be installed on a noncombustible floor, with proper floor protection, or on a masonry hearth. When a clean out t-vent is installed in the inside of a home, the floor protector must extend 2" beyond rear of t-vent. **SEE FIGURE 1**. When stove is vented straight through the wall and the clean out t-vent is on the exterior of the home, the minimum clearance is 2" from the back of the stove to the wall. **SEE FIGURE 2.** The minimum floor protector material is 24 GA sheet metal.





Figures 1 And 2: Pellet Stove Floor Pad Clearances



#### **WARNING**

READ THIS ENTIRE MANUAL BEFORE YOU INSTALL AND USE THIS STOVE. FAILURE TO FOLLOW THE INSTRUCTIONS MAY RESULT IN PROPERTY DAMAGE, BODILY INJURY, OR EVEN DEATH.

DO NOT INSTALL A FLUE DAMPER IN THE EXHAUST VENTING SYSTEM OF THIS UNIT.

DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING ANOTHER APPLIANCE.

CHILDREN AND ADULTS SHOULD BE ALERTED TO THE HAZARDS OF HIGH SURFACE TEMPERATURES AND SHOULD STAY AWAY TO AVOID BUMPS TO SKIN AND/OR CLOTHING.

YOUNG CHILDREN SHOULD BE CAREFULLY SUPERVISED WHEN THEY ARE IN THE SAME ROOM AS THE STOVE.

CLOTHING AND OTHER FLAMMABLE MATERIALS SHOULD NOT BE PLACED ON OR NEAR THIS UNIT.



#### **CAUTION**

THIS STOVE SHOULD NOT BE USED AS THE ONLY SOURCE OF HEAT IN THE HOUSE. POWER OUTAGES AND PERIODIC MAINTENANCE WILL RESULT IN A TOTAL LOSS OF HEAT.

CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN YOUR AREA.

CONTACT YOUR LOCAL AUTHORITY (SUCH AS MUNICIPAL BUILDING DEPARTMENT, FIRE DEPARTMENT, FIRE PREVENTION BUREAU, ETC.) TO DETERMINE THE NEED FOR A PERMIT.

KEEP COMBUSTIBLE MATERIALS (SUCH AS GRASS, LEAVES, ETC.) AT LEAST 3 FEET AWAY FROM THE FLUE OUTLET ON THE OUTSIDE OF THE BUILDING.

INSTALLATION AND REPAIR OF THIS PELLET STOVE SHOULD BE DONE BY A QUALIFIED SERVICE PERSON. THE APPLIANCE SHOULD BE INSPECTED BEFORE USE AND AT LEAST ANNUALLY BY A QUALIFIED SERVICE PERSON. IT IS IMPERATIVE THAT CONTROL COMPARTMENTS, FIRE BOX, AND CIRCULATING AIR PASSAGEWAYS OF THE STOVE BE KEPT CLEAN.



#### **Clearances To Combustibles**

NOTE: These are minimum clearances to combustible walls established by the ASTM testing lab. (SEE FIGURES 3, 4, 5, & 6.)

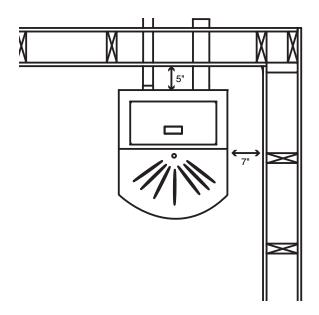



Figure 3: Straight Installation Through Wall

Figure 4: Corner Installation Through The Wall Vents

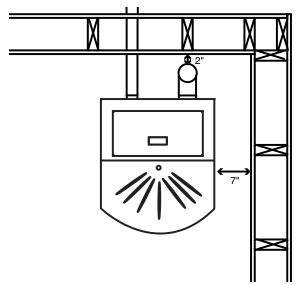



Figure 5: Straight Installation Interior Vertical Vents

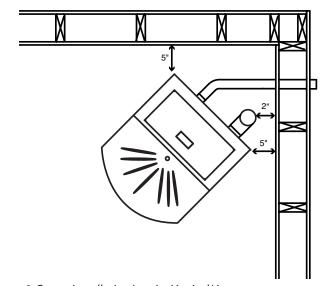



Figure 6: Corner Installation Interior Vertical Vents

NOTE: When interior vent is installed vertically, the clearance to the back wall is determined by the vent size used. Install vent at clearance specified by the vent manufacturer. Take into consideration any upward turning elbows or tees.



#### Venting

Before venting, consult vent manufacturer's specifications and recommendations for all venting installations.

The following installation guidelines must be followed to ensure conformity with both the safety listing of this stove and to local building codes.

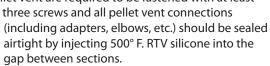
Note: Where passage through a wall, or partition of combustible construction is desired, the installation shall conform to CAN/CSA -8365.

#### **Type Of Vent**

The pellet venting pipe (also known as L vent) is constructed of two layers with air space between the layers. This air space acts as an insulator and reduces outside surface temperature of pipe to allow a clearance to combustibles.

A UL listed 3" or 4" type L pellet vent exhaust system must be used for installation and attached to the pipe connector provided on the back of the stove. Use a 3" to 4" adapter for 4" pipe. A cap must be used at the termination of type L vent chimneys. For elevations above 2,500 feet above sea level, a 4" L is required.

#### **Pellet Stove Vent Installation**


Vent termination **MUST** exhaust above air inlet elevation.

It is required to install at least three feet (3') of vertical pellet vent pipe. This vertical pipe will create some natural draft to prevent the possibility of smoke or odor during appliance shutdown and will keep exhaust from causing a nuisance or hazard from exposure to high temperatures.

The installation must include a clean out tee to enable collection of fly ash and to permit periodic cleaning of the exhaust system.

Total length of horizontal vent must not exceed 10 feet. The maximum recommended vertical venting height is 18 feet.

All joints for pellet vent are required to be fastened with at least



The area where the vent pipe goes through to the exterior of the home must be sealed with silicone or other means to maintain the vapor barrier between the exterior and the interior of the home.



#### **CAUTION**

DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING ANOTHER APPLIANCE.

DO NOT INSTALL A FLUE DAMPER IN THE EXHAUST VENTING SYSTEM OF THIS UNIT.

DO NOT CONNECT DIRECTLY TO A MASONRY CHIMNEY.

DO NOT TERMINATE VENT IN ANY ENCLOSED OR SEMI-ENCLOSED AREA, SUCH AS; CARPORTS, GARAGE, ATTIC, CRAWL SPACE, UNDER A SUN DECK OR PORCH, NARROW WALKWAY OR CLOSED AREA, OR ANY LOCATION THAT CAN BUILD UP A CONCENTRATION OF FUMES SUCH AS A STAIRWELL, COVERED BREEZEWAY ETC.



#### WARNING

VENT SURFACES CAN GET HOT ENOUGH TO CAUSE BURNS IF TOUCHED. NONCOMBUSTIBLE SHIELDING OR GUARDS MAY BE REQUIRED.

PELLET VENT MUST MAINTAIN MINIMUM CLEARANCESSPECIFIEDBYVENTMANUFACTURER FOR CLEARANCE TO ANY COMBUSTIBLES.

INSTALL VENT AT CLEARANCES SPECIFIED BY THE VENT MANUFACTURER.

ALL VENTING, WHETHER VERTICAL OR HORIZONTAL, JOINTS SHOULD BE MADE GASTIGHT WITH RECOMMENDED SEALANTS.



#### **Preferred Pellet Vent Termination Clearances**

- The stove vent must terminate on the outside of the building. Horizontal terminations must extend a minimum of 12" from the wall. Vertical terminations must protrude a minimum 24" from the roof surface. **In addition, all clearances listed below must be met. SEE FIGURE 7.**
- Must have an approved cap (to prevent water from entering) or a 45° downturn with rodent screen.
- If the termination is located on a windy side of the house, we suggest using an approved house shield to prevent soot from building up on the side of the house.
- A vent must not be located where it will become plugged by snow or other material.

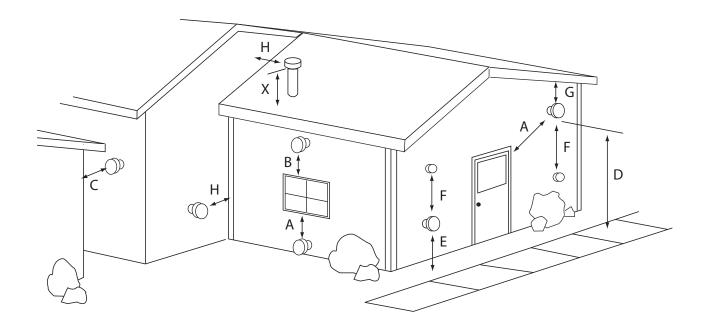



Figure 7: Vent Termination

- A: A Minimum 4' clearance below or beside any door or window that opens. (This clearance may be reduced to 18" if using outside air). We recommend the door or window be kept closed during operation. Minimum 1' clearance below or beside any window that does not open.
- B: Minimum 1' clearance above any door or window that opens.
- C: Minimum 2' clearance from any adjacent building.
- D: Minimum 7' clearance above any grade when adjacent to public walkways.

# NOTE: Vent may not terminate in covered walkway or breezeway.

E: Minimum 2' clearance above any grass, plants, or other

- combustible materials.
- F: Minimum 3' clearance from any forced air intake of any other appliance.
- G: Minimum 2' clearance below eaves or overhangs.
- H: Minimum 1' clearance horizontally from combustible wall.
- X: Must be a minimum of 2' above the roof.

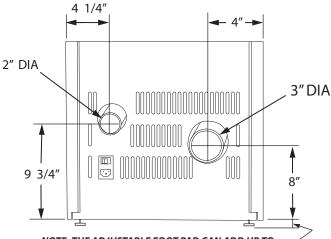


#### Venting The Pellet Stove (See Figures 8 through 16.)



#### **CAUTION**

MAKE SURE PELLET STOVE IS VENTED CORRECTLY. DO NOT INSTALL FLUE DAMPER IN THE EXHAUST VENTING SYSTEM OF THIS UNIT.


USE AN APPROVED WALL THIMBLE WHEN PASSING THE VENT THROUGH WALLS. USE A CEILING SUPPORT/FIRE STOP SPACER WHEN PASSING THE VENT THROUGH CEILINGS (MAKE SURE TO MAINTAIN CLEARANCE TO ANY COMBUSTIBLES.)

IF USING MORE THAN ONE TEE AND 180° OF ELBOWS, YOU MUST USE 4" VENTING PIPES.

The vent must have a support bracket every 5' of pellet vent when on the exterior of the structure.

The vent height and run must not exceed the distance as illustrated in the diagram below.

Venting into this (the lighter) shaded area may require combustion motor voltage adjustments and/or inlet air adjustments (intake). **SEE FIGURE 9.** 



NOTE: THE ADJUSTABLE FOOT PAD CAN ADD UP TO

1 INCH TO HEIGHT MEASUREMENTS DEPENDING
ON YOUR INSTALLATION LEVELING REQUIREMENTS.
THIS DIMENSION MUST BE ADDED TO THE HEIGHT
FOR PROPER INSTALLATION OF VENT PIPES.

Figure 8: Intake and Exhaust Positions

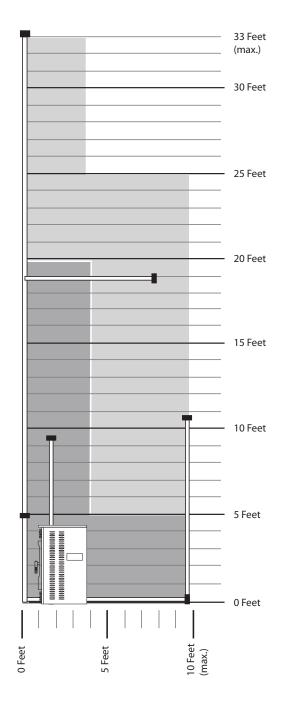



Figure 9: Venting and Combustion Motor Voltage Adjustment Chart



#### **Outside Air Connection**

Connection from the intake pipe (2" diameter pipe in rear of stove, See Figure 8) to the outside of the house is REQUIRED for mobile home installation. It is recommended in tightly sealed homes with exhaust fans such as kitchen or bathroom fans. This will eliminate poor performance due to negative pressure.

Only noncombustible pipe 2" (or greater) in diameter is approved to use for outside air connections (straight or flexible).

NOTE: PVC pipe is NOT approved and should NEVER be connected to the stove.

# HINT: A Castle Pellet Stove air inlet will accept automotive exhaust pipes and couplers

If the air inlet is connected to the outside, it **MUST** be terminated with a vertical 90° bend (down) or with a wind hood. Failure to do so could result in a burn back during high winds blowing directly up the air inlet during a simultaneous power failure.

Blockage, excessive length, or extra bends in the air intake pipe will starve the stove of combustion air. A 90° bend is equivalent in restriction to approximately 30″ of straight inlet pipe.

#### **Mobile Home**

Installation in a mobile home should be in accordance with the manufactured home and safety standard. *Department of Housing and Urban Development (HUD) CITE: 24CFR3280.707* stating this stove must be vented to the outside. In addition to the standard installation instructions, the following requirements are mandatory for installation in a mobile home:

- 1. The stove must be permanently attached to the floor.
- 2. Stove must have an outside air source.
- 3. Stove must be electrically grounded to the steel chassis of the mobile home.
- 4. All vertical chimney vents must have wall supports.
- 5. All exhaust systems must have a spark arrestor.
- 6. Check with local building officials to see if other codes may apply.



#### **WARNING**

CARBON MONOXIDE POISONING HAZARD. DO NOT CONNECT TO ANY AIR DISTRIBUTION DUCT OR SYSTEM. DO NOT INSTALL IN A SLEEPING ROOM.



#### **CAUTION**

THE OPERATION OF EXHAUST FANS SUCH AS BATHROOM FANS, ATTIC FANS, ETC. MIGHT STARVE THE PELLET STOVE OF COMBUSTIBLE AIR CREATING A NEGATIVE PRESSURE IN THE ROOM. PROVIDE ADEQUATE VENTILATION IN THE ROOM ACCOMPANYING THE PELLET STOVE. IF NOT, THE PRESSURE SWITCH MAY SHUT OFF OPERATION OF THE PELLET STOVE.

THE STRUCTURAL INTEGRITY OF THE MANUFACTURED HOME FLOOR, WALL, AND CEILING/ROOF MUST BE MAINTAINED.



#### SIMPLE STOVE VENTILATION EXAMPLES

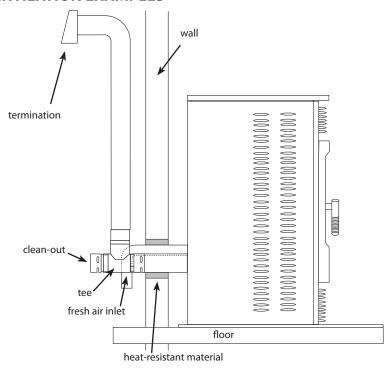



Figure 10: Straight Installation—Outside Vertical Rise, Horizontal Termination

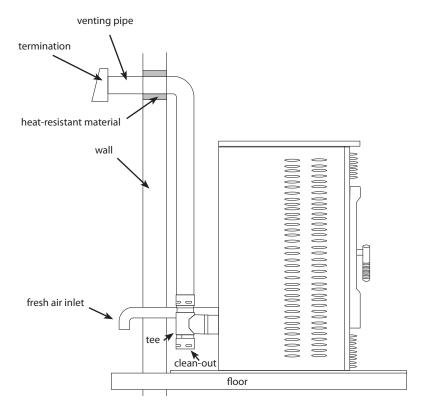
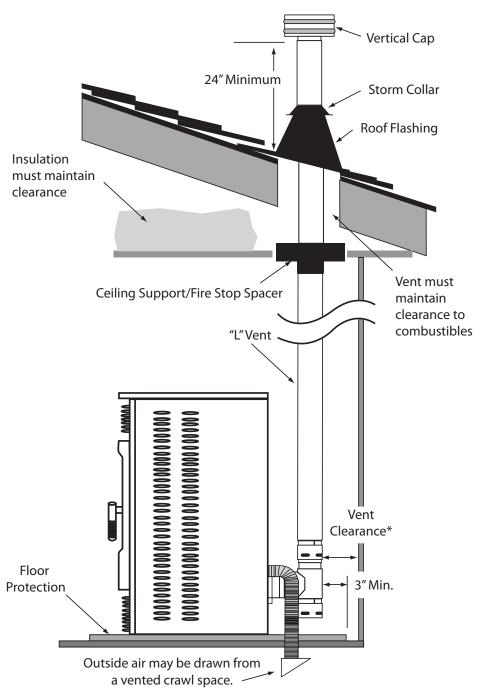




Figure 11: Straight Installation—Inside Vertical Rise, Horizontal Termination



#### **COMPLEX STOVE VENTILATION EXAMPLES**



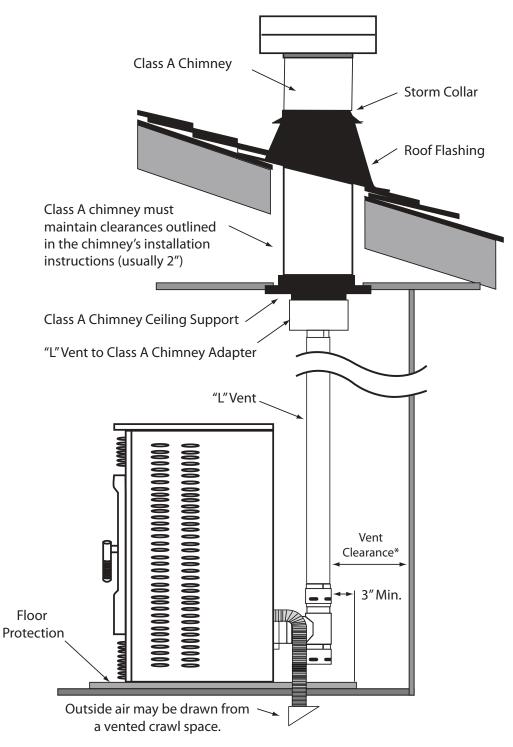

\* Install a vent at clearance specified by the vent manufacturer

Figure 12: Interior Vertical Installation





#### **CLASS A CHIMNEY RETROFIT**



\* Install a vent at clearance specified by the vent manufacturer

Figure 13: Class A Chimney Retrofit



#### **MASONRY FIREPLACE HEARTH STOVE**

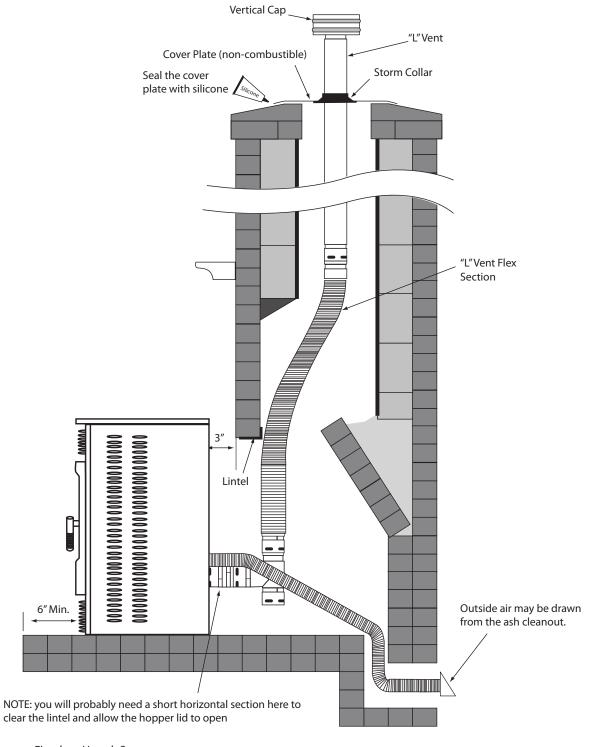



Figure 14: Masonry Fireplace Hearth Stove



#### **ZERO-CLEARANCE (METAL) FIREPLACE HEARTH STOVE**

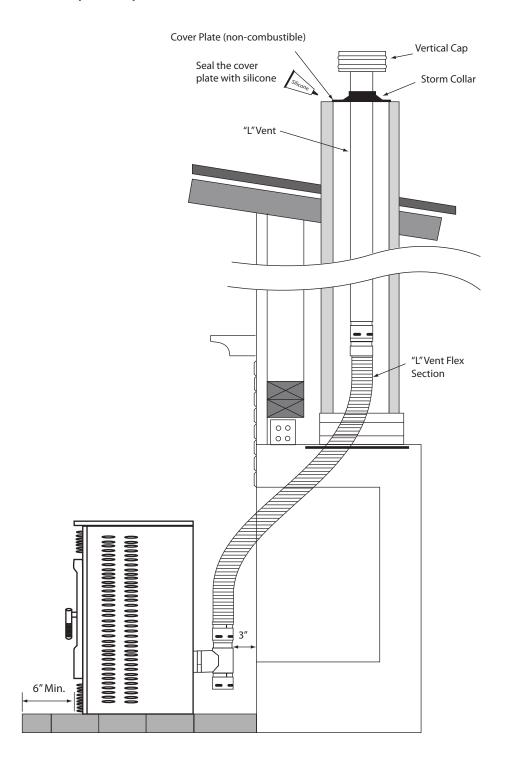



Figure 15: Zero-Clearance (Metal) Fireplace Hearth Stove



#### FREESTANDING MASONRY CHIMNEY

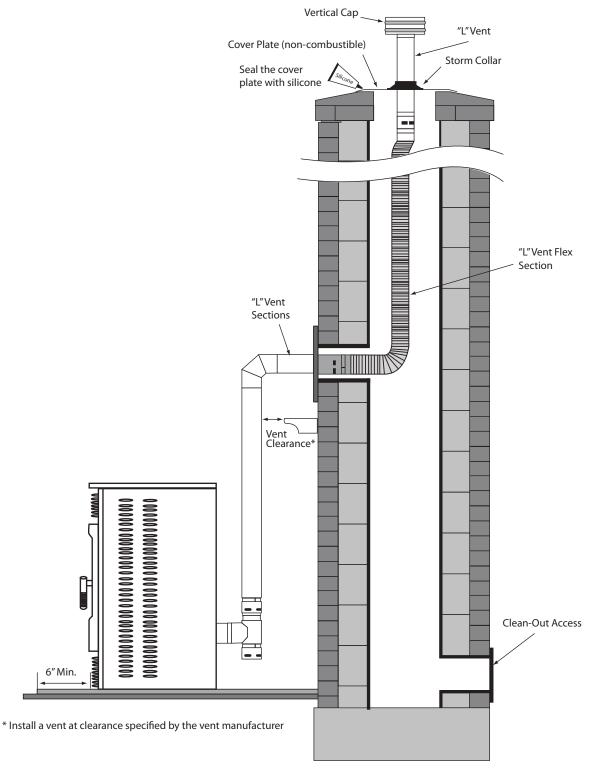



Figure 16: Freestanding Masonry Chimney



#### **UNDERSTANDING YOUR STOVE**

Your Castle Pellet Stove utilizes a vertical auger fuel feed system that is operated by a microprocessor controlled digital circuit board. The digital circuit board allows the vertical auger fuel system to run in a timer based, non-continuous cycle; this cycling allows the auger to run for a predetermined amount of time. The auger pushes pellets up a chute located in the hopper. The pellets will then turn and fall through another chute into the burn pot. Your stove is equipped with an automatic ignition system that should ignite the fuel within 3-5 minutes of pressing the On/Off button. As pellets fill the burnpot and ignite, outside air is drawn across the fuel and heated during the combustion process which is then pulled across the heat exchanger by the exhaust motor or the draft fan. As the stove reaches operating temperature, room air is then circulated around the heat exchanger by a room air blower, distributing warm air into the room.

The amount of heat that is produced by the stove is proportional to the rate of fuel that is burned.

Because a forced draft pressure is required for the combustion process inside your stove, it is extremely important that the exhaust system be properly installed and maintained. Also, the doors must remain closed while in operations and the seals on the doors must be properly maintained.

#### **BECOMING FAMILIAR WITH YOUR CONTROLLER**

#### **Controller Buttons (SEE FIGURE 17 & 18)**

- 1. **Infrared Receiver:** Receives signal from remote control.
- Power Indicator Illuminates when the main power switch is on.
- Alarm Light Illuminates if stove is not operating properly.
- 4. **On/Off Button** Starts and stops operation of stove.
- 5. **Timer Button** Allows you to choose the start time or shutdown time of the unit.
- Mode Transfer Button Allows you to set the unit to one of three main mode settings: Manual, Temp, and Weekly.
- 7. **Hold Button** Pressing the "Hold" button in weekly mode after raising the "Call To" temperature will maintain that temperature until the button is pressed again or the stove is shut down.
- 8. **Scroll Up Button** Allows you to scroll up to choose items in the menu.
- Exit Button: Takes you out of current selection and returns to previous option and/or screen. When entering data, pressing the EXIT button will also delete your entries.

- 10. **Scroll Down Button** Allows you to scroll down to choose items in the menu.
- 11. **Enter Button** Pressing "Enter" button allows you to adjust and select data on the screen. Pressing the ENTER button for two seconds will take you to a main menu screen in which you'll have the ability to change the time, date, temperature display, weekly operation schedule (for Weekly Mode only) and combustion motor and voltage settings.
- 12. **Controller Lock Out Mode** By pushing 8 and 10 simultaniously, the controller key pad can be locked. In the lock mode the stove cannot be adjusted or turned **ON** or **OFF**. Activation is indicated by a small key icon in the upper right corner of the controller display.



Figure 17: Control Pad Key



Figure 18: Control Pad Location



#### MAIN OPERATION CONTROLLER SCREEN DISPLAY

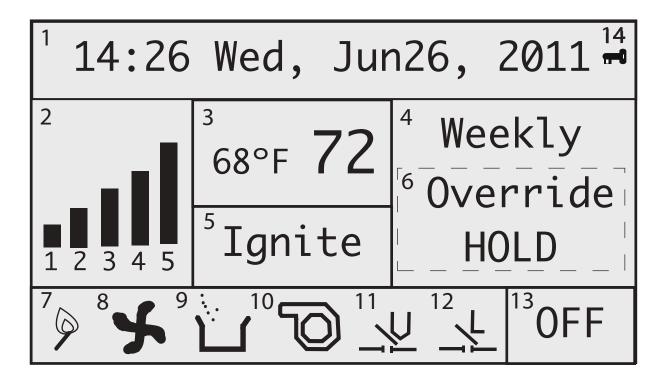



Figure 19: Main Operation Controller Screen Display

- 1. **Date and Time**: Displays time and date.
- 2. **Heating Power Level**: Indicates the level of power at which the stove is currently heating.
- 3. **Current Room Temperature/Call To Temperature:** Displays current room temperature and, in the thermostat mode, the "call to" temperature.
- 4. Main Mode: Displays operation mode--weekly, thermostat (temperature) and manual.
- 5. Work Stage: Displays operational stage in which the stove is currently operating (i.e. ignite, heating room).
- 6. Additional Control Mode: Only appears if weekly temp setting is changed manually.
- 7. **Igniter Indicator:** Indicates ignition cycle/burning cycle is currently happening.
- 8. Exhaust Blower Indicator: Indicates combustion blower is running to feed air to the firebox.
- 9. Auger Indicator: Indicates auger is feeding pellets.
- 10. **Room Blower Indicator**: Indicates room blower is running and the fan is heating the room.
- 11. **Vacuum Switch Indicator**: Indicates there is vacuum pressure in the stove.
- 12. **Hopper Lid Open Indicator (Limit Indicator):** If lit, indicates the hopper lid is closed. When hopper lid is open, this will disappear.
- 13. On/Off State Indicator: Indicates if the stove is on and in operational mode or if it is in the process of shutting down.
- 14. Controller Lockout Mode Activated

NOTE: During stove operation number 11 and 12 must be displayed or the stove will not feed pellets.



#### **PRE-OPERATION**

Once the stove has been properly installed and plugged into a grounded surge protector you are ready to begin operation.

#### **Mounting Your Controller**

Mount the controller and the controller bracket to top and back of your stove using the hardware that accompanied the controller. **SEE FIGURE 18.** 

#### **Prior To Starting**

Turn on the main power switch located on the back of the stove. **SEE FIGURE 20A**.

NOTE: If for some reason the stove does not appear to be powering on, there is a fuse located just below the power switch that can be checked. SEE FIGURE 20B. There is a spare fuse located in the fuse holder.

Make sure the hopper is clean and free of foreign matter including pellet fines and dust.

Fill the hopper with wood pellets, making sure that NO parts of the bag or any foreign objects enter the hopper as this may cause harm to the auger feed system. **SEE FIGURE 21.** 

Also take care in making sure there is no pellet material in the hopper lid seating surfaces.

Close the lid. This stove has a safety switch that will not allow pellets to feed with the hopper door open.

Make sure the main glass door is closed. The stove has a safety switch that will not allow the stove to feed fuel unless there is negative draft pressure inside the stove.

Before starting your Castle Stove, you will need to determine in which mode you would like to run the stove. The Serenity can operate in three modes:

- 1. **Manual**: Under this mode, you can personally adjust and set the heating phase to control the heat level.
- Thermostat Control (Temperature): Under his mode, you can set the room temperature and the stove will automatically run to ensure the room is at that temperature.
- Weekly: Under this mode, the stove will work automatically during days and times you designate. You can have a program for each of the seven days of the week and four periods during the day.

#### You must select your mode before turning on the stove.

Selecting a mode while the stove is burning can cause the stove to shut down and may force a 30-minute delay in restarting.

You do not need to start operation of the stove to select your mode. To choose the mode, select the mode transfer button (6, Fig. 17). Pressing the mode button once selects the thermostat setting; pressing it twice will bring you to the weekly mode.



#### **WARNING**

NEVER USE FLAMMABLE LIQUIDS SUCH AS GASOLINE, GASOLINE TYPE LIGHTER FUEL, CHARCOAL LIGHTER FUEL OR FIRE STARTING GELS IN OR AROUND THIS STOVE. KEEP ALL SUCH LIQUIDS WELL AWAY FROM THE STOVE WHEN IT IS IN USE.

NEVER OPEN SIDE PANELS OR MAIN DOOR WHEN STOVE IS IN OPERATION.

NEVER TOUCH DOOR LATCHES WHILE IN OPERATION, THEY GET EXTREMELY HOT. NEVER OPEN GLASS DOOR WHILE STOVE IS OPERATING OR WHILE STOVE IS HOT.



Figure 20a: Main power switch



Figure 20b: Main power switch



Figure 21: Pellet load



#### **OPERATION**

After you have chosen the mode in which to operate your stove, press the **ON/OFF** button (4, Fig. 17) to start the stove ignite cycle.

#### **Start Up**

When the stove turns on, the ignition indicator and the exhaust blower indicator will appear on the screen (7 and 8, Fig. 19). "Ignite" will also appear in the work stage box (5, Fig. 19) on the screen. After approximately four seconds, the vacuum switch indicator (11, Fig. 19) will appear. Also note that the hopper lid open indicator (limit indicator) (12, Fig. 19) will appear anytime the stove's hopper lid is properly shut and sealed.

The stove exhaust blower will continue to run for three minutes, then the auger indicator (9, Fig. 19) will flash on the screen, indicating that the auger is feeding pellets into the stove. Within three to five minutes of the auger feeding pellets, a fire should ignite. Once a fire is lit, the work stage box on the screen will read "Heating Room".

#### **Working in the Different Operation Modes:**

#### **Manual Mode**

The Manual Mode is the default mode setting if no other mode is chosen before the stove is turned on. In the manual mode, you have the ability to change the heat levels, which will increase or decrease the amount of heat that the stove puts out.

To change the power level in manual mode, use the scroll down or scroll up buttons on the control pad. (See buttons 8 and 10 on Figure 17.) Pressing either of these buttons once will move the power level up or down one level.

NOTE: This mode does not allow you to directly adjust specific temperatures. The manual mode simply allows you to dictate the level of heat the stove is pushing out.

#### **Thermostat/Temperature Control Mode**

The Thermostat Mode allows you to set the temperature of the room. The stove will increase or decrease the level of heat it puts out automatically to keep the room at the set temperature.

To increase or decrease the "call to" temperature, use the SCROLL UP or SCROLL DOWN button (8 and 10, Fig. 17). The current room temperature will be displayed in the temperature display box (3, Fig. 19) on the screen, as will the "call to" temperature.

NOTE: Thermostat mode does not turn the stove off when the call to temperature is met. Thermostat mode will only regulate between low and high settings.



#### WARNING

NEVER SHUT THE STOVE DOWN BY UNPLUGGING IT FROM THE POWER SOURCE.

NEVER SHUT THE STOVE DOWN BY SWITCHING OFF THE MAIN POWER SWITCH ON THE REAR OF THE STOVE.

NEVER OPEN SIDE PANELS OR MAIN DOOR WHEN STOVE IS IN OPERATION.

NEVERTOUCH GLASS DOOR AND ASH PAN LATCHES WHILE IN OPERATION, THEY GET EXTREMELY HOT AND WILL BURN YOU.

If the room temperature falls below the "call to" temperature, the stove's heat power level indicator will automatically rise to five. When the temperature has been reached, the heat power level will return to one and it will stay there until more heat is needed.

Note: In thermostat mode, the stove will not go into standby. It will simply idle and continue to produce a fire until the room is no longer at the set "call to" temperature. When it is idling, the stove will read at power level one in the power level box on the display screen.

#### Weekly Mode

The Weekly Mode allows an Serenity user to control and schedule the stove operation during set times and days throughout the week. You can select four different operation times for each of the seven days of the week.

IMPORTANT: Remember to set your weekly schedule in Weekly Mode before igniting a fire. If you try to set the stove schedule and weekly mode while running in Manual or Thermostat modes, the weekly schedule will not set, and the screen will prompt you to wait until you have turned the stove off and it has cooled down before setting the schedule.

#### To Set Weekly Schedule:

Press and hold the ENTER button (11, Fig. 17) until the "Set Data" menu appears on the screen. Using the SCROLL DOWN button (10, Fig. 17), select "Set Weekly." Press ENTER. This will take you into the "Weekly Schedule" screen. SEE FIGURE 22.

## SET DATA

- 1. Set Clock
- → 2. Set Weekly
  - 3. Set Temperature Units
  - 4. Set Blower Voltage

Figure 22: Set Data



 In the "WEEKLY SCHEDULE" screen, you can begin with setting the operation times for Sunday. Press ENTER to highlight the hour and use the SCROLL UP and SCROLL DOWN buttons until you reach your desired hour of start time. Press ENTER again to highlight the minutes and use SCROLL UP and SCROLL DOWN until you've reached your desired minute of start. SEE FIGURE 23.

# NOTE: Your Serenity controller uses 24 hour time to set your weekly schedule.

- Pressing ENTER again will allow you to set the stop time of your stove. Use the same procedure for setting your stove's start time for selecting when you would like the stove to stop. Once you've selected the stop time, press ENTER.
- 4. Next you will have the opportunity to set the desired temperature. Use the SCROLL UP or SCROLL DOWN keys until you've reached the appropriate temperature for the times you have selected. Press ENTER.
- 5. "Yes" will now be highlighted. If you have set this particular time correctly, press ENTER. This will take you out of your first set time.
  - If you wish to erase a scheduled time, use your **ENTER** key to highlight "YES" on the screen for that scheduled time. Select "No" using your **SCROLL UP** or **SCROLL DOWN** key. With "No" highlighted, press **ENTER** to erase the data.
- To set another time for that particular day, press SCROLL DOWN and continue by repeating steps 2-5 as appropriate.
  - NOTE: You must set your times in chronological order.

    The first schedule slot of one day MUST be earlier in the day than the second schedule slot on your weekly schedule list, etc.
- 7. Once you have set all times for Sunday, **SCROLL DOWN** to "**NEXT**". Pressing **ENTER** once will highlight "**NEXT**". Pressing **ENTER** again will take you to the following day. Proceed with setting a schedule for the rest of the week using the preceding instructions.

NOTE: Along with the "Next" option on the screen, there is also an "All "Option. After you have set a particular time for a day, if you wish to set that time for every day of the week, scroll down to "Next" and press ENTER. Press the SCROLL DOWN key to select and highlight "All." Pressing ENTER will then select that scheduled time and apply it to each day of the week.

- TIP: If at any point you need to leave the weekly schedule screen or once you have finished with setting all of your times, select the EXIT button (9, Fig. 17) to return to the previous menu.
- 8. Once you've finished setting your schedule, without any of the options highlighted, press the **EXIT** button. This will save your schedule.
- 9. With a schedule set, make sure that the main display screen on the controller reads 'WEEKLY" (for operating in the Weekly Mode) and that the unit is turned on. The schedule will not take effect unless the unit is turned on in the Weekly Mode. (13, Fig. 19).

## **Setting Other Data On Your Controller**

#### **Setting The Time And Date**

- 1. Press and hold the **ENTER** button. This will take you to the "SET DATA" screen.
- Press ENTER again to enter the "SET CLOCK" screen. SEE FIGURE 24.
- To change the hour, press ENTER. This will highlight the hour. Use your SCROLL UP and SCROLL DOWN buttons to choose the appropriate time. Press ENTER to select the correct hour, and then press ENTER a second time to begin setting the minutes.
- 4. Continue this process for selecting and setting the day, month, date and year.
- 5. When finished, and with nothing highlighted on the screen, press the **EXIT** button.

## SET CLOCK

10:45 Fri. May 20, 2011

Figure 23

Figure 24



#### **Setting The Temperature Units**

- 1. Press and hold the **ENTER** button. This will take you to the **"SET DATA"** screen.
- Using the SCROLL DOWN key, move down to option 3: "SET TEMPERATURE UNITS". Press ENTER again to move into the "SET TEMPERATURE UNITS" screen. SEE FIGURE 25.
- 3. In the set temperature units menu, press the **ENTER** button to highlight the units. Use the **SCROLL UP** and **SCROLL DOWN** buttons to choose either Celsius (C°) or Fahrenheit (F°).
- 4. When finished, press **ENTER**. With nothing highlighted on the screen, press the **EXIT** button.

## Set Temperature Units

Temperature Units: C°

Figure 25

#### **Setting The Room Blower Voltage**

The blower voltage (controlling the room fan) can be turned up or down for each power level to regulate the amount of heat circulated into a room during stove operation. Some fuels radiate heat better than others. You have the ability to speed up or slow down the room fan to extract the optimum amount of heat without blowing cold air.

Increasing the room blower voltage causes the room motor to run faster, extracting more heat from the unit.

# NOTE: If having issues with the stove overtemping in any setting, increase the blower voltage.

Decreasing the blower voltage allows you to slow the exchange of heat from the stove so it blows less cold air.

#### **To Set The Room Blower Voltage:**

- Press and hold the ENTER button. This will take you to the "SET DATA" screen.
- Using the SCROLL DOWN key, move down to option 4: "SET BLOWER VOLTAGE". Press ENTER again to move into the "SET BLOWER VOLTAGE" screen. SEE FIGURE 26.
- 3. Select the stall (or heating power level) for the voltage you'd like to change by scrolling up or down and pressing **ENTER**. The voltage amount will automatically be highlighted.
- 4. Using the **SCROLL UP** or **SCROLL DOWN** keys, select the appropriate voltage.

# NOTE: Voltage can be decreased or increased only in increments of five (5 volts).

5. Press **ENTER** to finalize your changes. Repeat steps 2-4 for the other stalls if you so desire.

## Set Blower Voltage

1.Stall1 Voltage:~85V

2.Stall2 Voltage:~90V

3.Stall3 Voltage:~95V 4.Stall4 Voltage:~100V

5.Stall5 Voltage:~110V

Figure 26



#### **Setting The Exhaust Voltage**

#### **IMPORTANT NOTE:**

ADJUST THE AIRFLOW GATE BEFORE INCREASING THE EXHAUST VOLTAGE. If you are having issues with getting enough air to your fire, FIRST try to adjust the air flow gate. SEE FIGURE 27. This will also adjust the air flow to the stove. In most installations, the air flow gate should be 1/2 open. this is best viewed from the front of the stove with the fire pot removed.

The exhaust voltage (controlling the exhaust motor) allows you to adjust the stove for the fuel you are burning or compensate for inadequate ventilation situations. In less than optimum venting situations, you can increase the exhaust speed for additional air circulation through the stove should ventilation be an issue.

#### **IMPORTANT NOTE:**

Changing the exhaust voltage does NOT change the feed rate. Therefore, on high heat power levels where the feed rate is faster, a low voltage level will not push out enough air and the stove may overheat and pellets may back up into the pot. Decreasing exhaust voltage will increase the amount of heat coming into the room. Do not adjust the exhaust voltage too low, as it can cause pellets to backup in the burn pot.

Increasing the exhaust voltage, and thereby increasing the amount of air in the burn pot, will also assist in burning lower-quality fuels that may otherwise cause unwanted buildup.

NOTE: Be sure to visually watch the burn rate if the exhaust voltage is decreased, as to not cause pot overloading. Exhaust voltage should ONLY be adjusted to get the optimum performance out of the fuel you are burning. Setting the exhaust voltage too high will increase the amount of fly ash being pushed out of the vent.

#### To Set The Exhaust Blower Voltage:

- 1. Press and hold the **ENTER** button. This will take you to the "**SET DATA**" screen.
- Using the SCROLL DOWN key, move to option 4: "Set Exhaust Voltage". Press ENTER again to move into the "SET EXHAUST VOLTAGE" screen. SEE FIGURE 28.
- Select the stall (heating level) for the voltage you'd like to change by scrolling up or down and pressing ENTER. The voltage amount will automatically be highlighted.
- 4. Using the **SCROLL UP** or **SCROLL DOWN** keys, select the appropriate voltage.

NOTE: Voltage can only be decreased or increased in increments of five (5 volts).

5. Press **ENTER** to finalize your changes. Repeat steps 2-4 for the other stalls if you so desire.

# View from back View from back View from back

Figure 27

## Set Exhaust Voltage

1.Stall1 Voltage:~80V

2.Stall2 Voltage:~85V

3.Stall3 Voltage:~90V

4.Stall4 Voltage:~95V

5.Stall5 Voltage:~100V

Figure 28



## DIAGNOSTICS

Your Castle Stove's controller comes equipped with an on-board diagnostics option that will let you test some components of your stove.



#### **WARNING**

NEVER OPERATE THE STOVE IN DIAGNOSTIC MODE. DIAGNOSTIC MODE IS TO TEST AND CONFIRM THE OPERATION OF INDIVIDUAL COMPONENTS ONLY. OPERATION IN DIAGNOSTIC MODE WILL CREATE AN UNSAFE CONDITION AND CAUSE INJURY TO PEOPLE AND DAMAGE TO EQUIPMENT.

NOTE: You will only be able to enter the diagnostic screen when the stove is turned OFF.

To get into the diagnostics screen:

- 1. Press and hold the **ENTER** button. This will take you to the "**SET DATA**" screen.
- Using the SCROLL DOWN key, move to option 6, "DIAGNOSTICS". Press ENTER. This will take you to the "DIAGNOSTICS" screen. SEE FIGURE 29.

Diagnostic Stalls: 01

Fire: ● Blower: ●

Exhaust: ● → Feeding: ○

Limit: ○ Vacuum ○

NTC1: ● NTC2: ●

Figure 29

If all components are working properly, the circles next to the components will be shaded.

**Stalls**: Changing the stall will allow you to test the

component in the various heating power levels.

**Fire**: Indicates whether the igniter is working properly.

Exhaust: Indicates whether the exhaust motor and exhaust

system is working properly.

**Limit**: Indicates the hopper lid is properly shut.

**Blower**: Indicates whether the room fan/blower is working

properly.

**Feeding**: Indicates if the auger is properly feeding pellets. **Vacuum**: Indicates there is sufficient vacuum and suction.

**NTC1**: Indicates the proof of fire switch is properly

working.

**NTC2**: Indicates temperature being read by room temp

sensor.

(Temperature is in Celsius)

#### **SHUT DOWN PROCEDURE**

Press the button on the control pad to initiate the shut down mode. The On/Off indicator on the screen will read **OFF**. The auger will stop feeding pellets, but the room blower and exhaust blower will continue to operate. Once the stove has cooled down, the screen light will turn off.

Shut down times will vary.



#### **MAINTENANCE**

#### **Normal Care and Maintenance**

Due to differences in fuel, stove cleaning intervals will vary. The cleaner the stove is, the more efficiently it will burn.

#### **Cleaning the Firepot**

Remove and clean the burn pot/firepot daily. Make sure all holes in the burn pot are unobstructed. Use a small metal pick or drill bit to keep these holes clean. **SEE FIGURE 30**.

#### **Firepot Remains**

Every time the hopper is filled with fuel, the firepot should be emptied. To empty the firepot, lift it out of the pot holder and dump it directly into the ash pan. Be sure any build-up is removed and that the holes are clean.

#### **Cleaning the Glass**

Only clean the class when the glass is cool. Wipe glass off frequently. Wipe the glass clean with a dry or damp rag. If this does not clean the glass, use any non-abrasive cleaner. Using ceramic stove top cleaner can be helpful in removing soot from the glass. Inspect gaskets around the door periodically. Replace any worn, frayed or compacted gaskets. Replace broken glass only with high temperature ceramic glass, available from Castle Pellet Stoves. **SEE FIGURE 31**.

#### **Stove Emissions**

Stove emissions should be visually checked on a regular basis. Emission visibility is an indicator of inefficient combustion. In order to minimize impact on the environment, maintenance costs, and fuel consumption, this pellet heater should be operated in a manner that minimizes emission visibility.

#### **Interior Chamber**

Clean the interior chamber with an ash vacuum. Ash vacuums are specially designed to contain soot and have a metal exterior. This should be done weekly.

## **A** WARNING

HOT SURFACES CAN CAUSE BURNS. NEVER PERFORM CLEANING OR MAINTENANCE ON A HOT STOVE. ALLOW UNIT TO COOL FOR A MINIMUM OF TWO HOURS. NEVER PERFORM SERVICE WITH POWER SUPPLIED TO THE UNIT. IJURY TO PERSONEL OR DAMAGE TO EQUIPMENT CAN OCCUR.



Figure 30 : Fire pot clean

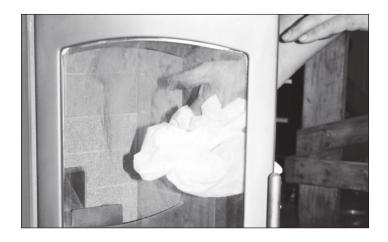



Figure 31: Wipe glass and inspect gasket



#### **Daily Maintenance**

The surfaces of the stove may be hot. Always wear a protective glove, even when the stove is cool to the touch. Be sure to shut the stove off and allow to cool for one hour before performing any maintenance or service tasks.

Empty firepot of ashes. Lift the firepot from the holder and dump it directly into the ash pan. **SEE FIGURE 32.** 

Remove any build-ups and be sure all of the holes are clean.

Dump the ash pan into a metal container with a tightly fitting lid. The closed-container of ashes should be placed on a non-combustible floor or on the ground, well away from all combustible materials, pending final disposal. The ash dumping will be determined by the amount of fuel burned. It may need to be done once or twice a week.

#### **Weekly Maintenance**

#### **Ash Pan Removal**

- 1. Turn off the stove and allow it to cool for one hour prior to cleaning.
- 2. Open the front door. Using a cleaning brush, brush any ash build-up on the ash deflector into the ash pan below.
- 3. Lift the ash deflector and hook it to the retainer pin located on the inside back wall. Do this for the left and right side of the ash pan. **SEE FIGURE 33.** This will allow the ash pan to be easily removed.
- 4. Remove the ash pan by lifting straight up and out the front door. **SEE FIGURE 34.**

#### **Disposal of Ash**

Dump the ash pan regularly. Ashes should be contained in a metal container with a tight fitting lid. The closed container of ashes should be placed on a non combustible floor or on the ground, well away from all combustible materials. If ashes are disposed of by burial or otherwise locally dispersed, they should be retained in the closed container until all cinders have been cooled.

#### Soot and Fly Ash

The products of combustion will contain small particles of fly ash. The fly ash will collect in the exhaust venting system and restrict the flow of the flue gases. Incomplete combustion, such as occurs during startup, shutdown, or incorrect operation of the room heater will lead to some soot formation which will collect in the exhaust venting system. The exhaust venting system should be inspected at least once per month to determine if cleaning is necessary. If cleaning is necessary, disassemble the exhaust vent and clean the individual parts. When cleaning ash, use an approved ash vacuum. See a dealer for more details.

Check clean out tees regularly to determine the required cleaning interval. Use a 3" or 4" chimney cleaning brush to clean the exhaust venting. Plugged venting will effect the quality of the fire. Make sure to clean any screens in the venting regularly. A plugged screen will shut off combustion air and cause the fire to die or burn poorly.

## **A** WARNING

HOT SURFACES CAN CAUSE BURNS. NEVER
PERFORM CLEANING OR MAINTENANCE ON A HOT
STOVE. ALLOW UNIT TO COOL FOR A MINIMUM
OF TWO HOURS. NEVER PERFORM SERVICE WITH
POWER SUPPLIED TO THE UNIT. IJURY TO PERSONEL
OR DAMAGE TO EQUIPMENT CAN OCCUR.



Figure 32: Empty Firepot

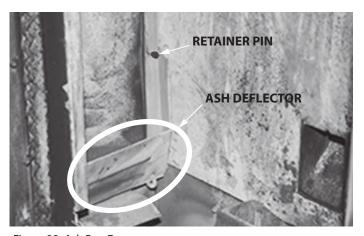



Figure 33: Ash Pan Dump



Figure 34: Dump Ash Pan



In addition to daily maintenance tasks, use an ash vacuum to clean the inside of the firebox.

Remove the firepot from the pot holder and vacuum beneath. Be sure to remove any ash from the incoming igniter tube. **SEE FIGURE 34.** 

#### **Monthly Maintenance**

The exhaust venting system should be inspected at least once per month to determine if cleaning is necessary.

#### **Annually/Biannually**

Remove and clean the exhaust venting.

Remove and clean the exhaust motor, housing and impellers.

To remove the exhaust motor, you will have to remove the side panel on the stove. To remove the panel:

Remove four screws, two at the top and two at the bottom of the panel. **SEE FIGURE 35.** 

Pivot rear panel outward and push front of panel inward to release and remove panel.

Once you've removed the side panel, you can remove and clean the exhaust motor, housing and impellers. **SEE FIGURE 36.** 



Figure 34: Remove ash from igniter tube (underneath firepot)



Figure 35: Remove (2) screws from rear of side panel, at the top and bottom of the panel. Remove (2) screws from the front face of the side panel, at the top and bottom of the panel.

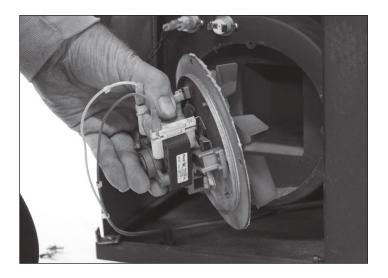



Figure 36: Remove exhaust motor and clean



#### TROUBLESHOOTING AND REPAIR

At Castle, we build quality and durability into the design of our products; but no amount of careful design by us, and careful maintenance by you, can guarantee a repair-free life for your stove. Most repairs will be minor, and easily fixed by following the suggestions in the troubleshooting guide in this section.

The guide will help you pinpoint the causes of common problems and identify remedies.

For more complicated repairs, you may want to rely on your authorized dealer or Castle. A parts catalog is included in this section.

We will always be glad to answer any questions you have, or help you find suitable assistance. To order parts or inquire about warranty, call or e-mail us as found below.

#### **ORDERING REPLACEMENT PARTS**

Parts can be obtained from the store where the stove was purchased or direct from the factory. To order from the factory, call or e-mail:

> Castle Stoves 1-800-345-6007 E-mail: info@castlestoves.com

Please include the following information with your order:

- 1. Model number and serial number
- 2. Part description
- 3. Quantity
- 4. Part numbers

See warranty section of this manual for more information on warranty-related claims and repairs.



## **A** WARNING

WHEN PERFORMING ANY INTERNAL MAINTENANCE.

DO NOT OPERATE UNIT WITH PANELS REMOVED OR OPEN. MOVING PARTS INSIDE OF THE **CABINET MAY CAUSE INJURY.** 

USE THE CORRECT PERSONAL PROTECTION, PARTS ARE HOT. DO NOT OPERATE THE UNIT WITH PANEL OPEN.

**DISCONNECT POWER BEFORE SERVICING UNIT.** RISK OF ELECTRIC SHOCK.

**USE ONLY ORIGINAL FACTORY EQUIPMENT** WHEN REPLACING PARTS.



### CAUTION

THIS IS A MINIMUM REQUIREMENT FOR SOOT AND FLY ASH REMOVAL. ASHES SHOULD BE PLACED IN A METAL CONTAINER WITH A TIGHT FITTING LID. THE CONTAINER SHOULD BE PLACED ON A NON-COMBUSTIBLE FLOOR, WELL AWAY FROM COMBUSTIBLE MATERIALS, PENDING FINAL DISPOSAL. IF ASHES ARE DISPOSED OF BY BURIAL IN SOIL OR OTHERWISE LOCALLY DISPERSED, THEY SHOULD BE RETAINED IN THE CLOSED CONTAINER UNTIL ALL CINDERS ARE THOROUGHLY COOL.

DO NOT OPERATE STOVE WITH BROKEN GLASS.

DO NOT SLAM THE DOOR SHUT.

DO NOT STRIKE GLASS.

DO NOT USE ABRASIVE CLEANERS.

DO NOT CLEAN HOT GLASS.

REPLACE CERAMIC GLASS WITH FACTORY **AUTHORIZED REPLACEMENT PARTS ONLY.** 

THE CLINKER WILL REMAIN HOT FOR SEVERAL MINUTES AFTER IT IS PULLED OUT OF THE FIRE POT.



#### TROUBLESHOOTING GUIDE



## **M** WARNING

UNPLUG STOVE AND LET COOL BEFORE PERFORMING ANY MAINTENANCE. HOT PARTS CAN CAUSE BURNS.

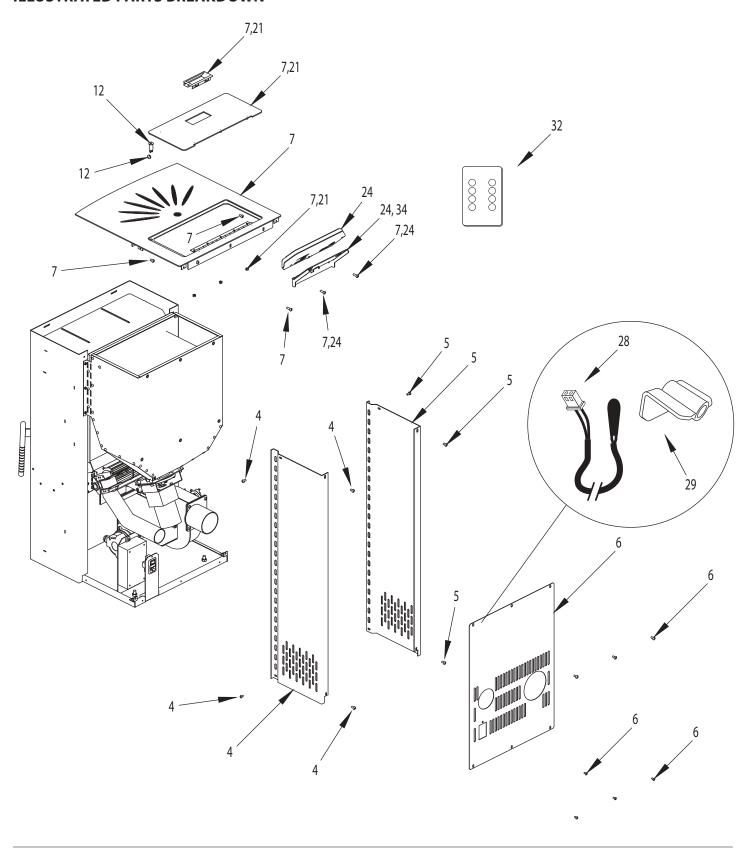
**NEVER TEST OR CHECK ELECTRICAL COMPONENTS** UNLESS THE STOVE IS UNPLUGGED FROM POWER SUPPLY. ELECTRICAL SHOCK CAN OCCUR.



# **A** WARNING

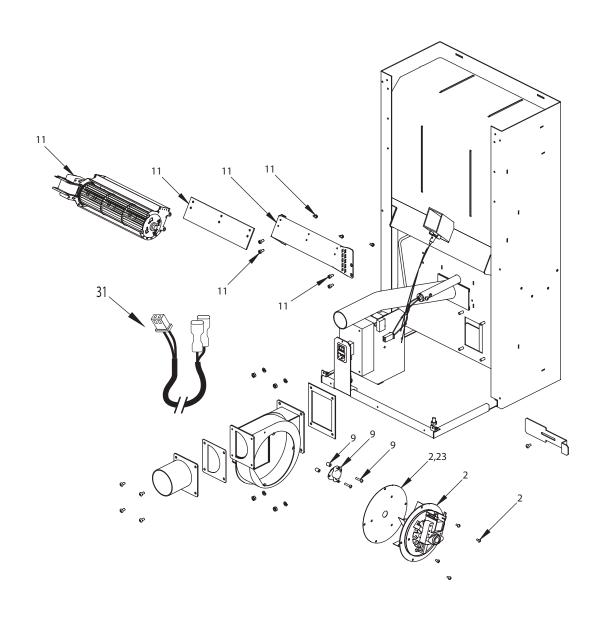
NEVER SERVICE OR TOUCH THE FEED AUGER WITH THE STOVE PLUGGED IN.

**NEGATIVE PRESSURE IN A HOME IS A SERIOUS** ISSUE. IF THERE IS A PROBLEM, THE STOVE SHOULD BE INSTALLED WITH A FRESH AIR KIT (NOT INCLUDED).


| PROBLEM                                           | CAUSE                                   | SOLUTION                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fault light comes on                              | Fire goes out                           | Control reads out of fuel, check burn pot. Add fuel to the hopper.                                                                                                                                                                                                                         |
|                                                   |                                         | If the hopper is full, relight if it continues to give that signal. Then enter the diagnostic area of the controller. A circle next to "NTC1" should be highlighted. If not, replace the 52C proof of fire switch. Check pigtail leads, replace spade terminals as necessary.              |
| PROBLEM                                           | CAUSE                                   | SOLUTION                                                                                                                                                                                                                                                                                   |
| Fault light is on                                 | Overtemp                                | The room fan can be tested by highlighted the circle next to "Blower". Allow stove to cool and restart.                                                                                                                                                                                    |
|                                                   |                                         | Check exhaust pipe for obstructions.                                                                                                                                                                                                                                                       |
|                                                   |                                         | Increase blower voltage, through controller, in each stall.                                                                                                                                                                                                                                |
| PROBLEM                                           | CAUSE                                   | SOLUTION                                                                                                                                                                                                                                                                                   |
| Fuel not feeding, no vacuum signal on the control | Main door or ash pan not sealed.        | The pressure sensor shuts off the feed auger when there is no negative pressure in fire chamber.                                                                                                                                                                                           |
|                                                   | No negative pressure in fire chamber    | Check door seals.                                                                                                                                                                                                                                                                          |
|                                                   |                                         | Check viewing glass seals.                                                                                                                                                                                                                                                                 |
|                                                   | Piping or stove may be plugged with ash | Clean venting and stove.                                                                                                                                                                                                                                                                   |
|                                                   | Exhaust Motor has failed                | Verify exhaust motor is turning.                                                                                                                                                                                                                                                           |
|                                                   |                                         | Enter the diagnostic area on the controller and highlight the circle next to feeding; this should cycle the auger and feed pellets. Then highlight the circle next to "exhaust". The exhaust motor should turn on and within 20 seconds, the vacuum signal should also become highlighted. |

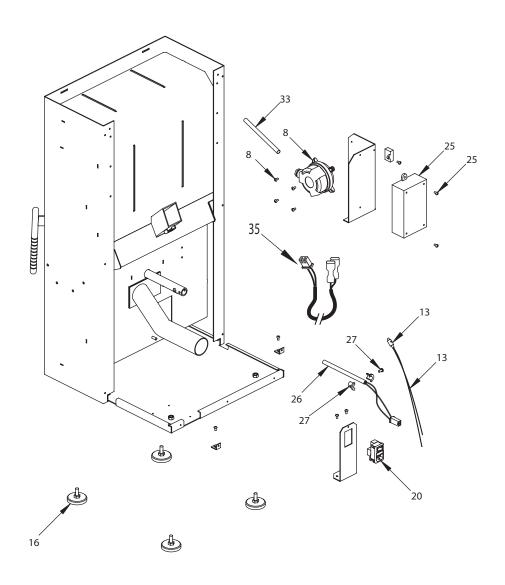


| PROBLEM                                                                | CAUSE                                                             | SOLUTION                                                                                                                                                                                             |
|------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel not feeding, vacuum and hopper lid signal present on the control. | Auger is obstructed                                               | Remove auger from housing and clean obstruction first.                                                                                                                                               |
|                                                                        | Auger not working                                                 | Enter the diagnostic area in the controller and highlight the circle next to "feeding". This should cycle the auger and feed pellets. Replace auger if necessary                                     |
| Fuel not feeding, no hopper lid signal on control                      | Hopper lid is open                                                | Close hopper door. Enter the diagnostic area on the controller; circle next to "limit" should be highlighted when the hopper lid is closed. The circle will be unshaded if the hopper lid is opened. |
|                                                                        | Hopper lid switch not functioning correctly                       | Check hopper door seal.                                                                                                                                                                              |
|                                                                        |                                                                   | Replace hopper safety switch if not operating properly.                                                                                                                                              |
| PROBLEM                                                                | CAUSE                                                             | SOLUTION                                                                                                                                                                                             |
| Fire burns lazy and smoky                                              | Stove is dirty                                                    | Clean fire pot.                                                                                                                                                                                      |
|                                                                        | Poor quality fuel                                                 | Clean ash pan.                                                                                                                                                                                       |
|                                                                        |                                                                   | 1                                                                                                                                                                                                    |
|                                                                        |                                                                   | Clean exhaust vent system.                                                                                                                                                                           |
|                                                                        |                                                                   | Clean exhaust vent system. Clean stove through cover plate clean-out hole.                                                                                                                           |
|                                                                        |                                                                   | · ·                                                                                                                                                                                                  |
| PROBLEM                                                                | CAUSE                                                             | Clean stove through cover plate clean-out hole.                                                                                                                                                      |
| PROBLEM Feeds fuel will not light all; control indicators are on       | CAUSE  Igniter tube or burn pot plugged with ash,  Faulty igniter | Clean stove through cover plate clean-out hole. Increase exhaust motor voltage.                                                                                                                      |

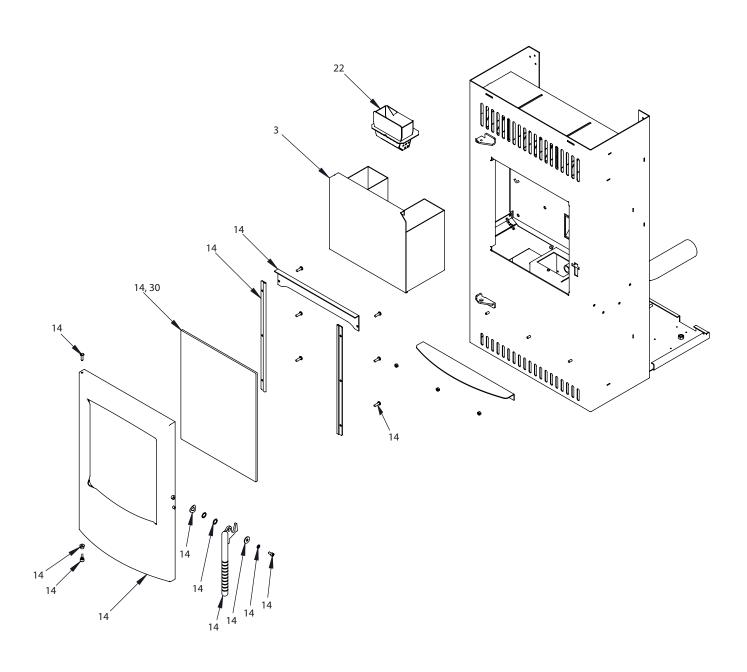



#### **ILLUSTRATED PARTS BREAKDOWN**



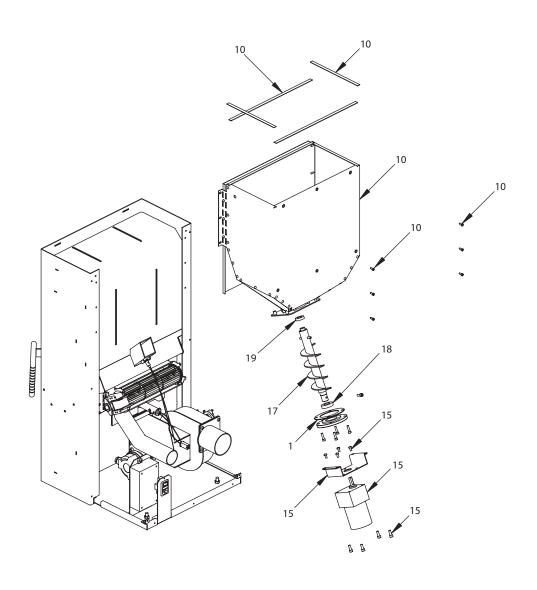



#### **ILLUSTRATED PARTS BREAKDOWN**







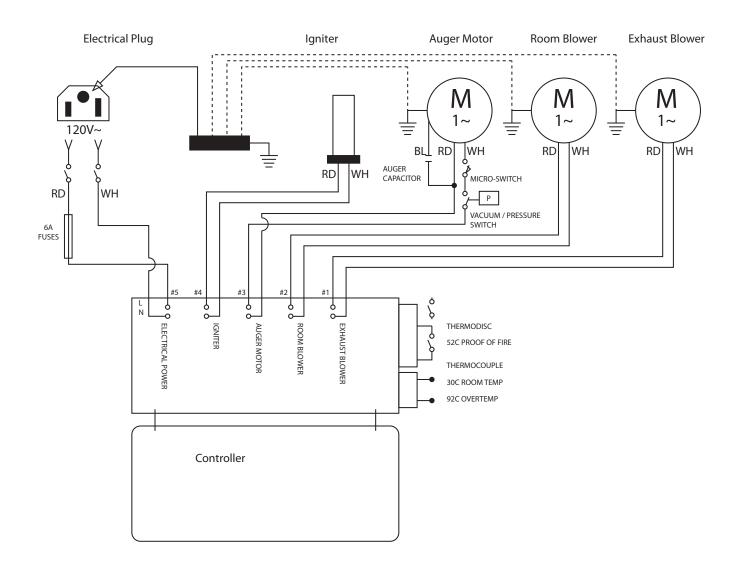














| ITEM # | PART # | DESCRIPTION                                    | QTY. |
|--------|--------|------------------------------------------------|------|
| 1      | 12225  | GASKET AUGER HOUSING HPS FEED SYSTEM           | 1    |
| 2      | 720110 | EXHAUST BLOWER                                 | 1    |
| 3      | 16135  | ASH PAN WELDMENT                               | 1    |
| 4      | 16278  | PANEL RIGHT REPLACEMENT KIT                    | 1    |
| 5      | 16279  | PANEL LEFT REPLACEMENT KIT                     | 1    |
| 6      | 16280  | PANEL BACK REPLACEMENT KIT                     | 1    |
| 7      | 16281  | TOP AND HOPPER WELDMENT LID<br>REPLACEMENT KIT | 1    |
| 8      | 720238 | VACUUM SWITCH                                  | 1    |
| 9      | 720103 | 52C SENSOR REPLACEMENT                         | 1    |
| 10     | 16284  | KIT HOPPER ASSEMBLY REPLACEMENT                | 1    |
| 11     | 21565  | ROOM BLOWER REPLACEMENT KIT                    | 1    |
| 12     | 720055 | HOPPER LID SWITCH                              | 1    |
| 13     | 720106 | SENSOR TEMPERATURE 92 DEG C                    | 1    |
| 14     | 720204 | DOOR ASSEMBLY REPLACEMENT KIT                  | 1    |
| 15     | 720107 | AUGER MOTOR HPS & SERENITY                     | 1    |
| 16     | 720216 | ADJUSTABLE FOOT                                | 4    |
| 17     | 720219 | WELDMENT AUGER FEED SYSTEM                     | 1    |
| 18     | 720220 | BEARING LOWER AUGER                            | 1    |
| 19     | 720221 | BEARING UPPER AUGER                            | 1    |
| 20     | 720227 | POWER SUPPLY SWITCH REPLACEMENT KIT            | 1    |
| 21     | 720229 | HOPPER HANDLE REPLACEMENT                      | 1    |
| 22     | 720235 | FIREPOT WELDMENT                               | 1    |
| 23     | 18522  | EXHAUST MOTOR GASKET KIT                       | 1    |
| 24     | 720298 | CONTROL HEAD REPLACEMENT KIT                   | 1    |
| 25     | 720304 | INTERFACE MODULE REPLACEMENT KIT               | 1    |
| 26     | 720307 | IGNITER REPLACEMENT KIT                        | 1    |
| 27     | 720308 | COLLAR IGNITER RETAINER REPLACEMENT KIT        | 1    |
| 28     | 13512  | LEAD, PIGTAIL, 30C ROOM SENSOR                 | 1    |
| 29     | 13513  | BRACKET, HOLDER 30C ROOM SENSOR                | 1    |
| 30     | 720242 | GLASS HPS10 & SERENITY                         | 1    |
| 31     | 11090  | PIGTAIL LEAD 52 FOR 10IC SERENITY              | 1    |
| 32     | 11721  | REMOTE CONTROL                                 | 1    |
| 33     | 12283  | TUBE VACUUM SWITCH PORT                        | 1    |
| 34     | 12429  | BRACKET CONTROLLER                             | 1    |
| 35     | 11392  | PIGTAIL LEAD VACUUM SWITCH                     | 1    |



#### **WIRING DIAGRAM**





#### **Efficiency**

Efficiency is the measure of an appliance's efficacy in converting energy input in the form of fuel to energy output in the form of heat. Discrepancies in heating efficiency in the marketplace are not uncommon. When determining efficiency values for wood heaters, higher heating value (HHV) is preferred to lower heating value (LHV) which ignores the heat of vaporization of the water vapor that is inherent to the combustion of wood fuel.

Your Serenity<sup>™</sup> pellet heater's efficiency will be influenced by factors such as where it is installed, what fuels are used, and how it is operated. To maximize the efficiency of your Serenity<sup>™</sup> pellet heater, the following recommendations should be followed:

Select fuels that are low in moisture. Burning fuels high
in moisture draws heat from the fuel and tends to cool
the appliance, robbing heat from your home. Pellets
that meet or exceed PFI Premium Grade standards
are recommended, in part, because they have a low
moisture content.

- The efficient combustion of any fuel source is reliant on a proper balance of fuel and oxygen. This principle holds true for your Serenity™ wood heater and the wood pellets that it burns. Burning at a low setting inherently limits oxygen supply. Constant operation at the lowest burn setting will result in a lower efficiency than if the stove were operated and medium and high burn rates.
- This wood heater is most efficient when installed in a main living area. Installation in basement locations will result in some heat being lost to the surrounding earth through foundation walls. Outdoor installation or installation in unenclosed rooms where heat is readily lost to the environment is discouraged.

| EPA Certified Emissions:                                                                                                                | 1.119 grams / hr.                    |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| *HHV Tested Efficiency:                                                                                                                 | 69.8%                                |  |  |  |  |  |
| **BTU Output Range:                                                                                                                     | 9,575 to 22,226 / hr.                |  |  |  |  |  |
| ***BTU Input:                                                                                                                           | 31,960 / hr.                         |  |  |  |  |  |
| Fuel:                                                                                                                                   | Wood Pellets (PFI Premium or better) |  |  |  |  |  |
| * Weighted average HHV efficiency using data collected during EPA emission test.                                                        |                                      |  |  |  |  |  |
| ** A range of BTU outputs based on measured efficiency and burn rates from EPA testing at low and high burn rate settings using HHV.    |                                      |  |  |  |  |  |
| *** Based on tested per-hour feed rate on high setting multiplied by tested 8528 BTU/hr. content of pellets used for emissions testing. |                                      |  |  |  |  |  |

#### **Fire Safety**

Carbon monoxide (CO) is a potentially deadly gas that results from unideal combustion. CO is generated when fuels have insufficient air available to completely combust a fuel source. To minimize the production of CO, ensure that your Serenity™ wood heater is properly cleaned and maintained, that the air intake damper is set properly (not too wide or too open), and that the air intake remains free from obstructions.

Make sure your home has working smoke and CO detectors. These detectors should be installed and maintained in accordance with manufacturer's recommendations. Additionally, it is recommended that CO monitors be located in areas that are expected to generate CO. Such areas include heater fueling areas, pellet fuel bulk storage areas, sheds containing hydronic heaters, and rooms where heaters are located.

| Burn Rate (kg/hr) (Dry) | CO Emissions (g/hr) | Heating Efficiency (% HHV) | Heat Output (Btu/hr) |
|-------------------------|---------------------|----------------------------|----------------------|
| High - 1.70             | 5.61                | 69.5                       | 22,266               |
| Medium - 1.17           | 1.78                | 69.4                       | 15,319               |
| Low - 0.75              | 8.00                | 67.3                       | 9,575                |
| Overall - 1.05          | 5.37                | 69.8                       | 13,831               |



#### SERENITY™ BY CASTLE™ PRODUCT WARRANTY: LIMITED ONE-YEAR WARRANTY

Ardisam Inc., a manufacturing company, warrants this Castle Pellet stove to be free from defects in the material and workmanship for a period of one year. During that one-year period, Ardisam Inc. will, at their discretion, furnish parts to correct any defect caused by faulty material or workmanship. For other warranty repairs, please read the one-year warranty listed below.

All electrical components, such as but not limited to blowers, wiring, vacuum switches, speed controls, control boxes, switches, pilot assemblies, thermostats and igniters, are covered under this one-year warranty. All warranty replacement of parts is the owner's responsibility.

The manufacturer makes no written or implied performance warranty, having no control of fuel type, installation or daily operation and maintenance. Specifically there is no warranty on the paint, glass, burn pot, fire brick, seals or gaskets.

All cost of removal, shipment to and from the dealer or manufacturer, any loss during shipment and reinstallation and any other losses due to the stove being removed shall be the owner's responsibility.

THIS WARRANTY IS LIMITED TO DEFECTIVE PARTS AND DOES NOT COVER DAMAGE TO PARTS CAUSED BY IMPROPER INSTALLATION, IMPROPER MAINTENANCE OR THE LACK OF, AND IMPROPER USE OR OVER FIRING. REPAIR AND/OR REPLACEMENT IS AT THE DISCRETION OF ARDISAM, INC. AND EXCLUDES ANY INCIDENTAL AND CONSEQUENTIAL DAMAGES CONNECTED THEREWITH.

This warranty is not transferable and supersedes all other warranties either expressed or implied and all other obligations to liabilities on our part. Ardisam Inc. does not assume, and does not authorize any other person to assume for us, any liability in connection with the sale of our products. The warranty applies only to products which have not been subjected to negligent use, misuse, alteration, or accident. This guarantee is void unless the warranty card is properly filled out and returned to Ardisam Inc. Cumberland, WI, within 30 days of purchase. To obtain warranty service and/or replacement instructions, contact the customer service department at 800-345-6007 Monday through Friday from 8 a.m. to 5 p.m. or visit www. castlepelletstoves.com. If you choose to ship your product to Ardisam™ for warranty repair, you must first have prior approval from Ardisam™ by calling our customer service department at 800-345-6007 for a return material authorization number (RMA#). Under these circumstances, all items must be shipped pre-paid. Ardisam™ will at no charge, repair or replace, at their discretion, any defective part which falls under the conditions stated above. Ardisam™ retains the right to change models, specifications and price without notice. Ardisam shall not be obligated to ship any repair or replacement product to any location outside of the United States of America or Canada. Some states and countries do not allow the limitations on how long an implied warranty lasts, or the exclusion or limitation of incidental or consequential damages, so the above limitation may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and country to country.



Castle Stoves™, Division of Ardisam, Inc. 1160 8th Avenue, PO Box 666 Cumberland, WI 54829 800-345-6007 | Fax 715-822-2223

E-mail: info@castlestoves.com

#### **PELLET FUEL ROOM HEATER**

"This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual."

"U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emissions standards using pellet fuel."

Conforms To: ASTM E2779-2010 & ASTM E2515-2011

This appliance requires the use of "Premium Quality" Wood Pellet fuel.

Model: Serenity Emission: 1.119 g/hr



Date of Manufacture:

Manufactured By:

Serial Number:

# Appendix E

Dry Gas Meter Calibration Data

# Intertek

|                            |                                                                | <b>&gt;</b>    |                          | 0.9960  | 0.9994  | 0.9963  | 0.9972  | 0.0019 | 0.004   |  |
|----------------------------|----------------------------------------------------------------|----------------|--------------------------|---------|---------|---------|---------|--------|---------|--|
|                            |                                                                | Meter          | Final                    | 696,903 | 697.919 | 698.936 | AVERAGE | STDEV. | MU of Y |  |
|                            |                                                                | Spirometer     | Volumn                   | 1.0625  | 1.0682  | 1.0625  | 0.3447  | 0.5970 |         |  |
|                            |                                                                | Measurement    |                          |         | 23.5000 | 23.3750 |         |        |         |  |
|                            |                                                                | Meter          | Pressure                 | 0.3     | 0.3     | 0.3     |         |        |         |  |
| 1/20/2016                  | Rockwell                                                       | Meter          | Temperature              | 73.2    | 73.7    | 74.2    |         |        |         |  |
| Calibration Due: 1/20/2016 | Model: Rockwell<br>WHI#: 12                                    | Vapor Pressure | of H <sub>2</sub> O (Hg) | 1.0322  | 1.0526  | 1.0390  |         |        |         |  |
| S                          |                                                                | Spirometer     | Temperature              | 80.3    | 80.9    | 80.5    |         |        |         |  |
| Calibration By: KS         | 1141                                                           | Barometric     | Pressure                 | 28.78   | 28.78   | 28.78   |         |        |         |  |
| 7/20/2015                  | WI-L-AMER-Cali-                                                | Meter          | Initial                  | 695,888 | 696.903 | 697.920 |         |        |         |  |
| Calibration Date:          | Using: Use Procedure: WI-L-AMER-Cali-1141 Description: Serial: | Run            | Number                   | -       | 7       | m       |         |        |         |  |

0.739

Reviewed by:

Date: 7/20/15

Measurement Uncertainty is calculated using the following formula: 0.M.U. = K\*sqrt ((A.D.)2 + (S.D.)2 + (R.M.U./2)2) 0.M.U. = Overall Measurement Uncertainty

A.D. = Average Deviation of the difference of all measured results compared to the reference value. S.D. = Standard Deviation of the difference of all measured results compared to the reference value.

k = Confidence Factor (2 for 95% confidence)
R.M.U. = Standard Measurement Uncertainty of Reference Measurement, Equipment, is considered as the measurement uncertainty as stated on calibration certificates of equipment, or the tolerance listed in the

|    |     | 3 |
|----|-----|---|
|    | 1   | Ī |
|    | ÷   | 9 |
|    |     | 9 |
|    | 1   | ) |
|    |     | 9 |
|    | G   | 1 |
| a. | _   | 3 |
|    | di. | ø |

| 1/20/2016          |                                             | tockwell        | 3        |
|--------------------|---------------------------------------------|-----------------|----------|
| Calibration Due:   |                                             | Model: Rockwell | WHI#: 13 |
| Calibration By: KS | 141                                         |                 |          |
| 7/20/2015          | Using:<br>Use Procedure: WI-L-AMER-Cali-114 |                 |          |
| Calibration Date:  | Use Procedure:                              | Description:    | Serial:  |

| >              | -                          | 1.0111  | 1.0054  | 1.0064  | 1.0076  | 0.003  | 0.0061  |
|----------------|----------------------------|---------|---------|---------|---------|--------|---------|
|                | Final                      | 723.527 | 724.549 | 725.566 | AVERAGE | STDEV. | MU of Y |
|                | Volumn                     | 1.0739  | 1.0739  | 1.0710  | 0.3447  | 0.5970 |         |
| Monthsom       | Inches                     | 23.6250 | 23.6250 | 23.5625 |         |        |         |
| Motor          | Pressure                   | 0.3     | 0.3     | 0.3     |         |        |         |
| Motor          | Temperature                | 76.5    | 76.7    | 76.5    |         |        |         |
| Vanor Pressure | of H <sub>2</sub> O (Hg) T | 1.0630  | 1.0526  | 1.0630  |         |        |         |
| Spirometer     | Temperature                | 81.2    | 80.9    | 81.2    |         |        |         |
| Barometric     | Pressure                   | 28.78   | 28.78   | 28.78   |         |        |         |
| Meter          | Initial                    | 722.513 | 723.528 | 724.550 |         |        |         |
| Run            | Number                     | -       | 7       | ო       |         |        |         |

Reviewed by:

Date: 7/00/15

0.739

Measurement Uncertainty is calculated using the following formula:

O.M.U. = k\*sqrt ((A.D.)2 + (S.D.)2 + (R.M.U./2)2)

O.M.U. = Overall Measurement Uncertainty

A.D. = Average Deviation of the difference of all measured results compared to the reference value.

S.D. = Standard Deviation of the difference of all measured results compared to the reference value.

K = Confidence Factor (2 for 95% confidence)

R.M.U. = Standard Measurement Uncertainty of Reference Measurement Equipment. R.M.U. is considered as the measurement uncertainty as stated on calibration certificates of equipment, or the tolerance listed in the standard Measurement Uncertainty of Reference Measurement.

## Appendix F

# **Unit Conditioning Documentation**

Date:2015/11/10 Time:13:50:50 Interval:00:30:00

|       | Flue temp Unit | Туре | Date                     | ime Fuel                        |                  |
|-------|----------------|------|--------------------------|---------------------------------|------------------|
| 0 min | 72.6 F         | T    | 11/10/2015               | 13:50:50 40.0lbs Indeck premium | hardwood @ start |
| 30    | 248.8 F        | Т    | 11/10/2015               | 14:20:50                        |                  |
| 60    | 264.8 F        | T    | 11/10/2015               | 14:50:50                        |                  |
| 90    | 271.9 F        | T    | 11/10/2015               | 15:20:50                        |                  |
| 120   | 272 F          | Т    | 11/10/2015               | 15:50:50                        |                  |
| 150   | 284.1 F        | T    | 11/10/2015               | 16:20:50 Add 4.2lbs @ 16:30     |                  |
| 180   | 266.7 F        | Ţ    | 11/10/2015               | 16:50:50                        |                  |
| 210   | 277.1 F        | Т    | 11/10/2015               | 17:20:50                        |                  |
| 240   | 287.3 F        | Т    | 11/10/2015               | 17:50:50                        |                  |
| 270   | 276.5 F        | T    | 11/10/2015               | 18:20:50                        |                  |
| 300   | 286.8 F        | T    | 11/10/2015               | 18:50:50                        |                  |
| 330   | 284.3 F        | Т    | 11/10/2015               | 19:20:50                        |                  |
| 360   | 289.8 F        | Т    | 11/10/2015               | 19:50:50                        |                  |
| 390   | 295.4 F        | Т    | 11/10/2015               | 20:20:50                        |                  |
| 420   | 293.9 F        | Т    | 11/10/2015               | 20:50:50                        |                  |
| 450   | 296.7 F        | Т    | 11/10/2015               | 21:20:50                        |                  |
| 480   | 294.7 F        | Т    | 11/10/2015               | 21:50:50                        |                  |
| 510   | 294 F          | Т    | 11/10/2015               | 22:20:50                        |                  |
| 540   | 299.2 F        | Т    | 11/10/2015               | 22:50:50                        |                  |
| 570   | 298 F          | Т    | 11/10/2015               | 23:20:50                        |                  |
| 600   | 301.6 F        | Т    | 11/10/2015               | 23:50:50                        |                  |
| 630   | 302.6 F        | T    | 11/11/2015               | 0:20:50                         |                  |
| 660   | 308.5 F        | T    | 11/11/2015               | 0:50:50                         |                  |
| 690   | 303.5 F        | T    | 11/11/2015               | 1:20:50                         |                  |
| 720   | 309.9 F        | T    | 11/11/2015               | 1:50:50                         |                  |
| 750   | 311.3 F        | T    | 11/11/2015               | 2:20:50                         |                  |
| 780   | 307.5 F        | T    | 11/11/2015               | 2:50:50                         |                  |
| 810   | 307.6 F        | T    | 11/11/2015               | 3:20:50                         |                  |
| 840   | 304.8 F        | T    | 11/11/2015               | 3:50:50                         |                  |
| 870   | 307.6 F        | T    | 11/11/2015               | 4:20:50                         |                  |
| 900   | 302.1 F        | T    | 11/11/2015               | 4:50:50                         |                  |
| 930   | 298.2 F        | T    | 11/11/2015               | 5:20:50                         |                  |
| 960   | 306.1 F        | T    | 11/11/2015               | 5:50:50                         |                  |
| 990   | 301.4 F        | T    | 11/11/2015               | 6:20:50                         |                  |
| 1020  | 240.1 F        | T T  | 11/11/2015               | 6:50:50                         |                  |
| 1050  | 156.3 F        | T T  | 11/11/2015               | 7:20:50 Add 36.25lbs            |                  |
| 1080  | 295.9 F        | T    | 11/11/2015               | 7:50:50                         |                  |
| 1110  | 297.2 F        | T    | 11/11/2015               | 8:20:50                         |                  |
| 1110  | 299.8 F        | T    | 11/11/2015               | 8:50:50                         |                  |
| 1170  | 310.5 F        | T    | 11/11/2015               | 9:20:50                         |                  |
| 1200  | 295.9 F        | T    | 11/11/2015               | 9:50:50                         |                  |
| 1230  | 299.1 F        | T    | 11/11/2015               | 10:20:50                        |                  |
| 1260  |                | T    | 11/11/2015               | 10:50:50                        |                  |
| 1290  | 306.1 F        | T    | 11/11/2015               |                                 |                  |
|       |                |      |                          | 11:20:50                        |                  |
| 1320  |                | T    | 11/11/2015<br>11/11/2015 | 11:50:50                        |                  |
| 1350  |                | T    |                          | 12:20:50                        |                  |
| 1380  | 301 F          | T    | 11/11/2015               | 12:50:50                        |                  |
| 1410  | 300.6 F        | T    | 11/11/2015               | 13:20:50                        |                  |
| 1440  | 307.5 F        | T    | 11/11/2015               | 13:50:50                        |                  |
| 1470  | 304.3 F        | T    | 11/11/2015               | 14:20:50                        |                  |
| 1500  | 301.9 F        | T    | 11/11/2015               | 14:50:50                        |                  |
| 1530  | 304.6 F        | T    | 11/11/2015               | 15:20:50                        |                  |
| 1560  | 304.1 F        | T    | 11/11/2015               | 15:50:50                        |                  |
| 1590  | 306.8 F        | T    | 11/11/2015               | 16:20:50 Add 27.8 lbs@ 16:30    |                  |
| 1620  | 214.8 F        | T    | 11/11/2015               | 16:50:50                        |                  |
|       |                |      |                          |                                 |                  |

```
1650
          299.8 F
                         Т
                                     11/11/2015 17:20:50
1680
          293.9 F
                          Т
                                     11/11/2015 17:50:50
1710
            293 F
                          Т
                                     11/11/2015 18:20:50
1740
          294.5 F
                          Т
                                     11/11/2015 18:50:50
                          Т
1770
          295.7 F
                                     11/11/2015 19:20:50
                          Т
1800
          295.1 F
                                     11/11/2015 19:50:50
                          Т
1830
            287 F
                                     11/11/2015 20:20:50
1860
          293.5 F
                          Τ
                                     11/11/2015 20:50:50
                          Т
1890
            295 F
                                     11/11/2015 21:20:50
                          Т
                                     11/11/2015 21:50:50
1920
          297.9 F
                          Т
                                     11/11/2015 22:20:50
1950
          288.4 F
                          Т
                                     11/11/2015 22:50:50
1980
          295.6 F
2010
          297.5 F
                          Т
                                     11/11/2015 23:20:50
2040
          298.5 F
                          Т
                                     11/11/2015 23:50:50
2070
          293.1 F
                          Т
                                     11/12/2015
                                                  0:20:50
2100
          296.9 F
                          Т
                                     11/12/2015
                                                  0:50:50
2130
          296.5 F
                          Т
                                     11/12/2015
                                                  1:20:50
                          Т
2160
          304.6 F
                                     11/12/2015
                                                  1:50:50
2190
          293.5 F
                          Т
                                     11/12/2015
                                                  2:20:50
                          Т
2220
          303.9 F
                                     11/12/2015
                                                  2:50:50
                          Т
2250
          303.8 F
                                     11/12/2015
                                                  3:20:50
                          Т
2280
          302.1 F
                                     11/12/2015
                                                  3:50:50
                          Т
                                                  4:20:50
2310
          303.8 F
                                     11/12/2015
2340
          300.8 F
                          Т
                                     11/12/2015
                                                  4:50:50
                          Т
                                                  5:20:50
2370
          297.3 F
                                     11/12/2015
                          Т
2400
          267.8 F
                                     11/12/2015
                                                  5:50:50
2430
          234.9 F
                          Т
                                     11/12/2015
                                                  6:20:50
2460
          162.8 F
                          Т
                                     11/12/2015
                                                  6:50:50
2490
           86.5 F
                          Т
                                     11/12/2015
                                                  7:20:50 Add 37.4 lbs@ 7:30
2520
          273.6 F
                          Т
                                     11/12/2015
                                                  7:50:50
                          Т
2550
          300.1 F
                                     11/12/2015
                                                  8:20:50
                          Т
2580
          308.6 F
                                     11/12/2015
                                                  8:50:50
2610
          306.6 F
                          Τ
                                     11/12/2015
                                                  9:20:50
                          Т
2640
          303.7 F
                                     11/12/2015
                                                  9:50:50
2670
          310.9 F
                          Т
                                     11/12/2015 10:20:50
                          Т
                                     11/12/2015 10:50:50
2700
          308.2 F
                          Т
                                     11/12/2015 11:20:50
2730
          313.3 F
          314.9 F
                          Т
                                     11/12/2015 11:50:50
2760
2790
          310.8 F
                          Т
                                     11/12/2015 12:20:50
2820
          317.2 F
                          Т
                                     11/12/2015 12:50:50
2850
          304.4 F
                          Т
                                     11/12/2015 13:20:50
2880
          310.7 F
                          Т
                                     11/12/2015 13:50:50
                          Т
2910
          313.3 F
                                     11/12/2015 14:20:50
                          Т
2940
          316.9 F
                                     11/12/2015 14:50:50
                          Т
2970
          315.8 F
                                     11/12/2015 15:20:50
3000
          318.1 F
                          Т
                                     11/12/2015 15:50:50
                         Т
3030
          295.5 F
                                     11/12/2015 16:20:50 Test complete
```

Removed pellets after test @ 16:30 11/12/2015 16.2lbs Removed

Total Consumption 129.45 lbs

#### Stove Installation Configuration





Fuel Source





Stove setting



# Appendix G

Pictures

