## Quick Road Map:

The Vampire is comprised of:
$\Rightarrow$ a VC-LFO with 5 output waveforms,
$\Rightarrow$ a VCO with Six output waveforms,
$\Rightarrow$ a VC-Cross-fader between PWM and a selected alternate VCO waveform,
$\Rightarrow$ VC-Selection of VCO waveform to cross-fade with PWM,
$\Rightarrow$ Amplitude Modulated channel for External Audio or VCO $\mathrm{Sin}^{2}$ signals at the LFO frequency rate.

These elements are variously available to some or all of four output channels.

## Vampire Lore

The front panel uses symbols to indicate individual waveforms


## External Outputs:

Vampire output occurs on any of four output jacks.
Externally the LFOWAVSEL output provides
Triangle, Saw, Reverse-Saw, Square, and
logic level square LFO Clock. The windowed
wave is also available.
$\mathrm{LFO}^{\mathrm{SEL}} \mathrm{OUT}$

## Vampire Quick Info Sheet

## Who belongs to What?

The graphic below color associates the jacks and controls for the separate functions that comprise the Vampire.


| Blue - LFO |  |
| :---: | :---: |
| 1 | LFO Frequency control. |
| 2 | LFO modulation input attenuator for signals plugged into Blue 3 |
| 3 | MODCV LFO modulation input jack. |
| 4 | LFO Synchronization Input |
| 5 | "TTL" (0-5Vdc) LFO Square wave output |
| 6 | Output jack for the LFO output waveform selected by Blue 7 |
| 7 | LFO output waveform select. |
| 8 | Switch: 1V/8ve Input connect/disconnect to LFO |
| Yellow - MORPH |  |
| 1 | Degree of cross-fade between (left) PWM and (right) MorphSel Waveform. |
| 2 | CV input for modulating the Morph cross-fade |
| 3 | CV input for modulating the Morph waveform select. |
| 4 | Morph audio output jack |
| 5 | Morph Waveform Select panel control/attenuator. |
| Green - WINDOWING (VSG) |  |
| 1 | Window CV offset. With no LFO waveform, performs like amplitude control |
| 2 | Allows patching alternate to normalled Sin2 waveform enveloped by Wave Window circuit. |
| 3 | Selects waveform window envelope shape or no envelope shape. |
| Red - VCO |  |
| 1,2 | VCO Frequency Control Coarse and Fine controls. |
| 3 | PWM On/Off time spacing (adds with Red 6) |
| 4,5 | Bi-polar attenuators for (4) exponential; (5) linear modulation inputs and/or normalled MODWAVSEL waveform |
| 6 | Attenuator for PWM modulation input jack (Red 9). |
| 7 | Exponential modulation input jack. Jack's over normalled MODWAVSEL. |
| 8 | Linear modulation input jack. Jacks over normalled MODWAVSEL. |
| 9 | PWM modulation input jack drive |
| 10 | External VCO synchronization (when selected by Red 11) |
| 11 | Synchronization Switch select (Internal/External) |
| 12 | 1 volt per octave input to VCO and switch coupled to LFO. |
| 13,14 | VCO waveform output selected by companion rotary switch. Red13Red16 / Red 14-Red17 |
| 15 | Route MODWAVSEL to VCO Linear or Exponential input. |
| 16,17 | Selects waveform to output. Red16 selects Red13. Red17 selects Red14. |
| 18 | Select LFO output waveform routing through RED15 to Red 7 or Red (center OFF) |


| Panel Matrix: The panel distributes LFO, Morph, Window and VCO in 5 basic collumns across. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LFO Freq | MORPH Fade | VCO Pulse - <br> Width | VCO <br> Fine Freq | VCO <br> Coarse Freq |  |  |
| \% of LFO-MOD | Window amplitude <br> CV 0-5V level <br> (constant) | \% of PWM CV | \% and Direction <br> Of Linear Mod | \% and Direction <br> Of Expo Linear Mod |  |  |
| LFO Mod <br> Input jack | LFO <br> Sync In | Ext <br> Audio <br> Input | PWM CV input <br> jack | Linear Mod Input <br> Jack | Expo Mod <br> Input Jack |  |
| LFO CLOCK <br> Output jack | MORPH <br> Fade CV | MORPH <br> WaveSel | Window Amp- <br> Mod WaveSel | Calibrated 1/Voct <br> Input Jack | VCO Sync Input Jack |  |
| LFO External <br> Output jack | MORPH OUTPUT <br> jack | Mod Channel Sel | VCO Output 1 Jack | VCO Output 2 Jack |  |  |
| Waveform Select | MORPH SEL/VC <br> Atten | MOD LFO <br> WaveSel | VCO Output Wave <br> Sel1 | VCO OUTPUT |  |  |
| WaveSel 2 |  |  |  |  |  |  |


| The VC- LFO | MORPH |
| :---: | :---: |
|  |  |
| LFO Output waveforms: <br> http://subsamples.skylabit.com/lfo_waves.htm\| | Morph Crossfade: <br> http://subsamples.skylabit.com/morph_waves.html WaveSelect Examples: <br> http://subsamples.skylabit.com/msel_waves.htmI |
| VCO Modulation | Windowed Waves |
|  |  |
| Internal LFO Modulation of VCO: <br> http://subsamples.skylabit.com/mod_waves.htm\| |  |

Sample Patches


## In-Panel Patches

$\Rightarrow$ Listen from either $V^{S E L}$ 1OUT or $V^{S E L}$ 2OUT (panel bottom right)
$\Rightarrow$ Set SYNC switch so that FZVCO LED glows green.
$\Rightarrow$ Select a Sine, Triangle or Sawtooth waveform using $\mathrm{VCO}^{\mathrm{SEL}_{1}}$ or $\mathrm{VCO}^{\mathrm{SEL}_{2}}$ rotary switch.
Modulation Set LIN/OFF/EXP switch (panel lower center) to its middle position. Set LFO ${ }^{\text {FZ }}$ (panel top left) to slow rate alternating the FZLFO LED illumination. Set VCO frequency COARSE/FINE (panel top right) to a pleasant pitch Set ${ }^{\mathrm{LFO}} \mathrm{WAV}{ }^{\text {SEL }}$ to the Sawtooth wave.
$\Rightarrow$ Set LIN/OFF/EXP switch to EXP (right position)
$\Rightarrow$ Rotate EXP panel control from center right and then center left.
The degree of VCO frequency modulation increases ...
... positively as the control moves center-right
... negatively as the control moves center-left.
$\Rightarrow$ Set LIN/OFF/EXP switch to LIN (right position)
$\Rightarrow$ Rotate LIN panel control from center right and then center left.
The degree of VCO frequency modulation increases ...
... positively as the control moves center-right
... negatively as the control moves center-left.
Synchronization
Set LFO Frequency to its audible pitch range
Press the SYNC push-button switch so that FZVCO LED illuminates RED.
$\Rightarrow$ Rotate LFO Frequency control (panel top left)
$\Rightarrow$ Rotate VCO COARSE and FINE Frequency controls (panel top right)
LFO frequency should equal or be less than VCO frequency for maximum output.
Differing frequency ratios produce different timbral effects.
$\Rightarrow$ Set LIN/OFF/EXP switch to center position
LFO frequency should equal or be less than VCO frequency for maximum output. Without Frequency modulation Sync produces a different range of timbral effects.

How does Waveform Windowing Work?


The figure left depicts how the VCO $\operatorname{Sin}^{2}$ waveform inputs to a VCA to be enveloped by either LFO Reverse Sawtooth or Triangle waveforms.

A lever-switch (with a middle OFF position) selects between to modulate the amplitude of the input signal (typically $\mathrm{Sin}^{2}$ ).

Signals input to EXTAUDIO jack override $\operatorname{Sin}^{2}$ and input directly to the VCA.
The OFFSET/LEVEL panel control adds to Input level setting regardless of switch position (including OFF).

With no LFO modulating waveform, OFFSET/LEVEL is a manual volume control especially useful when processing external audio.

With active LFO modulation the OFFSET/LEVEL reduces waveform spacing and asymmetrically distorts the waveform.

## How does Morph Work ?

## Cross-Fade

Morph cross-fades the VCO PWM square wave with an alternate waveform manually, or with voltage control.

The figure right depicts how the MORPH panel control and MORPHCV combine to set the degree of fade between PWM and an alternate waveform.

## Wave Select

The alternate Morph waveform is set by the MORPHSEL panel control.


The MORPH panel control is an attenuator.
With no signal plugged to MORPHCV, a reference is supplied so the MORPH control performs as Manual Rotary Waveform Select.
Signals input to MORPHCV jack override the reference with the MORPH panel control acts as an attenuator.

Increasing positive voltage move waveform selection from Sine to SubOctave.

Control Voltages more negative than OV are ignored.
Selecting Windowed Waveforms assumes it is set to sounding.

Frequency Range:

External Modulation:
Synchronization Input:
Synchronization Output:
Output Waveforms:
.04 Hz to 16 kHz
Frequency adjusted using the manual $\mathrm{LFO}^{\text {FZ }}$ control and (when the FZCOUPLE switch is activated) by external signals plugged into the $1 \mathrm{~V} /{ }^{\mathrm{OCT}} \mathrm{IN}$ jack.
Frequency rate indicated by the FZLFO LED flashing green when Frequency is coupled and red when Frequency control is un-coupled.
Input attenuator / Exponential response.
Resets Waveform low.
Unipolar Pulse 0-12V emits from ${ }^{\text {CLK }}$ OUT jack.
Manual Rotary selection for waveform emitted from LFO ${ }^{\text {SEL }}$ OUT jack. $+/-5$ Vac C Triangle, Sawtooth, Ramp, Square, Windowed and Uni-polar Pulse waveforms.


## VCO2

Frequency Range:

## External Modulation:

Output Waveforms:
. 5 Hz to 24 kHz .
Frequency adjusted using the manual COARSE and FINE panel controls and by external signals plugged into the $1 \mathrm{~V} /{ }^{\circ{ }^{\circ \mathrm{T}} \mathrm{IN} \text { jack. }}$
Frequency rate indicated by the FZVCO LED flashing GREEN when VCO2 is not internally synchronized to VCO1 and flashes RED when internally synchronized.
Linear and Exponential input response with two modes:
Internal Mode: Any of six VCO1 waveforms, manually selected by ${ }^{\text {MOD }}$ WAV ${ }^{\text {SEL }}$ rotary switch routes to modulation select switch. Placed left, VCO1 drives the VCO2 LIN MOD attenuator. Placed right VCO1 drives VCO2 EXP MOD attenuator. Centered, VCO2 is not internally modulated.
External Mode: External signals plugged into either LIN or
EXP MOD jacks overrides any internally routed modulation.
Resets Waveform low with two modes:
Internal Mode: With white SYNC button pressed, VCO1 ${ }^{\text {CLK }}$ OUT is the source of Synchronization. The FZVCO indicates RED.
External Mode: with white SYNC button not-pressed any signal plugged into the ${ }^{\text {SYNC }}$ jack is the source of synchronization.
VCO2 employs two output modes, manual and voltage controlled. Six waveform types emit from manual waveform outputs. Sine, Triangle, Ramp, PWM Pulse, Windowed and Sub-Octave Staircase.


Manual Outputs: Two Rotary switches $\left(\mathrm{VCO}^{\mathrm{SEL}} 1 ; \mathrm{VCO}^{\mathrm{SEL}} 2\right.$ ) select one of six possible output waveforms to emit from $\mathrm{VCO}^{\mathrm{SEL}} 1$ OUT and $\mathrm{VCO}^{\mathrm{SEL}} 2$ OUT jacks.

